
Mechanized metatheory revisited

Dale Miller

Inria Saclay & LIX, École Polytechnique
Palaiseau, France

TYPES 2016, Novi Sad
25 May 2016

Theory vs Metatheory

When formalizing programming languages, we often have to deal
with theorems such as

I ` M ⇓ V ,

I ` Γ context,

I Γ ` M : τ , and

I `cps M M̂.

Such provability judgments are generally given inductively using
inference rules encoding structured operational semantics and
typing rules.

Of course, the real prize is proving metatheorems about entire
programming languages or specification languages.

I ` ∀M,V ,U. (` M ⇓ V) ⊃ (` M ⇓ U) ⊃ U = V

I ` ∀M,V ,T . (` M ⇓ V) ⊃ (` M : T) ⊃ (` M : V)

Metatheory is unlike other domains

Formalizing metatheory requires dealing with linguistic items (e.g.,
types, terms, formulas, proofs, programs, etc) which are not typical
data structures (e.g., integers, trees, lists, etc).

The authors of the POPLmark challenge tried metatheory
problems on existing systems and urged the developers of proof
assistants to make improvements:

Our conclusion [...] is that the relevant technology has
developed almost to the point where it can be widely
used by language researchers. We seek to push it over the
threshold, making the use of proof tools common practice
in programming language research [TPHOLS 2005]

That is: existing systems are close but need additional engineering.

A major obstacle: bindings

Linguistic expressions generally involve bindings. Our formal tools
need to

I acknowledge that bindings are special aspects of parsed
syntax and

I provide support for bindings in syntax within proof principles
(e.g., induction and pattern matching).

In the 11 years since the POPLmark challenge, several approaches
to binding syntax have been made within mature theorem provers:

I locally nameless,

I nominal reasoning, and

I parametric higher-order abstract syntax.

None seem canonical.

Sometimes additional engineering is not enough

An analogy: Early and mature programming languages provided
treatments of concurrency and distributed computing in ways:

I thread packages,

I remote procedure calls, and

I tuple space (Linda).

Such approaches addressed important needs. None-the-less, early
pioneers (Dijkstra, Hoare, Milner, Petri) considered new ways to
express and understand concurrency via formalisms such as CCS,
CSP, Petri Nets, π-calculus, etc. None seem canonical.

In a similar spirit, we examine here an approach to metatheory that
is not based on extending mature theorem proving platforms.

We keep the scope but not the approach of the POPLmark
challenge.

Major first step: Drop mathematics as an intermediate

A traditional approach to formalizing metatheory.

1. Implement mathematics
I Pick a rich logic: intuitionistic higher-order logic, classical

first-order logic, set theory, etc.
I Provide abstractions such as sets, functions, etc.

2. Model computation via mathematical structures:
I via denotational semantics and/or
I via inductively defined data types and proof systems.

What could be wrong with this approach? Isn’t mathematics the
universal language?

Various “intensional aspects” of computational specifications —
bindings, names, resource accounting, etc — are challenges to this
approach to reasoning about computation.

Major first step: Drop mathematics as an intermediate

A traditional approach to formalizing metatheory.

1. Implement mathematics
I Pick a rich logic: intuitionistic higher-order logic, classical

first-order logic, set theory, etc.
I Provide abstractions such as sets, functions, etc.

2. Model computation via mathematical structures:
I via denotational semantics and/or
I via inductively defined data types and proof systems.

What could be wrong with this approach? Isn’t mathematics the
universal language?

Various “intensional aspects” of computational specifications —
bindings, names, resource accounting, etc — are challenges to this
approach to reasoning about computation.

Examples of intensional aspects of expressions

Consider algorithms: two sort programs describe the same function
but should not be replaced in all contexts.

A more explicit example: Is the following a theorem?

∀wi ¬(λx .x = λx .w) (∗)

If λ-abstractions denote functions, (∗) is equivalent to

∀wi ¬ ∀x(x = w).

This is not a theorem (consider the singleton model).

If λ-abstractions denote syntactic expressions, then (∗) should be a
theorem since no (capture avoiding) substitution of an expression
of type i for the w in λx .w can yield λx .x .

Examples of intensional aspects of expressions

Consider algorithms: two sort programs describe the same function
but should not be replaced in all contexts.

