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The RBF method
Problem definition

We aim to solve
min
x∈X

f (x)

where:
I X ⊂ Rn is the (bounded) feasible set of x

I f (x) is a black-box function whose evaluation is “costly”
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The RBF method
Basic building blocks

For a given (unisolvent) set of samples S:

s(x |S) =
∑
y∈S

λyφ(‖x − y‖) + p(x , c) = Φ(x)λ+ P(x)T c

Coefficients λ, c are computed solving the linear system

Φλ+ Pc = f

PTλ = 0

the degree of the polynomial depends on φ().
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The RBF method
Basic algorithm

determine suitable S0;
k ← 0;
while stopping criteria not fulfilled do

determine sk (x |Sk );

yk = arg minx∈X sk (x);

select the aspiration level f̂ ;

determine xk+1 based on µ(x |yk , f̂ );

Sk+1 = Sk ∪ xk + 1;
end
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The RBF method
Comments

A lot of freedom:

I which radial basis

I the degree of the polynomial

I how solve the auxiliary problems

I how to select the reference value
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The RBF method
Do we really care about convergence?

”In principle, these methods may have convergence guarantees if the
point selection strategy is well-chosen; but this is irrelevant in view of
the fact that for expensive functions, only few (perhaps up to 1000)
function evaluations are admissible”a

aArnold Neumaier, “Complete search in continuous global optimization and
constraint satisfaction”, Acta numerica 13.1 (2004): 271–369.
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The RBF method
Convergence

Based on the well known theorem of Törn, A., Zilinskas, A.:

Theorem
If an algorithm generates a sequence of points that are dense in in the
feasible set X it converges to the optimal solution.

Basically we will get arbitrary close to optimum...
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The RBF method
Convergence

Theorem
If an RBF method is well posed (see usual properties of s()) and

I Sk is unisolvent
I for the reference value holds that

f̂k+1 < min
x

s(x |Sk )

I xk+1 is a minimizer(maximizer) for the bumpiness function

then the point selected at iteration k + 1 is distinct for any other points
in Sk .
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The RBF method
Convergence

Corollary
If for the designed RBF method the previous theorem holds, then the
method converges to the global optimum of f (x).

Proof.
If the previous theorem holds, then the sequence of points {xi} is
dense in X and for the Torn and Zilinskas theorem we converge to the
global optimum.
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The RBF method
Convergence

I Granted if an infinite subsequence of sampled point is dense in X

I In some cases convergence to first-order stationary points

I In probability if we can sample the feasible set along {xk}
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On the bumpiness function
A step back on the interpolant function

Let consider 1D cubic splines for a set {x1, . . . , xk}:
I must fulfill some condition on first/second derivatives

I it’s natural if s
′′

(x) = 0

I minimize
I(s) =

∫ ∞
−∞

s
′′

(x)2dx

which a curvature measure

The 1D cubic RBF is a natural spline

s(x) =
k∑

i=1

λi |x − xi |3 + c1 + c2x

,
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On the bumpiness function
A step back on the interpolant function

Generalize to a general radial basis φ(), we obtain

I(s) =

∫ ∞
−∞

s
′′

(x)2dx = . . . = 12λT Φλ+ 12Pλ,

but asking for a natural spline we get

I(s) = 12λT Φλ

An 1D RBF is the natural spline for that basis and set of points.
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On the bumpiness function
A step back on the interpolant function

Moving to the multidimensional case, we note that the I(s) function
comes from the product

< u(x , λ), v(x , µ) >= (−1)m
k∑

i=1

λiv(xi) = (−1)m
k∑

i=1

µiu(xi),

yielding

< s, s >= (−1)mλT Φλ

which is a seminorm once PTλ = 0.
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On the bumpiness function
Meaning

For the surrogate model, centers are fixed, and we look for the λ’s.

For the bumpiness, one center is not fixed (the next point) and we
minimize the seminorm of

s(x |S ∪ x̂) = s(x |S) + (f̂ − s(x̂ |S))L̂(x)

where L is an RBF of the same family that attains 1 in x̂ and 0
everywhere else.
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On the bumpiness function
Meaning

How to think about the bumpiness?
Imagine:

I an elastic carpet that has be fixed in points at certain heights

I put your finger at the aspiration level
I move it until you find the point in which the carpet resists less to

your pressure
I this is the next point!
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On the bumpiness function
Pros...

