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Abstract

Expansion trees are defined as generalizations of Herbrand instances for formulas in a nonextensional
form of higher-order logic based on Church’s simple theory of types. Such expansion trees can be defined
with or without the use of skolem functions. These trees store substitution terms and either critical variables
or skolem terms used to instantiate quantifiers in the original formula and those resulting from instantiations.
An expansion tree is called an expansion tree proof (ET-proof) if it encodes a tautology, and, in the form
not using skolem functions, an “imbedding” relation among the critical variables be acyclic. The relative
completeness result for expansion tree proofs not using skolem functions, i.e. if A is provable in higher-order
logic then A has such an expansion tree proof, is based on Andrews’ formulation of Takahashi’s proof of
the cut-elimination theorem for higher-order logic. If the occurrences of skolem functions in instantiation
terms are restricted appropriately, the use of skolem functions in place of critical variables is equivalent to
the requirement that the imbedding relation is acyclic. This fact not only resolves the open question of what
is a sound definition of skolemization in higher-order logic but also provides a direct, syntactic proof of its
correctness.

Since subtrees of expansion trees are also expansion trees (or their dual) and expansion trees store
substitution terms and critical variables explicitly, ET-proofs can be directly converted into sequential and
natural deduction proofs. A naive translation will often produce proofs which contain a lot of redunancies
and will often use implicational lines in an awkward fashion. An improved translation process is presented.
This process will produce only focused proofs in which much of the redunancy has been eliminated and
backchaining on implicational lines was automatically selected if it was applicable. The information necessary
to construct focused proofs is provided by a certain connection scheme, called a mating, of the boolean atoms
within the tautology encoded by an ET-proof.
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CHAPTER 1

Introduction and Summary

This dissertation is a presentation of various metatheoretical results about higher-order logic (HOL). Al-
though many of these results should be of interest from a formal proof theory point-of-view, they were
motivated by problems encountered in the construction of automatic theorem provers for this logic. (We will
not explore such applications here.) The need to develop the metatheory for HOL is quite clear when one
notes that techniques used by theorem provers in first order logic (FOL) cannot be naively extended to the
higher-order setting. Such extensions have turned out to be very incomplete in some cases and unsound in
other cases.

Analytic proofs. In order to extend automatic theorem proving techniques to the higher-order logic, the
nature of cut-free, or using Smullyan’s term, analytic (see [Smullyan68]) proofs in HOL must be understood.
The theorem prover imbedded in the computer system TPS (see [Miller82]) is essentially a first-order theorem
prover in which Huet’s higher-order unification algorithm (see [Huet75]) is used to find unifying substitutions.
This mix of techniques enables TPS to find a proof of Cantor’s Theorem for sets (which is a genuinely higher-
order theorem), but does not enable it to have even a chance of finding proofs for other theorems of HOL. This
is because the structure of analytic proofs in HOL is complicated by the fact that higher-order substitution
terms can include boolean connectives and quantifiers. A naive use of Huet’s algorithm does not encompass
this richer nature of HOL substitutions.

The completeness of most first-order theorem provers can generally be proved by showing that the
theorem prover enumerates compound Herbrand instances of a proposed theorem in such a fashion that if
a tautologous, compound instance exists, the prover will find one. Such a tautologous, compound instance
can be thought of as a proof of the proposed theorem (see [Andrews81]). It is this representation of analytic
proofs which seems most appropriate to extend to HOL. Our analogue to compound Herbrand instances
will be called expansion trees. These trees will actually contain more information than compound instances
since various nonterminal nodes of such trees will be labeled with the substitutions used in making the
compound instances. Such an explicit structure is very useful when we later show how to convert expansion
trees to other styles of proof, in particular, to proofs in natural deduction style. Expansion trees also have
the pleasing property that they do not require the use of any normal form other than λ-normal form, and
that they essentially are formulas with additional structure. Hence, they can often be manipulated much as
formulas are. Expansion trees will use selected variables (also known in other settings as critical variables
or eigenvariables) instead of skolem functions. An expansion tree will be considered a proof, called an ET-
proof, if it encodes a tautologous formula (i.e. if nonterminal nodes which are labeled with substitutions are
ignored) and if a certain relationship among the selected variables is acyclic. Chapter 2 concludes with a
proof that ET-proofs are both sound and relatively complete for our system of HOL. These results can be
considered to be a higher-order version of Herbrand’s Theorem. The necessary proof-theoretical tools for
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1: Introduction and Summary

establishing the completeness property of ET-proofs is the Abstract Consistency Property which Andrews
defines in [Andrews71]. This is a generalization of Smullyan’s Analytic Consistency Property [Smullyan68]
to HOL and is a direct consequence of the cut-elimination theorem for HOL established independently by
Takahashi in [Takahashi67] and Prawitz in [Prawitz68].

Skolemization. The naive extension of the skolemizations process to HOL is not sound. Andrews in
[Andrews71] defined a system of resolution for HOL in which existential quantifiers were removed by using
choice parameters. In this setting, these choice parameters could be used to assume the role usually played by
skolem functions. This resolution system, however, turned out to be too strong since the negation of instances
of the Axiom of Choice, which is known not to be derivable in our formulation of HOL, could be refuted.
Hence, that form of resolution was not sound. Although Andrews was aware of how the skolemization process
might be fixed, how to prove its soundness remained an open question. In Chapter 3 we will introduce a
variant of expansion trees which uses skolem functions instead of selected variables. Those skolem expansion
trees which encode tautologous formulas are called ST-proofs. An acyclic condition is not needed in ST-
proofs since the nesting of skolem terms in other skolem terms provides an equivalent restriction on the
proofs. It is necessary, however, to restrict the occurrences of skolem functions within the substitutions used
in the skolem expansion trees in order to make their use sound. When applied in the first order setting, this
restriction has no effect. We shall show that ST-proofs and ET-proofs are interconvertible, and this provides
a direct, syntactic proof of the correctness of skolemization.

List representations. In Chapter 4 we define a list representation for expansion trees which will be more
convenient to use, for both theoretical and practical concerns, and is more succinct than the tree structures.
With these list representations, we are able to give straightforward, syntactic proofs of the independence of
the axioms of extensionality, choice, and descriptions in our version of HOL. The proofs of these independence
results are placed in Appendix 1. The reader is advised to look at this appendix for examples of ET-proofs.

Sequential and natural deductions proofs. Finally in Chapter 5, we deal with algorithms for converting
ET-proofs into two more conventional and more readable proof formats, namely sequential calculus proof
trees and natural deduction proofs. The first such algorithm considered will convert an ET-proof to both a
cut-free sequential proof (in a calculus which is a slight extensions of Gentzen’s LK-calculus) and a natural
deduction proof. This is, therefore, a direct demonstration that Herbrand’s theorem (our completeness result
for ET-proofs) implies Gentzen’s Hauptsatz for HOL. Apart from this theoretical fact, there are numerous
other more practical concerns for investigating this transformation process. For example, once an automatic
theorem prover has been successful in finding an ET-proof (or finding an ST-proof which can easily be
converted to an ET-proof as outlined in Chapter 3), it should be possible for the theorem prover to convert
that proof into a more readable explanation of the proof’s structure. Also, this conversion should also be
possible without any further search. The algorithm just mentioned can construct natural deduction proofs
which generally qualify as being readable. This particular algorithm, however, will often produce rather
inelegant proofs. Much research could be done in the area of finding those criteria which can be used to
produce elegant proofs. One particular fact which makes this algorithm’s proofs inelegant is that it does
not know when it can backchain on an implicational fact that it has already established. Deciding this
requires a certain amount of “look-ahead” on the algorithm’s part. This look-ahead can be built into the
algorithm by having it examine information which is available within the tautology encoded in the given
ET-proof. This information is contained in a clause-spanning mating and is used to define the notion of a
focused construction of a natural deduction proof. We give an improved algorithm which will build focused
proofs. These proofs are generally quite readable and natural in many respects. This chapter is an extension
of [Andrews80].
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CHAPTER 2

Expansions Trees as Proofs

Section 2.1: The Logical System T

Let T be the theory of HOL formulated by Church in [Church40] which uses only his axioms 1 through 6
(listed below). Formulas are built up from logical constants, variables, and parameters (non-logical constants)
by lambda abstraction and function application. The first formulas of T we will consider contain only the
logical constants ∼oo, ∨ooo, and Πo(oα), where [∀xαAo] is an abbreviation for [Πo(oα)λxαAo], Ao ∧ Bo is an
abbreviation for ∼.∼Ao∨∼Bo, and Ao⊃Bo is an abbreviation for ∼Ao∨Bo. This system is nonextensional.
We shall generally not adorn formulas with type symbols, but rather, when the type of a formula, say A,
cannot be determined from context, we will add the phrase “where A is a formulaα” to imply that A has
type α.

We shall freely use many of the definitions and results of §§ 2 and 3 of [Andrews71]. We now introduce
some new definitions and state some simple theorems which the reader will already know.

2.1.1. Definition. If x is a variableα and t is a formulaα, we shall denote by .S
x
t A the formula which is the

result of replacing all free occurrences of x in A with t. We shall assume that bound variable names are
systematically changed to avoid variable capture.

2.1.2. Definition. We say that formulaα B comes from formulaα A by λRule1 if B is the result of replacing
a subformula of A of the form [λxC] with the subformula [λz .S

x
z
C], provided that z is a variableβ which does

not occur in C and x is a variableβ which is not bound in C. We say that B comes from A by λRule2 if B is
the result of replacing a subformula of A of the form [λxC]E with .S

x
E

C, provided that the bound variables
of C are distinct from both the variableβ x and from the free variables of the formulaβ E. A comes from B

by λRule3 if B comes from A by λRule2.

We shall write A conv B (resp. A conv-I -II B) (resp. A conv-I B) if there is a sequence of applications
of λRules 1, 2 and 3 (resp. 1 and 2) (resp. 1) which transforms A into B.

Below we list the axioms and rules of inference for the logical calculus T . First the axioms:

(1) p ∨ p⊃ p

(2) p⊃ p ∨ q

(3) p ∨ q⊃ .q ∨ p

(4) p⊃ q⊃ .r ∨ p⊃ .r ∨ q

(5) Πo(oα)foα⊃ foαxα

3



2.1: The Logical System T

(6) ∀xα [p ∨ foαxα]⊃ p ∨Πo(oα)foα

The rules of inference are the following:

(1) λRule1, 2, 3

(2) Substitution: From Foαxα to infer FoαAα provided that xα is not a free variable of Foα.

(3) Modus Ponens: From [A⊃B] and A to infer B.

(4) Generalization: From Foαxα to infer Πo(oα)Foα, provided that xα is not a free variable of Foα.

Those axioms and rules of inference which contain the type variable α are considered to be schema. We
say that a formulao, A, is a theorem of T , written T̀ A, if there is a list of formulaso, A1, . . . , An = A

(n ≥ 1) such that for each i, 1 ≤ i ≤ n, Ai is either an axiom or is derived from one or two previous formulas
by a rule of inference.

2.1.3. Definition. A formulaα is in ρ-normal form if A is in λ-normal form and for each subformula [λxC] of
A, x is the first variable in alphabetical order which is distinct from the other free variables of C. It is clear
that for any formulaα, B , there is a unique formulaα A in ρ-normal form such that A conv B. We shall
write ρB to represent this formula. (ρ-normal form is identical to the η-normal form defined in [Andrews71].
We have changed its name here to avoid confusion later with η-convertibility, with which it has no relation.)
As is noted in [Andrews71], ρ-normal formulas have the following properties: (a) If A is in ρ-normal form
then every subformula of A is also in ρ-normal form, and (b) ρ[AαβBβ ] = [(ρAαβ)(ρBβ)]. Neither of these
properties will be used within this presentation, so, if the reader wishes, ρ-normal form can be taken to mean
principal normal form, as in the sense used in [Church41].

2.1.4. Definition. Let A be a formulao. An occurrence of a subformula B in A is a boolean subformula
occurrence if it is in the scope of only ∼ and ∨, or if A is B. A boolean subformula occurrence is either
positive or negative, depending on whether it is in the scope of an even or odd number of occurrences of ∼.
A formulao A is an atom if its leftmost non-bracket symbol is a variable or a parameter. A formula B is a
boolean atom (b-atom, for short) if its leftmost non-bracket symbol is a variable, parameter, or Π. A signed
atom (b-atom) is a formula which is either an atom (b-atom) or the negation of an atom (b-atom). Two
signed atoms, A1 and A2, are said to be complementary if either ∼A1 conv-I A2 or ∼A2 conv-I A1.

