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Recap: What is a MINLP?

(MINLP)
min f(x, y)
gilx,y) < 0 Vi=1,....m
x ¢ X
y €Y

where f(x,y) :R" - R, gi(x) : R?" - RVi,....m X CR™M, Y C N™,
and n=nq + no.

Hp. f and g are twice continuously differentiable functions.

Claudia D’Ambrosio (CNRS & X) MINLP 21 February 2019 4/54



Recap: Exact reformulations

(MINLP?)
min h(w, z) (1)
pilw,z) < 0 Vi=1,...,r (2)
we W 3)
zeZ (4)

where h(w,z) : RY9 - R, pj(w,z) :RI = RVi=1,...,r, W CR%,
Z CN%andqg=q+ Q.
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Recap: Exact reformulations

(MINLP’)
min h(w, z) (1)
pi(w,z) < 0 Vi=1,...r 2)
we W 3)
zeZ (4)

where h(w,z) : R - R, pi(w,z) : RI - RVi=1,...,r, W CR%,
ZCN%2andqg=qg+ Q.
The formulation (MINLP’) is an exact reformulation of (MINLP) if
e vV(w', Z') satisfying (2)-(4), 3(x’, y’) feasible solution of (MINLP) s.t.
¢(W/7 zl) = (X,’ y,)
@ ¢ is efficiently computable
@ V(w', Z') global solution of (MINLP’), then ¢(w’, Z') is a global
solution of (MINLP)
@ V(x', y') global solution of (MINLP), there is a (w’, Z) global
solution of (MINLP’)
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Recap: Exact reformulations

(MINLP’)
min h(w, z) (1)
pi(w,z) < 0 Vi=1,...,r (2)
we W 3)
zeZ 4)

where h(w,z) : R - R, pi(w,z) :RI - RVi=1,...,r, W C R,
Z CN%2andq=qg+ Q.
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Recap: Relaxations

(rMINLP)
min f(w, 2)

gi(w, z)
we W
zeZ

IN
o

Vi=1,...,r

where XCW CRN, YCZCZ%2,q1>n, Q> no, f(w,2) <f(x,y)
V(x,y) € (w, z), and
{(x.9)|g(x. y) < 0} C Proj, , {(w, 2)|g(w, 2) < 0}.
Examples:
@ continuous relaxation: when (w, z) € R", W = X,
f(va) = f(va)’ g(x,y) = g(X’ )
@ linear relaxation: whenqg=n, W= X, Z =Y, f(w, z) and g(w, 2)
are linear
@ convex relaxation: wheng=n, W=X,Z =Y, f(w, z) and
g(w, z) are convex
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Example: Pooling Problem

Inputs /' Pools L  Outputs J

?\\/=
AN

@ NodesN=/ULUJ

@ Arcs A
(I,j)e (IxL)yU(LxJ)Uu(lIxJ)
on which materials flow

@ Arc capacities: uj, (i,j) € A
@ Node capacities: Cj, i e N
@ Attribute requirements

i keK,jed
@ Material attributes: K A J
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Example: Pooling Problem

@ refinery processes in the petroleum industry
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Example: Pooling Problem

@ refinery processes in the petroleum industry

@ different specifications: e.g., sulphur/carbon concentrations or
physical properties such as density, octane number, ...
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Example: Pooling Problem

@ refinery processes in the petroleum industry

@ different specifications: e.g., sulphur/carbon concentrations or
physical properties such as density, octane number, ...

@ wastewater treatment, e.g., Karuppiah and Grossmann (2006)

@ Formally introduced by Haverly (1978)
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Example: Pooling Problem

@ refinery processes in the petroleum industry

@ different specifications: e.g., sulphur/carbon concentrations or
physical properties such as density, octane number, ...

@ wastewater treatment, e.g., Karuppiah and Grossmann (2006)

@ Formally introduced by Haverly (1978)
@ Alfaki and Haugland (2012) formally proved it is strongly NP-hard
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Example: Pooling Problem

“Simple” constraints

Inputs /' Pools L  Outputs J
Variables xj; for flow on arcs

Flow balance constraints at ‘\A\/‘

pools: .

D xi=Y x;=0, Vel .

iel jed, ./ T
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Example: Pooling Problem

“Simple” constraints

Variables x; for flow on arcs Inputs I Pools L  Outputs J

Flow balance constraints at .\
pools: ‘ \/>
ZX,’/—ZX/]':O, Vliel °
i€l jeJ, .
/ T

Capacity constraints:

@
D X+ Y xi<Ci, Viel
jed; leL;
ZX// <C, VlelL
jed
ZX”+ZXU < Cj, Vied
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Example: Pooling Problem

“Complicating” constraints
@ Inputs have associated attribute concentrations A\, k € K,i € |

@ Concentration of attribute in pool is the weighted average of the
concentrations of its inputs.