A more explicit example: Is the following a theorem?

∀wi ¬(λx .x = λx .w) (∗)

If λ-abstractions denote functions, (∗) is equivalent to

∀wi ¬ ∀x(x = w).

This is not a theorem (consider the singleton model).

If λ-abstractions denote syntactic expressions, then (∗) should be a
theorem since no (capture avoiding) substitution of an expression
of type i for the w in λx .w can yield λx .x .

Examples of intensional aspects of expressions

Consider algorithms: two sort programs describe the same function
but should not be replaced in all contexts.

A more explicit example: Is the following a theorem?

∀wi ¬(λx .x = λx .w) (∗)

If λ-abstractions denote functions, (∗) is equivalent to

∀wi ¬ ∀x(x = w).

This is not a theorem (consider the singleton model).

If λ-abstractions denote syntactic expressions, then (∗) should be a
theorem since no (capture avoiding) substitution of an expression
of type i for the w in λx .w can yield λx .x .

Two Type Theories of Church [JSL 1940]

Tension between a logic for metatheory and for mathematics.

Axioms 1-6: Elementary Type Theory (ETT). Foundations for a
higher-order predicate calculus.

Axioms 7-11: Simple Theory of Types (STT)

I non-empty domains

I Peano’s axioms,

I axioms of description and choice, and

I extensionality for functions.

Adding these gives us a foundations for much of mathematics.

With extensionality, description, and choice, STT goes too far for
our interests in metatheory.

We keep to ETT and eventually extend it for our metatheory needs.

Two Type Theories of Church [JSL 1940]

Tension between a logic for metatheory and for mathematics.

Axioms 1-6: Elementary Type Theory (ETT). Foundations for a
higher-order predicate calculus.

Axioms 7-11: Simple Theory of Types (STT)

I non-empty domains

I Peano’s axioms,

I axioms of description and choice, and

I extensionality for functions.

Adding these gives us a foundations for much of mathematics.

With extensionality, description, and choice, STT goes too far for
our interests in metatheory.

We keep to ETT and eventually extend it for our metatheory needs.

Two Type Theories of Church [JSL 1940]

Tension between a logic for metatheory and for mathematics.

Axioms 1-6: Elementary Type Theory (ETT). Foundations for a
higher-order predicate calculus.

Axioms 7-11: Simple Theory of Types (STT)

I non-empty domains

I Peano’s axioms,

I axioms of description and choice, and

I extensionality for functions.

Adding these gives us a foundations for much of mathematics.

With extensionality, description, and choice, STT goes too far for
our interests in metatheory.

We keep to ETT and eventually extend it for our metatheory needs.

Simple types as syntactic categories

The type o (omicron) is the type of formulas.

Other primitive types provide for multisorted terms.

The arrow type denotes the syntactic category of one syntactic
category over another.

For example, the universal quantifier ∀τ is not applied to a term of
type τ and a formula (of type o) but rather to an abstraction of
type τ → o.

Both ∀τ and ∃τ belong to the syntactic category (τ → o)→ o.

Typing in this sense is essentially the same as Martin-Löf’s notion
of arity types.

Proof theory for induction and coinduction

Following Gentzen, proof theory for both intuitionistic and classical
versions of ETT have been studied.

Recent work adds to ETT equality, induction, and coinduction.

I 2000: R. McDowell & M, “Cut-Elimination for a Logic with
Definitions and Induction”, TCS.

I 2004: A. Tiu, “A Logical Framework for Reasoning about
Logical Specifications”, PhD.

I 2008: D. Baelde, “A linear approach to the proof-theory of
least and greatest fixed points”, PhD.

I 2011: A. Gacek, M, G. Nadathur “Nominal abstraction”, I&C.

(The last three papers also deal with the ∇-quantifier.)

A framework for the metatheory of programming languages

A framework for metatheory should accommodate the following
features.

1. Relational specifications, not functional specifications, appear
to be primitive: for example, M ⇓ V and Γ ` M : τ .

2. Semantic specification as inference rules (e.g., SOS, typing,
etc).

3. Inductive and co-inductive reasoning about provability.

4. Variable binding and their concomitant operations need to be
supported.

We will eventually show that all these features are treated within a
single logic: ETT plus induction, coinduction, ∇-quantification.