2.1.5. Substitutivity of Implication. Let A, B, and C be formulaso, and assume that T̀ A⊃B. Let

D be the result of either replacing some positive boolean subformula occurrence of A in C with B, or some

negative boolean subformula occurrence of B in C with A. If T̀ C then T̀ D.

2.1.6. Definition. A formulao is tautologous if it is an alphabetic variant of a substitution instance of a
tautology. We shall use the statement “A ≡ B” to be the metalanguage assertion that [A⊃B] ∧ [B⊃A] is
tautologous, i.e. that A and B are truth functionally equivalent.

2.1.7. Theorem. If A is tautologous, then T̀ A. Also, if x is variableα which is not free in the formulaoα

B, then T̀ [ΠB⊃∀x Bx] ∧ [∀x Bx⊃ΠB].

Proof. See [Church40].

2.1.8. Definition. Let B be a boolean atom occurrence in the formulao A. If the leftmost non-bracket symbol
of B is not a Π, then we say that B is neutral. Otherwise, we say that B is existential if it is in the scope of
an odd number of negations and universal if it is in the scope of an even number of negations. We say that
boolean atom occurrences come in these three kinds.

4



2.2: Abstract Derivability Property

Section 2.2: Abstract Derivability Property

The principal proof-theoretic tool we will use to establish the completeness result in Section 2.5 is called the
abstract derivability property. This is essentially the dual notion to what Andrews in [Andrews71] calls the
abstract consistency property, which is itself a generalization of Smullyan’s analytic consistency property
described in [Smullyan68]. Below we define both the abstract consistency and derivability properties.

2.2.9. Definition. A property Γ of finite sets of formulaso is an abstract consistency property if for all finite
sets S of formulas, the following holds:

ACP1 If Γ(S), then there is no atomic formulao, A, such that A ∈ S and ∼A ∈ S.

ACP2 If Γ(S ∪ {A}), then Γ(S ∪ {ρA}).
ACP3 If Γ(S ∪ {∼∼A}), then Γ(S ∪ {A}).
ACP4 If Γ(S ∪ {A ∨B}), then Γ(S ∪ {A}) or Γ(S ∪ {B})
ACP5 If Γ(S ∪ {∼.A ∨B}), then Γ(S ∪ {∼A,∼B}).
ACP6 If Γ(S ∪ {ΠA}), then for each B, Γ(S ∪ {ΠA,AB}).
ACP7 If Γ(S ∪ {∼ΠA}), then for any variable or parameter c which does not occur free in A or any

formula in S, Γ(S ∪ {∼Ac}).
If S is a finite set of formulaso, then ∨S denotes the formula which is the disjunction of the members of

S in some, undetermined order. Also, let ∼S be the set of the negations of formulas in S. The important
result concerning abstract consistency properties is the following theorem (see Theorem 3.5 in [Andrews71]).

2.2.10. Theorem. If Γ is an abstract consistency property and S is a finite set of formulaso such that

Γ(S), then S is consistent, i.e. it is not the case that T̀ ∨ ∼S.

2.2.11. Definition. A property Λ of finite sets of formulaso is an abstract derivability property if for all finite
sets S of formulas, the following holds:

ADP1 If there is an atomic formulao, A, such that A ∈ S and ∼A ∈ S, then Λ(S).

ADP2 If Λ(S ∪ {ρA}) then, Λ(S ∪ {A}).
ADP3 Λ(S ∪ {A}) if and only if Λ(S ∪ {∼∼A}) .

ADP4 If Λ(S ∪ {∼A}) and Λ(S ∪ {∼B}), then Λ(S ∪ {∼.A ∨B}).
ADP5 If Λ(S ∪ {A, B}), then Λ(S ∪ {A ∨B}).
ADP6 If Λ(S ∪ {∼ΠA,∼AB}) for some B, then Λ(S ∪ {∼ΠA}).
ADP7 If for some variable or parameter c which does not occur free in A or any formula in S, Λ(S ∪

{Ac}), then Λ(S ∪ {ΠA}).
It is easy to verify from the description of provability in T that the property Λ(S) of finite sets S which

asserts that T̀ ∨ S, is an abstract derivability property. The reason for defining this second property,
which is essentially the dual of the first, is that it is a positive statement about the nature of proof systems.
Generally, abstract derivability properties, Λ(S), are of the form “∨S has a proof in system X ,” for some
proof system X . In this way, each of the ADP conditions can be thought of as specifying some minimal
properties of a proof system in order for it to be relatively complete. Notice that the proofs of Theorems
4.10 and 5.3 in [Andrews71], which are concerned with the completeness of a cut-free proof system and a
resolution system resp., use essentially the contrapositive form of the abstract consistency property. The
abstract derivability property permits a more direct approach to proving such completeness results.
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2.2: Abstract Derivability Property

2.2.12. Lemma. Let Λ be an abstract derivability property. Define Γ to be the property of finite sets of

formulaso, S, such that Γ(S) := ∼Λ(∼S). Γ is an abstract consistency property.

Proof. Let S be a finite set of formulaso, and let A and B be any formulaso. Below, we prove the

contrapositive form of each of the abstract consistency property conditions.

(1) Assume that there is an atom A such that A ∈ S and ∼A ∈ S. By ADP1, Λ(∼S ∪ {A,∼A}), and

by ADP3, Λ(∼S ∪ {∼A,∼∼A}). But ∼A ∈ ∼S and ∼∼A ∈ ∼S. Hence, Λ(∼S). But this is the

same as ∼Γ(S).

(2) Assume ∼Γ(S ∪ {ρA}). Then Λ(∼S ∪ {∼ρA}) and Λ(∼S ∪ {ρ∼A}). By ADP2, we then have

Λ(∼S ∪ {∼A}) and ∼Γ(S ∪ {A}).

(3) Assume ∼Γ(S ∪ {A}). Then Λ(∼S ∪ {∼A}) and by ADP3, Λ(∼S ∪ {∼∼∼A}). Hence, ∼Γ(S ∪
{∼∼A}).

(4) Assume ∼Γ(S ∪{A}) and ∼Γ(S ∪{B}). Hence, Λ(∼S ∪{∼A}) and Λ(∼S ∪{∼B}), and by ADP4,

Λ(∼S ∪ {∼.A ∨ ∼B}). Using the definition of Λ, we have ∼Γ(S ∪ {A ∨B}).

(5) Assume ∼Γ(S ∪ {∼A,∼B}). Then Λ(∼S ∪ {∼∼A,∼∼B}) and Λ(∼S ∪ {A, B}), by ADP3. By

ADP5, we have Λ(∼S ∪{A∨B}) and by ADP3, Λ(∼S ∪{∼∼.A∨B}) which is ∼Γ(S ∪{∼.A∨B}).

(6) Assume that there is a formulaα B such that ∼Γ(S ∪{ΠA,AB}). Then Λ(∼S ∪{∼ΠA,∼AB}) and

by ADP6, Λ(∼S ∪ {∼ΠA}), which is ∼Γ(S ∪ {ΠA}).

(7) Assume that for some parameterα or variableα, c, which does not occur free in A or in any formula

in S, ∼Γ(S ∪ {∼Ac}), where A is a formulaoα. Then Λ(∼S ∪ {∼∼Ac}). By ADP3, Λ(∼S ∪ {Ac}).
By ADP7, Λ(∼S ∪ {ΠA}) or Λ(∼S ∪ {∼∼ΠA}) and finally, ∼Γ(S ∪ {∼ΠA}). Q.E.D.

2.2.13. Relative Completeness Theorem for Abstract Derivability Properties. Let Λ be an

abstract derivability property. Whenever S is a finite set of formulaso such that T̀ ∨ S, then Λ(S).

The reason (and need) for using the term relative completeness instead of completeness is explained at

the end of Section 2.3.

Proof. Define Γ(S) to be ∼Λ(∼S). By Lemma 2.12, we know that Γ is an abstract consistency property.

Now assume that ∼Λ(S) for a finite set S of formulaso. Then ∼Λ(∼∼S) by ADP3. Then Γ(∼S), and by

Theorem 2.10, ∼S is consistent, i.e. it is not true that T̀ ∨ ∼∼S or T̀ ∨ S. Q.E.D.

The definition of abstract derivability is not actually dual to abstract consistency, mainly since abstract

derivability permits stronger manipulation of double negations. With a dual and, hence weaker form of

abstract derivability, this theorem would only offer the final conclusion that T̀ A implies Λ({∼∼A}). Since

most useful abstract derivability properties treat double negations in the stronger sense, we have constructed

our definition accordingly.
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Section 2.3: Expansion Tree Proofs

We shall now define our generalization of compound Herbrand expansions, by defining expansion trees and
ET-proofs. All references to trees will actually refer to finite, ordered trees in which the nodes and arcs may
or may not be labeled, and where labels, if present, are formulas. In particular, nodes may be labeled with
the formulas which are just the logical connectives ∼ and ∨. We shall picture our trees with their roots at
the top and their leaves (terminal nodes) at the bottom. In this setting, we say that one-node dominates
another node if it they are on a common branch and the first node is higher in the tree than the second.
This dominance relation shall be considered reflexive. All nodes except the root node will have in-arcs while
all nodes except the leaves will have out-arcs. A node labeled with ∼ will always have one out-arc, while a
node labeled with ∨ will always have two out-arcs. We shall also say that an arc dominates a node if the
node which terminates the arc dominates the given node. In particular, an arc dominates the node in which
it terminates.

2.3.14. Definition. Formulaso of T can be considered as trees in which the nonterminal nodes are labeled
with ∼ or ∨, and the terminal nodes are labeled with b-atoms. Given a formulao, A, we shall refer to this
tree as the tree representation of A.

2.3.15. Example. Below is the tree representation of ∼[ΠB ∨Ax] ∨ ∼∼Π[λx.Ax ∨Bx].

Figure 2.1:

We shall adopt the following linear fashion of representing trees. If the root of the tree Q is labeled
with ∼ we write Q = ∼Q′, where Q′ is the subtree dominated by Q’s root. Likewise, if the root of Q has
label ∨, with left subtree Q′ and right subtree Q′′, then we write Q = Q′ ∨Q′′. The expression Q′ ∧Q′′ is
an abbreviation for the tree ∼[∼Q′ ∨ ∼Q′′].

2.3.16. Definition. Let Q be a tree, and let N be a node in Q. We say that N occurs positively (negatively)
if the path from the root of Q to N contains an even (odd) number of nodes labeled with ∼. In particular,
the root of Q occurs positively in Q. If a node N in Q is labeled with a formula of the form ΠB, then we
say that N is universal (existential) if it occurs positively (negatively) in Q. A universal (existential) node
which is not dominated by any other universal or existential node is called a top-level universal (existential)
node. A labeled arc is a top-level labeled arc if it is not dominated by any other labeled arc.

2.3.17. Definition. Let Q, Q′ be two trees. Let N be a node in Q and let l be a label. We shall denote by
Q +l

N Q′ the tree which results from adding to N an arc, labeled l, which joins N to the root of the tree Q′.
This new arc on N comes after the other arcs from N (if there are any). In the case that the tree Q is a
one-node tree, N must be the root of Q. In this case, we write A +l Q′ instead of Q +l

N Q′, where A is the
formula which labels N .
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Figure 2.2: Figure showing the three trees Q, Q′, and Q +c
N Q′.

2.3.18. Example. Below we have three trees, Q, Q′ and Q +c
N Q′, where N is a node of Q and c is some

label. The nodes and labels of Q may or may not have their own labels.

2.3.19. Definition. Let Q be a tree with a terminal node N labeled with the formula ΠB, for some formulaoα

B. If N is existential, then an expansion of Q at N with respect to the list of formulasα, 〈t1, . . . , tn〉, is the
tree Q +t1

N Q1 +t2
N · · ·+tn

N Qn (associating to the left), where for 1liln, Qi is the tree representation for some
λ-normal form of Bti. If N is universal, then a selection of Q at N with respect to the variableα y, is the
tree Q +y

N Q′, where Q′ is the tree representation of some λ-normal form of By, and y does not label an
out-arc of any universal node in Q.

