
A Proof Theory for Generic Judgments

Dale Miller

INRIA-Futurs & École polytechnique

and

Alwen Tiu

École polytechnique & Penn State University

The operational semantics of a computation system is often presented as inference rules or, equiv-
alently, as logical theories. Specifications can be made more declarative and high-level if syntactic
details concerning bound variables and substitutions are encoded directly into the logic using
term-level abstractions (λ-abstraction) and proof-level abstractions (eigenvariables). When one
wishes to use such logical theories to support reasoning about properties of computation, the usual
quantifiers and proof-level abstractions do not seem adequate: proof-level abstraction of variables
with scope over sequents (global scope) as well as over only formulas (local scope) seem required
for many examples. We will present a sequent calculus which provides this local notion of proof-
level abstraction via generic judgment and a new quantifier, ∇, which explicitly manipulates such
local scope. Intuitionistic logic extended with ∇ satisfies cut-elimination even when the logic is
additionally strengthened with a proof theoretic notion of definitions. The resulting logic can be
used to encode naturally a number of examples involving abstractions, and we illustrate the uses
of ∇ with the π-calculus and an encoding of provability of an object-logic.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Proof Theory; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Specification Techniques

General Terms: Design, Theory, Verification

Additional Key Words and Phrases: proof search, reasoning about operational semantics, generic
judgments, λ-tree syntax, higher-order abstract syntax, ∇-quantifier

1. EIGENVARIABLES AND GENERIC REASONING

In specifying and reasoning about computations involving abstractions, one needs
to encode both the static structure of such abstractions and their dynamic struc-
ture during computation. One successful approach to such an encoding, generally
called λ-tree syntax [Miller 2000] (a proof search approach to higher-order abstract
syntax [Pfenning and Elliott 1988]), uses λ-terms to encode the static structure of
abstractions and universally quantified judgments to encode their dynamic struc-
ture. Consider in more detail the role of the universal quantifier and eigenvariables
in proof search and the specification of computations.

Authors’ address: Dale Miller, Laboratoire d’Informatique (LIX), École polytechnique, Palaiseau
91128 CEDEX, France, e-mail: dale@lix.polytechnique.fr. Alwen Tiu, INRIA Lorraine, 615 Rue
du Jardin Botanique, 54602 Villers-Les-Nancy, France, e-mail: Alwen.Tiu@loria.fr.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2004 ACM 1529-3785/04/1200-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004, Pages 1–34.

2 · D. Miller and A. Tiu

There are, of course, at least a few ways to prove the universally quantified
formula ∀τx.B. The extensional approach attempts to prove B[t/x] for all (closed)
terms t of type τ . This rule might involve an infinite number of premises if the
domain of the type τ is infinite. If the type τ is defined inductively, a proof by
induction can replace the need for infinite premises with finite premises (the base
cases and inductive cases) but with the need to discover invariants. Another more
intensional approach, however, involves introducing a new variable, say, c : τ ,
that has not been introduced before in the proof, and attempting to prove the
formula B[c/x] instead. In natural deduction and sequent calculus proofs, such new
variables are called eigenvariables, and they are used to prove universally quantified
formulas generically.

In Gentzen’s original presentation of the sequent calculus [Gentzen 1969], eigen-
variables are immutable during proof search: once an eigenvariable is introduced
(reading proofs bottom-up), it is not used as a site for substitution. In other words,
eigenvariables did not vary during proof search: rather they acted more as new,
scoped constants. As we now illustrate, it is the proof of cut-elimination that gener-
ally requires substitutions for eigenvariables: Assume that the sequent Γ −→ ∀x.B
is proved using the introduction of ∀ on the right from the premise Γ −→ B[c/x],
where c is an eigenvariable and Π(c) is a proof of this premise. Similarly, assume
that the sequent Γ′, ∀xB −→ C is proved using the introduction of ∀ on the left
from the premise Γ′, B[t/x] −→ C, where t is some term. To reduce the rank of
the cut formula ∀x.B between the sequents Γ −→ ∀x.B and Γ′, ∀xB −→ C, the
eigenvariable c in the sequent calculus proof Π(c) must be substituted by t to yield a
proof Π(t) of Γ −→ B[t/x]: in this way, the cut-formula is now the smaller formula
B[t/x]. In Gentzen, eigenvariables are sites for substitution only in the meta-theory
of proofs and not in proofs themselves.

Notice that if the proof of cut-elimination is structured as above, then the inten-
sional interpretation of the universal quantifier entails the extensional interpreta-
tion: Given a proof of Γ −→ ∀x.B with premise Γ −→ B[c/x] proved by Π(c), then
instantiating c with t yields a proof Π(t) for Γ −→ B[t/x].

Recent years have witnessed two different developments in the role of eigenvari-
ables in the specification of computation systems.

Eigenvariables as new, scoped constants. Focusing on their intensional nature
and guarantee of newness in proof search, eigenvariables have been used to en-
code name restrictions in the π-calculus [Miller 1993], nonces in security proto-
cols [Cervesato et al. 1999], reference locations in imperative programming [Pfen-
ning and Rohwedder 1992; Chirimar 1995; Cervesato and Pfenning 1996; Miller
1996], new assumptions in encodings of natural deduction or sequent calculi [Felty
and Miller 1988], and constructors hidden within abstract data-types [Miller 1989].
Eigenvariables also provide an essential aspect of recursive programming with data
encoded using λ-tree syntax [Miller 2000]: to move recursively through syntax that
is an outermost binder, instantiate the bound variable with an eigenvariable: that
is, replace the term-level bound variable with a proof-level bound variable.

Eigenvariables as variables to instantiate. Computation in logic programming
can be seen as a (restricted) form of cut-free proof search. Cut and cut-elimination
ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 3

Σ; (σ, y : τ) . B[y/x], Γ −→ C
Σ; σ .∇τ x.B, Γ −→ C ∇L

Σ;Γ −→ (σ, y : τ) . B[y/x]

Σ; Γ −→ σ .∇τ x.B
∇R

Fig. 1. Rules for the ∇-quantifier.

can then be used to reason directly about computation: for example, if A has a
cut-free proof (that is, it can be computed) and we know that A ⊃ B can be proved
(possibly with cuts), cut-elimination allows us to conclude that B has a cut-free
proof (that is, it can be computed). As we mentioned above, such direct reasoning
on logic specification involves instantiations of eigenvariables. Similarly, focusing on
their extensional nature guaranteed by cut-elimination, enrichments to the sequent
calculus have been proposed by [Hallnäs and Schroeder-Heister 1991; Schroeder-
Heister 1992; Girard 1992; McDowell and Miller 2000] in which eigenvariables are
intended as variables to be substituted during proof search. This enrichment to
proof theory (discussed here in Section 4) holds promise for providing proof sys-
tems for the direct reasoning about logic specifications (see, for example, the above
mentioned papers as well as [McDowell and Miller 2002; McDowell et al. 2003]).

These two approaches are, however, at odds with each other. Consider, for exam-
ple, the problem of representing restriction of names or nonces using ∀ quantifica-
tion. (The following example can be dualized in the event that a logical specification
uses ∃ quantification instead of ∀, as in, for example, [Cervesato et al. 1999]). A
cut-free proof of the formula ∀x∀y.P (x, y) proceeds by introducing two new and
distinct “names” or “nonces” whereas a proof of the expression ∀z.P (z, z) involves
just one such item. Of course, in logic, the implication ∀x∀y.P (x, y) ⊃ ∀z.P (z, z)
holds, so if there is a proof with the two different names, there must be one with
those names identified (via cut-elimination), and this is unlikely to be the intended
meaning of such quantification. This suggests that when using eigenvariables solely
to provide scope and newness to names, one cannot reason directly with the speci-
fication using cut-elimination, the centerpiece of proof theory.

Another setting where the difference between the extensional and intensional ap-
proaches to universal quantification occurs is when we consider having an assump-
tion that is universally quantified. In Gentzen’s sequent system, having ∀τx.Bx as
an assumption (that is, on the left of the sequent arrow) is essentially equated to
having instead all instances Bt for terms t of type τ . There are cases (one is con-
sidered in more detail in Section 6) where we would like to make inferences from an
assumption of the form ∀τx.Bx that holds independent of the set of its instances:
the fact that such a statement could hold generically (intensionally) provides us
with information stronger than examining all instances of it. This is particularly
true in many intuitionistic settings where the domain of the type τ might be empty
or at least not known to be inhabited.

2. THE ∇-QUANTIFIER

One approach to solving this problem of forcing one quantifier, the ∀-quantifier, to
have two behaviors that are not entirely compatible, is to extend traditional logics
(intuitionistic logic in our case) with a new quantifier. In this paper, we do this by
adding the ∇-quantifier: its role will be to provide for variables to be abstracted

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

4 · D. Miller and A. Tiu

with local scope. The syntax of the formula ∇τx.B is like that for the universal
and existential quantifiers. Following Church’s Simple Theory of Types [Church
1940], formulas are given the type o, and for all types τ not containing o, ∇τ is a
constant of type (τ → o) → o. The expression ∇τλx.B is usually abbreviated as
simply ∇τx.B or as ∇x.B if the type information is either simple to infer or not
important.

Intuitionistic sequents without the need to account for ∇ are structures of the
form

Σ; B1, . . . , Bn −→ B0.

Here, Σ is a signature containing the list of all (explicitly typed) eigenvariables of
the sequent. Depending on the domains of applications, there may be an additional
fixed set of non-logical constants given. But since this set of non-logical constants
does not vary in proof constructions, we choose not to put it explicitly in sequents.
The judgment Σ ` t : τ means that t is a simply typed λ-term of type τ in which
there may appear the (fixed) non-logical constants as well as those eigenvariables
in Σ. In the displayed sequent above, n ≥ 0 and B0, B1, . . . , Bn are formulas (i.e.,
terms of type o), all of whose free variables are in Σ. Informally, this sequent means
that for every substitution θ that maps variables x : τ ∈ Σ to terms of type τ , if
Biθ holds for all i = 1, . . . , n, then B0θ holds.

To account for the ∇ quantifier, we introduce into sequents a new element of
context. Sequents will now have one global signature (containing the sequent’s
eigenvariables) and several local signatures, used to scope local variables. More
generally, sequents have the structure

Σ; σ1 . B1, . . . , σn . Bn −→ σ0 . B0.

Here, σ0, . . . , σn are signatures and the other items are as above. We shall consider
sequents to be binding structures in the sense that the signatures, both the global
and local ones, are abstractions over their respective scopes. The variables in Σ
and σi will admit α-conversion by systematically changing the names of variables
in signatures as well as those in their scope, following the usual convention of the
λ-calculus. In general, however, we will assume that the local signatures σi contain
names different than those in the global signature Σ. The expression σ .B is called
a generic judgment or simply judgment. Equality between judgments follows from
the notion of equality of λ-terms, that is, two judgments x̄ .B and ȳ .C are equal if
and only if λx̄.B =βη λȳ.C. Since equality between terms, or between judgments,
in our logic is always modulo βη, we shall often omit the subscripts βη when writing
the equality symbol. We use script letters A, B, etc. to denote judgments. We
write simply B instead of σ . B if the signature σ is empty.

The introduction rules for ∇ are given in Figure 1. The variable y must be new
to the variables in σ and Σ (implicit in the definition of sequent). The expression
(σ, y : τ) denotes the signature containing the type declaration y : τ appended to
the end of the list σ. Notice that since the left and right rules are essentially the
same, this quantifier will be self dual: that is, ¬∇xBx is equivalent to ∇x¬Bx.
ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 5

Σ; σ . B, Γ −→ σ . B
init

Σ;∆ −→ B Σ;B, Γ −→ C
Σ;∆, Γ −→ C cut

Σ;B,B, Γ −→ C
Σ;B, Γ −→ C cL Σ;Γ −→ C

Σ;B, Γ −→ C wL

Σ; σ .⊥, Γ −→ B ⊥L
Σ;Γ −→ σ .> >R

Σ; σ . B, Γ −→ D
Σ; σ . B ∧ C, Γ −→ D ∧L Σ; σ . C, Γ −→ D

Σ; σ . B ∧ C, Γ −→ D ∧L

Σ;Γ −→ σ . B Σ;Γ −→ σ . C

Σ; Γ −→ σ . B ∧ C
∧R Σ; σ . B, Γ −→ D Σ; σ . C, Γ −→ D

Σ; σ . B ∨ C, Γ −→ D ∨L

Σ;Γ −→ σ . B

Σ;Γ −→ σ . B ∨ C
∨R Σ;Γ −→ σ . C

Σ;Γ −→ σ . B ∨ C
∨R

Σ;Γ −→ σ . B Σ; σ . C, Γ −→ D
Σ; σ . B ⊃ C, Γ −→ D ⊃ L Σ; σ . B, Γ −→ σ . C

Σ;Γ −→ σ . B ⊃ C
⊃ R

Σ, σ ` t : τ Σ; σ . B[t/x], Γ −→ C
Σ; σ . ∀τ x.B, Γ −→ C ∀L

Σ, h; Γ −→ σ . B[(h σ)/x]

Σ; Γ −→ σ . ∀x.B
∀R

Σ, h; σ . B[(h σ)/x], Γ −→ C
Σ; σ . ∃x.B, Γ −→ C ∃L

Σ, σ ` t : τ Σ;Γ −→ σ . B[t/x]

Σ; Γ −→ σ . ∃τ x.B
∃R

Fig. 2. The intuitionistic rules of FOλ.