@ This results in bilinear constraints.
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Example: Pooling Problem

“Complicating” constraints
@ Inputs have associated attribute concentrations A\, k € K,i € |

@ Concentration of attribute in pool is the weighted average of the
concentrations of its inputs.

@ This results in bilinear constraints.

@ P-formulation (Haverly 78):
Keep track of concentration py of attribute k in pool /

Claudia D’Ambrosio (CNRS & X) MINLP 21 February 2019 10/54



Example: Pooling Problem

“Complicating” constraints
@ Inputs have associated attribute concentrations A\, k € K,i € |

@ Concentration of attribute in pool is the weighted average of the
concentrations of its inputs.

@ This results in bilinear constraints.

@ P-formulation (Haverly 78):
Keep track of concentration py of attribute k in pool /

@ Q-formulation (Ben-Tal et al. 94):
Variables gj for proportion of flow into pool / coming from input /
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Example: Pooling Problem

P-formulation
> x+ ) xi <G Viel
jeJ; leL;
ZX//' <G, vlielL
=
ZX,']'—FZX//'SC/, vVied
i€l; leL;
ZX;/—ZX/]':O, viel
i€l JEJ,
D ich MkiXil
P = &N yk e K le L
ZIEJ/ le
Yoict MiXii + D jer PriXj
icl; KA leL; PKIAY .
d d < agj, Vke K,jed
Ziel,uLj Xij
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Example: Pooling Problem

P-formulation

ZX//—FZX,'/SC,', Viel

JEJ; leL;
ZX//' < Gy, Vel
Jjed
ZX,'/'—FZX/]'SC/', Vied
iel,— IELj
ZX,'/—ZX//':O, vlielL
i€l jEJ/
kaZX“:Z)\k/Xi/ Vke K,lelL
ied; icl
ZAk,-x,-jJermx“ < agj Z Xij, Vke K,jed
i€l; leL; iehuL;
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Example: Pooling Problem

Q-formulation

Xi=aqi Y x; Yiellel
jed;

Zq/'/=1, viel

iE//
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Example: Pooling Problem

Q-formulation

Xi=aqi Y x; Yiellel
jed
Zq/'/=1, Viel

iE//

@ Attribute constraints

> Awixi + ZX/,(Z )\kiq/'/) <ay Y. X5, VkeK,jed

iGI/' IELj iel iEljULj
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Example: Pooling Problem

Q-formulation

ZX,’_/‘FZX,’/SC,’, viel
jEJ,' leL;
> x <G, viel
Jed
ZX,’j-i-ZX/jSCj, vjed
fE/j IGL]'
X,'/—C]nZX“:O viellel;
jed
> aqi=1 viel
i€l

Z)\k,-x,-j + ZX“ (Z )\kiqil) < agj Z Xij Vke K,jed

iE/j /EL]
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Example: Pooling Problem with binary vars

From NLP to MINLP
@ Decide whether to install pipes or not (0/1 decision)

@ Associate a binary variable z; with each pipe (suppose for now on
arcs from input to output)

Extra constraints:
Xij < min(C,-, Cj)Z,'j VieljedJ
zj € {0,1} Vieljed

Objective Function
@ Fixed cost for installing pipe

min >~ ¢; (ZXi/—i-ZXij) > p (ZXU+ZXU) +> ) fizj

iel leL; jeJi jed icl; leL; iel jed;
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© Methods for convex MINLPs
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.

NLP solver used:

Local NLP solvers — local optimum

No valid bound for nonconvex MINLPs.
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.
NLP solver used:

Local NLP solvers — local optimum
No valid bound for nonconvex MINLPs.

LB =30

©
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.
NLP solver used:

Local NLP solvers — local optimum
No valid bound for nonconvex MINLPs.

LB =30

©)
y1i/ N&:O
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.
NLP solver used:

Local NLP solvers — local optimum
No valid bound for nonconvex MINLPs.

LB =30

©)

y =1 N&:O
LB=35
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.
NLP solver used:

Local NLP solvers — local optimum
No valid bound for nonconvex MINLPs.