Semantics as inference rules

Both the dynamic and static semantics of programming languages
are generally given using relations and inference rules.

CCS and π-calculus transition system:

P
a−→ P ′

P + Q
a−→ P ′

P
x̄y−→ P ′

(y)P
x̄(w)−→ P ′{w/y}

y 6= x
w /∈ fn((y)P ′)

Functional programming evaluation:

M ⇓ λx .R N ⇓ U S ⇓ V

(M N) ⇓ V
S = R[N/x]

Typing of terms:
Γ, x : τ ` t : σ

Γ ` λx .t : τ → σ
x /∈ fn(Γ)

How abstract is your syntax?

Gödel and Church did their formal metatheory on string
representation of formulas! Today, we parse strings into abstract
syntax (a.k.a parse trees). But how abstract is that syntax?

Principle 1: The names of bound variables should be
treated as the same kind of fiction as white space.

Principle 2: There is “one binder to ring them all.”1

Principle 3: There is no such thing as a free variable.
(Alan Perlis’s epigram 47.)

Principle 4: Bindings have mobility and the equality
theory of expressions must support such mobility.

1A scrambling of J. R. R. Tolkien’s “One Ring to rule them all, ... and in
the darkness bind them.”

α, β0, and η conversions

β0-conversion rule

I (λx .t)x = t or equivalently

I (λy .t)x = t[x/y], provided that x is not free in λy .t.

β0 reduction makes terms smaller. Mobility: an internal bound
variable y is replaced by an external (bound) variable x .

Note the symmetry:

I if t is a term over the signature Σ ∪ {x} then λx .t is a term
over the signature Σ and

I if λx .s is a term over the signature Σ then the β0 reduction of
((λx .s) y) is a term over the signature Σ ∪ {y}.

Rewriting a subterm with external bound variables

β0-expansion

Replace t(x , y) with (λuλv .t(u, v)) x y

Replacement of abstracted subterm

β0-reduction

One step rewriting modulo β0

The contextual modal type theory of Nanevski, Pfenning, and
Pientka [2008] provides another approach to binder mobility.

Unification of λ-terms

Since β0 is such a weak rule, unification of simply typed λ-terms
modulo α, β0, and η is decidable.

Higher-order pattern unification has the restriction that
meta-variables can be applied to only distinct bound variables.
With that restriction, unification modulo β0η is complete for
unification modulo βη.

Such unification does not require type information. Thus, it can be
moved to many different typed settings.

In the π-calculus literature there is a notion of “internal mobility”
captured by the πI -calculus of Sangiorgi [1996]. In this fragment,
β0 is the only form of β that is needed to bind input variables to
outputs.

HOAS vs λ-tree syntax

Higher-order abstract syntax is a technique that maps object
language bindings to meta-language bindings [Pfenning &
Schürmann, CADE99]. Given that programming languages differ
greatly, this identified is ambiguous.

In functional programming, HOAS
implies using function spaces to
denote bindings.

Thus, there is no built-in notion of
equality for HOAS.

This is semantically odd approach
to syntax.

HOAS vs λ-tree syntax

Higher-order abstract syntax is a technique that maps object
language bindings to meta-language bindings [Pfenning &
Schürmann, CADE99]. Given that programming languages differ
greatly, this identified is ambiguous.

In functional programming, HOAS
implies using function spaces to
denote bindings.

Thus, there is no built-in notion of
equality for HOAS.

This is semantically odd approach
to syntax.

HOAS vs λ-tree syntax

Higher-order abstract syntax is a technique that maps object
language bindings to meta-language bindings [Pfenning &
Schürmann, CADE99]. Given that programming languages differ
greatly, this identified is ambiguous.

In logic programming, HOAS implies
using term-level bindings, which are
available in, say, λProlog.

Built-in equality incorporates
α-conversion. Capture-avoiding
substitution is provided by β-reduction.

We use λ-tree syntax to denote this
approach to encoding (also in Isabelle,
Twelf, Minlog, Beluga, ...)

λ-tree syntax illustrated

Encode the rule
M ⇓ λx .R N ⇓ U S ⇓ V

(M N) ⇓ V
S = R[N/x]

as
M ⇓ (abs R) N ⇓ U (R U) ⇓ V

(app M N) ⇓ V
.