3. AN INTUITIONISTIC LOGIC WITH ∇
We now consider Gentzen’s LJ calculus [Gentzen 1969] with the addition of global
and local signatures and ∇. Besides this new quantifier, the other logical connec-
tives are ⊥, >, ∧, ∨, ⊃, ∀τ , and ∃τ (again, the type τ does not contain o): their
inference rules are given in Figure 2. Notice that no inference rule in Figure 2 re-
quires non-empty local signatures: as a result, if all the local signatures in sequents
in a derivation built from those rules are set to empty, the resulting derivation is a
standard derivation in intuitionistic logic.

The interaction between the global and local signatures and the universal and
existential quantifiers needs some explanations. In the rule for ∀L (and, dually,
for ∃R), the quantifier appears in the scope of the global signature Σ and the
local signature σ. This quantifier can be instantiated (reading the rule bottom-
up) with a term built from variables in both of these signatures. Similarly, in
the rule for ∀R (and, dually, for ∃L), the quantifier appears in the scope of the
global signature Σ and the local signature σ. This quantifier can be instantiated
(reading the rule bottom-up) with an eigenvariable whose intended range is over
all terms built from variables in Σ and σ. Since, however, the eigenvariable h is
stored in the global scope, its dependency on σ would be forgotten unless we employ
some particular encoding technique. For this purpose, we use raising [Miller 1992]:
to denote a variable of type τ0 that can range over Σ and over the variables in
σ = (x1 : τ1, . . . , xn : τn) (n ≥ 0), we can use instead the term (hx1 . . . xn) where
the variable h ranges over Σ only (the dependency on σ can be forgotten). Of
course, the type of h will be τ1 → · · · → τn → τ0 instead of simply τ0. In the

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

6 · D. Miller and A. Tiu

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx
∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx ∇x(Bx ⊃ Cx) ≡ ∇xBx ⊃ ∇xCx
∇x∀yBxy ≡ ∀h∇xBx(hx) ∇x∃yBxy ≡ ∃h∇xBx(hx)
∇x∀yBxy ⊃ ∀y∇xBxy ∇x.> ≡ >, ∇x.⊥ ≡ ⊥

Fig. 3. Some theorems of FOλ∇.

∇x∇yBxy ⊃ ∇zBzz (1) ∇xBx ⊃ ∃xBx (2)
∀y∇xBxy ⊃ ∇x∀yBxy (3) ∀xBx ⊃ ∇xBx (4)

∃xBx ⊃ ∇xBx (5) B ⊃ ∇xB (6)
∇xBx ⊃ ∀xBx (7) ∇x∇yBxy ⊃ ∇y∇xBxy (8)

Fig. 4. Some non-theorems of FOλ∇. Here, B denotes some uninterpreted formula or abstraction
over a formula. In (6), x is not free in B.

inference rules of Figure 2, we write (hσ) to denote (hx1 . . . xn).
For the sake of consistency with a naming convention from the papers [McDowell

1997; McDowell and Miller 2000], we shall refer to the inference system defined
with just the rules in Figure 2 as FOλ (mnemonic for a “first-order logic for λ-
expressions”). The proof system resulting from the addition of the rules for ∇
(Figure 1) is called FOλ∇.

Figure 3 lists some theorems of FOλ∇ involving ∇. In general, we use ¬C to
abbreviate C ⊃ ⊥ and B ≡ C to abbreviate (B ⊃ C) ∧ (C ⊃ B). As a result of
these equivalences, ∇ can alway be given atomic scope within formulas (with the
simple cost of raising the quantified variables in its scope). Figure 4 lists some non-
theorems of FOλ∇ involving ∇. In the next section we will extend the core logic
with a proof theoretic notion of definition. In this extension, we will be able to prove
certain instances of the last three of these non-theorems (see the end of Section 7.2).
The first five will not be provable in the extension, and it seems important that
they are not provable. For example, in the non-theorem (4), ∀τB ⊃ ∇τB, if τ
is empty then the statement would not be expected to hold and hence we do not
accept it in the core logic.

4. INTRODUCTION RULES FOR DEFINITIONS

Introduction rules are, generally, restricted to logical connectives and quantifiers.
The recent development of a proof theoretic notion of definitions [Hallnäs and
Schroeder-Heister 1991; Schroeder-Heister 1992; Girard 1992; McDowell and Miller
2000] provides left and right introduction rules also for non-logical predicate sym-
bols, provided that they are “defined” appropriately. Given certain restrictions on
the syntax of definitions, a logic with such definition introduction rules can enjoy
cut-elimination. In this section, we take the treatment of definitions from [McDow-
ell 1997; McDowell and Miller 2000] and extend it to handle the extension of local
signatures.

Definition 4.1. A definitional clause is written ∀x̄.p t̄
4= B, where p is a predicate

constant, every free variable of the formula B is also free in at least one term in the
list t̄ of terms, and all variables free in p t̄ are contained in the list x̄ of variables.
The atomic formula p t̄ is called the head of the clause, and the formula B is called
ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 7

the body. The symbol 4= is used simply to indicate a definitional clause: it is not
a logical connective. A definition is a (perhaps infinite) set of definitional clauses.
The same predicate may occur in the head of multiple clauses of a definition: it is
best to think of a definition as a mutually recursive definition of the predicates in
the heads of the clauses.

In this paper we shall assume that all predicate constants are defined since this
addresses the applications we wish to illustrate. See [Schroeder-Heister 1994] for
other approaches to treating undefined predicates. We shall also use the convention
that when displaying definition clauses, tokens with an initial uppercase letter will
be assumed to be universally quantified with outermost scope.

Although predicates are defined via mutual recursion, circularities through im-
plications (negations) must be avoided. To do this, we stratify definitions by first
associating to each predicate p a natural number lvl(p), the level of p. The notion
of level is generalized to formulas as follows.

Definition 4.2. Given a formula B, its level lvl(B) is defined as follows:

(1) lvl(p t̄) = lvl(p)
(2) lvl(⊥) = lvl(>) = 0
(3) lvl(B ∧ C) = lvl(B ∨ C) = max(lvl(B), lvl(C))
(4) lvl(B ⊃ C) = max(lvl(B) + 1, lvl(C))
(5) lvl(∀x.B) = lvl(∇x.B) = lvl(∃x.B) = lvl(B).

For every definitional clause ∀x̄.p t̄
4= B, we shall require that lvl(B) ≤ lvl(p). This

requirement allows us to prove cut-elimination for intuitionistic logic extended with
definitions (see [McDowell and Miller 2000] and Section 7).

Definition rules involve the use of substitutions. We recall some basic definitions
related to substitutions. A substitution θ is a mapping (with application written in
postfix notation) from variables to terms, such that the set {x | xθ 6= x} is finite.
Substitutions must preserve types, that is, given a substitution θ and a variable
x : τ , the result of applying θ to x, xθ, is of type τ . Although substitutions are
extended to mappings from terms to terms, generic judgments to generic judgments,
etc., when we refer to the domain and the range of a substitution, we refer to
those sets defined on this most basic function. A substitution is extended to a
function from terms to terms in the usual fashion. Composition of substitutions
is defined as x(θ ◦ σ) = (xθ)σ, for all variable x. Two substitutions θ and σ are
considered equal if for all variables x, xσ =βη xθ (equal modulo βη-conversion).
The empty substitution is written as ε. The application of a substitution θ to a
generic judgment x1, . . . , xn . B, written as (x1, . . . , xn . B)θ, is y1, . . . , yn . B′, if
(λx1 . . . λxn.B)θ is equal (modulo λ-conversion) to λy1 . . . λyn.B′. If Γ is a multiset
of generic judgments, then Γθ is the multiset {Jθ | J ∈ Γ}. Finally, if Σ is a
signature then Σθ is the signature that results from removing from Σ the variables
in the domain of θ and adding the variables that are free in the range of θ.

The introduction of a defined atom may take place in the context of a local
signature. To account for this, we again use the technique of raising to code this
dependency by introducing the notion of “raised” definition clause.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

8 · D. Miller and A. Tiu

Σ; Γ −→ Bθ

Σ;Γ −→ A defR, where dfn(ε,A, θ,B)
{Σρ;Bθ, Γρ −→ Cρ | dfn(ρ,A, θ,B)}

Σ;A, Γ −→ C defL

Fig. 5. The definition introduction rules

Definition 4.3. Let ∀τ1x1 . . . ∀τn
xn.H

4= B be a definition clause and consider
a list of variables y1, . . . , ym of types α1, . . . , αm, respectively. A raised definition
clause with respect to the signature {y1 : α1, . . . , ym : αm} is defined as

∀h1 . . . ∀hn.ȳ . Hθ
4= ȳ . Bθ

where θ is the substitution [(h1 ȳ)/x1, . . . , (hn ȳ)/xn] and hi, for every i ∈ {1, . . . , n},
is of type α1 → . . . → αm → τi.

Raised definition clauses can be seen as definitions for atomic judgments (i.e., judg-
ments which contain no occurrences of logical constants) and a definition clause is
just a concise way of representing a family of definition clauses for atomic judg-
ments. Raising a definition in this manner is similar to ∀-lifting [Paulson 1989;
Miller 1992].

The following relation is useful for presenting the introduction rules for defined
atomic judgments.

Definition 4.4. The four-place relation dfn(ρ,A, θ,B) holds for the atomic judg-
ment A, the judgment B, and the substitutions ρ and θ if there is a raised clause
∀h1 . . . ∀hn.H 4= B in the given definition such that Aρ = Hθ.

Obviously, for the relation dfn(ρ,A, θ,B) to hold, given a raised clauseH 4= B, the
judgments A, B and H must share the same local signature (up to α-conversion).

The right and left rules for atoms are given in Figure 5. Specifying a set of
sequents as the premise should be understood to mean that each sequent in the
set is a premise of the rule. Notice that in the defL rule, the free variables of the
conclusion can be instantiated in the premises. In particular, a variable in Σ could
possibly be replaced by several new variables.

These rules for definitions add considerable expressive power to intuitionistic
logic. For example, defR is essentially the backchaining rule on closed atoms found
in logic programming, while defL is essentially a case analysis on how an atom can
be proved and can be used to establish finite failure. Together, these two rules
can be used to encode simulation and bisimulation in certain abstract transition
systems [McDowell et al. 2003]. Other uses involve reasoning about computational
systems [McDowell and Miller 2002].

The rule defL may have an infinite number of premises since the unification of
simply typed λ-terms may return infinitely many unifiers and since the domains of
the substitutions ρ and θ may include variables which are not free in A and B. The
latter may introduce “noise” into proof search since they can insert eigenvariables
of any types in the premises. The presence of this noise does not, however, affect
provability. To see why, consider the definition eq X X

4= > where eq : i → i → o
for some base type i, and the sequent {z : i}; eq z z −→ ∃αy.> where α is some
base type different from i. Assuming no other constants, this sequent should not
be provable since there is no closed term of type α. One can, however, introduce
ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 9

(during proof search) new eigenvariables of type α via defL. By applying defL, we
can substitute any term into z and we are allowed to introduce new variables. In
particular, among these premises are the premises {f : α → i, x : α};−→ ∃αy.>,
obtained via [(f x)/z], and {z : i};−→ ∃α.>, via the empty substitution. The first
sequent is provable, using ∃R with x, but the second sequent is not and hence the
original sequent is not provable.

It is possible to have a finite number of premises and reduce the noises in defL,
provided that we restrict the definitions to have only a finite number of clauses and
to restrict the use of defL to those judgments A such that for every raised definition
clause there is a finite, complete set of unifiers (CSU) [Huet 1975] of A and the head
of the clause. Then the following inference rules can be shown interadmissible with
defL:

{Σθ;Bθ, Γθ −→ Cθ | θ ∈ CSU(A,H) for some clause ∀h̄[H 4= B]}
Σ;A,Γ −→ C defLcsu.

This rule is originally due to [Eriksson 1991] and is also used in [McDowell and
Miller 2000]. The proof of its interadmissibility with defL follows the same outline
as the one in [McDowell and Miller 2000]. The meta-theoretic analysis of definitions
(see Section 7) is more naturally addressed using defL while the presentation of
examples (see Sections 5 and 6) is more natural using defLcsu.