LB =30

©)

y =1 N&:O
LB=35

yZi/ \yzk:O
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MINLP branch-and-bound with local NLP solver
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.
NLP solver used:

Local NLP solvers — local optimum
No valid bound for nonconvex MINLPs.

LB =30 LB =30

Claudia D’Ambrosio (CNRS & X) MINLP 21 February 2019

16 /54



MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.
NLP solver used:

Local NLP solvers — local optimum
No valid bound for nonconvex MINLPs.

LB =30 LB =30

O) ()

vy =1 y1 =0 Jﬁiy N:1
LB =35
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.
NLP solver used:

Local NLP solvers — local optimum
No valid bound for nonconvex MINLPs.

LB =30 LB =30

Claudia D’Ambrosio (CNRS & X) MINLP 21 February 2019

16 /54



MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.
NLP solver used:

Local NLP solvers — local optimum
No valid bound for nonconvex MINLPs.

LB =30 LB =30

yz(;{ Yo =0 z=31
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Outer Approximation and nonconvex MINLPs

Several methods for convex MINLPs use Outer Approximation cuts

(Duran and Grossman, 1986) which are not exact for nonconvex
MINLPs.

gi(x) <0 = gi(x)+Vg(x) (x—xk) <0

where Vg(x¥) is the Jacobian of g(x) evaluated at point (x¥).

(x0.y0)

N
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@ Gilobal Optimization methods
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Global Optimization methods

subregion | : subregion 2

discarded as h{c) > f(e) i

bc Ea de

objective function

convex relaxation in whole space

a: solution of convex relaxation in whole space

b: local solution of objective function in whole space

Exact Heuristic

@ “Exact” in continuous space: @ Find solution with

e-approximate (find solution probability 1 in infinite time
within pre-determined e distance

from optimum in obj. fun. value)
@ For some problems, finite
convergence to optimum (¢ = 0)
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@ Gilobal Optimization methods
@ Multistart
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Multistart

@ The easiest GO method
1: =0
2. xX* = (00,...,00)
3: while — termination do
x" = (random(), ..., random())
x = localSolve(P, x’)
if fp(x) < f* then
f* <« fP(X)
XX
9: endif
10: end while
@ Termination condition: e.g. repeat k times

o N>R
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Six-hump camelback function

MNLioANWROO
MLoanwAO®

Global optimum (COUENNE)
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with IPOPT, k =5
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with IPOPT, k =10
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with IPOPT, k = 20
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with IPOPT, k = 50
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Six-hump camelback function

f(x1,X%) = 4x2 — 24x¢ + Ix8 + xyx0 — 4x2 + 4x3

Multistart with SNOPT, k = 20
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@ Gilobal Optimization methods

@ Spatial Branch-and-Bound
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Spatial Branch-and-Bound

Falk and Soland (1969) “An algorithm for separable nonconvex
programming problems”.

20 years ago: first general-purpose “exact” algorithms for nonconvex
MINLP.

@ Tree-like search
@ Explores search space exhaustively but implicitly

@ Builds a sequence of decreasing upper bounds and increasing
lower bounds to the global optimum

@ Exponential worst-case

@ Only general-purpose “exact” algorithm for MINLP
Since continuous vars are involved, should say “c-approximate”

@ Like BB for MILP, but may branch on continuous vars
Done whenever one is involved in a nonconvex term
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Spatial B&B: Example

al a2 a3 e

Original problem P
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Spatial B&B: Example

al a2 a3 e

Starting point x’
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Spatial B&B: Example

localSolve

al a2 a3

Local (upper bounding) solution x*
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Spatial B&B: Example

a2 a3 ad

Convex relaxation (lower) bound f with |f* — f| > ¢
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Spatial B&B: Example

|
al a2 } a3 ad

Branch at x = X into Cq, C»
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Spatial B&B: Example

C1 cz

al a2 a3 =

Convex relaxation on Cy : lower bounding solution x
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Spatial B&B: Example

localSolve

al a2 a3 ad

localSolve. from x: new upper bounding solution x*
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Spatial B&B: Example

al i a2 . a3 ad

|f* — f| > e: branch at x = X
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Spatial B&B: Example

al | a2 | a3 a4

Repeat on Cs: get X = x* and |f* — f| < €, no more branching
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Spatial B&B: Example

| c2
1

Claudia D’Ambrosio (CNRS & X)

|
i
al | a2 : a3 a4

Repeat on C,: f > f* (can’t improve x* in C,)
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Spatial B&B: Example

| c2
1

Claudia D’Ambrosio (CNRS & X)

|
i
al | a2 : a3 a4

Repeat on C4: f > f* (can’t improve x* in Cy)
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Spatial B&B: Example

i
1
DxE : |
|
|

al a2 ' a3 a4

No more subproblems left, return x* and terminate
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Spatial B&B: Pruning