The set of all expansion trees is the smallest set of trees which contains the tree representations of all
λ-normal formulaso and which is closed under expansions and selections.

2.3.20. Definition. Let Q be an expansion tree for A. A derivation list for Q is a list 〈Q1, . . . , Qn〉, n ≥ 1,
such that Q1 is the tree representation of some λ-normal form of A, Qn = Q, and for i = 1, . . . , n− 1, Qi+1

is either an expansion or selection of Qi. Notice that all the trees in this list are expansion trees, and that a
tree is an expansion tree if and only if it has a derivation list.

2.3.21. Definition. Assume that Q is an expansion tree. Let SQ be the set of all selected variables of Q, i.e.
SQ is the set of all variables which label the out-arcs from (nonterminal) universal nodes in Q. A node N of
Q is said to be selected by y ∈ SQ if N is a universal node of Q and y labels the (unique) out-arc of N . Let
ΘQ be the set of occurrences of expansion terms in Q, i.e. ΘQ is the set of all formulas which label out-arcs
of (nonterminal) existential nodes of Q. A node N in Q is said to be result of an expansion by t ∈ ΘQ if the
in-arc of N is labeled with this occurrence of t. Alternatively, we could think of ΘQ as a set of arcs instead
of occurrences of expansion term occurrences. All labeled arcs of the expansion tree Q are represented by
a member in either SQ or ΘQ. Notice that the same node can be selected on and also be the result of an
expansion.

The expansion trees we are considering in this section will not use skolem functions as is generally the
case with Herbrand instances. It turns out that the way skolem terms imbed themselves in other skolem
terms actually places a restriction on the selected variables which are used to stand in the place of skolem
terms. In order to do without skolem functions, we need to place a restriction on the selected variables of
an expansion tree. There are two equivalent such restrictions, each requiring that a certain relation, one
defined on SQ and the other on ΘQ, be acyclic.

2.3.22. Definition. Let Q be an expansion tree. Let ≺0
Q be the binary relation on SQ such that z ≺0

Q y if
there exists a t ∈ ΘQ such that z is free in t and a node dominated by (the arc labeled with) t is selected
by y. ≺Q, the transitive closure of ≺0

Q, is called the imbedding relation and plays an important part in the
analysis of skolemization in the next chapter.
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2.3.23. Definition. Let Q be an expansion tree. Let <0
Q be the binary relation on ΘQ such that t <0

Q s if
there exists a variable which is selected for a node dominated by t and which is free in s. <Q, the transitive
closure of <0

Q, is called the dependency relation for Q and plays an important part in the soundness proof
in the next section.

2.3.24. Proposition. <Q is acyclic if and only if ≺Q is acyclic.

Proof. Let <Q be cyclic. That is, assume that there are expansion term occurrences t1, . . . , tm ∈ ΘQ such
that t1 <0

Q . . . <0
Q tm <0

Q tm+1 = t1 for m ≥ 1 (see figure below). Let yi, for i = 1, . . . ,m, be chosen from
SQ so that yi is selected for a node dominated by ti and yi is free in ti+1. If we identify ym+1 with y1, then
we have yi ≺0

Q yi+1, for i = 1, . . . , m, since yi+1 is selected for a node dominated by ti+1 and yi is free in
the formula ti+1. Hence, y1 ≺0

Q . . . ≺0
Q ym ≺0

Q y1, and ≺Q is cyclic.

Figure 2.3: Figure showing the relationship among various nodes and arcs within Q.

The proof in the other direction is very similar and is omitted. Q.E.D.

An expansion tree represents two formulas in its structure. The formula Fm(Q), defined below, is the
“deep” representation of the expansion tree Q since it is composed of the b-atoms which are the leaves of Q.
The formula Sh(Q) is the “shallow” representation of Q since it is composed of b-atoms which label nodes
in Q that are not dominated by any other existential or universal node.

2.3.25. Definition. Let Q be a tree such that either Q or ∼Q is an expansion tree. We define Fm(Q) by
induction on the structure of Q.

(1) If Q is a one-node tree, then Fm(Q) := A, where A is the formula which labels that one-node.

(2) If Q = ∼Q′ then Fm(Q) := ∼Fm(Q′).

(3) If Q = Q′ ∨Q′′ then Fm(Q) := Fm(Q′) ∨ Fm(Q′′).

(4) If Q = ΠB +l1 Q1 + . . . +ln Qn then Fm(Q) := Fm(Q1) ∧ . . . ∧ Fm(Qn).

Notice, that if A is a formulao, and Q is the tree representation of A, then Fm(Q) = A.

2.3.26. Definition. Let Q be a tree such that either Q or ∼Q is an expansion tree. We define Sh(Q) by
induction on the top-level boolean structure of Q.

(1) If Q is a one-node tree, whose sole node is labeled with the formulao A, then Sh(Q) := A.

(2) If Q = ∼Q′ then Sh(Q) := ∼Sh(Q′).

(3) If Q = Q′ ∨Q′′ then Sh(Q) := Sh(Q′) ∨ Sh(Q′′).

(4) If Q = ΠB +l1 Q1 + . . . +ln Qn then Sh(Q) := ΠB.

2.3.27. Definition. Let Q be a tree, x a variableα, and t a formulaα. We define .S
x
t Q to be the tree which

results from replacing all free occurrences of x with t in all formulas which label nodes and arcs, and then
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placing all formula labels in λ-normal form. If a leaf is left which is labeled with a formulao which is a top-
level ∼ or ∨, then the node is replaced with the tree representation of this label. We assume that changes
in bound variables are made in some systematic fashion to avoid variable capture.

A variable is new to Q if it is not free in any formula which is a label in Q.

2.3.28. Definition. An expansion tree Q is an expansion tree for A if Sh(Q) is a λ-normal form of A and no
variable in SQ is free in A. An ET-proof for a formulao, A, is an expansion tree Q for A such that Fm(Q)
is tautologous and <Q is acyclic.

2.3.29. Example. Let A be the theorem ∃y ∀x .Px⊃Py. An ET-proof for A would then be the tree Q given
as:

∼[[Πλy.∼Πλx.∼Px ∨ Py]+u∼[[Πλx.∼Px ∨ Pu] +v [∼Pv ∨ Pu]]
+v∼[[Πλx.∼Px ∨ Pv] +w [∼Pw ∨ Pv]]].

Here,

Fm(Q) = ∼[∼[∼Pv ∨ Pu] ∧ ∼[∼Pw ∨ Pv]],
ΘQ = {u, v}, and
SQ = {v, w} .

The dependency relation is given by the pair u <Q v, while the imbedding relation is given by the pair
v ≺Q w. Notice, that if we had used u instead of w, <Q and ≺Q would have been cyclic.

2.3.30. Definition. An expansion tree is grounded if none of its terminal nodes are labeled with formulas of
the form ΠB. An ET-proof is a grounded ET-proof if it is also a grounded expansion tree.

2.3.31. Proposition. Let Q be an expansion tree, x ∈ SQ, and let y be new to Q.

(1) Q′ := .S
x
y
Q is an expansion tree.

(2) If <Q is acyclic, so is <Q′ .

(3) Fm(Q′) = [ .S
x
y
Fm(Q)].

(4) If Q is an expansion tree for A, and y is not free in A, then Q′ is an expansion tree for A.

(5) If Q is an ET-proof for A, and y is not free in A, then Q′ is an ET-proof for A.

Proof. We first verify (1). Let 〈Q1, . . . , Qn〉 be a derivation list for Q. We will show that 〈 .Sx
yQ1, . . . , .S

x
yQn〉

is a derivation list for .S
x
y
Q. Clearly, since Q1 is a tree representation of A, .S

x
y
Q1 is a tree representation of

.S
x
yA. We now proceed by induction on i, for i = 1, . . . , n− 1. Assume that .S

x
yQi is an expansion tree. We

consider two cases:

(a) Qi+1 is a selection on Qi, i.e. Qi+1 = Qi +z
N Q′ for some terminal, universal node N of Qi

labeled with a formula ΠB for some formulaoα, B, and for some variableα, z, and where Q′ is
the tree representation of some λ-normal form of Bz. Let z′ := .S

x
yz. z′ is either z or y. Clearly,

.S
x
yQi+1 = [ .S

x
yQi]+z′

N ′ [ .S
x
yQ′], where N ′ in .S

x
yQi corresponds to N in Qi. Now, N ′ in .S

x
yQi is labeled

with Π[ .S
x
y
B] while .S

x
y
Q′ is the tree representation of some λ-normal form of [ .S

x
y
B]z′ = .S

x
y
[Bz].

Hence, since .S
x
y
Qi+1 is a selection on .S

x
y
Qi, and since the latter tree is an expansion tree, .S

x
y
Qi+1

is too.

(b) Qi+1 is an expansion of Qi, i.e. Qi+1 = Qi +t1
N P1 + . . . +tm

N Pm where N is a terminal, existential
node of of Qi labeled with ΠB for some formulaoα, B, and for j = 1, . . . ,m, tj is a formulaα and Pj is

10



2.4: Soundness for ET-Proofs

the tree representation of some λ-normal form of Btj . Now, .S
x
y
Qi+1 = .S

x
y
Qi+

t′1
N .S

x
y
P1 . . . +t′m

N .S
x
y
Pm,

where t′j := .S
x
ytj for j = 1, . . . ,m. Once again, .S

x
yPj is a tree representation for some λ-normal

form of [ .S
x
yB]t′j = .S

x
y [Btj ]. Hence, .S

x
yQi+1 is an expansion of .S

x
yQi and is, therefore, an expansion

tree itself.

To verify (2), assume that t′ <0
Q′ s′, for two expansion term occurrences t′, s′ ∈ ΘQ′ . Let t, s ∈ ΘQ be

the corresponding expansion term occurrences in Q. Hence, there is a variable z ∈ SQ′ such that the node,
say H ′ of Q′ which is selected by z is dominated by t′, and z is free in s′. If z 6= y, then t <0

Q s. If z = y

then since y is new to Q, H (corresponding to H ′) is selected by x and x is free in t. Again, t <0
Q s. Thus,

if <Q′ contained a cyclic, then so would <Q.

(3) and (4) follow trivially. (5) follows immediately from all the preceding cases. Q.E.D.

2.3.32. Corollary. Let B be a finite set of variables. If A has an ET-proof, then it has an ET-proof in

which no selected variable is a member of B.

Proof. Let Q be an ET-proof for A. We proceed by induction of the cardinality of the set B ∩ SQ. If this
set is empty, we are finished. Otherwise, pick x ∈ B ∩ SQ and let y /∈ B be a variable which is not free in
A and which is new to Q. By Proposition 2.31 (5), Q′ := .S

x
yQ is an ET-proof for A. Since, x /∈ SQ′ and

SQ′ ⊂ SQ, the inductive hypothesis finishes our proof. Q.E.D.

2.3.33. Proposition. If Q is an expansion tree for A and if A′ is a positively occurring boolean subformula

in A, then the corresponding subtree Q′ in Q is an expansion tree for A′.

Proof. Let 〈Q1, . . . , Qm〉, be a derivation sequence for Q, and let Q′i, for 1lilm, be the subtree of Qi whose
relative position in Qi corresponds to the position of A′ in A. The sequence Q′1, . . . , Q′

m is such that Q′
1 is

the tree representation of some λ-normal form of A′, and either Q′
i+1 is equal to Q′i or it comes from Q′

i by
an expansion or a selection. Hence, Q′ = Q′

m is an expansion tree for A′. Q.E.D.

We now must justify calling certain expansion trees proofs, i.e. we must show that a formula of T is a
theorem if and only if that formula has an ET-proof. Since T is nonextensional (see Section 5.2), Henkin-style
frame semantics (see [Henkin50]) will not be strong enough to formulate an adequate definition of validity
since Henkin-sytle models are always extensional (see [Andrews72b]). Thus we are not able to prove the
strong forms of completeness, i.e. that if a sentence is valid it has an ET-proof. Hence, we shall prove the
weaker form of this metatheorem relative to provability in T . In the next section we shall prove soundness
of ET-proofs, and in the last section, their relative completeness.