The proof system that arises from adding together the inference rules in Figures 2
and 5 is called FOλ∆. If we add to FOλ∆ the rules in Figure 1, the resulting proof
system is called FOλ∆∇ (pronounced “fold nabla”). It is this logic that will involve
us for the remainder of this paper.

Definition clauses that are similar to Horn clauses are important in our investi-
gation. In particular, an hc-goal (named for Horn clauses) is a formula built from
the base set of logic connectives >, ∧, ∨, and ∃. An hc∀-goal is a formula built
from these connectives and ∀; an hc∇-goal is a formula built from the base set and
∇; and an hc∀∇-goal is a formula admitting the base set as well as both ∀ and
∇. A definition is an hc-definition (resp., hc∀-definition, hc∇-definition, and hc∀∇-
definition) if the body of all of its clauses are hc-goals (resp., hc∀-goals, hc∇-goals,
and hc∀∇-goals). Notice that all of these kinds of definitions are trivially stratifi-
able. Numerous interesting computer science motivated specifications are examples
of hc∀-definitions: we consider in more detail two such examples in Sections 5 and 6.

5. EXAMPLE: THE π-CALCULUS

Operational semantics of specification languages or programming languages are of-
ten given using inference rules, following the small-step approach (a.k.a., structured
operational semantic) or big-step approach (a.k.a. natural semantics). Frequently,
the proper specification of such semantics includes abstractions over names that
are used for such things as nonces in security protocols [Cervesato et al. 1999],
locations for reference cells [Chirimar 1995; Miller 1996], or new communication
channels [Milner et al. 1992]. One declarative way to capture these features in the
inference rule setting is to employ scoped (eigen)variables. Given the logic FOλ∇,
we now have the ability to scope variables within sequents either globally via ∀ or
locally via ∇. We illustrate these choices with a specification of the π-calculus.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

10 · D. Miller and A. Tiu

τ.P
τ

−−→ P
τ

P
A
−−→ Q

[X = X]P
A
−−→ Q

match
P

H
−−⇀ M

[X = X]P
H
−−⇀ M

match

P
A
−−→ R

P + Q
A
−−→ R

sum
Q

A
−−→ R

P + Q
A
−−→ R

sum
P

H
−−⇀ M

P + Q
H
−−⇀ M

sum
Q

H
−−⇀ N

P + Q
H
−−⇀ N

sum

P
A
−−→ P ′

P |Q
A
−−→ P ′ |Q

par
Q

A
−−→ Q′

P |Q
A
−−→ P |Q′

par

P
H
−−⇀ M

P |Q
H
−−⇀ λn(Mn |Q)

par
Q

H
−−⇀ N

P |Q
H
−−⇀ λn(P |Nn)

par

∇n(Mn
A
−−→ M ′n)

νn.Mn
A
−−→ νn.M ′n

res
∇n(Mn

H
−−⇀ Sn)

νn.Mn
H
−−⇀ λm νn.(Snm)

res
∇y(My

↑Xy
−−→ M ′y)

νy.My
↑X
−−⇀ M ′

open

out X Y P
↑XY
−−→ P

out
P

↓X
−−⇀ M Q

↑X
−−⇀ N

P |Q
τ

−−→ νn.(Mn |Nn)
close

P
↑X
−−⇀ M Q

↓X
−−⇀ N

P |Q
τ

−−→ νn.(Mn |Nn)
close

in X M
↓X
−−⇀ M

in
P

↓X
−−⇀ M Q

↑XY
−−→ Q′

P |Q
τ

−−→ (MY) |Q′
com

P
↑XY
−−→ P ′ Q

↓X
−−⇀ N

P |Q
τ

−−→ P ′ | (NY)
com

Fig. 6. The rules for the (late) π-calculus.

Consider encoding π-calculus [Milner et al. 1992] using λ-tree syntax following
[Miller and Palamidessi 1999; Miller and Tiu 2002]. Since we are focused here on
abstractions in syntax, we shall deal with only finite π-calculus expression; that is,
expressions without ! or defined constants. Extending this work to infinite process
expressions should be possible by adding induction (as in [McDowell et al. 2003]) or
co-induction (as in [Momigliano and Tiu 2003; Tiu 2004b]) to our proof system. We
shall require three primitive syntactic categories: n for channels, p for processes,
and a for actions. The output prefix is the constructor out of type n → n → p → p
and the input prefix is the constructor in of type n → (n → p) → p: the π-calculus
expressions x̄y.P and x(y).P are represented as (out x y P) and (in x λy.P),
respectively. We use | and +, both of type p → p → p and written as infix, to
denote parallel composition and summation, and ν of type (n → p) → p to denote
restriction. The π-calculus expression (x)P will be encoded as νλn.P , which itself is
abbreviated as simply νx.P . The match operator, [· = ·]· is of type n → n → p → p.
When τ is written as a prefix, it has type p → p. When τ is written as an action,
it has type a. The symbols ↓ and ↑, both of type n → n → a, denote the input and
output actions, respectively, on a named channel with a named value: e.g., ↓ xy
denotes the action of inputing y on channel x.

We use two predicates to encode the one-step transition semantics for the π-
calculus. The predicate · ·−−→ · of type p → a → p → o encodes transitions
ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 11

(res) νn.Mn
A
−−→ νn.M ′n

4
= ∇n(Mn

A
−−→ M ′n)

(res) νy.My
↑X
−−⇀ M ′ 4

= ∇y(My
↑Xy
−−→ M ′y)

(in) in X M
↓X
−−⇀ M

4
= >

(com) P |Q
τ

−−→ P ′ | (N Y)
4
= ∃x.P

↑xY
−−→ P ′ ∧Q

↓x
−−⇀ N

Fig. 7. Corresponding definition clauses

involving free values and the predicate · ·−−⇀ · of type p → (n → a) → (n → p) → o
encodes transitions involving bound values. Figure 6 (taken from [Miller and Tiu
2002]) contains the inference rules specifying the late version of the transitions
for the π-calculus [Milner et al. 1992]. In these rules, capital letters (possibly
primed) are used to denote schema variables for inference rules. We adopt the
following typing convention for these scheme variables: X,Y : n, A : a, H : n → a,
P,Q, R, P ′, Q′ : p, M,N,M ′, N ′ : n → p, and S : n → n → p. These inference
rules can trivially be written as definition clauses: a few such clauses are presented
in Figure 7. Here, schema variables are universally quantified (implicitly) at the
top-level of such clauses. Notice that the complicated side conditions in the original
specification of π-calculus are no longer present, as they are now treated directly
and declaratively by the meta-logic. For example, the side condition that x 6= y in
the open rule is implicit, since x is outside the scope of y and therefore cannot be
instantiated with y.

To illustrate the expressiveness that the ∇ quantifier adds to logic, consider the
following presentations of the transition system for the π-calculus. Let L be the
complete definition for the one step transitions for the π-calculus. Clearly, L is an
hc∇-definition. Let L′ be the result of replacing all occurrences of ∇ in L with ∀.
Furthermore, let L′′ be the result of replacing all occurrences of the symbol 4= in
the definition clauses of L′ by reverse implication: thus, L′′ is a set of formulas and
is not a definition. Finally, assume that we are only interested in computing the
one-step transitions of the late π-calculus, that is, proving atomic formulas such as

P
A−−→ P ′ or P

H−−⇀ P ′ (let B range over such atomic formulas).
As we shall see in Section 7.2, when we restrict ourselves to Horn definitions

(no implications and, hence, no negations in the body of definitions), then it is not
possible to distinguish between uses of∇ and ∀ in the body of clauses. In particular,
Proposition 7.10 implies that ·; · −→ B is provable in FOλ∆∇ using definition L if
and only if ·; · −→ B is provable in FOλ∆ using definition L′. Furthermore, a cut-
free proof of ·; · −→ B in FOλ∆ using definition L′ does not contain occurrences of
defL, and, as a result, the definition mechanism itself can be replaced: the sequent
·; · −→ B is provable in FOλ∆ with the definition L′ if and only if the sequent
Σ;L′′ −→ B is provable in FOλ. Thus, to compute with this specification of one-
step transitions for the π-calculus, ∇ and definitions do not add expressive power
and only a standard logic programming language, such as λProlog, is needed to
automate proof search.

To illustrate what expressive power is contributed by both ∇ and definitions
in a proof system, we will need to consider the problem of dealing with negative

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

12 · D. Miller and A. Tiu

information about transitions in the π-calculus. Such information is often needed
when proving simulation of processes, e.g., in showing that a process can make
certain transitions and no more. We shall see that the encoding of the restriction
operator using the ∀-quantifier is not appropriate in this case while the use of ∇ is
appropriate.

Consider the process νy.[x = y]x̄y.0. This process cannot make any transition
since the bound variable y denotes a name different from x. We would therefore
expect that the following is provable.

∀x∀z∀Q∀α.[(νy.[x = y](out x z 0)
α−−→ Q) ⊃ ⊥]

If we had used ∀ in encoding restriction (that is, in the premises of inference rules res
and open in Figure 6), attempting to prove the above formula would have reduced
to attempting to prove the sequent

{x, z,Q, α};∀y.([x = y](out x z 0)
α−−→ Q) −→ ⊥.

The only applicable rule (given the cut-elimination result in Corollary 7.6) is ∀L,
followed by defLcsu. For the sequent to be provable, y would have to be instantiated
with some term t such that t is distinct from all possible instantiation of x, so
that the defLcsu rule will produce an empty premise. More precisely, suppose we
instantiate y with some constant a different from x, then we are left with proving
the sequent

{x, z, Q, α}; ([x = a](out x z 0)
α−−→ Q) −→ ⊥.

However, we see that no matter with which closed term a we choose to instantiate
y, applying defLcsu to this sequent will result in a premise in which x is identified
with a, that is,

{z, α, Q}; ((out a z 0)
α−−→ Q) −→ ⊥

via the unifier {a/x}. Applying another defLcsu to this sequent leaves us with the
sequent .; . −→ ⊥, which is clearly not provable. Hence, the scoping of variables
at the object-level is lost at the meta-level. Fortunately, this scoping constraint is
captured precisely by ∇, as it is shown in the derivation in Figure 8. The success of
the topmost instance of defLcsu depends on the failure of the unification problem
λw.x = λw.w. Notice that the scoping of object variables is maintained at the
meta-level by the separation of (global) eigenvariables and (locally bound) generic
variables. The “newness” of w is internalized as λ-abstraction and hence it is not
subject to any instantiation.

A more complete picture of the differences between ∇ and ∀ is illustrated in the
definition clause for simulation in Figure 9. Notice the when checking simulation for
bounded inputs, the ∀ quantifier is used while for bounded outputs, the∇ quantifier
is used.

In the following illustration, we shall use the original syntax of the π-calculus for
readability purpose: when we mix that original syntax with logic, we will assume
that the reader encodes it directly into logic following the encoding mentioned
above.

It is important to note that in encoding late (bi)simulation, the free names in
the processes being checked for (bi)similarity should be interpreted in such a way
ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 13

{x, z, Q, α}; w . ([x = w](out x z 0)
α

−−→ Q) −→ ⊥
defLcsu

{x, z, Q, α}; . .∇y.([x = y](out x z 0)
α

−−→ Q) −→ ⊥
∇L

{x, z, Q, α}; . . (νy.[x = y](out x z 0)
α

−−→ Q) −→ ⊥
defLcsu

{x, z, Q, α};−→ . . (νy.[x = y](out x z 0)
α

−−→ Q) ⊃ ⊥
⊃ R

Fig. 8. The proof of a negation.

sim P Q
4
= ∀A∀P ′ [(P

A
−−→ P ′) ⊃ ∃Q′.(Q

A
−−→ Q′) ∧ sim P ′ Q′] ∧

∀X∀P ′ [(P
↓X
−−⇀ P ′) ⊃ ∃Q′.(Q

↓X
−−⇀ Q′) ∧ ∀w.sim (P ′w) (Q′w)] ∧

∀X∀P ′ [(P
↑X
−−⇀ P ′) ⊃ ∃Q′.(Q

↑X
−−⇀ Q′) ∧∇w.sim (P ′w) (Q′w)]

Fig. 9. Definition of π-calculus simulation

that they are not subject to meta-level instantiation. One way of realizing this is
to encode free names as some fixed non-logical constants of type n; another is to
treat free names as ∇-quantified variables. These two approaches are equivalent, as
far as the adequacy result for late bisimulation is concerned. However, the former
is relatively simple to present, which is the reason we adopt this approach in the
following discussion. The latter approach is more uniform, since newly generated
free names and the existing free names are represented in the same way. This
approach is also interesting in that it relates certain aspects of names to the way
they are quantified, in particular, it is shown in [Tiu and Miller 2004] (where precise
connections between this style specification and open and late bisimulations are
given) that different ways of quantifying free names result in different bisimulation
relations. Note that in encoding late (bi)simulation, free names in processes should
not be interpreted as universally quantified variables, since otherwise we lose the
adequacy of the encoding. For instance, x|ȳ is simulated by x.ȳ+ ȳ.x, but x|x̄ is not
simulated by x.x̄+x̄.x. However, if we interpret the free names x and y as universally
quantified, then ∀x∀y.sim (x|ȳ) (x.ȳ + ȳ.x) implies ∀x.sim (x|x̄) (x.x̄ + x̄.x).

