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Introduction

The aim of the project is to study a crucial problem in energy management: the Unit Commitment

(UC) sub-problem dedicated to hydro valley management. When continuous, such a problem is

easily solved to optimality by any current LP solver. However, the introduction of combinatorial

elements leads to far tougher hydro valley problems. This is especially true for some of the larger

French Hydro valleys. This difficulty is amplified by the fact that such hydro valley problems are

typically solved many times over the course of the iterations of some Decomposition method for the

UC problem. One employs optimization methods to take decisions on the production schedule in

the short/medium term for a hydro valley composed of different and connected reservoirs.

Example

Notation
Sets:
(N ,V) = directed graph representing the hydro valley.
T = set of time steps.
U = set of turbines.
P = set of pumping stations.
S = set of active power and spinning reserves.
Fn = {m ∈ N|amn = 1} (n ∈ N ).
Dn = {m ∈ N|anm = 1} (n ∈ N ).
Xut = set of operational levels for turbine u at time period t (u ∈ U , t ∈ T )

Parameters:
Anm = connection matrix element (it is 1 when the water released from reservoir n flows into reservoir
m, 0 otherwise).
T = time step size [hours].
Dv = the number of time steps the water takes to flow (get pumped) through arc v (v ∈ V).
Int = inflows at period t to reservoir n (t ∈ T ,n ∈ N ) [m3/h]
G = gradient slopes [m3/h2]
Xuti = i-th operational level for turbine u at time period t (u ∈ U , t ∈ T , i ∈ Xut) [m3/h]
X u = upper bound on the water flow passing through turbine u (u ∈ U) [m3/h]
Y p = upper bound on the water pumped by pump p (p ∈ P) [m3/h]
µu = {v ∈ V| turbine u represents arc v}
µ′p = {v ∈ V| pump p represents arc v}
ρu(x , v) = efficiency function of turbine u [MW]
θp(y) = efficiency function of pump p [MW]

Variables

xut = water flow passing through turbine u in period t (u ∈ U , t ∈ T ) [m3/h].
ypt = water pumped by pump p in period t (p ∈ P , t ∈ T ) [m3/h].
vnt = water volume in reservoir n in period t (n ∈ N , t ∈ T ) [m3].
zuti = auxiliary binary variable (1 when turbine u has operational level ≥ i in period t , 0 otherwise)
u ∈ U , t ∈ T .

Constraints

I Equilibrium constraint (∀n ∈ N , t ∈ T ):

vnt = vn(t−1) +
∑

m∈Fn:D(m,n)≤t

∑
u∈U :µu=(m,n)

xu(t−D(m,n))T −
∑

m∈Fn

∑
u∈U :µu(n,m)

xutT

+
∑

m∈Dn:D(m,n)≤t

∑
p∈P :(n,m)

yp(t−D(m,n))T −
∑

m∈Dn

∑
p∈P :µ′p=(m,n)

yptT + IntT

with vn0 = initial volume of reservoir n (n ∈ N ).
I Gradient constraint (∀u ∈ U , t ∈ T ):

−GT ≤ xut − xu(t−1) ≤ GT

with xu0 is the initial flow in turbine u (∀u ∈ U).
I Discrete operational levels constraints (u ∈ U , t ∈ T ):

xut =
∑
i=Xut

zuti(Xuti − Xut(i−1))

zut(i+1) ≤ zuti (i ∈ Xut)

−1 ≤ zuti − zu(t−1)i − zu(t+1)(i+1) ≤ 0 (i ∈ Xut)

0 ≤ zut1 + z ′pt1 ≤ 1 ∀u ∈ U ,p ∈ P : i(u,p) = 1
0 ≤ zut1 + z ′p(t+1)1 ≤ 1 1∀u ∈ U ,p ∈ P : i(u,p) = 1
0 ≤ zu(t+1)1 + z ′pt1 ≤ 1 ∀u ∈ U ,p ∈ P : i(u,p) = 1

where i(u,p) = 1 when turbine u is reversable and acts also as pump p.
I Bounds on discharged water due to active power and spinning reserves:

0 ≤ xut +
∑
s∈S

fs(xut) ≤ Xu (u ∈ U , t ∈ T )

I Simple bounds:

0 ≤ xut ≤ Xu (u ∈ U , t ∈ T )
0 ≤ ypt ≤ Yp (u ∈ U , t ∈ T )
zuti ∈ {0,1} (u ∈ U , t ∈ T , i ∈ X )

Objective function

Minimizing:
I Cost incurred by pumping

∑
t∈T λtT

∑
p∈P θp(ypt)

I Cost of using water expressed by the water-values [different modeling possibilities]
Minus

I Gain generated by pumping∑
t∈T

λtT
∑
u∈U

ρu(xut , vnt) +
∑
s∈S

∑
t∈T

λtT
∑
u∈U

(ρu(
∑

s′∈S:s′≤s

fS(xut), vmt) + ρu(
∑

s′∈S:s′<s

f ′s(xut), vnt))

where λt are price signals (see project “Consistent Dual Signals and Optimal Primal Solutions”)

Solution Approaches

This problem is practically difficult to solve because of the complicated constraints involved, and the
large size of real instances. Moreover, because of the presence of continuous and binary variables
and general nonlinear constraints, the mathematical programming formulation describes a Mixed
Integer (Non) Linear Programming (MI(N)LP) problem. This kind of problems are among the most
difficult to solve in mathematical programming and can be attacked in different ways. Solving these
large-scale, real-world problems with the required efficiency by straightforward application of standard
MI(N)LP optimization tools is impossible. Therefore, specialized methods or are required to provide
solutions with provable high accuracy in a limited amount of time. These require to simultaneously
pursue two very definitely connected but different lines of research:

1. modeling and reformulations: formulation strengthening, cuts, decomposition methods, and
approximations to efficiently provide effective lower bounds on the optimal value;

2. heuristics: matheuristics, possibly exploiting the formulations/decompositions/approximations of point
1, to efficiently provide good quality feasible solutions.

For more information...

Visit the project web site:
http://www.lix.polytechnique.fr/˜dambrosio/PGMO.php.
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