In λProlog syntax:

kind tm type.

type abs (tm -> tm) -> tm.

type app tm -> tm -> tm.

eval (app M N) V :-

eval M (abs R), eval N U, eval (R U) V.

Binding a variable in a proof

When proving a universal quantifier, one uses a “new” or “fresh”
variable.

B1, . . . ,Bn ` Bv

B1, . . . ,Bn ` ∀xτ .Bx
∀R,

provided that v is a “new” variable (not free in the lower sequent).
Gentzen called such new variables eigenvariables.

But this violates the “Perlis principle.” Instead, we write

Σ, v : τ : B1, . . . ,Bn ` Bv

Σ : B1, . . . ,Bn ` ∀xτ .Bx
∀R,

The variables in the signature context are bound in the sequent.

Eigenvariables are proof-level bindings.

Dynamics of binders during proof search

During proof search, binders can be instantiated (using β
implicitly)

Σ : ∆, typeof c (int→ int) ` C

Σ : ∆, ∀α(typeof c (α→ α)) ` C
∀L

They also have mobility (they can move):

Σ, x : ∆, typeof x α ` typeof dBe β
Σ : ∆ ` ∀x(typeof x α ⊃ typeof dBe β)

∀R

Σ : ∆ ` typeof dλx .Be (α→ β)

In this case, the binder named x moves from term-level (λx) to
formula-level (∀x) to proof-level (as an eigenvariable in Σ, x).

Only β0 conversion is needed for mobility.

An example: call-by-name evaluation and simple typing

We want to do more than “animate” or “execute” a specification.

We want to prove properties about the specifications. We illustrate
with a proof of type preservation (subject-reduction).

(eval M (abs R) ∧ eval (R N) V) ⊃ eval (app M N) V

eval (abs R) (abs R)

(typeof M (arr A B) ∧ typeof N A) ⊃ typeof (app M N) B

∀x [typeof x A ⊃ typeof (R x) B] ⊃ typeof (abs R) (arr A B)

The first three clauses are Horn clauses; the fourth is not.

Proof of type preservation

Theorem: If ` eval P V and ` typeof P T then ` typeof V T .
Proof: By structural induction on a proof of eval P V .

There are two ways to prove ` eval P V .

Case eval-abs: Thus P and V are equal to (abs R), for some R.
The consequent is immediate.

Case eval-app: P is of the form (app M N) and for some R, there
are shorter proofs of ` eval M (abs R) and ` eval (R N) V .

Since ` typeof (app M N) T there must be a U such that
` typeof M (arr U T) and ` typeof N U.

Using the inductive hypothesis, we have ` typeof (abs R) (arr U T)
and, hence, ` ∀x .[typeof x U ⊃ typeof (R x) T].

By properties of logic, we can instantiate this quantifier with N
and use cut (modus ponens) to conclude that ` typeof (R N) T .
(A substitution lemma for free!)

Using the inductive hypothesis again yields ` typeof V T . QED

Proof of type preservation

Theorem: If ` eval P V and ` typeof P T then ` typeof V T .
Proof: By structural induction on a proof of eval P V .

There are two ways to prove ` eval P V .

Case eval-abs: Thus P and V are equal to (abs R), for some R.
The consequent is immediate.

Case eval-app: P is of the form (app M N) and for some R, there
are shorter proofs of ` eval M (abs R) and ` eval (R N) V .

Since ` typeof (app M N) T there must be a U such that
` typeof M (arr U T) and ` typeof N U.

Using the inductive hypothesis, we have ` typeof (abs R) (arr U T)
and, hence, ` ∀x .[typeof x U ⊃ typeof (R x) T].

By properties of logic, we can instantiate this quantifier with N
and use cut (modus ponens) to conclude that ` typeof (R N) T .
(A substitution lemma for free!)

Using the inductive hypothesis again yields ` typeof V T . QED

Proof of type preservation

Theorem: If ` eval P V and ` typeof P T then ` typeof V T .
Proof: By structural induction on a proof of eval P V .

There are two ways to prove ` eval P V .

Case eval-abs: Thus P and V are equal to (abs R), for some R.
The consequent is immediate.