Let us consider the following four π-calculus expressions. (Here we are using the
usual abbreviations: when only a name, say d, is used as a prefix, it denotes the
prefix d(w), where w is vacuous in its scope; when the bar’ed name, say d̄, is used
as a prefix, it denotes the prefix d̄a, where a is some fixed value; the expression
c̄(y).P abbreviates (y)c̄y.P ; and when a prefix is written without a continuation,
the continuation 0 is assumed. Thus, for example, ȳ | d denotes ȳa.0 | d(w).0.)

P1 = c(y).(ȳ | d) P2 = c(y).((ȳ.d) + (d.ȳ))
P3 = c̄(y).(ȳ | d) P4 = c̄(y).((ȳ.d) + (d.ȳ))

The process P2 is simulated by P1 but the converse is not true since after P1

performs an (↓ cd), it is possible for the resulting process to take a τ step. The
sequence of actions (↓ cd) and τ is not possible with P2. The processes P3 and P4

do, however, simulate each other (they are, in fact, bisimilar). The only difference
between these pairs of processes is, of course, that the first is prefixed with a

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

14 · D. Miller and A. Tiu

bounded input prefix while the second is prefixed with a bounded output prefix.
These different bounded prefixes are handled in the simulation definition in Figure 9
using, in one case, ∀ and the other case ∇.

For example, consider proving the sequent

·; · −→ sim (c(y).(ȳ | d)) (c(y).((ȳ.d) + (d.ȳ))),

which, as we discussed above, should not be provable. Here, the free names c and d
are encoded as non-logical constants c and d of type n. We argue informally why the
above sequent has no proof (for the formal statements and proofs of the adequacy
of the more general encoding of bisimulation, see [Tiu 2004b]). The attempt to
prove this sequent reduces (via defR, ∀R, and ⊃ R) to needing to prove the three
sequents (1-3) in Figure 10. By Corollary 7.8 (see Section 7), if a sequent with an
atom on the left has a proof, it has a proof with an instance of the defLcsu rule that
introduces that atom. Thus, we can conclude that sequents (1) and (3) are trivially
provable since the required unification problem in defLcsu fails for all clauses in the
definition. The second sequent is the consequence of a non-trivial occurrence of the
defLcsu rule, giving rise to the need to prove sequent (4) in Figure 10 (here, the
variable X is instantiated to c and M is instantiated to λy.(ȳ | d)). Proving this
requires making the appropriate substitution for N (obvious) and then proving the
sequent

·; · −→ ∀w.sim (w̄ | d) ((w̄.d) + (d.w̄))

Similarly to our first step, proving this reduces to the three sequents (5), (6), and
(7). Both sequents (6) and (7) have simple proofs (which we leave as an exercise to
the reader). A proof of (5) using defLcsu has two premises: one with A instantiated
to τ , w to d, and P to 0 | 0, and one with A instantiated to ↑ wa and P to 0 | d (w
is not instantiated). The first of these premise sequents is

·; · −→ ∃Q[((d̄.d) + (d.d̄))
τ−−→ Q ∧ sim (0 | 0) Q]

This is not provable since there is no τ transition from ((d̄.d) + (d.d̄)). As a result,
since this sequent is not provable we may conclude that the original sequent is
not provable. The reason for this failure is also clear from this attempt of a proof
construction: although both P1 and P2 make an initial input step, the first of the
resulting pair of processes can make a τ step but the second cannot.

Turning to the case of expressions P3 and P4, consider proving the sequent

·; · −→ sim (c̄(y).(ȳ | d)) (c̄(y).((ȳ.d) + (d.ȳ))),

which, as we discussed above, should be provable. A proof attempt of this sequent
proceeds similar to the previous example, yielding the sequent (4′) in Figure 10.
Proving this reduces to the three sequents (5′), (6′), and (7′): notice that w is not
given global scope in the sequents but local scope and that the eigenvariables (H,
M , Z, and S) are raised with respect to their counterparts in (5), (6), and (7).
Sequents (6′) and (7′) are proved as in (6) and (7). In this case, however, a proof
of (5′) using defLcsu has exactly one premise, where H is instantiated to λw. ↑ wa
and M to λw.0 | d. The resulting sequent is

·; · −→ w . ∃Q[((w̄.d) + (d.w̄))
↑wa−−→ Q ∧ sim (0 | d) Q]

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 15

A, P ; (c(y).(ȳ | d))
A
−−→ P −→ ∃Q[(c(y).(ȳ.d + d.ȳ))

A
−−→ Q ∧ sim P Q] (1)

X, M ; (c(y).(ȳ | d))
↓X
−−⇀ M −→ ∃N [(c(y).(ȳ.d + d.ȳ))

↓X
−−⇀ N ∧ ∀w.sim (Mw) (Nw)] (2)

X, M ; (c(y).(ȳ | d))
↑X
−−⇀ M −→ ∃N [(c(y).(ȳ.d + d.ȳ))

↑X
−−⇀ N ∧∇x.sim (Mx) (Nx)] (3)

·; · −→ ∃N [(c(y).(ȳ.d + d.ȳ))
↓c
−−⇀ N ∧ ∀w.sim (w̄ | d) (Nw)] (4)

w, A, P ; (w̄ | d)
A
−−→ P −→ ∃Q[(w̄.d + d.w̄)

A
−−→ Q ∧ sim P Q] (5)

w, X, M ; (w̄ | d)
↓X
−−⇀ M −→ ∃N [(w̄.d + d.w̄)

↓X
−−⇀ N ∧ ∀u.sim (Mu) (Nu)] (6)

w, X, M ; (w̄ | d)
↑X
−−⇀ M −→ ∃N [(w̄.d + d.w̄)

↑X
−−⇀ N ∧∇u.sim (Mu) (Nu)] (7)

·; · −→ ∃N [(c̄(y).(ȳ.d + d.ȳ))
↑c
−−⇀ N ∧∇w.sim (w̄ | d) (Nw)] (4′)

H, M ; w . (w̄ | d)
(Hw)
−−→ (Mw) −→ w . ∃Q[(w̄.d + d.w̄)

(Hw)
−−→ Q ∧ sim (Mw) Q] (5′)

Z, S; w . (w̄ | d)
↓(Zw)
−−⇀ (Sw) −→ w . ∃N [(w̄.d + d.w̄)

↓(Zw)
−−⇀ N ∧ ∀u.sim (Swu) (Nu)] (6′)

Z, S; w . (w̄ | d)
↑(Zw)
−−⇀ (Sw) −→ w . ∃N [(w̄.d + d.w̄)

↑(Zw)
−−⇀ N ∧∇u.sim (Swu) (Nu)] (7′)

Fig. 10. Some sequents

This sequent, like all the remaining ones in this proof attempt, now has a simple
proof.

Notice that although we have now encountered higher-order unification problems
and higher-order substitutions, the unification problems generated from this partic-
ular example fall within Lλ-unification or higher-order pattern unification [Miller
1991; Nipkow 1993]. This subset of the unification of simply typed λ-terms has
complexity similar to that of first-order unification, in that it is decidable and has
most general unifiers when unifiers exist.

Certain substitution theorems are easy to prove from our specification of the π-

calculus. For example, if the atomic formula νn.Mn
A−−→ νn.Nn is provable from

the definition in Figure 6, then it must be the case that (since there is only one
way to prove this formula), we must have a proof of

∇n.Mn
A−−→ Nn.

Proposition 7.10 tells us that when we have a hc∀∇-definition and a hc∀∇-goal,
interchanging ∇ and ∀ in the goal and the body of definition clauses does not affect

provability. Thus, we conclude that we have a proof of ∀n.Mn
A−−→ Nn, and thus,

for any particular t of type n, we know that Mt
A−−→ Nt.

The encoding of π-calculus above can also be extended to include the mismatch
operator by using negation.

x = y ⊃ ⊥ P
A−−→ Q

[x 6= y]P
A−−→ Q

mismatch

Operationally, mismatch is modeled as failure of unification at the logic level. Notice
that the resulting definition is not Horn anymore since we have an implication in
the body of the clause representing the above inference rule. As a consequence,
Proposition 7.10 is not applicable to this definition and such substitution results as

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

16 · D. Miller and A. Tiu

pv >̂ 4
= >

pv (G & G′) 4
= pv G ∧ pv G′

pv (∀̂G)
4
= ∇x.pv (Gx)

pv (∃̂G)
4
= ∃x.pv (Gx) X = X

4
= >

pv A
4
= ∃D.atom A ∧ prog D ∧ bc D A atom (q X Y Z)

4
= >

bc A A
4
= atom A prog (∀̂X ∀̂Y q X X Y)

4
= >

bc (G ⇒ D) A
4
= bc D A ∧ pv G prog (∀̂X ∀̂Y q X Y X)

4
= >

bc (∀̂D) A
4
= ∃t. bc D t A prog (∀̂X ∀̂Y q Y X X)

4
= >

Fig. 11. Interpreter for an object-level logic and additional clauses.

mentioned above are either no longer true or require different proofs.

6. EXAMPLE: AN OBJECT-LOGIC ENCODING

Consider the problem of proving the formula

∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉],
where q is a three place predicate, 〈·, ·〉 is used to form pairs, t1 and t2 are some
first-order terms, and the only assumptions for the predicate q are the (universal
closure of the) three atomic formulas: q X X Y , q X Y X and q Y X X. Clearly,
this query succeeds only if terms t2 and t3 are equal [Miller and Tiu 2002]. One
natural way to formalizing this reasoning involves first encoding provability of an
object-level first-order logic in FOλ∆∇ and then to reason directly on this encoding.
Let obj be the type of object-level logic, let >̂ : obj be object-level true, let & and
⇒ be object-level conjunction and implication (both at type obj → obj → obj),
and let ∀̂ and ∃̂ be object-level quantifiers at type (i → obj) → obj (for some
fixed type i ranging over first-order object-level terms). To encode provability, we
use two main predicates pv of type obj → o to indicate first-order provability and
bc of type obj → obj → o to specify “backchaining”. The definition clauses on
the left side of Figure 11 encodes provability for logic programming in a subset of
first-order hc∀ and is parametrized by the predicates atom (describing object-level
atomic formulas) and prog (describing object-level logic programs clauses). The
definition clauses on the right side of the figure contains encodes the object-level
logic program we are considering here.

Notice that while the object-level logic here is hc∀ (since our motivating example
is concerned with the provability of a universally quantified formula), the meta-level
definition is hc∇.

Given the definition in Figure 11, the following query encodes our intended the-
orem about object-level provability.

∀x, y, z[pv (∀̂u ∀̂ v[q 〈u, x〉 〈v, y〉 〈v, z〉]) ⊃ y = z]

Attempting a proof of this formula leads to the following sequent (after applying
some right rules and a pair of defLcsu and ∇L rules):

X, Y, Z; (s, r) . pv (q 〈s,X〉 〈r, Y 〉 〈r, Z〉) −→ .Y = Z.

A series of defLcsu rules will now need to be applied in order to work through
ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 17

the encoding of the object-level interpreter. In the end, three separate unification
problems will be attempted, one for each of the three ways to prove the predicate
q. In particular, the defLcsu rule will attempt to unify λsλr.(q 〈s,X〉 〈r, Y 〉 〈r, Z〉)
with each of the following three terms:

λsλr.(q (X ′ s r) (X ′ s r) (Y ′ s r))
λsλr.(q (X ′ s r) (Y ′ s r) (X ′ s r))
λsλr.(q (Y ′ s r) (X ′ s r) (X ′ s r))

The first two unification problems fail and hence the corresponding occurrences of
defLcsu succeed. The third of these unification problems is solvable, however, with
X ′ instantiated to λsλr.〈r, Z〉, Y ′ instantiated to λsλr.〈s, Z〉, Y instantiated to Z
(or vice versa), and X uninstantiated. As a result, this third premise is the sequent
·; · −→ Y = Y , which is provable using defR.

The more common approach to encoding object-logic provability into a meta-logic
uses the meta-level universal quantifier instead of the ∇ for the clause encoding the
provability of object-level universal quantification: that is, the clause

pv (∀̂x.G x) 4= ∀x[pv (G x)].

is used instead. In this case, attempting a proof of this formula reduces to an
attempt to prove the sequent

X, Y, Z; .pv (q 〈s1, X〉 〈s2, Y 〉 〈r, Z〉) −→ .Y = Z,

and were s1 and s2 are two terms. To complete the proof, these two terms must
be chosen to be different. While this sequent can be proved, doing so requires the
assumption that there are two such distinct terms (the domain is non-empty and not
a singleton). Our encoding using ∇ allows the (meta-level) proof to be completed
in a more natural and “internal” way without this “external” assumption.

