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Recap: What is a MINLP?

(MINLP)

min f (x , y)

gi(x , y) ≤ 0 ∀i = 1, . . . ,m
x ∈ X
y ∈ Y

where f (x , y) : Rn → R, gi(x) : Rn → R ∀i , . . . ,m, X ⊆ Rn1 , Y ⊆ Nn2 ,
and n = n1 + n2.

Hp. f and g are twice continuously differentiable functions.
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Recap: Exact reformulations

(MINLP’)

min h(w , z) (1)
pi(w , z) ≤ 0 ∀i = 1, . . . , r (2)
w ∈W (3)

z ∈ Z (4)

where h(w , z) : Rq → R, pi(w , z) : Rq → R ∀i = 1, . . . , r , W ⊆ Rq1 ,
Z ⊆ Nq2 and q = q1 + q2.
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where h(w , z) : Rq → R, pi(w , z) : Rq → R ∀i = 1, . . . , r , W ⊆ Rq1 ,
Z ⊆ Nq2 and q = q1 + q2.
The formulation (MINLP’) is an exact reformulation of (MINLP) if

∀(w ′, z ′) satisfying (2)-(4), ∃(x ′, y ′) feasible solution of (MINLP) s.t.
φ(w ′, z ′) = (x ′, y ′)
φ is efficiently computable
∀(w ′, z ′) global solution of (MINLP’), then φ(w ′, z ′) is a global
solution of (MINLP)
∀(x ′, y ′) global solution of (MINLP), there is a (w ′, z ′) global
solution of (MINLP’)
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Recap: Relaxations

(rMINLP)

min f (w , z)

gi(w , z) ≤ 0 ∀i = 1, . . . , r
w ∈W

z ∈ Z

where X ⊆W ⊆ Rq1 , Y ⊆ Z ⊆ Zq2 , q1 ≥ n1, q2 ≥ n2, f (w , z) ≤ f (x , y)
∀(x , y) ⊆ (w , z), and
{(x , y)|g(x , y) ≤ 0} ⊆ Proj(x ,y){(w , z)|g(w , z) ≤ 0}.
Examples:

continuous relaxation: when (w , z) ∈ Rn, W = X ,
f (x , y) = f (x , y), g(x , y) = g(x , y)

linear relaxation: when q = n, W = X , Z = Y , f (w , z) and g(w , z)
are linear
convex relaxation: when q = n, W = X , Z = Y , f (w , z) and
g(w , z) are convex
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Example: Pooling Problem

Inputs I Pools L Outputs J

Nodes N = I ∪ L ∪ J
Arcs A
(i , j) ∈ (I×L)∪ (L× J)∪ (I× J)
on which materials flow
Material attributes: K

Arc capacities: uij , (i , j) ∈ A
Node capacities: Ci , i ∈ N
Attribute requirements
αkj , k ∈ K , j ∈ J
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Example: Pooling Problem

refinery processes in the petroleum industry

different specifications: e.g., sulphur/carbon concentrations or
physical properties such as density, octane number, ...
wastewater treatment, e.g., Karuppiah and Grossmann (2006)

Formally introduced by Haverly (1978)
Alfaki and Haugland (2012) formally proved it is strongly NP-hard
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Example: Pooling Problem

“Simple” constraints

Variables xij for flow on arcs

Flow balance constraints at
pools:∑
i∈Il

xil −
∑
j∈Jl

xlj = 0, ∀l ∈ L

Inputs I Pools L Outputs J
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Example: Pooling Problem

“Simple” constraints

Variables xij for flow on arcs

Flow balance constraints at
pools:∑
i∈Il

xil −
∑
j∈Jl

xlj = 0, ∀l ∈ L

Capacity constraints:

Inputs I Pools L Outputs J

∑
j∈Ji

xij +
∑
l∈Li

xil ≤ Ci , ∀i ∈ I

∑
j∈Jl

xlj ≤ Cl , ∀l ∈ L

∑
i∈Ij

xij +
∑
l∈Lj

xlj ≤ Cj , ∀j ∈ J
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Example: Pooling Problem

“Complicating” constraints
Inputs have associated attribute concentrations λki , k ∈ K , i ∈ I
Concentration of attribute in pool is the weighted average of the
concentrations of its inputs.
This results in bilinear constraints.