@ P was branched into Cy, C>

@ C; was branched into Cs, Cs

© C; was pruned by optimality
(x* € G(Cs) was found)

©Q C,, C4 were pruned by bound
(lower bound for C, worse than f*)

© No more nodes: whole space explored, x* € G(P)

@ Search generates a tree
@ Suproblems are nodes

@ Nodes can be pruned by optimality, bound or infeasibility (when
subproblem is infeasible)

@ Otherwise, they are branched
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Spatial B&B: General idea

Aimed at solving “factorable functions”, i.e., f and g of the form:
Z H fhk(Xa .y)
h kK

where fpc(x, y) are univariate functions vh, k.
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where fpc(x, y) are univariate functions vh, k.
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envelopes/underestimators).

Claudia D’Ambrosio (CNRS & X) MINLP 21 February 2019 32/54



Spatial B&B: General idea

Aimed at solving “factorable functions”, i.e., f and g of the form:
Z H fhk(X7 .y)
h kK

where fpc(x, y) are univariate functions vh, k.

@ Exact reformulation of MINLP so as to have “isolated basic
nonlinear functions” (additional variables and constraints).

@ Relax (linear/convex) the basic nonlinear terms (library of
envelopes/underestimators).

@ Relaxation depends on variable bounds, thus branching
potentially strengthen it.
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@ Gilobal Optimization methods

@ Spatial Branch-and-Bound
@ Standard form
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Spatial B&B: exact reformulation to standard form

Consider a NLP for simplicity. Transform it in a standard form like:

min cT(x, w)
Ax,w) < b
wj = x Q)% forsuitable i, j
X

w

X €
w €
where, for example, &) € {sum, product, quotient, power, exp, log, sin,
cos, abs} (Couenne).
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@ Gilobal Optimization methods

@ Spatial Branch-and-Bound

@ Convexification
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Spatial B&B: convexification

Relax w; = x; @ x; V suitable /,j where Q) < {sum, product, quotient,
power, exp, log, sin, cos, abs} such that:

Wi

IN

overestimator(x; (X) X))

Vv

W underestimator(x; (X) X))

Convex relaxation is not the tightest possible, but built automatically.
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Spatial B&B: convexification

Relax w; = x; @ x; V suitable /,j where Q) < {sum, product, quotient,
power, exp, log, sin, cos, abs} such that:

W overestimator(x; (X) ;)

IN

Vv

W underestimator(x; (X) X))

Convex relaxation is not the tightest possible, but built automatically.
@ Underestimator/overestimator of convex/concave function: tangent
cuts (OA)

@ Odd powers or Trigonometric functions: separate intervals in
which function is convex or concave and do as for convex/concave

functions
@ Product or Quotient: Mc Cormick relaxation
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Spatial B&B: Examples of Convexifications

(b) z2 = log x

P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wéachter, “Branching and
bounds tightening techniques for non-convex MINLP”. Optimization
Methods and Software 24(4-5): 597-634 (2009).
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Example: Standard Form Reformulation

L2
min x5 + X4 X2

X1 +Xx > 1
X1 € [07 1]
X2 € [07 1]
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Example: Standard Form Reformulation

L2
min x5 + X4 X2

X1 +Xx > 1
x; € [0,1]
X2 € [0,1]

becomes
min wy + ws

wy = x2
Wo = X{Xo

X{+x0 > 1
xy € [0,1]
xo € [0,1]
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Example: .mod from Couenne

var x1 <=1, >=0;
varx2 <=1, >=0;

minimize of:

X1**2 4+ x1*x2;
subject to constraint:
X1 +x2>=1;
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Example: .mod from Couenne

# Problem name: extended-aw.mod
# original variables

var x_0 >= 0 <= 1 default 0;
varw_1>=0 <=1 default 1;
varw_2 >= 0 <= 1 default 0;

var x1 <=1, >=0; var w_3 >= 0 <= 1 default 0;
varx2 <=1, >=0; var w_4 >= 0 <= 2 default 0;
minimize of: # objective
x1**2 + x1*x2; I . .
subject to constraint: minimize obj: w_4;
X1 +Xx2>=1; # aux. variables defined
aux1:w_1=(1-x_0);
aux2: w_2 = (x_0**2);
aux3: w_3 = (x O*w - 1);
aux4: w_4 = (w_2+w_3);