Section 2.4: Soundness for ET-Proofs

In this section we shall show that if a formulao A has an ET-proof then T̀ A. In order to motivate the few
definitions and lemmas which we will need to prove this result, we briefly outline the soundness proof which
concludes this section.

Given an ET-proof Q for a formulao we shall construct a sequence of expansion trees Q = Q1, . . . , Qm

by eliminating “top-level” expansion terms or selected variables, so that the last tree Qm contains no labeled
arcs. The process of eliminating a labeled arc from Qi to get Qi+1 is essentially a substitution of a formula into
Sh(Qi) to get Sh(Qi+1). Looked at in reverse, Sh(Qi) will be either a universal or existential generalization
of Sh(Qi+1). In order to actually insure that this is the case we must be careful when eliminating arcs
from existential nodes. The terms introduced in this fashion cannot introduce into the shallow formula any
variables which are still selected in the expansion tree (trees satisfying this property are said to be sound).
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These terms are called admissible. It is the acyclic nature of <Q which guarantees that we can require that
expansion terms be eliminated only when they are admissible and that we can still manage to eliminate all
labeled arcs. Finally, since Fm(Qm) = Sh(Qm) and this formula is tautologous, T̀ Sh(Qm). By application
of universal and existential generalization, T̀ Sh(Q1). But A conv-I -II Sh(Q1), so T̀ A by λ-conversion.

2.4.34. Definition. A node N in an expansion tree Q is instantiated if it is a nonterminal, universal or
existential node. A term t is admissible in Q if no variable free in t is contained in SQ. Q is sound if
no variable in SQ is free in Sh(Q). We can eliminate a top-level labeled arc, i.e. a selected variable or an
expansion term, in one of the following ways:

(1) If N is a top-level, instantiated, universal node, then it is the root of a subtree of Q of the form
ΠB +y Q′, where B is a formulaoα and y is a selected variableα. The tree which results by replacing
this subtree by Q′ is called the result of eliminating y from Q. In the resulting tree, y is no longer
a selected variable.

(2) If N is a top-level, instantiated, existential node, then it is the root of a subtree Q0 := ΠB +t1 Q1 +
. . . +tn Qn where n ≥ 1, B is a formulaoα and t1, . . . , tn are expansion termsα of Q. If n = 1 and
t1 is admissible in Q, then let Q′ be the result of replacing Q0 with Q1. If n > 1 and for some i,
1liln, ti is admissible in Q, then let Q′ be the result of replacing Q0 with the tree

[ΠB +t1 Q1 + . . . +ti−1 Qi−1 +ti+1 Qi+1 + . . . +tn Qn] ∧Qi.

If in the first case, we set i := 1, then in either case, Q′ is called the result of eliminating ti from Q.
Notice, that ti does not correspond to an occurrence of an expansion term in the resulting tree.

Sound expansion trees are those trees which are expansion trees for some formula. In particular, if Q is
a sound expansion tree, then Q is an expansion tree for Sh(Q).

2.4.35. Lemma. If Q′ is the result of eliminating a labeled arc from the expansion tree Q then

(1) Q′ has fewer labeled arcs than Q,

(2) if <Q is acyclic, then so is <Q′ ,

(3) Fm(Q′) is truth-functionally equivalent to Fm(Q),

(4) if Q is sound then so is Q′, and

(5) if Q is sound and T̀ Sh(Q′) then T̀ Sh(Q).

Proof. Part (1) is immediate. Notice that an expansion tree has an instantiated node if and only if it has
a labeled arc.

Since only top-level expansion terms can be eliminated, it is easy to verify that there is a natural
imbedding of <Q′ into <Q. Hence, <Q′ is acyclic and we have part (2).

Since Fm(ΠB +y Q′) = Fm(Q′) and

Fm(ΠB +t1 Q1 + . . . +tn Qn)= Fm(Q1) ∧ . . . ∧ Fm(Qn)
≡ Fm([ΠB +t1 Q1 + . . . +ti−1 Qi−1

+ti+1Qi+1 + . . . +tn Qn] ∧Qi)

we obtain (3) by substitutivity of equivalence.

If Q is sound and Q′ arises by eliminating a selected variable y ∈ S, then Q′ must also be sound, since
the selected variable y, which may now be free in Sh(Q′), is not selected in Q′, since otherwise y would be
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selected twice in Q. Let Q be sound and let Q′ arise by eliminating an expansion term t ∈ ΘQ from Q. Here,
t is admissible in Q. Sh(Q′) can be formed by replacing the existential b-atom ΠB with a λ-normal form
of either ΠB ∧ Bt or of Bt. Assume that Q′ is not sound. Then there must be some z ∈ SQ′ = SQ which
is free in Sh(Q′). Hence, z is either free in Sh(Q) or in Bt. Since Q is sound and z ∈ SQ, z is not free in
Sh(Q) or in B. Hence, z must be free in t. But this contradicts the fact that t was admissible in Q. Hence,
Q′ is sound, and we have part (4).

Let Q be sound. By (4), Q′ is sound. Also assume that T̀ Sh(Q′). Now assume that Q′ is the result of
eliminating the top-level, selected variable y ∈ SQ. By universal generalization, T̀ ∀y Sh(Q′). Since Q is
sound and since Sh(Q′) can be formed by replacing the universal b-atom ΠB in Sh(Q) with some λ-normal
form of By, if y is free in Sh(Q′), then it is free only within this boolean subformula occurrence. Hence, by
using the substitutivity of implication in the positive form with the implications

T̀ ∀y [R ∨ Sy]⊃ .R ∨ ∀y Sy and T̀ [∀y ∼Sy]⊃ .∼∃y Sy

and substitutivity of implication in the negative form with the implications

T̀ [R ∨ ∃y Sy]⊃ .∃y [R ∨ Sy] and T̀ [∼∀y Sy]⊃ .∃y ∼Sy

we can push the quantifier on ∀y Sh(Q′) in until we obtain Sh(Q), by a sequence of implications. Hence,

T̀ ∀y Sh(Q′)⊃Sh(Q) and by modus ponens, we finally obtain T̀ Sh(Q).

Now assume that Q′ is the result of elimination a top-level expansion term t ∈ ΘQ. Sh(Q′) can be
formed by replacing an existential b-atom of the form ΠB with some λ-normal form of Bt or ΠB∧Bt. Since

T̀ ΠB⊃Bt and T̀ ΠB⊃ .ΠB ∧Bt

we have T̀ Sh(Q′)⊃Sh(Q) by using the negative form of the substitutivity of implication. By modus
ponens, we then have T̀ Sh(Q). This concludes the proof of (5). Q.E.D.

2.4.36. Lemma. If the expansion tree Q has a labeled arc and <Q is acyclic, then some top-level labeled

arc can be eliminated.

Proof. If Q has a top-level selected variable, then this arc can be eliminated. Assume that Q has no
top-level instantiated universal nodes. Let t1, . . . , tm be the list of all the top-level expansion terms of Q.
Assume that none of these expansion terms can be eliminated since they are all inadmissible in Q. Let i be
an arbitrary integer such that 1lilm. Since ti is inadmissible in Q, then there is a variable y ∈ SQ such that
y is free in ti. Since Q has no top-level selected variables, y must label an arc which is dominated by tj for
some j such that 1ljlm. Hence, tj <0

Q ti. Since ti was chosen arbitrarily from the list t1, . . . , tm, each of
these term occurrences has an <0

Q-descendant in this list. But this is possible only if <Q has a cycle, which
is a contradiction. Hence, we must be able to eliminate one of the expansion terms t1, . . . , tm. Q.E.D.

2.4.37. Soundness Theorem for ET-Proofs. If the formula A has an ET-proof, then T̀ A.

Notice that since T is sound, if T̀ A, then A is satisfied by all Henkin-style models of T .

Proof. Let Q be an ET-proof for A. We can now construct a list of expansion trees, Q1, . . . , Qm, such
that Q1 := Q, and for 1li < m, Qi+1 is the result of eliminating a top-level, labeled arc from Qi. Since
<Q1 is acyclic, by Lemma 2.35 (2) and Lemma 2.36, we know that such a construction is possible. Lemma
2.35 (1) guarantees that this construction can be made to terminate so that Qm has no labeled arcs. Since
Q = Q1 is an expansion tree for A, Q1 is sound. By Lemma 2.35 (4), all the trees Qi are sound, for i such
that 1lilm. By Lemma 2.35 (3), we know that Fm(Qm), being truth-functionally equivalent to Fm(Q1), is
tautologous. Since Qm contains no labeled arcs, Sh(Qm) = Fm(Qm) and Sh(Qm) is tautologous. Hence

T̀ Sh(Qm), and by Lemma 2.35 (5), T̀ Sh(Q1). Now, Q1 is an expansion tree for A, Sh(Q) conv-I -II A,
and T̀ A by λ-convertibility. Q.E.D.
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Section 2.5: Relative Completeness for ET-Proofs

Before we jump into the completeness proof for ET-proofs, we prove the following useful lemma.

2.5.38. Lemma. Let A be a formulao which has a boolean level, universal subformula occurrence, ΠB, for

some formulaoα B. Let y be some variableα which is not free in A and let A′ be the result of replacing ΠB

with By. A′ has a grounded ET-proof if and only if A has a grounded ET-proof.

Proof. Let Q′ be a grounded ET-proof for A′. By Proposition 2.32, we may assume that y /∈ SQ′ . Then
by Proposition 2.33, Q′ has a subtree, Q′′, which is an expansion tree for By. Let Q be the result of replacing
Q′′ in Q′ with ΠC +y Q′′, where C is a λ-normal form of B. Clearly, Q is a grounded expansion tree for A.
Since <Q and <Q′ are isomorphic, and Fm(Q) = Fm(Q′), Q is a grounded ET-proof of A.

Let Q be a grounded ET-proof for A. Again, we can assume that y /∈ SQ. By Proposition 2.33 and the
fact that Q is grounded, Q has a subtree of the form ΠC +z Q′′, where C is a λ-normal form of B, which
is an expansion tree for ΠB. Then, let Q′′′ := .S

z
y
Q, which has a subtree ΠC +y [ .S

z
y
Q′′], which is also an

expansion tree for ΠB. Let Q′ be the result of replacing this last subtree in Q′′′ with .S
z
y
Q′′. Q′ is a grounded

expansion tree for A′. Since <Q and <Q′ are isomorphic,<Q′ is acyclic. Now Fm(Q′) = [ .S
z
yFm(Q)], and

Fm(Q′) is tautologous. In other words, Q′ is a grounded ET-proof of A′. Q.E.D.

The following lemma, along with Theorem 2.13, is required to prove the relative completeness result
(Theorem 2.42). Its proof is the most involved one presented to this point.

2.5.39. Theorem. Let Λ(S) be the property about finite sets of formulaso which asserts that ∨S has a

grounded ET-proof. Λ is an abstract derivability property.

Proof. First, we must show that Λ(S) is well-defined, i.e. is not dependent on the order in which the
disjunction ∨S is formed. This is immediate since, if some disjunction of S has an ET-proof, Q, then any
rearrangement of that disjunction has an ET-proof which is the corresponding rearrangement of Q.

In the lines below, let S := ∨S, where the disjunction is taken in any order. If S is empty, we take S to
be the empty disjunction, and we identify S ∨A with A.

Proof of ADP1. Let S be a finite set of formulas such that there is an atomic A with A ∈ S and ∼A ∈ S.
Let S ′ be the result of removing A and ∼A from S. Let S′ := ∨S ′. Since the simple tree representation of
S′∨ [A∨∼A] is an ET-proof of S, we only need to produce a grounded version of this tree. To do this, simply
expand or select on any existential or universal terminal node of this tree with a variable which is new to
the current tree. Since the number of Π’s within the tree’s Fm value is reduced by one in each such step,
we will eventually get a grounded expansion tree Q. Here the dependency relation is empty and, therefore,
acyclic, and Fm(Q) contains A ∨ ∼A as a disjunct and is therefore tautologous. Hence, Q is a grounded
ET-proof.