The encoding of ∀̂ using ∇ reflects the intensional use of object-logic eigenvari-
ables in object-logic proofs for universally quantified goals; that is, (object-logic)
eigenvariables are not instantiated in the proofs. The encoding using ∇, however,
does come with a price: the extensional aspect of ∀̂ — that is, if ∀̂G is provable
then Gt is provable for every closed term t — cannot be directly proved in FOλ∆∇.
That is, the formula ∀G. pv (∀̂G) ⊃ ∀t. pv (Gt) is not a theorem in FOλ∆∇, al-
though it is valid as a meta-level observation about the encoding of the object-logic
provability. Recall that the definition for the object-logic in Figure 11 is hc∇, hence
by Proposition 7.10, if we are only concerned with proving positive goals (no im-
plication), ∇ and ∀ can be interchanged. As a consequence, if pv (∀̂G) is provable
in FOλ∆∇, then ∇x. pv (Gx) is provable, and by interchanging ∇ with ∀, we have
∀x. pv (Gx) is provable, and hence pv (Gt) is also provable.

7. META THEORY

We now present some meta-theoretic results concerning the logic FOλ∆∇. The
main such result is, of course, that it satisfied cut-elimination.

7.1 Cut Elimination

The proof of cut-elimination for FOλ∆IN that we present here is similar to the one
given by Gentzen [Gentzen 1969] in that the main induction involves the heights of

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

18 · D. Miller and A. Tiu

proofs and an additional measure involving the level of cut formulas. The stratifica-
tion of definitions makes sure that the level of cut formulas does not increase when
permuting up cut over definition rules, while other measures decrease. Central to
the proof is the following substitution lemma about FOλ∆∇ proofs: if Σ; Γ −→ C
has a proof and θ be a substitution, then there is a derivation of Σθ; Γθ −→ Cθ
such that certain measures are not increased. The precise statement will follow.

We define several measures on derivation that are needed to show termination of
cut reduction.

Definition 7.1. Given a derivation Π with premise derivations {Πi}i, the height
of the derivation Π, denoted by ht(Π), is lub({ht(Πi)}i) + 1, where lub(S) is the
least upper bound of the set S. The measure def(Π) which indicates the depth of
applications of defL rule is defined as follows.

def(Π) =
{

lub({def(Πi)}i) + 1, if Π ends with a defL rule
lub({def(Πi)}i), otherwise.

Similary, the depth of cL rules is defined as

contr(Π) =
{

lub({contr(Πi)}i) + 1, if Π ends with a cL rule
lub({contr(Πi)}i), otherwise.

Note that given the possible infinite branching of defL rule, the measures defined
above can, in general, be ordinals. Therefore in proofs involving induction on those
measures, transfinite induction is needed. In the following inductive proofs, we often
do case analyses on the last rule of a derivation. In such situation, the inductive
cases for both successor ordinals and limit ordinals are basically covered by the
case analyses on the inference figures involved, and we shall not make explicit use
of transfinite induction.

Lemma 7.2. Let Π be a derivation of Σ;Γ −→ C. Then there is a derivation Π′

of Σ, x; Γ −→ C, where x 6∈ Σ, such that ht(Π′) ≤ ht(Π), def(Π′) ≤ def(Π) and
contr(Π′) ≤ contr(Π).

Proof. By induction on ht(Π).

Lemma 7.3. Let Π be a derivation of Σ; Γ −→ C and θ be a substitution. Then
there is a derivation Πθ of Σθ; Γθ −→ Cθ such that ht(Πθ) ≤ ht(Π), def(Πθ) ≤
def(Π) and contr(Πθ) ≤ contr(Π).

Proof. By induction on ht(Π). Most cases follow immediately from induction
hypothesis. We show the interesting cases involving defL and defR. Suppose Π
ends with the defL rule

{
Π(ρ,B)

Σρ;Bγ, Γ′ρ −→ Cρ
}

dfn(ρ,A,γ,B)

Σ;A, Γ′ −→ C defL,

and suppose that dfn(ρ′,Aθ, γ′,B) holds for some ρ′ and γ′. We have (Aθ)ρ′ = Hγ′,
given a raised definition clause ∀ȳ.[H 4= B], where ȳ are chosen to be distinct
from the variables in Σ and the variables free in the range of θ. Then, obviously,
ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 19

dfn(θ ◦ ρ′,A, γ′,B) holds as well. Therefore we construct Πθ as the derivation
{

Π(θ◦ρ′,B)

Σθρ′;Bγ′, Γ′θρ′ −→ Cθρ′
}

dfn(ρ′,Aθ,γ′,B)

Σθ;Aθ, Γ′θ −→ Cθ defL.

Otherwise, suppose Π ends with the defR rule

Π′
Σ;Γ −→ Bρ

Σ;Γ −→ A defR,

where A and B are the judgments, and dfn(ε,A, ρ,B) holds for a given raised
definition clause ∀ȳ.[H 4= B]. By Definition 4.4, this means A = Hρ. Obviously,
Aθ = (Hρ)θ and therefore dfn(ε,Aθ, ρ ◦ θ,B) holds as well. We can then construct
Πθ as the derivation

Π′θ
Σθ; Γθ −→ Bρθ

Σθ; Γθ −→ Aθ
defR,

where Π′θ is obtained from Π′ by inductive hypothesis.
Since each transformation step from Π to Πθ does not introduce extra applica-

tions of rules, ht(Πθ), def(Πθ) and contr(Πθ) are less than or equal to ht(Π), def(Π)
and contr(Π), respectively. They can be smaller than the corresponding measures
of Π because in the case of defL there could be fewer premises.

In proving cut-elimination, we use a more general form of cut rule, called the
multicut rule,

∆1 −→ B1 . . . ∆n −→ Bn B1, . . . , Bn, Γ −→ C

∆1, . . . , ∆n, Γ −→ C
mc (n ≥ 0).

This generalization is due to Slaney [Slaney 1989], and it is used to simplify the
presentation of the cut-elimination proof.

We associate a measure to a derivation ending with mc and show that the measure
decreases as we permute up the mc rule. The general cut-elimination theorem is
proved by successively removing the topmost cut instances. The measure involves
a multiset as one of its component. We use] to denote multiset union.

Definition 7.4. Let Ξ be the following derivation ending with a multicut rule:

Π1

Σ; ∆1 −→ B1 · · ·
Πn

Σ;∆n −→ Bn

Π
Σ;B1, . . . ,Bn, Γ −→ C

Σ;∆1, . . . , ∆n, Γ −→ C mc.

Assume also that the proofs Π1, . . . , Πn,Π are (multi)cut-free. We define a measure
µ(Ξ) to be the tuple

〈max{lvl(B1), . . . , lvl(Bn)},def(Π), contr(Π),
∑

| Bi |,M(Ξ)〉 ,

where M(Ξ) is the multiset {ht(Π1), . . . , ht(Πn),ht(Π)} and | Bi | is the number of
occurrences of logical connectives in Bi. The ordering on the measure µ is defined
lexicographically on the ordering of its components.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

20 · D. Miller and A. Tiu

Theorem 7.5. Let Ξ be a derivation of Σ; Γ −→ C ending with a multicut, which
is the only cut in the derivation. Then there exists a cut-free derivation of the same
sequent.

Proof. Let Ξ be the derivation
Π1

Σ;∆1 −→ B1 · · ·
Πn

Σ;∆n −→ Bn

Π
Σ;B1, . . . , Bn,Γ −→ C

Σ;∆1, . . . , ∆n, Γ −→ C mc.

If n = 0, Ξ reduces to the premise derivation Π.
For n > 0 we specify the reduction relation based on the last rule of the premise

derivations. If the rightmost premise derivation Π ends with a left rule acting on a
cut formula Bi, then the last rule of Πi and the last rule of Π together determine
the reduction rules that apply. We classify these rules according to the following
criteria: we call the rule an essential case when Πi ends with a right rule; if it ends
with a left rule, it is a right-commutative case; if Πi ends with the init rule, then we
have an axiom case. When Π does not end with a left rule acting on a cut formula,
then its last rule is alone sufficient to determine the reduction rules that apply. If
Π ends in a rule acting on a formula other than a cut formula, then we call this
a left-commutative case. A structural case results when Π ends with a contraction
or weakening on a cut formula. If Π ends with the init rule, this is also an axiom
case. For simplicity of presentation, we always show i = 1 and we often abbreviate
judgments like σ . B and σ . C as B and C when the local signature σ is irrelevant
to the context of discussion.

Essential cases:

∧R/ ∧ L. If Π1 and Π are

Π′1
Σ;∆1 −→ σ . B′

1

Π′′1
Σ;∆1 −→ σ . B′′

1

Σ; ∆1 −→ σ . B′
1 ∧B′′

1
∧R

Π′
Σ; σ . B′

1, . . . , Γ −→ C
Σ; σ . B′

1 ∧B′′
1 , . . . , Γ −→ C ∧L

then Ξ reduces to the derivation Ξ′

Π′1
Σ; ∆1 −→ B′1 · · ·

Πn

Σ;∆n −→ Bn

Π′
Σ;B′1, . . . ,Bn, Γ −→ C

Σ;∆1, . . . , ∆n, Γ −→ C mc.

The measure µ(Ξ) is smaller than µ(Ξ′), since

max{lvl(B′1), lvl(B2), . . . , lvl(Bn)} ≤ max{lvl(B1), . . . , lvl(Bn)},

def(Π′) = def(Π), contr(Π) = contr(Π′) and | B′1 |<| B1 | .
Therefore we can apply the inductive hypothesis to Ξ′ to obtain a cut free derivation.
The case for the other ∧L rule is symmetric.
∨R/ ∨ L. If Π1 and Π are

Π′1
Σ;∆1 −→ σ . B′

1

Σ; ∆1 −→ σ . B′
1 ∨B′′

1
∨R

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 21

Π′
Σ; σ . B′

1,B2, . . . ,Bn, Γ −→ C
Π′′

Σ; σ . B′′
1 ,B2, . . . , Bn, Γ −→ C

Σ; σ . B′
1 ∨B′′

1 ,B2, . . . ,Bn,Γ −→ C ∨L,

then Ξ reduces to a derivation Ξ′

Π′1
Σ; ∆1 −→ B′1 · · ·

Πn

Σ;∆n −→ Bn

Π′
Σ;B′1, . . . ,Bn, Γ −→ C

Σ;∆1, . . . , ∆n, Γ −→ C mc.

As in previous case, the size of cut formulas decreases, and therefore inductive
hypothesis applies to the reduct Ξ′. The case for the other ∨R rule is symmetric.
⊃ R/ ⊃ L:. Suppose Π1 and Π are

Π′1
Σ; σ . B′

1,∆1 −→ σ . B′′
1

Σ;∆1 −→ σ . B′
1 ⊃ B′′

1

⊃ R

Π′
Σ;B2, . . . ,Bn, Γ −→ σ . B′

1

Π′′
Σ; σ . B′′

1 ,B2, . . . ,Bn, Γ −→ C
Σ; σ . B′

1 ⊃ B′′
1 ,B2, . . . ,Bn,Γ −→ C ⊃ L.

Let Ξ1 be the derivation
{

Πi

Σ;∆i −→ Bi

}

i∈{2..n}
Π′

Σ;B2, . . . ,Bn, Γ −→ B′1
Σ; ∆2, . . . , ∆n,Γ −→ B′1

mc.

The derivation Ξ1 has a smaller size of cut formula than Ξ, while other mea-
sures remain non-increasing. Therefore, the inductive hypothesis can be applied
to eliminate the multicut in Ξ1. Let Ξ′1 denote the cut-free proof obtained by
cut-elimination on Ξ1 and let Ξ2 be the derivation

Ξ′1
Σ;∆2, . . . , ∆n,Γ −→ B′1

Π′1
Σ;B′1,∆1 −→ B′′1

Σ;∆1, . . . , ∆n, Γ −→ B′′1
mc.