I ”simple” method

I a meaningful concept

I promote convergence

I allow for balancing exploration/intensification via the aspiration
level
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On the bumpiness function
...and Cons

I hard to optimize (very bumpy...)

I numerically unstable (log scaling)

I boundary ”effect”

I difficult to relate to the geometry of S

I requires a (good) lower bound on the optimal value of the
surrogate model
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CORS-RBF2

1 use the surrogate model has merit function solving

min
x∈X

s(x)

‖x − xi‖ ≥ ∆i i = 1 . . . k

2 Parallel version1

1Rommel Gagalac Regis, “Global optimization of computationally expensive
functions using serial and parallel radial basis function algorithms”, Diss., 2004.

2Rommel G Regis and Christine A Shoemaker, “Constrained global optimization of
expensive black box functions using radial basis functions”, Journal of Global
Optimization 31.1 (2005): 153–171.
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SRS3

1 next point among a pool of perturbations of the best solution so far

2 putative points scored using s() and/or the geometry of the
sample set

3 several variants depending on the scoring and globalization
strategies

4 convergence in probability

3Rommel G Regis and Christine A Shoemaker, “A stochastic radial basis function
method for the global optimization of expensive functions”, INFORMS Journal on
Computing 19.4 (2007): 497–509.

Cassioli (LIX) 20



ConstrLMSRBF4

1 extends the LMSRBF version of SRS

2 build surrogates models for both objective function and contraints

3 require a first feasible point

4 consider feasibility violation in scoring the putative points

5 tested up to 4000 function evaluations

4Rommel G Regis, “Stochastic radial basis function algorithms for large-scale
optimization involving expensive black-box objective and constraint functions”,
Computers & Operations Research 38.5 (2011): 837–853.
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BOOSTER5

A Trust-Region based RBF method (no bumpiness):

1 test the model for ”validity” and add new points if necessary
2 find a minimizer of the model in the TR
3 compute the improvement ratio
4 update TR

5Rodrigue Oeuvray and Michel Bierlaire, “BOOSTERS: A derivative-free algorithm
based on radial basis functions”, International Journal of Modelling & Simulation 29.1
(2009): 26.
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ORBIT67

Extends BOOSTER with a more complex handling of the TR.
1 use only a subset of samples

2 the surrogate is built enforcing well conditioning (fully linearity)

3 the next point is the (approximate) minimizer of the surrogate on
the TR

4 very complex framework

6Stefan M Wild, Rommel G Regis, and Christine A Shoemaker, “ORBIT:
Optimization by radial basis function interpolation in trust-regions”, SIAM Journal on
Scientific Computing 30.6 (2008): 3197–3219.

7Stefan M Wild and Christine Shoemaker, “Global convergence of radial basis
function trust region derivative-free algorithms”, SIAM Journal on Optimization 21.3
(2011): 761–781.
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ARBF8

1 extends the original RBF method

2 consider BB constraints as penalty

3 select next point using bumpiness

4 aspiration level is varied and putative next points clustered

5 in some cases the aspiration level is ignored and the optimum of
s() is used

8Kenneth Holmström, “An adaptive radial basis algorithm (ARBF) for expensive
black-box global optimization”, Journal of Global Optimization 41.3 (2008): 447–464.
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ARBF

At iteration k , the Grid Mode uses a set w = {w1 . . .wt} of positive
weight and determines

xi = arg min
x∈X

µ(x , sk − wi f∆) i = 1 . . . t ,

points are then clustered9 and one is selected using heuristics.

9Donald R Jones, “A taxonomy of global optimization methods based on response
surfaces”, Journal of global optimization 21.4 (2001): 345–383.
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qualSolve10

1 use an alternative merit function

2 consider approximation and interpolation

3 extends to multi-objective optimization

10Stefan Jakobsson et al., “A method for simulation based optimization using radial
basis functions”, Optimization and Engineering 11.4 (2010): 501–532.
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qualSolve

From interpolation to approximation η[0,1]:

min ηλT Φλ+ (1− η)‖ε‖2

s.t .
Φλ+ Pc = ε+ f

PTλ = 0

ε ∈ Rk

1 η → 0 yields original RBF method
2 η → 1 yield the smoothest surrogate model

The choice of η can be done using cross-validation.
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qualSolve

It maximizes

Q(y) =

∫
Ω

(US(x)− US∪y (x))ω(s(x |S))dV (x)

where ω() is a suitable weight function and

U(x) = min
z∈S
‖x − z‖
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