Proof of ADP2. Let Q be an ET-proof for S ∨ ρA. Since S ∨ ρA may have more free variables than S ∨ A,
some of which may have been selected in Q, Q may not be an expansion tree for S∨A. By Proposition 2.32,
we know that S ∨A has a grounded ET-proof Q′ such that no member of SQ′ is free in S ∨A. Q′ is then a
expansion tree for S ∨A.

Proof of ADP3. We shall prove a stronger form of ADP3 for this particular Λ. Let Q be an ET-proof for S∨A

and let C be the result of replacing a subformula B (∼∼B) of A which is in the scope of only occurrences of
∨ and ∼ with ∼∼B (B). Let Q′ be the result of replacing the corresponding subtree Q0 (∼∼Q0) with the
subtree ∼∼Q0 (Q0). Q′ is a grounded ET-proof for S ∨ C. Obviously, ADP3 follows immediately.

The proof of ADP4 is postpone until later.
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Proof of ADP5. This follows immediately from the discussion above concerning the well-definedness of Λ(S).

Proof of ADP6. Let Q be a grounded ET-proof for S ∨ [∼ΠA ∨ ∼AB]. Q then decomposes into subtrees
Q0, . . . , Qm+1 with m ≥ 1, such that

Q = Q0 ∨ [∼[ΠA′ +t1 Q1 + . . . +tm Qm] ∨ ∼Qm+1]

where A′ is a λ-normal form of A, Q0 is an expansion tree for S and ∼Qm+1 is an expansion tree for ∼AB.
Now let Q′ be the tree

Q0 ∨ ∼[ΠA′ +t1 Q1 + . . . +tm Qm +B Qm+1].

Q′ is a grounded expansion tree for S ∨ ∼ΠA. We now verify that it is in fact a grounded ET-proof of
S ∨ ∼ΠA.

Notice that

Fm(Q) = Fm(Q0) ∨ ∼[Fm(Q1) ∧ . . . ∧ Fm(Qm)] ∨ ∼Fm(Qm+1) and
Fm(Q′) = Fm(Q0) ∨ ∼[Fm(Q1) ∧ . . . ∧ Fm(Qm+1)].

Since these are truth-functionally equivalent and since Fm(Q) is tautologous, so too is Fm(Q′).

Let <Q and <Q′ be the dependency relations for the trees Q and Q′, resp. Assume that <Q′ has a cycle.
Then there are expansion term occurrences {t1, . . . , tp} ⊂ ΘQ′ with p > 1 such that t1 <0

Q′ t2 <0
Q′ . . . <0

Q′ tp
and t1 = tp. Then B = tj for some j, 1 < jlp, since otherwise, this <Q′-cycle would correspond to a <Q-
cycle. Since tj−1 <0

Q′ B, we know that there is a variable y, selected in Q′ which is free in B. However, that
would mean that y is selected in Q, while y is free in S ∨ [∼ΠA∨∼AB]. But this contradicts the fact that Q

is an expansion tree for S ∨ [ΠA∨∼AB]. Hence, <Q′ is acyclic, and Q′ is a grounded ET-proof of S ∨∼ΠA.

Proof of ADP7. Follows immediately from Lemma 2.38.

Proof of ADP4. First notice that whenever an abstract derivability property satisfies the strong form of
ADP3 which was proved above, the condition ADP4 is equivalent to the following condition: If Λ(S ∪ {A})
and Λ(S ∪ {B}), then Λ(S ∪ {A ∧B}). For convenience, we shall prove this latter condition here.

Next, we provide an algorithm and a lemma.

2.5.40. Merge Algorithm. Let S be a λ-normal formulao which has no universal boolean subformula. We
define Merge(Q1, Q2) when Q1 and Q2 are grounded expansion trees for S or when ∼Q1 and ∼Q2 are
grounded expansion trees for S. Here S would have the form ∼S′. In either case, the selected variables in
the two expansion trees must be disjoint.

(1) If Q1 is a one-node tree, then so is Q2. Set Merge(Q1, Q2) := Q1.

(2) If Q1 = ∼Q′1 then Q2 = ∼Q′
2. Set Merge(Q1, Q2) := ∼Merge(Q′

1, Q
′
2).

(3) If Q1 = Q′1 ∨Q′′1 then Q2 = Q′
2 ∨Q′′2 . Set

Merge(Q1, Q2) := Merge(Q′
1, Q

′
2) ∨Merge(Q′′

1 , Q′′
2).

(4) If Q1 = ΠB1 +t1 Q1
1 + . . . +tn Qn

1 then Q2 = ΠB2 +s1 Q1
2 + . . . +sm Qm

2 , where B1, B2 are formulaso,
B1 conv-I B2, t1, . . . , tn, s1, . . . , sm are formulasα, and n,m ≥ 1. Set

Merge(Q1, Q2) := ΠB1 +t1 Q1
1 + . . . +tn Qn

1 +s1 Q1
2 + . . . +sm Qm

2 .

Since we do not have top-level universal nodes, we need to only consider this one case.

Notice, that if Q1 and Q2 are expansion trees for S, then so is Merge(Q1, Q2). If ∼Q1 and ∼Q2 are
expansion trees for S then so is ∼Merge(Q1, Q2).
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2.5.41. Lemma. Let S be a λ-normal formulao which has no universal boolean subformulas. If Q1 and Q2

are grounded expansion trees for S which share no selected variables in common and Q := Merge(Q1, Q2)
then

[Fm(Q1) ∨ Fm(Q2)]⊃Fm(Q) is tautologous. (*)

If ∼Q1 and ∼Q2 are grounded expansion trees for S which share no selected variables in common and

Q := Merge(Q1, Q2) then

Fm(Q)⊃ .Fm(Q1) ∧ Fm(Q2) is tautologous. (**)

Proof. The proof is by induction on the boolean structure of Q1 and, therefore, also on the boolean
structure of S.

(1) If Q1 is the one-node tree, so too is Q2 and Fm(Q1) conv-I Fm(Q2). In either case (∗) or (∗∗),
the implication is tautologous.

(2) Assume that Q1 and Q2 are expansion trees for S. If Q1 = ∼Q′
1 then Q2 = ∼Q′2. Setting

Q′ := Merge(Q′
1, Q

′
2) it is seen that the following three formulas are tautologous.

Fm(Q′)⊃ .Fm(Q′1) ∧ Fm(Q′2) by the inductive hypothesis
[∼Fm(Q′1) ∨ ∼Fm(Q′

2)]⊃∼Fm(Q′) by the contrapositive rule
[Fm(∼Q′1) ∨ Fm(∼Q′

2)]⊃Fm(∼Q′) by the definition of Fm

and, finally, we have (∗) where Q = ∼Q′. We prove (∗∗) in a very similar fashion.

(3) Assume that Q1 and Q2 are expansion trees for S. If Q1 = Q′1 ∨ Q′′
1 then Q2 = Q′

2 ∨ Q′′2 . Set
Q′ := Merge(Q′

1, Q
′
2) and Q′′ := Merge(Q′′1 , Q′′2). By the inductive hypothesis, both of the following

formulas are tautologous.

[Fm(Q′1) ∨ Fm(Q′2)]⊃Fm(Q′)
[Fm(Q′′1) ∨ Fm(Q′′

2)]⊃Fm(Q′′)

The conjunction of both these formulas truth-functionally implies (∗). The other case is proved
similarly.

(4) Otherwise, Q1 = ΠB1 +t1 Q1
1 + . . . +tn Qn

1 and Q2 = ΠB2 +s1 Q1
2 + . . . +sm Qm

2 , where B1, B2 are
formulasoα, B1 conv-I B2, t1, . . . , tn, s1, . . . , sm are formulasα, and n,m ≥ 1. Since

Fm(Q) = Fm(Q1
1) ∧ . . . ∧ Fm(Qn

1 ) ∧ Fm(Q1
2) ∧ . . . ∧ Fm(Qm

2 )

the formula Fm(Q)⊃ .Fm(Q1) ∧ Fm(Q2) is tautologous. Q.E.D.

Now we prove ADP4. Assume that S ∨A and S ∨B have grounded ET-proofs. Let S′ be the result of
repeatly instantiating universal boolean subformulas of S with new variables as described in Lemma 2.38.
By Lemma 2.38, both S′∨A and S′∨B have ET-proofs, so let Q1∨Q2 and Q3∨Q4 be grounded ET-proofs
for S′ ∨ A and S′ ∨ B, respectively. By use of Proposition 2.32, we may assume that Q1 ∨Q2 and Q3 ∨Q4

share no selected variables and that these selected variables have no occurrences in the other’s tree. We will
show below that S′ ∨ [A∧B] has a grounded ET-proof. By Lemma 2.38 again, we shall be able to conclude
that S ∨ [A ∧B] has a grounded ET-proof, thus finishing the proof of ADP4.
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Set Q5 := Merge(Q1, Q3). We claim that Q := Q5 ∨ [Q2 ∧Q4] is a grounded ET-proof for S′ ∨ [A ∧B].
Clearly, Q is a grounded expansion tree for S′ ∨ [A ∧ B]. Since Q1 ∨ Q2 and Q3 ∨ Q4 are ET-proofs,
Fm(Q1)∨Fm(Q2) and Fm(Q3)∨Fm(Q4) are tautologous. By Lemma 2.41, [Fm(Q1)∨Fm(Q3)]⊃Fm(Q5)
is tautologous. Hence, so too is

Fm(Q) = Fm(Q5) ∨ [Fm(Q2) ∧ Fm(Q4)].

Let <Q, <12, and <34 be the dependency relations for Q, Q1 ∨Q2, and Q3 ∨Q4, respectively. Also, let
ΘQ, Θ12, and Θ34 be defined with respect to these same trees. There is a natural correspondence between
the term occurrences in Θ12 and Θ34 with those in ΘQ. Assume that <Q has a cycle, i.e.

t1 <0
Q t2 <0

Q . . . <0
Q tm

for m > 1, ti ∈ ΘQ and tm = t1. Each ti corresponds to either a term occurrence in Θ12 or in Θ34. Let i be
an arbitrary integer, 1li < m, and assume that ti corresponds to a term occurrence in Θ12. Since ti <0

Q ti+1,
there is a variable y which is selected for some node M of Q dominated by ti such that y is free in ti+1.
Since y has an occurrence in Q1 ∨ Q2, it cannot be selected in Q3 ∨ Q4, so M must correspond to node in
Q1 ∨Q2 while tm+1 corresponds to an expansion term occurrence in the same tree. Since i was arbitrary, if
any one of the expansion term occurrences t1, . . . , tm−1 corresponds to a term occurrence in Θ12, then they
all do. The same is true with respect to the set Θ34. Hence, either <12 or <34 must have a cycle, which is
a contradiction. Thus, <Q is acyclic, and Q is indeed an ET-proof of S′ ∨ [A ∧ B]. This ends the proof of
ADP4 and of Theorem 2.39. Q.E.D.

2.5.42. Relative completeness theorem for ET-proofs. Grounded ET-proofs are relatively complete

for T , i.e. if A is a formulao such that T̀ A, then A has a grounded ET-proof.

Proof. Follows immediately from Theorems 2.39 and 2.13. Q.E.D.

As a result of our soundness and completeness results, we can now give a simple but nonconstructive
proof of the following proposition.

2.5.43. Proposition. If A has an ET-proof, then it has a grounded ET-proof.

Proof. Assume that A has an ET-proof. By the Soundness Theorem 2.37, we have T̀ A. By the
Completeness Theorem above, we then know that A has a grounded ET-proof. Q.E.D.
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CHAPTER 3

Skolemization

Section 3.1: Introduction

In the resolution system described by Andrews in [Andrews71], skolemization was done by permitting choice
functions to be used to do existential instantiations. (Remember that in a resolution system, we work with
the negation of a proposed theorem. Hence, existential instantiation corresponds to universal instantiation
in our situation.) The critical part of the resolution definition is

From M ∨ ∼Πo(oα)Aoα to infer M ∨ ∼A[kα(oα)A]

where kα(oα) is called an existential parameter, which behaves somewhat like a skolem function. There is no
restriction on how these existential parameters are used within substitution terms used in doing resolution,
so in fact, it is possible (as shown by Andrews in [Andrews73]) to prove the following instance of the Axiom
of Choice (see Section 5.3).