The measure µ(Ξ2) is strictly smaller than µ(Ξ) because

lvl(B′1) < lvl(B1) ≤ max{lvl(B1), . . . , lvl(Bn)}.
Recall that lvl(B′

1 ⊃ B′′
1) = max{lvl(B′

1) + 1, lvl(B′′
1)}. Therefore, the multicut in

Ξ2 can be eliminated by inductive hypothesis to get a cut-free derivation Ξ′2.
The derivation Ξ then reduces to the following derivation Ξ′:

Ξ′2
Σ; . . . −→ B′′1

{
Πi

Σ;∆i −→ Bi

}

i∈{2..n}
Π′′

Σ;B′′1 , {Bi}i∈{2..n}, Γ −→ C
Σ;∆1, . . . , ∆n, Γ, ∆2, . . . , ∆n, Γ −→ C mc.

cL
Σ;∆1, . . . , ∆n, Γ −→ C

We use the double horizontal lines to indicate that the relevant inference rule (in
this case, cL) may need to be applied zero or more times. Again, since the cut

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

22 · D. Miller and A. Tiu

formulas size decreases, we have µ(Ξ′) < µ(Ξ) and therefore inductive hypothesis
can be applied to eliminate the multicut in Ξ′.

∀R/∀L. If Π1 and Π are

Π′1
Σ, h; ∆1 −→ σ . B′

1[(h σ)/x]
Σ;∆1 −→ σ . ∀τx.B′

1
∀R Σ, σ ` t : τ

Π′
Σ; σ . B′

1[t/x], . . . , Γ −→ C
Σ; σ . ∀τx.B′

1, . . . , Γ −→ C ∀L

then Ξ reduces to the derivation Ξ′

Π′1[λσ.t/h]
Σ;∆1 −→ σ . B′

1[t/x]

{
Πi

Σ;∆i −→ Bi

}

i∈{2..n}
Π′

Σ; . . . −→ C
Σ;∆1, . . . , ∆n, Γ −→ C mc.

The size of cut formulas decreases while other measures are non-increasing, therefore
µ(Ξ′) < µ(Ξ) and the cut in Ξ′ can be removed by induction hypothesis.

∃R/∃L. If Π1 and Π are

Σ, σ ` t : τ
Π′1

Σ;∆1 −→ σ . B′
1[t/x]

Σ; ∆1 −→ σ . ∃τx.B′
1

∃R
Π′

Σ, h; σ . B′
1[(h σ)/x], . . . , Γ −→ C

Σ; σ . ∃xτ .B′
1, . . . , Γ −→ C ∃L

then Ξ reduces to the derivation Ξ′

Π′1
Σ;∆1 −→ σ . B′

1[t/x]

{
Πi

Σ;∆i −→ Bi

}

i∈{2..n}
Π′[λσ.t/h]

Σ; σ . B′
1[t/x], . . . −→ C

Σ;∆1, . . . , ∆n, Γ −→ C mc.

As in the previous case, we can apply the induction hypothesis to remove the cut
in Ξ′.

∇R/∇L. Suppose Π1 and Π are

Π′1
Σ; ∆1 −→ (σ, y) . B′

1[y/x]
Σ;∆1 −→ σ .∇x.B′

1
∇R

Π′
Σ; (σ, y) . B′

1[y/x], . . . , , Γ′ −→ C
Σ; σ .∇x.B′

1, . . . , Γ −→ C ∇L.

Then Ξ reduces to the derivation Ξ′

Π′1
Σ;∆1 −→ (σ, y) . B′

1[y/x] · · ·
Π′

Σ; (σ, y) . B′
1[y/x], . . . −→ C

Σ;∆1, . . . , ∆n, Γ −→ C mc.

The size of the cut formula decreases while other measures remain non-increasing,
therefore the multicut in Ξ′ can be eliminated by applying the inductive hypothesis.

defR/defL. Suppose Π1 and Π are

Π′1
Σ; ∆1 −→ B′1θ
Σ;∆1 −→ B1

defR

{
Πρ,D

Σρ;Dγ,B2ρ, . . . ,Bnρ,Γρ −→ Cρ
}

Σ;B1,B2, . . . ,Bn, Γ −→ C defL.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 23

By the defR rule in Π1, dfn(ε,B1, θ,B′1) holds. Then Ξ reduces to Ξ′

Π′1
Σ; ∆1 −→ B′1θ

{
Πi

Σ; ∆i −→ Bi

}

i∈{2..n}
Πε,B′1

Σ;B′1θ,B2, . . . ,Bn, Γ −→ C
Σ;∆1, . . . , ∆n, Γ −→ C mc.

By the definition of definition clause, we have lvl(B′1) ≤ lvl(B1), and therefore the
maximum level of cut formulas is non-increasing. However, def(Πε,B′1) < def(Π),
therefore µ(Ξ′) < µ(Ξ) and inductive hypothesis can be applied to remove the
multicut in Ξ′.

Left-commutative cases:

•L/ ◦ L. Suppose Π ends with a left rule other than cL and wL acting on B1,
and Π1 is

{
Πi

1

Σ′;∆i
1 −→ B1

}

Σ;∆1 −→ B1
•L,

where •L is any left rule except ⊃ L, defL, and Σ is a subset of Σ′. Then Ξ reduces
to the derivation Ξ′

Πi
1

Σ′;∆i
1 −→ B1

{
Π′j

Σ′;∆j −→ Bj

}

j∈{2..n}
Π′

Σ′;B1, . . . ,Bn, Γ −→ C
Σ′;∆i

1, ∆2, . . . , ∆n, Γ −→ C mc

Σ;∆1,∆2, . . . , ∆n,Γ −→ C •L,

where Π′j and Π′ are obtained from Πj and Π by applying Lemma 7.2. Let Ξ′i
be a premise derivation of Ξ′. Since for each Πi

1, ht(Πi
1) < ht(Π1) and since

ht(Π′j) ≤ ht(Πj) and ht(Π′) ≤ ht(Π), the multiset M(Ξ′i) is strictly smaller (in
the multiset ordering) than the multiset M(Ξ). Since other measures remain un-
changed, µ(Ξ′i) < µ(Ξ) (and this applies to arbitrary premise derivations of Ξ′) and
therefore by induction hypothesis all the multicuts in Ξ′ can be eliminated.

⊃ L/ ◦ L. Suppose Π ends with a left rule other than cL and wL acting on B1

and Π1 is

Π′1
Σ; ∆′

1 −→ σ . D′
1

Π′′1
Σ; σ . D′′

1 , ∆′
1 −→ B1

Σ; σ . D′
1 ⊃ D′′

1 ,∆′
1 −→ B1

⊃ L.

Let Ξ1 be

Π′′1
Σ; σ . D′′

1 ,∆′
1 −→ B1 · · ·

Πn

Σ;∆n −→ Bn

Π
Σ;B1, . . . ,Bn, Γ −→ C

Σ; σ . D′′
1 , ∆′

1,∆2, . . . , ∆n, Γ −→ C mc.

The multicut in Ξ1 can be eliminated by inductive hypothesis sinceM(Ξ1) < M(Ξ)
and other measures are equal. We let Ξ′1 denote the resulting cut-free proof from

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

24 · D. Miller and A. Tiu

applying cut-elimination to Ξ1. Then Ξ reduces to

Π′1
Σ; ∆′

1 −→ σ . D′
1

Σ; ∆′
1, ∆2, . . . , ∆n, Γ −→ σ . D′

1
wL Ξ′1

Σ; σ . D′′
1 , ∆′

1,∆2, . . . , ∆n,Γ −→ C
Σ; σ . D′

1 ⊃ D′′
1 , ∆′

1, ∆2, . . . , ∆n, Γ −→ C ⊃ L.

defL/ ◦ L. If Π ends with a left rule other than cL and wL acting on B1 and Π1

is {
Πρ,D

1

Σρ;Dθ, ∆′
1ρ −→ B1ρ

}

Σ;A,∆′
1 −→ B1

defL.

By the definition of defL rule, the relation dfn(ρ,A, θ,D) holds for a given raised
definition clause ∀x̄.[H 4= D] where x̄ are chosen to be different from the variables
in Σ. Then Ξ reduces to the derivation Ξ′

Πρ,D
1

Σρ;Dρ,∆′
1ρ −→ B1ρ

{
Πjρ

Σρ;∆jρ −→ Bjρ

}

j

Πρ
Σρ; . . . −→ Cρ

Σρ;Dθ, ∆′
1ρ, . . . , ∆nρ,Γρ −→ Cρ mc

Σ;A,∆′
1, . . . , ∆n,Γ −→ C defL,

where j ranges over {2, . . . , n}. Let Ψ be an arbitrary premise derivation of Ξ′.
Since ht(Πρ,D

1) < ht(Π1) and ht(Πρ) ≤ ht(Π) and for each j, ht(Πjρ) ≤ ht(Πjρ),
the multiset M(Ψ) is smaller than M(Ξ) and therefore induction hypothesis can
be applied to eliminate the multicut in Ψ (and consequently, all multicuts in Ξ′).
Right-commutative cases:

−/ ◦ L. Suppose Π is
{

Πi

Σ′;B1, . . . ,Bn, Γi −→ C
}

Σ;B1, . . . ,Bn, Γ −→ C ◦L,

where Σ′ ⊇ Σ and ◦L is any left rule other than ⊃ L, defL, acting on a judgment
other than B1, . . . ,Bn. Then Ξ reduces to the derivation Ξ′

Π′1
Σ′;∆1 −→ B1 · · ·

Π′n
Σ′;∆n −→ Bn

Πi

Σ′;B1, . . . ,Bn, Γi −→ C
Σ′;∆1, . . . , ∆n, Γi −→ C

mc

Σ;∆1, . . . , ∆n, Γ −→ C
◦L.

The height of Πi is smaller than the height of Π, therefore using the same argument
as in the case defL/ ◦ L we can eliminate the multicuts in Ξ′.
−/ ⊃ L. Suppose Π is

Π′
Σ;B1, . . . ,Bn,Γ′ −→ σ . D′ Π′′

Σ;B1, . . . ,Bn, σ . D′′, Γ′ −→ C
Σ;B1, . . . ,Bn, σ . D′ ⊃ D′′, Γ′ −→ C ⊃ L.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 25

Let Ξ1 be

Π1

Σ;∆1 −→ B1 · · ·
Πn

Σ; ∆n −→ Bn

Π′
Σ;B1, . . . ,Bn, Γ′ −→ σ . D′

Σ;∆1, . . . , ∆n, Γ′ −→ σ . D′ mc

and Ξ2 be

Π1

Σ;∆1 −→ B1 · · ·
Πn

Σ;∆n −→ Bn

Π′′
Σ;B1, . . . ,Bn, σ . D′′, Γ′ −→ C

Σ;∆1, . . . , ∆n, σ . D′′, Γ′ −→ C mc.

Then Ξ reduces to
Ξ1

Σ; ∆1, . . . , ∆n,Γ′ −→ σ . D′
Ξ2

Σ; ∆1, . . . , ∆n, σ . D′′, Γ′ −→ C
Σ;∆1, . . . , ∆n, σ . D′ ⊃ D′′, Γ′ −→ C ⊃ L.

By similar arguments to the previous cases, i.e., the multiset of heights decreases
in Ξ1 and Ξ2, the multicuts in Ξ′ can be eliminated.
−/defL. If Π is

{
Πρ,D

Σρ;B1ρ, . . . ,Bnρ,Dθ, Γ′ρ −→ Cρ
}

Σ;B1, . . . ,Bn,A, Γ′ −→ C defL.

Then Ξ reduces to

{
Πiρ

Σρ;∆iρ −→ Biρ

}

i∈{1..n}
Πρ,D

Σρ; {Biρ}i∈{1..n},Dθ, Γ′ρ −→ Cρ
Σρ; ∆1ρ, . . . , ∆nρ,Dθ, Γ′ρ −→ Cρ mc

Σ;∆1, . . . , ∆n,A, Γ′ −→ C defL.

Since def(Πρ,D) < def(Π), we can apply the inductive hypothesis to remove the
multicuts.
−/ ◦ R. If Π is

{
Πi

Σ′;B1, . . . ,Bn,Γi −→ Ci

}

Σ;B1, . . . ,Bn, Γ −→ C ◦R,

where ◦R is any right rule, then Ξ reduces to

Π′1
Σ′; ∆1 −→ B1 · · ·

Π′n
Σ′;∆n −→ Bn

Πi

Σ′;B1, . . . ,Bn,Γi −→ Ci

Σ′;∆1, . . . , ∆n, Γi −→ Ci
mc

Σ;∆1, . . . , ∆n, Γ −→ C ◦R.

Here the derivation Π′i is obtained from Πi by Lemma 7.2 and hence ht(Π′i) ≤
ht(Πi) < ht(Π). Therefore the multicuts in the reduct can be then eliminated by
induction hypothesis.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

26 · D. Miller and A. Tiu

Structural cases:

−/cL. If Π is

Π′
Σ;B1,B1,B2, . . . ,Bn, Γ −→ C

Σ;B1, . . . ,Bn,Γ −→ C cL,

then Ξ reduces to

Π1

Σ;∆1 −→ B1

{
Πi

Σ;∆i −→ Bi

}

i∈{1..n}
Π′

Σ;B1,B1,B2, . . . ,Bn,Γ −→ C
Σ;∆1, ∆1, ∆2, . . . , ∆n, Γ −→ C mc.

cL
Σ;∆1, . . . , ∆n, Γ −→ C

The measure contr(Π′) < contr(Π), while the maximum level of cut formulas does
not change and def(Π) = def(Π′). Therefore µ(Ξ′) < µ(Ξ) and we can apply the
inductive hypothesis to remove the multicut in the reduct.