# constraints
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@ Gilobal Optimization methods

@ Spatial Branch-and-Bound

@ Expression trees
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Expression trees

Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g. X2 + Xy Xo:

+
A/\

X4 2 X1 X2
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Expression trees

Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g. X2 + Xy Xo:

+
T
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@ Gilobal Optimization methods

@ Spatial Branch-and-Bound

@ Variable ranges

Claudia D’Ambrosio (CNRS & X) MINLP 21 February 2019 43 /54



Variable ranges

@ Crucial property for sBB convergence: convex relaxation
tightens as variable range widths decrease

@ convex/concave under/over-estimator constraints are (convex)
functions of xt, xY

@ it makes sense to tighten x-, xU at the sBB root node (trading off
speed for efficiency) and at each other node (trading off efficiency
for speed)
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@ Gilobal Optimization methods

@ Spatial Branch-and-Bound

@ Bounds tightening
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Bounds Tightening

@ In sBB we need to tighten variable bounds at each node
@ Two methods:

e Optimization Based Bounds Tightening (OBBT)

o Feasibility Based Bounds Tightening (FBBT)

e OBBT:
for each variable x in P compute

min{x | conv. rel. constr.}

° X
e X = max{x | conv. rel. constr.}

Setx<x<X
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Bounds Tightening

@ In sBB we need to tighten variable bounds at each node

@ Two methods:
e Optimization Based Bounds Tightening (OBBT)
o Feasibility Based Bounds Tightening (FBBT)

@ FBBT: i, =
[0,0]
)
propagation of intervals up and down b
constraint expression trees, with tightening /J .
x

( za) 0,1
at the root node ! (z2) [0.1]
Example: 5xy — xp = 0. \
@ @
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Bounds Tightening

@ In sBB we need to tighten variable bounds at each node

@ Two methods:

e Optimization Based Bounds Tightening (OBBT)
e Feasibility Based Bounds Tightening (FBBT)

@ FBBT: 5 =0
propagation of intervals up and down con- [-1,a] 1 (n[0,0]) = 0,0
straint expression trees, with tightening at -
the root node ZJ
Eaanpie: 56 ~ 2 =0 ot & @ ol
Up: ®:[5, 5] %[0, 1]=[0, 5]; ©:[0, 5] — [0, 1] =[-1, 5]. \

Root node tightening: [—1, 5] N [0, 0] = [0, 0]. @ @
Downwards: ®:[0, 0]-+[0, 1]=[0, 1; fa.a] Eg E]Tl

x1:00,11/15, 5] =[0, §]
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@ Gilobal Optimization methods

@ Spatial Branch-and-Bound

@ Reformulation Linearization Technique (RLT)
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RLT: Quadratic problems

@ All nonlinear terms are quadratic monomials
@ Aim to reduce gap betwen the problem and its convex relaxation

@ = replace quadratic terms with suitable linear constraints (fewer
nonlinear terms to relax)

@ Can be obtained by considering linear relations (called reduced
RLT constraints) between original and linearizing variables
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RLT: Quadratic problems

@ Foreach k < n,let wx = (Wi, ..., Wkn)

@ Multiply Ax = b by each x, substitute linearizing variables wy, get reduced RLT
constraint system (RRCS)
Vk<n (AWk = ka)

@ Vi k < ndefine zxj = wyj — Xixk, let zx = (Zk1 yeees an)
@ Substitute b = Ax in RRCS, get Vk < n(A(wx — xxx) = 0),i.e. Vk < n(Azx = 0). Let B,N
be the sets of basic and nonbasic variables of this system

@ Setting zx; = 0 for each nonbasic variable implies that the RRCS is satisfied =- It suffices
to enforce quadratic constraints wy; = x;xk for (i, k) € N (replace those for (i, k) € B with
the linear RRCS)
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Example: pooling problem

Q-formulation
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Example: pooling problem

PQ-formulation by Sahinidis and Tawarmalani (2005).
Like Q-formulation but with extra (redundant) constraints:

() X/jZiel, qir = Xjj Vil e L,j S J/
® Gidjcy X < Cigy Viellel;
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Example: pooling problem

PQ-formulation by Sahinidis and Tawarmalani (2005).
Like Q-formulation but with extra (redundant) constraints:

() X/jZiel, qir = Xjj Vil e L,j S J/
® Gidjcy X < Cigy Viellel;

One of the strongest known formulation!
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