P-formulation (Haverly 78):
Keep track of concentration pkl of attribute k in pool l

Q-formulation (Ben-Tal et al. 94):
Variables qil for proportion of flow into pool l coming from input i
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Example: Pooling Problem

P-formulation ∑
j∈Ji

xij +
∑
l∈Li

xil ≤ Ci , ∀i ∈ I

∑
j∈Jl

xlj ≤ Cl , ∀l ∈ L

∑
i∈Ij

xij +
∑
l∈Lj

xlj ≤ Cj , ∀j ∈ J∑
i∈Il

xil −
∑
j∈Jl

xlj = 0, ∀l ∈ L

pkl =

∑
i∈Il λkixil∑

i∈Jl
xlj

∀k ∈ K , l ∈ L∑
i∈Ij λkixij +

∑
l∈Lj

pklxlj∑
i∈Ij∪Lj

xij
≤ αkj , ∀k ∈ K , j ∈ J
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i∈Jl

xlj =
∑
i∈Il

λkixil ∀k ∈ K , l ∈ L

∑
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λkixij +
∑
l∈Lj

pklxlj ≤ αkj
∑
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xij , ∀k ∈ K , j ∈ J
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Example: Pooling Problem

Q-formulation

xil = qil
∑
j∈Jl

xlj , ∀i ∈ I, l ∈ Li∑
i∈Il

qil = 1, ∀l ∈ L

Attribute constraints∑
i∈Ij

λkixij +
∑
l∈Lj

xlj

(∑
i∈Il

λkiqil

)
≤ αkj

∑
i∈Ij∪Lj

xij , ∀k ∈ K , j ∈ J
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∑
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Example: Pooling Problem with binary vars

From NLP to MINLP
Decide whether to install pipes or not (0/1 decision)
Associate a binary variable zij with each pipe (suppose for now on
arcs from input to output)

Extra constraints:

xij ≤ min(Ci ,Cj)zij ∀i ∈ I, j ∈ Ji

zij ∈ {0,1} ∀i ∈ I, j ∈ Ji

Objective Function
Fixed cost for installing pipe

min
∑
i∈I

ci

∑
l∈Li

xil +
∑
j∈Ji

xij

−∑
j∈J

pj

∑
i∈Ij

xij +
∑
l∈Lj

xlj

+
∑
i∈I

∑
j∈Ji

fijzij
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MINLP branch-and-bound with local NLP solver

Branch-and-bound algorithm: solve continuous (NLP) relaxation at
each node of the search tree and branch on variables.
NLP solver used:
Local NLP solvers→ local optimum
No valid bound for nonconvex MINLPs.
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Outer Approximation and nonconvex MINLPs

Several methods for convex MINLPs use Outer Approximation cuts
(Duran and Grossman, 1986) which are not exact for nonconvex
MINLPs.

gi(x) ≤ 0 → gi(xk ) +∇gi(xk )T ( x − xk
)
≤ 0

where ∇g(xk ) is the Jacobian of g(x) evaluated at point (xk ).
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Global Optimization methods

Exact
“Exact” in continuous space:
ε-approximate (find solution
within pre-determined ε distance
from optimum in obj. fun. value)

For some problems, finite
convergence to optimum (ε = 0)

Heuristic
Find solution with
probability 1 in infinite time
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Multistart

The easiest GO method
1: f ∗ =∞
2: x∗ = (∞, . . . ,∞)
3: while ¬ termination do
4: x ′ = (random(), . . . , random())
5: x = localSolve(P, x ′)
6: if fP(x) < f ∗ then
7: f ∗ ← fP(x)
8: x∗ ← x
9: end if

10: end while
Termination condition: e.g. repeat k times
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Six-hump camelback function

f (x1, x2) = 4x2
1 − 2.1x4

1 + 1
3x6

1 + x1x2 − 4x2
2 + 4x4

2

Global optimum (COUENNE)
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Six-hump camelback function
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Multistart with IPOPT, k = 5
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Six-hump camelback function
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Six-hump camelback function
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Six-hump camelback function

f (x1, x2) = 4x2
1 − 2.1x4
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Spatial Branch-and-Bound

Falk and Soland (1969) “An algorithm for separable nonconvex
programming problems”.
20 years ago: first general-purpose “exact” algorithms for nonconvex
MINLP.