(ACι) ∃cι(oι) ∀poι .[∃xι px]⊃ p.cp

Here, c gets instantiated by the formula

λpoι.kι(oι).λxι.∼px.

Hence, the negation of ACι is refuted because the above existential instantiation inference rule implicitly
uses the axiom of choice. We need to restrict the occurrences of the existential (choice) parameter k within
substitution terms in order to use it correctly. Skolem functions can be ill-used in exactly the same way. In
this chapter, we shall define a variant of ET-proofs, called ST-proofs, which use skolem functions in place of
selected variables. We shall restrict the occurrences of skolem functions within substitution formulas in such
a fashion that the above formula could not appear in a proof structure, assuming that k is actually a skolem
function. It is, however, the case that the existential parameters used above are strictly stronger than the
skolem functions we shall use. For example, even if we do not restrict the occurrences of skolem functions
in substitution instances, we cannot “prove” ACι while we can “prove”

∀xι ∃yι Poιιxy⊃∃fιι ∀zι .P z.fz

which is not a theorem of T . (This can be established by methods identical to the ones used in Appendix
1.) Using the proper restriction of skolem function occurrences in ST-proofs will not enable us to “prove”
this last formula.
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Section 3.2: Skolem Expansion Trees

3.2.1. Definition. The list σ := 〈α, β1, . . . , βp〉, where α, β1, . . . , βp are type symbols (p ≥ 0), is called a

signature (for a skolem function). For each signature, σ, let Kσ be a denumerably infinite set of functions

symbols all of type (. . . (αβ1) . . . βp) which are not in the formulation of T and such that if σ1 and σ2 are

two different signatures then Kσ1 and Kσ2 are disjoint. If f ∈ Kσ, f is called a skolem functions of signature

σ with arity p. Let T ∗ be the formulation of T in which all the skolem functions are added.

Notice that two skolem functions may have the same type while they have different arities. For example,

if α is of the form α′β0, then a skolem term with signature 〈α, β1, . . . , βp〉 and one with the signature

〈α′, β0, β1, . . . , βp〉 have different arities but have the same type. Since types can generally be determined

from context while arity often cannot be, we shall frequently write skolem functions with a superscripted

non-negative integer to denote its arity, i.e. fp.

3.2.2. Definition. We shall define a set U , called the Herbrand Universe, of formulas of T ∗. (Uα will denote

the set of formulas in U of type α.) Let U be the smallest set of formulas of T ∗ such that

(1) All variables and parameters are in U . (For convenience, we shall consider skolem functions to be

different from variables or parameters.)

(2) If p ≥ 0, ti ∈ Uβi for i = 1, . . . , p, and f has signature 〈α, β1, . . . , βp〉, then ft1 . . . tp ∈ Uα.

Formulas such as ft1 . . . tp are called skolem terms and the terms t1, . . . , tp are called the necessary

arguments of f . Since such skolem terms may be of any functional type, α in this case, skolem

functions may occur in formulas with more than their arity-number of arguments.

(3) If A ∈ Uαβ and B ∈ Uβ then [AB] ∈ Uα.

(4) If A ∈ Uα and x is a variableβ which is not free in any neccessary argument of any skolem function

occurrence in A, then [λxA] ∈ Uαβ .

The important clause in this definition is (4). It will be formally justified in Section 3.4 where we define

“deskolemizing.”

Notice that if A ∈ U and fp has an occurrence in A, then that occurrence is applied to p arguments,

and if some variable has a free occurrence in one of these arguments then that occurrence is free in A.

3.2.3. Example. If f, g are skolem terms with signature 〈ι, ι〉, x, w are variablesι, and A is a variableo(oι)

then [f.gx] ∈ Uι, [λx.x] ∈ Uιι, [λw.Aw.gx] ∈ Uoι, while f /∈ U , [λx.fx] /∈ U , and [λw.A[gx].fw] /∈ U . In

particular, if we treat the existential parameter kι(oι) (in the preceding section) as a skolem function of arity

1, the substitution term [λpoι.kι(oι).λxι.∼px] is not a member of U .

Notice that U is not closed under λ-convertibility. For example, if f is a skolem function of signature

〈ι, ι〉 then a λ-expansion of [λyι.y] ∈ Uιι is [λxιιλy.y]f which is not in U . This lack of closure means that we

must be careful of our use of the Herbrand Universe. We can, however, prove the following two propositions

concerning λ-convertibility and U .

19



3.2: Skolem Expansion Trees

3.2.4. Proposition. If C ∈ Uα, D ∈ Uβ , and x is a variableβ , then .S
x
D

C ∈ Uα.

Proof. We prove this by induction on the structure of C.

(1) C is a variable or parameter. Then .S
x
DC is either C or D. In either case, the result is in Uα.

(2) C is fpt1 . . . tp, for some skolem function fp. Since ti ∈ U , the inductive hypothesis yields .S
x
Dti ∈ U ,

for i = 1, . . . , p. Hence, .S
x
D[fpt1 . . . tp] = fp[ .S

x
Dt1] . . . [ .S

x
Dtp] ∈ Uα.

(3) C is [EF ] for E ∈ Uαγ , and F ∈ Uγ . Then by the inductive hypothesis, .S
x
D

E ∈ Uαγ , .S
x
D

F ∈ Uγ ,
and .S

x
D

[EF ] = [ .S
x
D

E][ .S
x
D

F ] ∈ Uα.

(4) C is [λyE] where α = (γδ), y is a variableδ, E ∈ Uγ and y is not free in any necessary argument
of any occurrence of a skolem function in E. If x = y then .S

x
D

C = C ∈ Uα. Assume that x 6= y.
We may also assume that y is not free in D, since we would change y to some new variable in a
systematic fashion to avoid variable capture. Now, by the inductive hypothesis, .S

x
D

E ∈ Uγ . But y

is not free in any necessary argument of any occurrence of a skolem function in .S
x
D

E, since this is
true of E and y is not free in D. Hence, .S

x
D

[λyE] = λy[ .S
x
D

E] ∈ Uα. Q.E.D.

3.2.5. Proposition. If A ∈ Uα and A conv-I -II B, then B ∈ Uα.

Proof. First, notice that if [λxC]D ∈ U then C, D ∈ U , and hence, .S
x
DC ∈ U . Second, if C ∈ U and C

and D are αβ-variants, then D ∈ U . Third, if C,D, E ∈ U and D and E are of the same type, and the free
variables of E are free in D, and F is the result of replacing an occurrence of D in C with E, then F ∈ U .
Using these three facts we have that every application of λRule1 and λRule2 carries a formula in U to a
formula in U . Q.E.D.

3.2.6. Definition. Let Q be a tree with a terminal node N which is labeled with ΠB for some formulaoa B.
If N is universal, then let N1, . . . , Np, p ≥ 0 be those nodes which dominate N , are immediate descendants
of existential nodes of Q, and whose in-arcs are labeled with formulas from U . Also assume that if 1li < jlp

then Ni dominates Nj . Let ti ∈ Uβi be the label on the in-arc of Ni. A skolem instantiation of Q at N with
respect to the skolem function fp of signature 〈α, β1, . . . , βp〉 is the tree Q +s

N Q′ where s := fpt1 . . . tp and
Q′ is the tree representation of some λ-normal form of Bs. There must also be the proviso that no other
skolem instantiation in Q is done with respect to fp.

The set of all skolem expansion trees is the smallest set of trees which contains the tree representations
of all λ-normal formulaso of T and which is closed under expansions, with expansion terms taken from U ,
and skolem instantiations.

Notice that the definitions for derivation lists (2.20), ΘQ (2.21), Fm(Q) (2.25), and Sh(Q) (2.26) can
easily be extended to the case where Q is a skolem expansion tree.

3.2.7. Definition. A skolem expansion tree Q is a skolem expansion tree for A if Sh(Q) is a λ-normal form
of A and A contains no skolem function. Q is an ST-proof for A if Q is a skolem expansion tree for A and
Fm(Q) is tautologous.

3.2.8. Example. Let A be the theorem ∃y ∀x .Px⊃Py, and let f and g be skolem functions with signature
〈ι, ι〉. A skolem expansion tree for A would then be the tree Q1 given as (compare with Example 2.29):

∼[[Πλy.∼Πλx.∼Px ∨ Py]+u∼[[Πλx.∼Px ∨ Pu] +fu [∼P [fu] ∨ Pu]]
+v∼[[Πλx.∼Px ∨ Pv] +gv [∼P [gv] ∨ Pv]]].

An ST-proof for A would then be the tree Q2 given as:

∼[[Πλy.∼Πλx.∼Px ∨ Py]+u∼[[Πλx.∼Px ∨ Pu] +fu [∼P [fu] ∨ Pu]]
+fu∼[[Πλx.∼Px ∨ P.fu] +g.fu [∼P [g.fu] ∨ P.fu]]].

The usefulness of ST-proofs follows from this next proposition.
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3.2.9. Proposition. Let A be a formulao and Q be a skolem expansion tree for A. If x is a variableα not

free in A and B ∈ Uα then .S
x
B

Q is a skolem expansion tree for A.

Proof. This follows immediately from the definitions of .S
x
B

and skolem expansion trees, and from Propo-
sition 3.4. Q.E.D.

In Example 3.8, Q2, which is an ST-proof, is the result of substituting fu for v in Q1, which is not
an ST-proof. Notice that this is a much stronger version of the corresponding Proposition 2.31 (1) for
expansion trees, where only a variable could be substituted for a variable. One method for attempting a
search for ST-proofs of a proposed theorem would be to pick a skolem expansion tree, say Q, in which the
expansion terms are all variables and then search for a substitution ϕ such that ϕFm(Q) is tautologous.
The search procedure described in [Andrews80] is essentially a refinement of this general strategy for FOL.
In the higher-order case, it is necessary to restrict the substitution ϕ so that the range of ϕ is contained in
U . In Section 3.5, we describe how to modify Huet’s unification algorithm [Huet75] so that only these kinds
of substitutions are produced.

3.2.10. Definition. A skolem expansion tree is grounded if none of its terminal nodes are labeled with formulas
of the form ΠB. An ST-proof for Q is a grounded ST-proof if it is also a grounded skolem expansion tree.
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Section 3.3: The Relative Completeness Theorem for ST-Proofs

3.3.11. Relative Completeness Theorem for ST-proofs. If T̀ A then A has a grounded ST-proof.

Proof. Assume that T̀ A. By the Relative Completeness Theorem for ET-proofs (Theorem 2.42), A has
a grounded ET-proof Q. We may assume that formulas labeling arcs are all in λ-normal form. We now
describe how to convert Q into a grounded ST-proof of A.

Since Q is an ET-proof, ≺Q is acyclic. Let 〈y1, . . . , yr〉 be a list of the variables in SQ such that whenever
yi ≺Q yj , i < j.

For any selected variable y in Q we defined an associated skolem term s. Let N be the node selected by
y, and let t1, . . . , tp be the expansion terms in Q which dominate N . Assume that these terms are ordered
so that if 1ll < klp then tl dominates tk. Let f be a skolem function with signature 〈α, β1, . . . , βp〉 (where
tj is a formulaβj ), and set s := ft1 . . . tp. Since none of the formulas, t1, . . . , tp contain skolem functions,
s ∈ Uα. Now for each i such that 1lilr, associate with yi such a skolem term si, where we assume that no
two of these skolem terms share the same skolem function as their head.

Let i and j be such that 1li, jlr and yj is free in si. Then yj is free in some expansion term which
dominates the node selected by yi. Hence, yj ≺0

Q yi and so j < i. Thus, 1liljlr implies that yj is not free in
si.

Let ϕ := .S
y1
s1
◦ · · · ◦ .S

yr

sr
. A simple induction argument shows that if B is a formula of T , then ϕB will be

a formula of T ∗ in which none of the variables y1, . . . , yr are free. Also, ϕyi is a skolem term with top-level
skolem function fi. We now verify that Q′ := ϕQ is a grounded ST-proof for A.

Let 〈Q1, . . . , Qn〉 be a derivation list for Q. We show that ϕQ is an ST-proof for A by showing
that 〈ϕQ1, . . . , ϕQn〉 is a derivation list for ϕQ. Since Sh(Q1) contains no selected variables of Q, then
Sh(ϕQ1) = Sh(Q1) and, hence, ϕQ1 is a tree representation of some λ-normal form of A. We now show
that for i = 1, . . . , n − 1, ϕQi+1 is either an expansion or skolem instantiation of ϕQi. We must consider
two cases.