−/wL. If Π is

Π′
Σ;B2, . . . ,Bn,Γ −→ C

Σ;B1,B2, . . . ,Bn, Γ −→ C cL,

then Ξ reduces to
{

Πi

Σ; ∆i −→ Bi

}

i∈{2..n}
Π′

Σ;B2, . . . ,Bn, Γ −→ C
Σ;∆2, . . . , ∆n, Γ −→ C mc.

wL
Σ;∆1,∆2, . . . , ∆n,Γ −→ C

The total size of cut formulas decreases in the reduct, therefore we can apply the
inductive hypothesis to remove the multicut.

Axiom cases:

init/−. If Π1 ends with the init rule, that is, B1 ∈ ∆1, then Ξ reduces to

Π2

Σ;∆2 −→ B2 · · ·
Πn

Σ; ∆n −→ Bn

Π
Σ;B1,B2, . . . ,Bn, Γ −→ C

Σ;B1, ∆2, . . . , ∆n,Γ −→ C mc.

Σ;∆1,∆2, . . . , ∆n,Γ −→ C wL

The size of cut formulas decreases, while other measures are non-increasing, there-
fore the multicut can be eliminated by induction hypothesis.

−/init. If Π ends with the init rule and C is a judgment in Γ, then Ξ reduces to

Σ;∆1, . . . , ∆n, Γ −→ C init.

If Π ends with the init rule, but C is not a judgment in Γ, then C must be one of
ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 27

the cut judgments, say B1. In this case Ξ reduces to

Π1

Σ;∆1 −→ B1

Σ;∆1, . . . , ∆n, Γ −→ B1
wL

The following corollary is the cut-elimination result for FOλ∆∇ and it is proved
by repeatedly removing uppermost cuts in a proof.

Corollary 7.6. Given a fixed stratified definition, a sequent has a proof in
FOλ∆∇ if and only if it has a cut-free proof.

Cut-elimination and Lemma 7.3 can be used to show certain permutabilities of
inference rules in cut-free proofs. We show the interesting case involving the defL
rule.

Proposition 7.7. Let Π be a cut-free proof of the sequent Σ;A,Γ −→ C, where
A is an atomic judgment. Then there exists a cut-free proof Π′ of the same sequent
whose last inference rule is an instance of defL applied to A.

Proof. Let Ξ be the derivation{
Ψθ

Σθ;Bθ, Γθ −→ Cθ
}

dfn(θ,A,ρ,B)

Σ;A, Γ −→ C defL

where Ψθ is the derivation

Σθ;Bρ −→ Bρ
init

Σθ;Bρ −→ Aθ
defR Πθ

Σθ;Aθ, Γθ −→ Cθ
Σθ;Bρ, Γθ −→ Cθ mc.

The premise derivation Πθ in Ψθ is obtained from Π by Lemma 7.3. The cut-free
proof Π′ is obtained by applying cut-elimination procedure on Ξ. Note that the
last rule of Ξ is unchanged by cut-elimination and hence Π′ ends with defL.

Since defLcsu is a special case of defL, the above proposition holds as well if defL
is replaced by defLcsu.

Corollary 7.8. Let Π be a cut-free proof of the sequent Σ;A, Γ −→ C, where
A is an atomic judgment. Then there exists a cut-free proof Π′ of the same sequent
whose last inference rule is an instance of defLcsu applied to A.

7.2 Properties of ∇
We see from examples in Section 5 and Section 6 that ∇ and ∀ are significantly
different when they are used negatively in a proof, i.e., when it appears to the left
of certain implications in the proof. We shall now show that when definitions are
essentially Horn clauses (recall that in Horn clauses, there are no occurrences of
implication in the bodies of the clauses), the difference between ∇ and ∀ cannot
actually be observed. In particular, we show that ∇ and ∀ can be interchanged

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

28 · D. Miller and A. Tiu

for hc∀∇-definitions and hc∀∇-goals without affecting provability. In proving this
statement inductively we need a stronger hypothesis: that is, we can interchange the
scope of variables in this case (either global or local) without affecting provability.

Lemma 7.9. Let D be an hc∀∇-definition, and let G be an hc∀∇-goal. The se-
quent Σ; . −→ (σ1, x, σ2) . G is provable if and only if the sequent

Σ, h; . −→ (σ1σ2) . G[(h σ1)/x]

is provable. Moreover, given a derivation Π of the first sequent, there is a derivation
Π′ of the second sequent such that ht(Π′) ≤ ht(Π), and vice versa.

Proof. We show that given a derivation Π of one sequent, we can construct a
derivation Π′ of the other sequent by induction on ht(Π). In the transformation,
there is no extra rules introduced, therefore ht(Π′) ≤ ht(Π). We show here the
non-trivial cases where the derivation Π ends with either ∀R or defR.

Let Π be a derivation of Σ; . −→ (σ1, x, σ2) . G. Then we construct a derivation
Π′ of Σ, h; . −→ (σ1σ2) . G[(hσ1)/x] as follows. First, suppose that Π ends with
∀R, that is,

Π1

Σ, f ; . −→ (σ1, x, σ2) . G′[(f σ1 xσ2)/y]
Σ; . −→ (σ1, x, σ2) . ∀y.G′

∀R.

Applying the substitution [λσ1λxλσ2.f
′ σ1 σ2/f] to Π1, where f ′ is a new eigen-

variable, we obtain a derivation Ξ of Σ, f ′; . −→ (σ1, x, σ2) . G′[(f ′ σ1 σ2)/y]. By
Lemma 7.3 substitution does not increase the height of derivation, therefore, the
induction hypothesis can be applied to Ξ to get a derivation Ξ′ of

Σ, h, f ′; . −→ (σ1σ2) . G′[(hσ1 σ2)/x, (f ′ σ1 σ2)/y].

We can, therefore, take the following derivation as Π′

Ξ′
Σ, h, f ′; . −→ (σ1σ2) . G′[(hσ1)/x, (f ′ σ1 σ2)/y]

Σ, h; . −→ (σ1σ2) . ∀y.G′[(hσ1)/x] ∀R.

Second, suppose that Π ends with defR
Π1

Σ; . −→ (σ1, x, σ2) . Dθ

Σ; . −→ (σ1, x, σ2) . A
defR

where ∀w1 . . . wn.[σ1, x, σ2.H
4= σ1, x, σ2.D] is the raised definition clause matching

σ1, x, σ2 .A, that is, λσ1λxλσ2.A =βη (λσ1λxλσ2.H)θ. We can assume without loss
of generality that the substitution θ is of the form

{λσ1λxλσ2.t1/w1, . . . , λσ1λxλσ2.tn/wn}.
Let us define a substitution γ as follows

γ = {λσ1λxλσ2.(u1 σ1σ2)/w1, . . . , λσ1λxλσ2.(un σ1σ2)/wn}.
where u1, . . . , un are new variables different from w̄ and σ1, x, σ2. The correspond-
ing raised definition clause for σ1σ2 . A[(hσ1)/x] is

∀u1 . . . un.[σ1σ2 . Hγ
4= σ1σ2 . Dγ].

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 29

It can be verified that the equation

(λσ1λσ2.A[(hσ1)/x]) =βη (λσ1λσ2.Hγ)ρ

holds for ρ = {(λσ1λσ2.t1[(hσ1)/x])/u1, . . . , (λσ1λσ2.tn[(hσ1)/x])/un}.
Notice that Dθ[(h σ1)/x] =βη Dγρ. Therefore, we construct Π′ as the derivation

Π′1
Σ, h; . −→ (σ1σ2) . Dγρ

Σ, h; . −→ σ1σ2 . A[(hσ1)/x]
defR,

where Π′1 is obtained by induction hypothesis.
Conversely, from the derivation Π′ we construct the derivation of Π as follows.

Let us assume that x is not in Σ. We first notice that the problem can be simplified
by removing the dependency of h on σ1; that is, by applying the substitution
[λσ1.x/h] to Π′. We can, therefore, suppose a simpler case where Π′ is a derivation
of Σ, x; . −→ σ1σ2 . G. We examine the following two non-trivial cases.

Suppose Π′ ends with ∀R
Π1

Σ, x, f ; . −→ σ1σ2 . G′[(f σ1σ2)/y]
Σ, x; . −→ σ1σ2 . ∀y.G′

∀R.

Applying the substitution [(λσ1λσ2.f
′ σ1 xσ2)/f] to derivation Π1, we get a deriva-

tion Π2 of Σ, x, f ′; . −→ σ1σ2 . G′[(f ′ σ1 xσ2)/y]. The derivation Π is then

Π′2
Σ, f ′; . −→ σ1, x, σ2 . G′[(f σ1 xσ2)/y]

Σ; . −→ σ1, x, σ2 . ∀y.G′
∀R,

where Π′2 is obtained by applying the induction hypothesis to Π2.
For the second case, suppose Π′ ends with defR

Π1

Σ, x; . −→ σ1σ2 . Dθ

Σ, x; . −→ σ1σ2 . A
defR

where ∀w1 . . . ∀wn.[σ1σ2 . H
4= σ1σ2 . D] is the matching definition clause, i.e.,

λσ1λσ2.A =βη (λσ1λσ2.H)θ. As in the previous case we can suppose that θ is of
the form

{(λσ1λσ2.t1)/w1, . . . , (λσ1λσ2.tn)/wn}.
The corresponding raised definition clause for the judgment σ1, x, σ2 . A is

∀u1 . . . ∀un.[σ1 xσ2 . Hγ
4= σ1 x σ2 . Dγ],

where γ = {(λσ1λσ2.u1 σ1 xσ2)/w1, . . . , (λσ1λσ2.un σ1 xσ2)/wn, }. Let ρ be the
substitution

{λσ1λxλσ2.t1, . . . , λσ1λxλσ2.tn}.
It can be verified that the equation (λσ1λxλσ2.A) =βη (λσ1λxλσ2.Dγ)ρ holds, and

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

30 · D. Miller and A. Tiu

that Dγρ = Dθ. Therefore, we construct Π as the derivation

Π′1
Σ; . −→ σ1, x, σ2 . Dθ

Σ; . −→ σ1, x, σ2 . A
defR

where Π′1 is obtained from induction hypothesis.

Proposition 7.10. Let D be an hc∀∇-definition and let D′ be the hc∀∇-definit-
ion resulting from replacing some occurrences of ∀ and ∇ in the body of clauses of
D with ∇ and ∀, respectively. Similarly, let G be an hc∀∇-goal and let G′ be the
hc∀∇-goal resulting from replacing some occurrences of ∀ and ∇ in G with ∇ and
∀, respectively. If the sequent Σ; · −→ σ . G is provable using definition D then the
sequent Σ; · −→ σ . G′ is provable using definition D′.

Proof. Let Π be a derivation of Σ; · −→ σ . G. We construct a derivation Π′ of
Σ; · −→ σ . G′ by induction on the measure ht(Π). The non-trivial cases are when
Π ends with the introduction rule for the connective being interchanged.

Suppose G = ∀x.H, G′ = ∇x.H ′ and Π ends with ∀R.

Π1

Σ, h; . −→ σ . H[(h σ)/x]
Σ; . −→ σ . ∀x.H

∀R

By Lemma 7.9 there is a derivation Π′1 of Σ; . −→ (σ, x) . H such that ht(Π′1) ≤
ht(Π1). We can, therefore, apply the induction hypothesis to Π′1 to get a derivation
Π2 of Σ; . −→ (σ, x) . H ′. The derivation Π′ is, therefore,

Π2

Σ; . −→ (σ, x) . H ′

Σ; . −→ σ .∇x.H ′ ∇R

The case where G = ∇x.H, G′ = ∀x.H ′ and Π ends with ∇R is done analogously,
since Lemma 7.9 works on both directions.

As a consequence of this proposition, the difference between ∀ and ∇ (or, equiva-
lently, between the global and local signatures of a sequent) cannot be seen if one
is simply attempting to “evaluate” hc∀ logical programs by determining the atoms
that they can prove. To illustrate the difference between these two quantifiers, we
need to consider goals and/or definitions that contain implications. We have done
this in Section 5, for example, when we illustrated the differences between ∀ and ∇
with the specification of simulation in the π-calculus.

In Figure 4 we presented eight non-theorems of FOλ∇ and claimed that, with
certain restrictions, the last three are provable. For a fixed noetherian definition
(see the following Definition), we claim the following: formula (8) is provable and
if the definition is furthermore hc∀∇ then formulas (6) and (7) are also provable.
The fact that formula (8) is a theorem of FOλ∆∇ for noetherian definitions follows
from Proposition 7.12. The proof of the provability of formulas (6) and (7) follows
by similarly structured proofs.