Tree-like search
Explores search space exhaustively but implicitly
Builds a sequence of decreasing upper bounds and increasing
lower bounds to the global optimum
Exponential worst-case
Only general-purpose “exact” algorithm for MINLP
Since continuous vars are involved, should say “ε-approximate”
Like BB for MILP, but may branch on continuous vars
Done whenever one is involved in a nonconvex term
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Spatial B&B: Example

Original problem P
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Spatial B&B: Example

Starting point x ′
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Spatial B&B: Example

Local (upper bounding) solution x∗
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Spatial B&B: Example

Convex relaxation (lower) bound f̄ with |f ∗ − f̄ | > ε
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Spatial B&B: Example

Branch at x = x̄ into C1,C2
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Spatial B&B: Example

Convex relaxation on C1: lower bounding solution x̄
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Spatial B&B: Example

localSolve. from x̄: new upper bounding solution x∗
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Spatial B&B: Example

|f ∗ − f̄ | > ε: branch at x = x̄
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Spatial B&B: Example

Repeat on C3: get x̄ = x∗ and |f ∗ − f̄ | < ε, no more branching
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Spatial B&B: Example

Repeat on C2: f̄ > f ∗ (can’t improve x∗ in C2)
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Spatial B&B: Example

Repeat on C4: f̄ > f ∗ (can’t improve x∗ in C4)
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Spatial B&B: Example

No more subproblems left, return x∗ and terminate
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Spatial B&B: Pruning

1 P was branched into C1,C2

2 C1 was branched into C3,C4

3 C3 was pruned by optimality
(x∗ ∈ G(C3) was found)

4 C2,C4 were pruned by bound
(lower bound for C2 worse than f ∗)

5 No more nodes: whole space explored, x∗ ∈ G(P)

Search generates a tree
Suproblems are nodes
Nodes can be pruned by optimality, bound or infeasibility (when
subproblem is infeasible)
Otherwise, they are branched
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Spatial B&B: General idea

Aimed at solving “factorable functions”, i.e., f and g of the form:∑
h

∏
k

fhk (x , y)

where fhk (x , y) are univariate functions ∀h, k .

Exact reformulation of MINLP so as to have “isolated basic
nonlinear functions” (additional variables and constraints).
Relax (linear/convex) the basic nonlinear terms (library of
envelopes/underestimators).
Relaxation depends on variable bounds, thus branching
potentially strengthen it.
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Spatial B&B: exact reformulation to standard form

Consider a NLP for simplicity. Transform it in a standard form like:

min cᵀ(x ,w)

A(x ,w) ≤ b

wij = xi
⊗

xj for suitable i , j

x ∈ X
w ∈ W

where, for example,
⊗
∈ {sum, product, quotient, power, exp, log, sin,

cos, abs} (Couenne).
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Spatial B&B: convexification

Relax wij = xi
⊗

xj ∀ suitable i , j where
⊗
∈ {sum, product, quotient,

power, exp, log, sin, cos, abs} such that:

wij ≤ overestimator(xi
⊗

xj)

wij ≥ underestimator(xi
⊗

xj)

Convex relaxation is not the tightest possible, but built automatically.

Underestimator/overestimator of convex/concave function: tangent
cuts (OA)
Odd powers or Trigonometric functions: separate intervals in
which function is convex or concave and do as for convex/concave
functions
Product or Quotient: Mc Cormick relaxation
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Spatial B&B: Examples of Convexifications

P. Belotti, J. Lee, L. Liberti, F. Margot, A. Wächter, “Branching and
bounds tightening techniques for non-convex MINLP”. Optimization
Methods and Software 24(4-5): 597-634 (2009).
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Example: Standard Form Reformulation

min x2
1 + x1x2

x1 + x2 ≥ 1
x1 ∈ [0,1]

x2 ∈ [0,1]

becomes

min w1 + w2

w1 = x2
1

w2 = x1x2

x1 + x2 ≥ 1
x1 ∈ [0,1]

x2 ∈ [0,1]
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Example: .mod from Couenne

var x1 <= 1, >= 0;
var x2 <= 1, >= 0;

minimize of:
x1**2 + x1*x2;
subject to constraint:
x1 + x2 >= 1;

# Problem name: extended-aw.mod

# original variables

var x_0 >= 0 <= 1 default 0;
var w_1 >= 0 <= 1 default 1;
var w_2 >= 0 <= 1 default 0;
var w_3 >= 0 <= 1 default 0;
var w_4 >= 0 <= 2 default 0;

# objective

minimize obj: w_4;