(1) Qi+1 is an expansion of Qi at the existential, terminal node N (labeled with ΠB) with the formulas
t1, . . . , tm ∈ U , i.e. Qi+1 = Qi +t1

N P1 + · · · +tm

N Pm, where Pj is the tree representation of some
λ-normal form of Btj . By repeated use of Proposition 3.4, ϕtj ∈ U for all j = 1, . . . , m. Since
Btj conv-I -II Sh(Pj), ϕ(B)ϕ(tj) = ϕ(Btj) conv-I -II ϕSh(Pj) = Sh(ϕPj). Since each tj is λ-
normal and the skolem terms s1, . . . , sr are λ-normal and are not top-level abstractions, Sh(ϕPi)
is in λ-normal form. Hence, ϕQi+1 = ϕQi +ϕt1

N ′ ϕP1 + · · ·+ϕtm

N ′ ϕPm and since ϕQi was assumed to
be a skolem expansion tree, ϕQi+1 is too. Here, N ′ is the node in ϕQi which corresponds to N in
Qi.

(2) Qi+1 is a selection of Qi at the universal, terminal node N (labeled with ΠB) with the variable yl

(for some l, 1lllr), i.e. Qi+1 = Qi +yl

N P . As we reasoned above, ϕ(B)ϕ(yl) = ϕ(Byl) conv-I -II
ϕSh(P ) = Sh(ϕP ) which is λ-normal. Let t1, . . . , tp (listed in the order of relative dominance) be
the expansion trees in Q which dominate N . Hence, by definition, sl = flt1 . . . tp. For all j such that
lljlr, yj is not free in sl and, thus, not in the terms t1, . . . , tp. Hence, if we set ϕ′ := .S

y1
s1
◦ . . .◦ .S

yl−1
sl−1

,
then ϕti = ϕ′ti. Thus, ϕyl = ϕ′sl = fl(ϕ′t1) . . . (ϕ′tp) = fl(ϕt1) . . . (ϕtp) (where fl is the head of
the skolem term sl). Hence, the skolem term used to instantiate ϕQi has the correct arguments.
Since ϕQi is assumed to be a skolem expansion tree, ϕQi+1 is also since it is a skolem instantiation
of ϕQi with respect to fl.

Hence, ϕQn = ϕQ is a skolem expansion tree. Since Sh(ϕQn) = Sh(ϕQn−1) = . . . = Sh(ϕQ1) =
Sh(Q1) is a λ-normal form for A, then ϕQ is in fact a skolem expansion tree for A. Also, since Fm(Q) is
tautologous, then ϕFm(Q) = Fm(ϕQ) is tautologous. We finally can conclude that ϕQ is an ST-proof for
A. Q.E.D.
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Section 3.4: The Soundness Theorem for ST-Proofs

3.4.12. Definition. Let A ∈ Uα, s be a skolem termβ , and y be a variableβ which does not appear in A or
in s. Let Ds

yA be the result of replacing in A every subformula, t, such that t conv s, by y.

Notice, that Ds
yA ∈ Uα and .S

y
s
Ds

yA conv A, where A, s, and y are as in the above definition.

3.4.13. Example. Let f be a skolem function with signature 〈ιι, ι〉. We then have the following:

Dfv
y [λzι.fvιz] = λz.yιιz

Dfv
y Po(oι)z.f [[λwι.w]v] = Pzy

The next two lemmas are required to show that λ-contractions are preserved by application of this
“deskolemizing” operator.

3.4.14. Lemma. Let A,B ∈ U , s a skolem termβ , and y a variableβ which has no occurrences in A, B,

and s. If B arises from A by one application of λRule1, then Ds
yA conv-I Ds

yB.

Proof. Let [λxC] be the subformula A which is replaced by [λz. .S
x
z
C] to get B. Here we have the provisos

that x is not bound in C and z does not appear in C. We must distinguish between two cases.

(1) If [λxC] is a subformula of a subformula t of A which is convertible to s, then the corresponding
subformula t′ of B is such that t′ conv t. Thus Ds

yA = Ds
yB.

(2) If [λxC] does not occur in such a subformula, then every occurrence of such a subformula t in C

is such that .S
x
z
t conv s since x cannot occur free in s. Hence, Ds

yB arises from DS
y B by replacing

[λx.Ds
yC] with [λz. .S

x
z
Ds

yC], that is Ds
yA conv-I Ds

yB. Q.E.D.

3.4.15. Lemma. Let A,B ∈ U , s be a skolem termβ , and y be a variableβ which has no occurrences in A,

B, and s. If B arises from A by one application of λRule2, then Ds
yA conv-I -II Ds

yB.

Proof. This proof resembles the one for the preceding Lemma. Let [λxC]E be the subformula of A which
is replaced with .S

x
EC, with the proviso that the bound variables of C are distinct both from x and from the

free variables of E. We have two cases to consider.

(1) If [λxC]E is a subformula of a subformula t of A which is convertible to s, then the corresponding
subformula t′ of B is such that t′ conv t. Thus Ds

yA = Ds
yB.

(2) If [λxC]E is not a subformula of such a subformula t, then every occurrence of such a subformula
t in C is such that .S

x
E

t conv s since x cannot occur free in s. Hence, Ds
yB arises from Ds

yB by
replacing [λx.Ds

yC][Ds
t E] with [ .S

x
Ds

yE
Ds

yC], that is Ds
yA conv-I -II Ds

yB. Q.E.D.

3.4.16. Proposition. Let A,B ∈ Uα, s a skolem termβ , and y a variableβ which has no occurrences in A,

B, and s. If A conv-I -II B, then Ds
yA conv-I -II Ds

yB.

Proof. Follows immediately from Lemmas 3.14 and 3.15. Q.E.D.

Note: The requirement that A ∈ U is very important here. Let A := [λpoι.kι(oι).λxι.∼px] be the substitution
formula mentioned in Section 3.1, where kι(oι) is considered to be a skolem function of arity 1. If we set
s := [kι(oι).λxι.∼px] and B := [λqoι.kι(oι).λxι.∼qx], then it is not the case that Ds

yA conv-I Ds
yB. The term

s does not behave as simply a name, but rather as a important part in the function defined in A. It is this
reason that the term s cannot be replaced by the name y. The need to remove skolem terms with the Ds

y

operator is the reason why occurrences of skolem functions within substitution terms must be restricted.
Notice that this kind of example does not occur if we restrict our attention to first order formulas only.
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3.4.17. Proposition. Let A,B ∈ Uα, s ∈ Uβ be a skolem term, and y be a variableβ which has no

occurrences in A, B, and s. If B is a λ-normal form of A, then Ds
yB is a λ-normal form of Ds

yB.

Proof. A conv-I -II B and B has no λ-contractible subformulas. Hence, Ds
yA conv-I -II Ds

yB. Clearly,
Ds

yB contains no contractible parts. Q.E.D.

3.4.18. Soundness Theorem for ST-Proofs. If A has an ST-proof then T̀ A.

Proof. Let Q be an ST-proof for A and let V be the set of ρ-normal forms of all skolem terms which are
subformulas of formulas used to do expansions or skolem instantiations in Q. We shall assume that all the
formulas labeling arcs in Q are in λ-normal form. Thus, if s ∈ V then s = fpt1 . . . tp where fp is some p-arity
skolem function and t1, . . . , tp are its arguments. Let 〈s1, . . . , sr〉 be an ordering of V such that whenever
sj is an alphabetic variant of a subformula of si then i < j. Let y1, . . . , yr be r distinct variables new to Q

and A such that yi has the same type as si. Let ϕ be the “deskolemizing” operator

ϕ := Dsn
yn
◦ · · · ◦Ds1

y1
.

Now ϕsi = yi, for all i = 1, . . . , r, since j < i implies that D
sj
yj si = si. Also by Proposition 3.16, t conv-I -II si

implies that ϕt = yi. We claim that ϕQ is an ET-proof of A, and hence, by the soundness for ET-proofs

T̀ A.

Let 〈Q1, . . . , Qm〉 be a derivation list for Q. We now show that ϕQ is an expansion tree for A by showing
that 〈ϕQ1, . . . , ϕQm〉 is a derivation list for ϕQ. Since Q1 contains no skolem functions, ϕQ1 = Q1 and ϕQ1

is the tree representation of some λ-normal form of A. We now assume that for some i = 1, . . . , m− 1, ϕQi

is an expansion tree for A. We consider two cases:

(a) Qi+1 is a skolem instantiation of Qi at the universal, terminal node N (labeled with ΠB), i.e. for
some sj ∈ V, Qi+1 = Qi +t

N Q′, where t conv-I -II sj and Q′ is the tree representation of some
λ-normal form of Bt, and hence, also of Bsj . Since ϕt = yj , ϕQi+1 = ϕQi +yj

N ′ ϕQ′ where N ′

is the node in ϕQi which corresponds to N in Qi. Now Bt conv-I -II Sh(Q′), so by repeated
use of Proposition 3.16, ϕ(B)yj = ϕ(Bsj) conv-I -II ϕSh(Q′) = Sh(ϕQ′), which is λ-normal by
Proposition 3.17. Hence, ϕQ′ is the tree representation of some λ-normal form of ϕ(B)yj , and
ϕQi+1 is a selection of ϕQi.

(b) Qi+1 is an expansion of Qi at the existential, terminal node N (labeled with ΠB) of Qi, i.e. for some
list of formulasα, 〈t1, . . . , tn〉, Qi+1 = Qi +t1

N P1 + . . . +tn

N Pn, where Pj is the tree representation of
some λ-normal form of Btj . But, ϕQi+1 = ϕQi +ϕt1

N ′ ϕP1 + . . . +ϕtn

N ′ ϕPn, where N ′ is the node in
ϕQi which corresponds to N in Qi. As before, since Btj conv-I -II Sh(Pj), we have by Proposition
3.16 that ϕ(B)ϕ(tj) = ϕ(Btj) conv-I -II ϕSh(Pj) = Sh(ϕPj), which is in λ-normal form. Hence,
ϕQi+1 is an expansion of ϕQi.

Thus ϕQ is an expansion tree for A. Also, since Fm(ϕQ) = ϕFm(Q), Fm(ϕQ) is tautologous. We now
only need to prove that ≺ϕQ is acyclic. Assume that yi ≺0

ϕQ yj for some yi, yj ∈ SϕQ. Then yj is selected
for a node, say H in ϕQ, which is dominated by some expansion term t which has yi free in it. Let H ′ be the
node in Q which corresponds to H in ϕQ, and let t′ be the formula labeling the arc in Q corresponding to
the arc labeled with t in ϕQ. In the skolem expansion tree, t′ would have a subformula w such that si = ρw

while the skolem term labeling the out-arc of H ′, say w′, is such that sj = ρw′. Since w′ is a skolem term
with argument w, si is an alphabetic variant of a subformula of sj and, therefore, j < i. Finally we conclude
that, if yi ≺ϕQ yj then j < i. Thus ≺ϕQ is acyclic. Q.E.D.
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Section 3.5: Skolemization and Unification

We now present the changes to Huet’s unification algorithm which will ensure that if a disagreement set
consists of pairs from U , then the unifying substitutions for such pairs will also be in U . We shall assume
that the reader is familiar with this algorithm (see [Huet75]).