Definition 7.11. A definition D is noetherian if for every definition clause ∀x̄.[pt̄
4=

B] in D, it holds that lvl(p) > lvl(B).

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 31

Proposition 7.12. Given a noetherian definition, the sequent

Σ;Γ, σ . B −→ σ′ . B,

where σ′ is a permutation of σ, is provable in FOλ∆∇.

Proof. We construct a derivation of Γ, σ . B −→ σ′ . B inductively. The in-
duction is on the level of B with subordinate induction on the size of B. We can
assume without loss of generality that all predicates in the definition are assigned
levels greater than 0 and recall that we require all predicates to be defined. The
cases where B is a non-atomic formula are straightforward; we just apply the intro-
duction rules for the outermost connective in B, coordinated between left and right
rules. In the case where B is an atomic formula, suppose that dfn(ρ, σ .B, θ, σ .D)
holds for a clause ∀h1, . . . , hn.[σ . H

4= σ . D], that is, (λσ.B)ρ =βη (λσ.H)θ. Let δ
be the substitution {(λσ.h′1σ

′)/h1, . . . , (λσ.h′nσ′)/hn}. It suffices to show that there
is a substitution γ such that dfn(ε, (σ′ . B)ρ, γ, σ′ . Dδ) holds for the raised clause
∀h′1, . . . , h′n.[σ . Hδ

4= σ . Dδ]. The following substitution solves the matching:

γ(x) =
{

λσ′.(hiθ) σ, if x = hi for some i ∈ {1, . . . , n},
θ(x), otherwise.

We conjecture that if we incorporated into our proof system an appropriate in-
duction inference rule, then the restriction of noetherian can be removed from
Proposition 7.12 and from the claims made for formulas (6) and (7) of Figure 4.

8. RELATED WORK AND CONCLUSION

We have considered the approach to the specification of computation in which
term-level and proof-level abstractions are used to encode abstractions both of the
static structure of expressions (e.g., using meta-level λ-abstractions to encode the
input prefix in the π-calculus) and the dynamic structure of computation (e.g.,
name generation as eigenvariables). While this style of syntactic representation has
been successfully used to enumerate judgments about operational semantics and to
encode object-logic provability, traditional proof-level abstractions (eigenvariables)
seem inadequate when one wishes to reason about computation directly (as outlined
in Section 1). We have explored a simple mechanism within sequent calculus to
expand the notion of abstraction in the building of proofs. Our approach to the ∇
quantifier is thus not an attempt at a notion of name “freshness” or a semantics
for “name generation”.

It is natural to ask about possible connections between the ∇-quantifier and the
new quantifier of Pitts and Gabbay [Gabbay and Pitts 2001; Pitts 2003]. Both are
self dual and both have similar sets of applications in mind. The focus on ∇ has
been proof theoretic while the work on Pitts and Gabbay has been model theoretic.
More concretely, while ∇ neither implies nor is implied by ∀ or ∃, the quantifier of
Pitts and Gabbay is entailed by ∀ and entails ∃. In Pitts and Gabbay, the domain
of quantification is fixed to a certain denumerably infinite set of names, while the
∇ quantifier works at any type. In their recent paper [Gabbay and Cheney 2004],
Gabbay and Cheney provide some initial connections between these two quantifiers.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

32 · D. Miller and A. Tiu

Pursuing such a connection might help provide a model theoretic semantics for ∇
and for FOλ∆∇ more generally.

Formal logic has also been used as a framework for meta-theoretic reasoning
about dependent type systems. The closest such work to FOλ∆∇ is probably
Schürmann’s M+

2 logic for reasoning about the LF system [Schürmann 2000]. The
logic M+

2 allows richer definitions of object-systems, compared to FOλ∆∇, since
they are not subject to the stratification using levels. Instead, definitions in M+

2

are stratified using something called “regular worlds assumption”. Translated to
our setting, this feature would permit, in particular, some unstratifiable definitions.
Possible connections between these two systems is left for future work.

To work with interesting examples, an implementation of FOλ∆∇ is needed.
An outline for such implementation is discussed in [Tiu and Miller 2004] and a
prototype implementation of a subset of FOλ∆∇ following this outline has been
built using the functional language Standard ML [Tiu 2004a]. Using this prover,
we were able to write the specifications of the transition system of π-calculus and
the open bisimulation relation given in [Tiu and Miller 2004] and automatically
check for open bisimilarity for finite processes. The Isabelle theorem prover might
also provide a setting for building an interactive theorem prover given the work
reported in [Momigliano et al. 2002].

A natural next step involves adding directly to FOλ∆∇ both induction and co-
induction. A preliminary step in that direction appears in [Tiu 2004b] and follows
the earlier work on induction in the FOλ∆IN logic [McDowell and Miller 2000].
Closely related work involving induction and co-induction but without ∇ in appears
in [Momigliano and Tiu 2003].

Acknowledgments An earlier version of this paper appeared as [Miller and Tiu
2003]. The authors wish to thank Catuscia Palamidessi for valuable discussions re-
garding our π-calculus examples, Frank Pfenning for his comments on the general
project of this paper, Gopalan Nadathur for his comments a draft of this paper,
and an anonymous reviewer of this paper for many useful comments and sugges-
tions. This work has been supported in part by NSF grant CCR-9912387 and the
ACI grants GEOCAL and Rossignol. The second author gratefully acknowledges
support from LIX at École polytechnique.

REFERENCES

Cervesato, I., Durgin, N. A., Lincoln, P. D., Mitchell, J. C., and Scedrov, A. 1999. A meta-
notation for protocol analysis. In Proceedings of the 12th IEEE Computer Security Foundations
Workshop — CSFW’99, R. Gorrieri, Ed. IEEE Computer Society Press, Mordano, Italy, 55–69.

Cervesato, I. and Pfenning, F. 1996. A linear logic framework. In Proceedings, Eleventh
Annual IEEE Symposium on Logic in Computer Science. IEEE Computer Society Press, New
Brunswick, New Jersey, 264–275.

Chirimar, J. 1995. Proof theoretic approach to specification languages. Ph.D. thesis, University
of Pennsylvania.

Church, A. 1940. A formulation of the simple theory of types. J. of Symbolic Logic 5, 56–68.

Eriksson, L.-H. 1991. A finitary version of the calculus of partial inductive definitions. In Proc.
of the Second International Workshop on Extensions to Logic Programming, L.-H. Eriksson,
L. Hallnäs, and P. Schroeder-Heister, Eds. LNAI, vol. 596. Springer-Verlag, 89–134.

Felty, A. and Miller, D. 1988. Specifying theorem provers in a higher-order logic program-
ming language. In Ninth International Conference on Automated Deduction. Springer-Verlag,
Argonne, IL, 61–80.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

A proof theory for generic judgments · 33

Gabbay, M. J. and Cheney, J. 2004. A sequent calculus for nominal logic. In Proc. 19th IEEE
Symposium on Logic in Computer Science (LICS 2004). 139–148.

Gabbay, M. J. and Pitts, A. M. 2001. A new approach to abstract syntax with variable binding.
Formal Aspects of Computing 13, 341–363.

Gentzen, G. 1969. Investigations into logical deductions. In The Collected Papers of Gerhard
Gentzen, M. E. Szabo, Ed. North-Holland Publishing Co., Amsterdam, 68–131.

Girard, J.-Y. 1992. A fixpoint theorem in linear logic. Email to the linear@cs.stanford.edu
mailing list.

Hallnäs, L. and Schroeder-Heister, P. 1991. A proof-theoretic approach to logic program-
ming. II. Programs as definitions. Journal of Logic and Computation 1, 5 (October), 635–660.

Huet, G. 1975. A unification algorithm for typed λ-calculus. Theoretical Computer Science 1,
27–57.

McDowell, R. 1997. Reasoning in a logic with definitions and induction. Ph.D. thesis, University
of Pennsylvania.

McDowell, R. and Miller, D. 2000. Cut-elimination for a logic with definitions and induction.
Theoretical Computer Science 232, 91–119.

McDowell, R. and Miller, D. 2002. Reasoning with higher-order abstract syntax in a logical
framework. ACM Transactions on Computational Logic 3, 1 (January), 80–136.

McDowell, R., Miller, D., and Palamidessi, C. 2003. Encoding transition systems in sequent
calculus. Theoretical Computer Science 294, 3, 411–437.

Miller, D. 1989. Lexical scoping as universal quantification. In Sixth International Logic Pro-
gramming Conference. MIT Press, Lisbon, Portugal, 268–283.

Miller, D. 1991. A logic programming language with lambda-abstraction, function variables,
and simple unification. Journal of Logic and Computation 1, 4, 497–536.

Miller, D. 1992. Unification under a mixed prefix. J. of Symbolic Computation 14, 4, 321–358.

Miller, D. 1993. The π-calculus as a theory in linear logic: Preliminary results. In Proceedings
of the 1992 Workshop on Extensions to Logic Programming, E. Lamma and P. Mello, Eds.
Number 660 in LNCS. Springer-Verlag, Bologna, Italy, 242–265.

Miller, D. 1996. Forum: A multiple-conclusion specification language. Theoretical Computer
Science 165, 1 (Sept.), 201–232.

Miller, D. 2000. Abstract syntax for variable binders: An overview. In Computational Logic -
CL 2000, J. Lloyd and et. al., Eds. Number 1861 in LNAI. Springer, 239–253.

Miller, D. and Palamidessi, C. 1999. Foundational aspects of syntax. In ACM Computing
Surveys Symposium on Theoretical Computer Science: A Perspective, P. Degano, R. Gorrieri,
A. Marchetti-Spaccamela, and P. Wegner, Eds. Vol. 31. ACM.

Miller, D. and Tiu, A. 2002. Encoding generic judgments. In Proceedings of FSTTCS. Number
2556 in LNCS. Springer-Verlag, 18–32.

Miller, D. and Tiu, A. 2003. A proof theory for generic judgments: An extended abstract. In
Proc. 18th IEEE Symposium on Logic in Computer Science (LICS 2003). IEEE, 118–127.

Milner, R., Parrow, J., and Walker, D. 1992. A calculus of mobile processes, Part I. Infor-
mation and Computation 100, 1 (September), 1–40.

Momigliano, A., Ambler, S., and Crole, R. 2002. A hybrid encoding of Howe’s method for
establishing congruence of bisimilarity. In LFM’02. ENTCS, vol. 70.2. Springer-Verlag.

Momigliano, A. and Tiu, A. 2003. Induction and co-induction in sequent calculus. In Proceedings
of TYPES 2003 Workshop. LNCS, vol. 3085. Springer, 293 – 308.

Nipkow, T. 1993. Functional unification of higher-order patterns. In Proc. 8th IEEE Symposium
on Logic in Computer Science (LICS 1993), M. Vardi, Ed. IEEE, 64–74.

Paulson, L. C. 1989. The foundation of a generic theorem prover. Journal of Automated Rea-
soning 5, 363–397.

Pfenning, F. and Elliott, C. 1988. Higher-order abstract syntax. In Proc. of the ACM-
SIGPLAN Conf. on Prog. Language Design and Implementation. ACM Press, 199–208.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

34 · D. Miller and A. Tiu

Pfenning, F. and Rohwedder, E. 1992. Implementing the meta-theory of deductive systems. In
Proceedings of the 1992 Conference on Automated Deduction. Number 607 in LNCS. Springer,
537–551.

Pitts, A. M. 2003. Nominal logic, a first order theory of names and binding. Information and
Computation 186, 2, 165–193.

Schroeder-Heister, P. 1992. Cut-elimination in logics with definitional reflection. In Non-
classical Logics and Information Processing, D. Pearce and H. Wansing, Eds. LNCS, vol. 619.
Springer, 146–171.

Schroeder-Heister, P. 1994. Cut elimination for logics with definitional reflection and restricted
initial sequents. In Proceedings of the Post-Conference Workshop of ICLP 1994 on Proof-
Theoretic Extensions of Logic Programming.

Schürmann, C. 2000. Automating the meta theory of deductive systems. Ph.D. thesis, Carnegie
Mellon University.

Slaney, J. 1989. Solution to a problem of Ono and Komori. J. of Philosophic Logic 18, 103–111.

Tiu, A. 2004a. Level 0/1 prover: A tutorial. Available via the web and from Tiu.

Tiu, A. 2004b. A logical framework for reasoning about logical specifications. Ph.D. thesis,
Pennsylvania State University.

Tiu, A. and Miller, D. 2004. A proof search specification of the π-calculus. In Proceedings of
the 3rd Workshop on the Foundations of Global Ubiquitous Computing.

Received November 2003; first revision August 2004; accepted November 2004.

ACM Transactions on Computational Logic, Vol. V, No. N, December 2004.