Case eval-app: P is of the form (app M N) and for some R, there
are shorter proofs of ` eval M (abs R) and ` eval (R N) V .

Since ` typeof (app M N) T there must be a U such that
` typeof M (arr U T) and ` typeof N U.

Using the inductive hypothesis, we have ` typeof (abs R) (arr U T)
and, hence, ` ∀x .[typeof x U ⊃ typeof (R x) T].

By properties of logic, we can instantiate this quantifier with N
and use cut (modus ponens) to conclude that ` typeof (R N) T .
(A substitution lemma for free!)

Using the inductive hypothesis again yields ` typeof V T . QED

Proof of type preservation

Theorem: If ` eval P V and ` typeof P T then ` typeof V T .
Proof: By structural induction on a proof of eval P V .

There are two ways to prove ` eval P V .

Case eval-abs: Thus P and V are equal to (abs R), for some R.
The consequent is immediate.

Case eval-app: P is of the form (app M N) and for some R, there
are shorter proofs of ` eval M (abs R) and ` eval (R N) V .

Since ` typeof (app M N) T there must be a U such that
` typeof M (arr U T) and ` typeof N U.

Using the inductive hypothesis, we have ` typeof (abs R) (arr U T)
and, hence, ` ∀x .[typeof x U ⊃ typeof (R x) T].

By properties of logic, we can instantiate this quantifier with N
and use cut (modus ponens) to conclude that ` typeof (R N) T .
(A substitution lemma for free!)

Using the inductive hypothesis again yields ` typeof V T . QED

Proof of type preservation

Theorem: If ` eval P V and ` typeof P T then ` typeof V T .
Proof: By structural induction on a proof of eval P V .

There are two ways to prove ` eval P V .

Case eval-abs: Thus P and V are equal to (abs R), for some R.
The consequent is immediate.

Case eval-app: P is of the form (app M N) and for some R, there
are shorter proofs of ` eval M (abs R) and ` eval (R N) V .

Since ` typeof (app M N) T there must be a U such that
` typeof M (arr U T) and ` typeof N U.

Using the inductive hypothesis, we have ` typeof (abs R) (arr U T)
and, hence, ` ∀x .[typeof x U ⊃ typeof (R x) T].

By properties of logic, we can instantiate this quantifier with N
and use cut (modus ponens) to conclude that ` typeof (R N) T .
(A substitution lemma for free!)

Using the inductive hypothesis again yields ` typeof V T . QED

Proof of type preservation

Theorem: If ` eval P V and ` typeof P T then ` typeof V T .
Proof: By structural induction on a proof of eval P V .

There are two ways to prove ` eval P V .

Case eval-abs: Thus P and V are equal to (abs R), for some R.
The consequent is immediate.

Case eval-app: P is of the form (app M N) and for some R, there
are shorter proofs of ` eval M (abs R) and ` eval (R N) V .

Since ` typeof (app M N) T there must be a U such that
` typeof M (arr U T) and ` typeof N U.

Using the inductive hypothesis, we have ` typeof (abs R) (arr U T)
and, hence, ` ∀x .[typeof x U ⊃ typeof (R x) T].

By properties of logic, we can instantiate this quantifier with N
and use cut (modus ponens) to conclude that ` typeof (R N) T .
(A substitution lemma for free!)

Using the inductive hypothesis again yields ` typeof V T . QED

Proof of type preservation

Theorem: If ` eval P V and ` typeof P T then ` typeof V T .
Proof: By structural induction on a proof of eval P V .

There are two ways to prove ` eval P V .

Case eval-abs: Thus P and V are equal to (abs R), for some R.
The consequent is immediate.

Case eval-app: P is of the form (app M N) and for some R, there
are shorter proofs of ` eval M (abs R) and ` eval (R N) V .

Since ` typeof (app M N) T there must be a U such that
` typeof M (arr U T) and ` typeof N U.

Using the inductive hypothesis, we have ` typeof (abs R) (arr U T)
and, hence, ` ∀x .[typeof x U ⊃ typeof (R x) T].

By properties of logic, we can instantiate this quantifier with N
and use cut (modus ponens) to conclude that ` typeof (R N) T .
(A substitution lemma for free!)