# aux. variables defined

aux1: w_1 = (1-x_0);
aux2: w_2 = (x_0**2);
aux3: w_3 = (x_0*w_1);
aux4: w_4 = (w_2+w_3);

# constraints
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Expression trees

Representation of objective f and constraints g

Encode mathematical expressions in trees or DAGs

E.g. x2
1 + x1x2:

+
H
HH

�
��

ˆ ∗
HH��

2x1

HH��
x2x1
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Expression trees

Representation of objective f and constraints g
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Variable ranges

Crucial property for sBB convergence: convex relaxation
tightens as variable range widths decrease
convex/concave under/over-estimator constraints are (convex)
functions of xL, xU

it makes sense to tighten xL, xU at the sBB root node (trading off
speed for efficiency) and at each other node (trading off efficiency
for speed)
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Bounds Tightening

In sBB we need to tighten variable bounds at each node
Two methods:

Optimization Based Bounds Tightening (OBBT)
Feasibility Based Bounds Tightening (FBBT)

OBBT:
for each variable x in P compute

x = min{x | conv. rel. constr.}
x = max{x | conv. rel. constr.}

Set x ≤ x ≤ x
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Bounds Tightening

In sBB we need to tighten variable bounds at each node
Two methods:

Optimization Based Bounds Tightening (OBBT)
Feasibility Based Bounds Tightening (FBBT)

FBBT:

propagation of intervals up and down

constraint expression trees, with tightening

at the root node

Example: 5x1 − x2 = 0.
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Bounds Tightening

In sBB we need to tighten variable bounds at each node
Two methods:

Optimization Based Bounds Tightening (OBBT)
Feasibility Based Bounds Tightening (FBBT)

FBBT:
propagation of intervals up and down con-

straint expression trees, with tightening at

the root node

Example: 5x1 − x2 = 0.

Up: ×©:[5, 5]×[0, 1]= [0, 5]; −©:[0, 5]−[0, 1]= [−1, 5].

Root node tightening: [−1, 5] ∩ [0, 0] = [0, 0].

Downwards: ×©:[0, 0]+[0, 1]= [0, 1];

x1:[0, 1]/[5, 5]= [0, 1
5 ]
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RLT: Quadratic problems

All nonlinear terms are quadratic monomials
Aim to reduce gap betwen the problem and its convex relaxation
⇒ replace quadratic terms with suitable linear constraints (fewer
nonlinear terms to relax)
Can be obtained by considering linear relations (called reduced
RLT constraints) between original and linearizing variables
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RLT: Quadratic problems

For each k ≤ n, let wk = (wk1, . . . ,wkn)

Multiply Ax = b by each xk , substitute linearizing variables wk , get reduced RLT
constraint system (RRCS)

∀k ≤ n (Awk = bxk )

∀ i, k ≤ n define zki = wki − xi xk , let zk = (zk1, . . . , zkn)

Substitute b = Ax in RRCS, get ∀k ≤ n(A(wk − xk x) = 0), i.e. ∀k ≤ n(Azk = 0). Let B,N
be the sets of basic and nonbasic variables of this system

Setting zki = 0 for each nonbasic variable implies that the RRCS is satisfied⇒ It suffices
to enforce quadratic constraints wki = xi xk for (i, k) ∈ N (replace those for (i, k) ∈ B with
the linear RRCS)
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Example: pooling problem

Q-formulation ∑
j∈Ji

xij +
∑
l∈Li

xil ≤ Ci , ∀i ∈ I

∑
j∈Jl

xlj ≤ Cl , ∀l ∈ L

∑
i∈Ij

xij +
∑
l∈Lj

xlj ≤ Cj , ∀j ∈ J

xil − qil
∑
j∈Jl

xlj = 0 ∀i ∈ I, l ∈ Li∑
i∈Il

qil = 1 ∀l ∈ L

∑
i∈Ij

λkixij +
∑
l∈Lj

xlj

(∑
i∈Il

λkiqil

)
≤ αkj

∑
i∈Ij∪Lj

xij , ∀k ∈ K , j ∈ J
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Example: pooling problem

PQ-formulation by Sahinidis and Tawarmalani (2005).
Like Q-formulation but with extra (redundant) constraints:

xlj
∑

i∈Il qil = xlj ∀l ∈ L, j ∈ Jl

qil
∑

j∈Jl
xlj ≤ Clqil ∀i ∈ I, l ∈ Li

One of the strongest known formulation!
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