
Logic Programming in a Fragment of
Intuitionistic Linear Logic

by

Joshua Hodas, PhD student at UPenn
[now an attorney in Los Angeles]

and

Dale Miller, Edinburgh (sabbatical leave from UPenn)
[now INRIA]

A revised version appears in Information and Computation, 1994.



Remembering the early 1990’s

Two new, exciting innovations:
• linear logic [1987]
• π-calculus [1989]

Many areas of computational logic, concurrency theory, and
programming language semantics have been influence by them.

. . . but there was a steep learning curve.

Linear logic was strange: proof nets, slices, phase semantics,
additive/multiplicative/exponential connectives, etc.

The LICS 91 paper showed that
• logic programming became more expressive using linear logic,

and
• linear logic programming had applications.



In the ’91 and ’94 papers

Lolli = {>,&, ∀,⊃} ∪ {(}

• Linear logic without exponentials: LL = Lolli ∪ {⊥}

• Completeness of “goal directed search”

• A polarized embedding of intuitionistic logic into linear logic
(needs half as many exponentials).

• A canonical model given as a resource indexed Kripke model

• Lazy splitting of contexts

• Several applications.



(from LICS91) Aspects of Intuitionistic Contexts

Theorem Proving
+ Contexts manage hypotheses and eigen-variables elegantly.
− Contraction cannot be controlled naturally.
Linguistics
+ Relative clauses are sentences with noun phrase gaps:

(NP ⊃ SENT ) ⊃ REL.
− Gap extraction is non-vacuous and satisfy island constraints
Data Bases
+ Contexts can act as databases and support query answering by

deduction.
− Contexts cannot naturally be “edited” or updated.
Object State
+ Objects can have their state and methods hidden in a context.
− Updating object state is not possible declaratively.

The linear logic extension changed the minuses to pluses.



A word about the future (paraphrasing The Graduate)

Mr. McGuire: I just want to say one word to you. Just one word.
Ben: Yes, sir.
Mr. McGuire: Are you listening?
Ben: Yes, I am.
Mr. McGuire: Focused proof systems
Ben: But isn’t that three words?

Focused proof systems provide control of the structural rules
without a direct appeal to linear logic. They provide remarkably
flexible normal forms.

Completeness of a focusing proof systems is the second most
important result about a sequent proof system for CS applications.

Mr. McGuire: But what is the most important result?
Ben: Cut-elimination, of course.

— Thank you —