Using the inductive hypothesis again yields ` typeof V T . QED

A fully formal proof in Abella

Theorem type-preserve : forall E V T,

{|- eval E V} -> {|- typeof E T} -> {|- typeof V T}.

induction on 1. intros. case H1.

search.

case H2. apply IH to H3 H5. case H7.

inst H8 with n1 = N.

cut H9 with H6.

apply IH to H4 H10. search.

The inst command instantiates ∀x .[typeof x U ⊃ typeof (R x) T]
to get [typeof N U ⊃ typeof (R N) T].

The cut command applies that implication to the hypothesis
typeof N U.

Something is missing

Type preservation theorems are too simple, given that substitution
lemmas are free. Turn to simple but more general meta-theoretic
questions.

Consider the following problem about reasoning with an
object-logic. The formula

∀u∀v [q 〈u, t1〉 〈v , t2〉 〈v , t3〉]

is provable from the assumptions

H = {∀x∀y [q x x y], ∀x∀y [q x y x], ∀x∀y [q y x x]}

only if terms t2 and t3 are

equal.

We would like to prove a meta-level formula like

∀t1, t2, t3.{H ` (∀u∀v [q 〈u, t1〉 〈v , t2〉 〈v , t3〉])} ⊃ t2 = t3

It seems we need a treatment of “new” or “fresh” variables.

Something is missing

Type preservation theorems are too simple, given that substitution
lemmas are free. Turn to simple but more general meta-theoretic
questions.

Consider the following problem about reasoning with an
object-logic. The formula

∀u∀v [q 〈u, t1〉 〈v , t2〉 〈v , t3〉]

is provable from the assumptions

H = {∀x∀y [q x x y], ∀x∀y [q x y x], ∀x∀y [q y x x]}

only if terms t2 and t3 are equal.

We would like to prove a meta-level formula like

∀t1, t2, t3.{H ` (∀u∀v [q 〈u, t1〉 〈v , t2〉 〈v , t3〉])} ⊃ t2 = t3

It seems we need a treatment of “new” or “fresh” variables.

A stronger form of the ξ rule

The usual form of the ξ rule is given as

t = s

λx .t = λx .s

As written, this violates the “Perlis principle”. If we fix this with

∀x .t = s

λx .t = λx .s

then (∀x .t = s) ≡ (λx .t = λx .s) which is not appropriate for
reasoning with λ-tree syntax since we want ∀wi ¬(λx .x = λx .w)
to be provable. The ∇-quantifier addresses this problem:

∇x .t = s

λx .t = λx .s

The formula ∀wi ¬∇x .x = w is provable [M & Tiu, LICS 2003].

A new quantifier ∇

∇-quantification is similar to Pitt’s freshness quantifier [FAC
2002]. Both are self dual ∇x¬Bx ≡ ¬∇xBx and in weak settings
(roughly Horn clauses), they do coincide [Gacek, PPDP 2010].

To accommodate a new quantifier, we need a new place to which a
binding can move.

Sequents will have one global signature (the familiar Σ) and
several local signatures.

Σ : σ1 . B1, . . . , σn . Bn ` σ0 . B0

σi is a list of variables, locally scoped over the formula Bi .

The expression σi . Bi is called a generic judgment.

The sequent calculus rules for ∇

The ∇-introduction rules modify the local contexts.

Σ : (σ, yγ) . B[y/x], Γ ` C
Σ : σ . ∇xγ .B, Γ ` C

∇L
Σ : Γ ` (σ, yγ) . B[y/x]

Σ : Γ ` σ . ∇xγ .B
∇R

Since these rules are the same on the left and the right, this
quantifier is self-dual.

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx
∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx ∇x(Bx ⇒ Cx) ≡ ∇xBx ⇒ ∇xCx
∇x∀yBxy ≡ ∀h∇xBx(hx) ∇x∃yBxy ≡ ∃h∇xBx(hx)
∇x∀yBxy ⇒ ∀y∇xBxy ∇x .> ≡ >, ∇x .⊥ ≡ ⊥

Implementing proof search in the presence of ∇ does not require
new unification since ∇’s can be mini-scoped and since
∇x1 · · · ∇xn.t = s is equivalence to λx1 · · ·λxn.t = λx1 · · ·λxn.s.

