A Tutorial on Black–Box Optimization

Andrea Cassioli

¹LIX - ECOLE POLYTECHNIQUE (FR) cassioli@lix.polytechinique.fr

25/04/2013

Black–Box Function

Informal Definition

Black-Box Function

A function $f(x) : \mathbb{R}^n \to \mathbb{R}$ for which the analytic form is not known.

Black–Box Function

Informal Definition

Black-Box Function

A function $f(x) : \mathbb{R}^n \to \mathbb{R}$ for which the analytic form is not known.

Typically a black-box function can be evaluated to obtain:

- value;
- definitnesss;
- (approximate)gradient

Black–Box Function

Informal Definition

Black-Box Function

A function $f(x) : \mathbb{R}^n \to \mathbb{R}$ for which the analytic form is not known.

Typically a black-box function can be evaluated to obtain:

- value;
- definitnesss;
- (approximate)gradient

Warning!

A black-box function is not necessarily a "nasty" one, it might be smooth and defined every where and even convex...

Global optimization of Black–Box functions Informal Definition

$$\min_{x} f(x) g_j(x) \le 0 \qquad \qquad j = 1 \dots k x_i \in [I_i, u_i] \subseteq [-\infty, +\infty] \qquad \qquad i = 1 \dots n$$

Black-Box Optimization Problem

An optimization model in which at least for a function is a black-box function.

Global optimization of Black–Box functions Examples

- Legacy code: no access to what is inside a library and/or an executable
- Numerical code involving PDE's, integrals...
- ▶ real-life experiments: crash tests, chemical reactions, etc...

Observation on Black–Box functions

A critical issue: computational cost

How much does a function evaluation "cost"?

With *cost* we mean any measure of the resources needed to evaluate the function (convertible somehow to money).

Observation on Black–Box functions

A critical issue: computational cost

How much does a function evaluation "cost"?

With *cost* we mean any measure of the resources needed to evaluate the function (convertible somehow to money).

- cheap function: it can be evaluated thousands of times

Black–Box Optimization Main tools – Sampling

For cheap black-box functions we can sample the feasible set:

- randomly
- with experiment design (as Latin Hypercube)
- deterministic

We may want to sample around an available point (intensification) or just everywhere on the feasible set (exploration).

Black–Box Optimization Main tools – Surrogate Modeling

Surrogate model

A mathematical data-driven model that mimic the behavior of another model *as closely as possible* while being computationally cheap(er) to evaluate. (Wikipedia)

Black–Box Optimization Main tools – Surrogate Modeling

Surrogate model

A mathematical data-driven model that mimic the behavior of another model *as closely as possible* while being computationally cheap(er) to evaluate. (Wikipedia)

Accuracy is often required only in some regions of the feasible set....

Cheap Black–Box Functions Local Search for NLP

Large amount of function evaluation allows for gradient approximation (forward/centered):

$$\left. \frac{\partial f(x)}{\partial x} \right|_{\bar{x}} \approx \frac{f(\bar{x}) - f(\bar{x} + \delta)}{\delta}$$

- steepest-descent;
- Quasi-Newton methods (L)-BFGS (see the work of Overton for instance);
- the *implicit filtering* methods of Kelley.

Direct Search Algorithms Main idea

A broad family of algorithms built on a simple idea: given a point \bar{x} and a finite set of directions $D(\bar{x})$ such that

$$\exists d \in D(\bar{x}), d^T \nabla f(\bar{x}) \leq 0,$$

then there exists an $\alpha > 0$ small enough such that

$$f(\bar{x}) \geq f(\bar{x} + \alpha d).$$

Direct Search Algorithms

Main idea

Input: x_0, α $f^* \leftarrow f(x_0);$ $k \leftarrow 0;$ while stopping criterion do

```
\begin{array}{l} f_k^{\star} \leftarrow \min_{d \in D(x_k)} f(x_k + \alpha d); \\ x_k^{\star} \leftarrow \arg\min_{d \in D(x_k)} f(x_k + \alpha d); \\ \text{if } f_k^{\star} < f^{\star} \text{ then} \\ \mid x_{k+1} \leftarrow x_k^{\star} \\ \text{else} \\ \mid \text{ update (shrink) } \alpha \\ \text{end} \\ k \leftarrow k + 1; \end{array}
```

```
k \leftarrow k + 1;
```

end

Direct Search Algorithms

A compass search example

Pattern-Search

Observations

There is an endless number of variants on:

- how to define D
- 2 how to select α
- I how to deal with constraints

Kolda et al. *Optimization by direct search: New perspectives on some classical and modern methods*, SIAM review, 2003

Cheap Black–Box Functions

Nelder-Mead Simplex Method

Cassioli (LIX)

Cheap Black–Box Functions DIRECT (Dividing RECTangles)

A theoretically sound method for box-constrained problems based on feasible set sequential partition. Jones et al. *Lipschitzian optimization without the Lipschitz constant*, JOTA 1993

Cheap Black–Box Functions

Global Optimization

Any algorithm based only on function evaluation might work:

- Genetic Algorithms
- Particle-Swarm

5

- Oifferential Evolutions
- Variable-Neighborhood Search

ilx 🏄

Cheap Black–Box Functions

Global Optimization

Any algorithm based only on function evaluation might work:

- Genetic Algorithms
- Particle-Swarm

5

- Oifferential Evolutions
- Variable-Neighborhood Search

Easy to implement and to parallelize, almost no convergence theory and in general quite poor performances.

Cheap Black–Box Functions Hybrid Approaches

To balance the global/local phases, use a two-phase approach:

- use a GO algorithm to generate a new set of points (exploration)
- start local searches from some of them

To balance the global/local phases, use a two-phase approach:

- use a GO algorithm to generate a new set of points (exploration)
- start local searches from some of them

It can be very effective but more complex to implement and tune.

- Cassioli et al., A global optimization method for the design of space trajectories, COAP 2011
- Vicente et al. on http://www.norg.uminho.pt/aivaz/pswarm/

Costly Black–Box Functions Main ideas

We need to minimize the number of function evaluations to accomplish our task...but how?

Costly Black–Box Functions Main ideas

We need to minimize the number of function evaluations to accomplish our task...but how? Let assume that:

- **()** in a set *S* of points $f(\cdot)$ has been evaluated
- 2 a surrogate model $s(\cdot|f(\cdot), S)$ can be defined "*easily*"

Costly Black–Box Functions Main ideas

We need to minimize the number of function evaluations to accomplish our task...but how? Let assume that:

- **()** in a set *S* of points $f(\cdot)$ has been evaluated
- 2 a surrogate model $s(\cdot|f(\cdot), S)$ can be defined "easily"

We want to choose a point $x \notin S$ that maximize the expected result on the evaluation of f(x).

The merit function

To carefully select the next point in which evaluate f(x) we use a merit function $\mu(\cdot)$ such that:

- it's cheap to evaluate and possibly to create
- enjoy all desirable properties for GO
- **3** depends on f(x) and S

We solve:

$$\max \mu(x|f, S) g_j(x) \le 0 \qquad \qquad j = 1 \dots k x_j \in [l_i, u_i] \subseteq [-\infty, +\infty] \qquad \qquad i = 1 \dots n$$

The merit function

- the merit function can change over the iterations (exploration vs. intensification)
- it can be the surrogate model itself
- it might require the global optimum of the surrogate

The optimization of $\mu(\cdot)$ should be easy and fast compare to the evaluation of $f(\cdot)$.

Template Algorithm

k ← 0;

compose S^0 ;

while stopping criterion do

```
build s(\cdot|f, S^k);

x^k \leftarrow \arg \max_x \mu(x, s(\cdot|f, S^k));

S^{k+1} = S^k \cup (x^k, f(x^k));

k \leftarrow k + 1;
```

end

Surrogate models

- EGO D.Jones et al. Efficient global optimization of expensive black-box functions, JOGO 1998
- Kriging
- RBF: use radial basis function and polynomials, no statistic assumptions

Gutmann A radial basis function method for global optimization., JOGO 2001

Holmström et al., *An adaptive radial basis algorithm (ARBF) for expensive black-box global optimization.*, JOGO 2008

SVM: very similar to RBF
 Suykens Nonlinear modelling and support vector machines. IMTC 2001.
 Proc. IEEE, 2001

- choice of different surrogate models based on the iteraton
- combining linealry different surrogate models
- Trust-Region approaches: instead of S, people use a subset S around the best/current iterate, to improve refinement and exploit good starting points.
- Interpolation vs. Approximation

See the endless series of paper of Regis and Shoemaker.

Costly Black–Box Functions Observations

- most algorithms has convergence properties under mild assumption, but in practice this does not really matter!
- it is diffucult to asses performance and to compare algorithms
- still an active field of research, especially the RBF approach

THANK YOU!

Cassioli (LIX)