Example: encoding π calculus

There are two syntactic categories processes and names and we use
the primitive types p and n for these. The syntax is the following:

P := 0 | τ.P | x(y).P | x̄y .P | (P | P) | (P + P) | (x)P | [x = y]P

There are two binding constructors here.
The restriction operator (x)P is encoded using a constant of type
(n→ p)→ p.
The input operator x(y).P is encoded using a constant of type
n→ (n→ p)→ p.

Encoding π-calculus transitions

Processes can make transitions via various actions. There are three
constructors for actions: τ : a for silent actions, ↓: n→ n→ a for
input actions, and ↑: n→ n→ a for output actions.

↓ xy : a denotes the action of inputting y on channel x
↑ xy : a denotes the action of outputting y on channel x
↑ x : n→ a denotes outputting of an abstracted name, and
↓ x : n→ a denotes inputting of an abstracted variable.

One-step transitions are encoded as two different predicates:

P
A
−−→ Q free or silent action, A : a

P
↓x
−−⇀ M bound input action, ↓ x : n→ a, M : n→ p

P
↑x
−−⇀ M bound output action, ↑ x : n→ a, M : n→ p

π-calculus: operational semantics

Three example inference rules defining the semantics of π-calculus.

x̄y .P
x̄y
−−→ P

P
α
−−→ P ′

[x = x]P
α
−−→ P ′

P
α
−−→ P ′

(y)P
α
−−→ (y)P ′

y 6∈ n(α)

OUTPUT-ACT : x̄y .P
x̄y
−−→ P

4
= >

MATCH : [x = x]P
α
−−→ P ′ 4

= P
α
−−→ P ′

RES : (x)Px
α
−−→ (x)P ′x

4
= ∇x .(Px

α
−−→ P ′x)

Consider the process (y)[x = y]x̄z .0. It cannot make any transition
since y has to be “new”; that is, it cannot be x .

The following statement is provable.

∀x∀Q∀α.[((y)[x = y](x̄z .0)
α
−−→ Q) ⊃ ⊥]

Encoding simulation in the (finite) π-calculus

Simulation for the (finite) π-calculus is defined simply as:

sim P Q
4
=

∀A,P ′ [P
A
−−→ P ′ ⇒ ∃Q ′.Q

A
−−→ Q ′ ∧ sim P ′ Q ′] ∧

∀X ,P ′ [P
↓X
−−⇀ P ′ ⇒ ∃Q ′.Q

↓X
−−⇀ Q ′ ∧ ∀w .sim (P ′w) (Q ′w)] ∧

∀X ,P ′ [P
↑X
−−⇀ P ′ ⇒ ∃Q ′.Q

↑X
−−⇀ Q ′ ∧∇w .sim (P ′w) (Q ′w)]

Bisimulation is easy to encode (just add additional cases).

Bisimulation corresponds to open bisimulation. If the meta-logic is
made classical, then late bisimulation is captured. The difference
can be reduced to the excluded middle ∀x∀y . x = y ∨ x 6= y .
[Tiu & M, ToCL 2010]

The Abella theorem prover

Abella is an interactive theorem prover that is based on the pieces
of logic described in this talk.

I elementary type theory (the impredicative and intuitionistic
subset)

I least and greatest fixed points with inference rules for
induction and coinduction.

I the ∇-quantifier

I an encoding of an object-logic (a subset of λProlog) with
tactics related to its meta-theory

The proof theory of this logic (called G) has been studied in
[Gacek, M, & Nadathur, 2011].

Abella is written in OCaml and version 2.0.3 is available via OPAM
and GitHub.

A tutorial appears in the J. of Formalized Reasoning 2014.

Conclusions

I have described an extension of ETT targeting metatheory and
not mathematics.

The resulting logic provides for λ-tree syntax in a direct fashion, via
binder-mobility, ∇-quantification, and the unification of λ-terms.

Induction over syntax containing bindings is available: in its richest
setting, such induction is done over sequent calculus proofs of
typing derivations.

Operational semantics and typing judgments are often encoded
directly.

The Abella system has been used to successfully capture important
aspects of the metatheory of the λ-calculus, π-calculus,
programming languages, and object-logics.