Of the two major portions of this algorithm, SIMPL and MATCH, MATCH is the only one which
produces unifying substitutions. These substitutions are of two kinds — those produced by the imitation
rule and those produced by the projection rule. All substitutions produced by the latter are members of U .
Hence, we need only look at terms produced by the imitation rule. When unifying a flexible term e1 and a
rigid term e2 (both in U) of the form

e1 = λu1 . . . λun1 .f(e1
1, . . . , e1

p1
), n1 ≥ 0, p1 ≥ 0

e2 = λv1 . . . λwn2 .@(e2
1, . . . , e2

p2
), n2 ≥ 0, p2 ≥ 0,

if the rigid head @ is not a skolem function, then the resulting substitutions are once again all members
of U . Hence, we must only consider the case when @ is a skolem function. Let q be the arity of @. The
prescription of the imitation rule produces terms of the form

f →λw1 . . . λwm.@(E1, . . . , Er)

where Ei := hi(w1, . . . , wm) for each i = 1, . . . , r and where w1, . . . , wm and h1, . . . , hr are “new” variables.
Here m and r are determined in various ways from n1, n2, p1, and p2. The substitution for f can fail to be in
U for two reasons. The first is when r < q (a cases we need not consider if we are using the η-rule). Hence,
our first restriction is that r ≥ q. Secondly, the terms E1, . . . , Eq cannot be of such a general form since
they contain variables occurrences (namely w1, . . . , wm) which are not free in the full term. Hence, we must
restrict Ei to be of the form hi for i = 1, . . . , q. With these two restrictions applied to those substitutions
for f otherwise produced by the imitation rule in this case, we produce only substitution terms in U .
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CHAPTER 4

List Representation of Expansion Trees

Section 4.1: Introduction

For the purposes of the rest of this text, we shall add to T the logical constants ∧ and ⊃, and the quantifiers
∀ and ∃. When it is important to replace these connectives and quantifiers with ∼, ∨, and Π, they shall
stand for the following: A∧B stands for ∼[∼A∨∼B], A⊃B stands for ∼A∨B, ∀x P stands for Π[λxP ], and
∃x P stands for ∼Π[λx∼P ]. We add these connectives and quantifiers here since we wish to deal with a more
conventional formulation of HOL, and especially because in the next chapter we shall describe sequential and
natural deduction proofs for T . Discussions of such systems would be quite awkward without considering
the full complement of connectives and quantifiers usually considered.

We shall find it very convenient to formulate an alternative representation for expansion trees which
are defined as list structures instead of labeled trees. The way in which we choose to do this will result in
a much more succinct presentation of the information present in expansion trees. In this chapter, we define
these list representations and show that they faithfully represent the information of expansion trees.

Section 4.2: The Definition of List Representations

We shall now present a representation of expansion trees which is more succinct and more suitable for direct
implementation on computer systems, especially those written in LISP. The set of all list structures over a
given set, Ξ, is defined to be the smallest set which contains Ξ and is closed under building finite tuples.

Notice that expansion and selection nodes in an expansion tree must have the right parity, so when we
attempt to build up larger expansion trees from smaller ones, we must be careful how we imbed expansion
trees under negations. This fact explains why we need to consider so many cases in the following definition.

4.2.1. Definition. Let Ξ be the set which contains the labels SEL and EXP and all formulas of T . Let E be
the smallest set of pairs 〈R,A〉, where R is a list structure over Ξ and A is a formulao, which satisfies the
conditions below. We say that a variable y is selected in the list structure R if it occurs in a sublist of the
form (SEL y R′).

(1) If A is a boolean atom and R is a λ-normal form of A, then 〈R, A〉 ∈ E and 〈∼R,∼A〉 ∈ E . Here,
∼R is shorthand for the two element list (∼ R).

(2) If 〈R, A〉 ∈ E then 〈R, B〉 ∈ E where A conv B.

(3) If 〈R, A〉 ∈ E then 〈∼∼R,∼∼A〉 ∈ E .
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In cases (4), (5), and (6), we assume that R1 and R2 share no selected variables in common and that
A1 (resp. A2) has no free variable selected in R2 (resp. R1).

(4) If 〈R1, A1〉 ∈ E and 〈R2, A2〉 ∈ E then 〈(∨ R1 R2), A1 ∨A2〉 ∈ E and 〈(∧ R1 R2), A1 ∧A2〉 ∈ E .

(5) If 〈∼R1,∼A1〉 ∈ E and 〈∼R2,∼A2〉 ∈ E then 〈∼(∨ R1 R2),∼.A1 ∨ A2〉 ∈ E and 〈∼(∧ R1 R2),
∼.A1 ∧A2〉 ∈ E .

(6) If 〈∼R1,∼A1〉 ∈ E and 〈R2, A2〉 ∈ E then 〈(⊃ R1 R2), A1⊃A2〉 ∈ E and 〈∼(⊃ R2 R1),∼.A2⊃A1〉 ∈
E .

In cases (7), (8), and (9), we assume that y is not selected in R and that y is not free in [λxP ] or in B.

(7) If 〈R, [λxP ]y〉 ∈ E then 〈(SEL y R), ∀x P 〉 ∈ E .

(8) If 〈∼R,∼[λxP ]y〉 ∈ E then 〈(∼(SEL y R)),∼∃x P 〉 ∈ E .

(9) If 〈R, By〉 ∈ E then 〈(SEL y R), ΠB〉 ∈ E .

Let n ≥ 1. In cases (10), (11), and (12), we assume that for distinct i, j such that 1li, jln, Ri and Rj

share no selected variables and that no variable free in [λxP ]ti is selected in Rj .

(10) If for i = 1, . . . , n, 〈Ri, [λxP ]ti〉 ∈ E then 〈(EXP (t1 R1) . . . (tn Rn)), ∃x P 〉 ∈ E .

(11) If for i = 1, . . . , n, 〈∼Ri,∼[λxP ]ti〉 ∈ E then 〈∼(EXP (t1 R1) . . . (tn Rn)),∼∀x P 〉 ∈ E .

(12) If for i = 1, . . . , n, 〈∼Ri,∼Bti〉 ∈ E then 〈∼(EXP (t1 R1) . . . (tn Rn)), ΠB〉 ∈ E .

The pair 〈R,A〉 ∈ E represents — in a succinct fashion — an expansion tree. Notice, that the only
formulas stored in R are those used for expansions and selections and those which are the leaves of the
expansion tree. Expansion trees, as defined in Chapter 2, contain additional formulas which are used as
“shallow formulas” to label expansion and selection nodes. These formulas, however, can be determined up
to λ-convertibility if we know what the expansion tree is an expansion for. Informally, R can be considered
an expansion tree for A.

Notice that if 〈R, A〉 ∈ E , then either R is a b-atom in λ-normal form, or it is a list whose first element
is either ∼, ∨, ∧, ⊃, SEL or EXP.

4.2.2. Proposition. If 〈R,A〉 ∈ E then no variable selected in R is free in A.

Proof. This is guaranteed by the conditions reguarding free and selected variables in Definition 4.1.
Q.E.D.

4.2.3. Example. Let A := ∼∃xι ∀zι Coιιxz and R := ∼(SEL yι (EXP (aι Cya))). We demonstrate that 〈R,

A〉 ∈ E .
〈∼Cya,∼Cya〉 ∈ E by (1)

〈∼Cya,∼[λz.Cyz]a〉 ∈ E by (2)
〈∼(EXP (a Cya)),∼∀z Cyz〉 ∈ E by (11)

〈∼(EXP (a Cya)),∼[λx∀z Cyz]y〉 ∈ E by (2)
〈∼(SEL y (EXP (a Cya))),∼∃x ∀z Cxz〉 ∈ E by (8)

The expansion tree given in Example 2.29 on page 10 can be written as

(EXP (u (SEL v (∨ ∼Pv Pu)))(v (SEL w (∨ ∼Pw Pv)))).
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Notice that the converse of (2) in Definition 4.1 is not true — that is, if 〈R,A〉 ∈ E and 〈R, B〉 ∈ E then
A and B are not necessarily λ-convertible. For example, the list structure (EXP (a Paa)) can be paired
with ∃x Pax, ∃x Pxa and ∃x Paa. Hence, the pairing of a list structure with a formula is important in
order to know which expansion tree is being considered.

The rules for moving negations over quantifiers is mirrored within this list representation. For example,
〈∼(EXP (t1 R1) . . . (tn Rn)),∼∀x P 〉 ∈ E if and only if for i = 1, . . . , n, 〈∼Ri,∼[λxP ]ti〉 ∈ E if and only if
for i = 1, . . . , n, 〈∼Ri, [λx∼P ]ti〉 ∈ E if and only if 〈(EXP (t1 ∼R1) . . . (tn ∼Rn)),∃x ∼P 〉 ∈ E . Similarly,
it is easy to show that 〈∼(SEL y R),∼∃x P 〉 ∈ E if and only if 〈(SEL y ∼R), ∀x ∼P 〉 ∈ E .

These pairs of list structures and formulas can be considered to be abbreviations of expansion trees. In
order to confirm this, we define the function rep[[R, A]] whose value (when 〈R, A〉 ∈ E) is the expansion tree
represented by this pair.

4.2.4. Definition. If A is a formula, define A0 to be the result of eliminating the abbreviations for ∧, ⊃, ∀,
and ∃ in A.

4.2.5. Definition. Let R and A be such that either 〈R, A〉 ∈ E or 〈∼R,∼A〉 ∈ E .

(1) If A is not in ρ-normal form, then rep[[R, A]] := rep[[R, ρA]].

In all the remaining cases, we shall assume that A is in ρ-normal form. Hence, the top-level structure
of R is mirrored in the top-level structure of A.

(2) If R is a formulao and 〈R, A〉 ∈ E then rep[[R, A]] is the tree representation of ρR0.

(3) If R = ∼R1 for some expansion tree R, then A = ∼A1 for some formula A1. Set rep[[R,A]] :=
∼rep[[R1, A1]].

(4) If R = (∨ R1 R2) then A = A1 ∨A2. Set

rep[[R,A]] := rep[[R1, A1]] ∨ rep[[R2, A2]].

(5) If R = (∧ R1 R2) then A = A1 ∧A2. Set

rep[[R, A]] := ∼[∼rep[[R1, A1]] ∨ ∼rep[[R2, A2]]].

(6) If R = (⊃ R1 R2) then A = A1⊃A2. Set

rep[[R,A]] := [∼rep[[R1, A1]] ∨ rep[[R2, A2]]].

(7) If R = (SEL y R1) then we consider two cases: If 〈R, A〉 ∈ E then A is of the form ∀x P for some
formulao P and some variable x or ΠB for some formula B. If A = ∀x P then set B := [λxP ]. In
either case, set

rep[[R, A]] := ΠB0 +y rep[[R1, ρ(By)]].

Otherwise, 〈∼R,∼A〉 ∈ E and A = ∃x P . In this case, set

rep[[R, A]] := ∼.Π[λx∼P 0] +y rep[[∼R1, ρ([λx∼P ]y)]].

(8) If R = (EXP (t1 R1) . . . (tn Rn)), then we consider two cases: If 〈R, A〉 ∈ E then A = ∃x P .
Set
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rep[[R,A]] := ∼.Π[λx∼P 0]
+t01∼rep[[R1, ρ([λxP ]t1)]] + . . . +t0n ∼rep[[Rn, ρ([λxP ]tn)]].

Otherwise, 〈∼R,∼A〉 ∈ E and A is of the form ∀x P or ΠB. If A = ∀x P then set B := [λxP ]. Now set

rep[[R,A]] := ΠB0 +t01 rep[[R1, ρ(Bt1)]] + . . . +t0n rep[[Rn, ρ(Btn)]]).

4.2.6. Example. Let A and R be as in the previous example. We now compute rep[[R, A]].
rep[[R,A]] = ∼rep[[(SEL y (EXP (a Cya))), ∃x ∀z Cxz]] by (2)

= ∼∼(Π[λx∼ΠλzCxz] +y rep[[∼(EXP (a Cya)),∼∀z Cyz]]) by (6)
= ∼∼(Π[λx∼ΠλzCxz] +y ∼rep[[(EXP (a Cya)), ∀z Cyz)]] by (2)
= ∼∼(Π[λx∼ΠλzCxz] +y ∼(Π[λzCyz] +a rep[[Cya,Cya]])) by (7)
= ∼∼(Π[λx∼ΠλzCxz] +y ∼(Π[λzCyz] +a Cya)) by (1)

Notice that rep[[R, A]] is an expansion tree for A0 = ∼∼Π[λx.∼Π[λz.Cxz]]. This relationship between
rep[[R,A]] and A0 will be proved in the next section.

Section 4.3: The Correctness of List Representations

In this section, we prove that the list structures defined in the previous section correctly represent
expansion trees. If you are convinced of this fact, you may skip the rest of this chapter. The proofs below
offer no new insights into the structure of expansion trees or of their list representations.

4.3.7. Proposition. If 〈R,A〉 ∈ E then rep[[R,A]] is an expansion tree.

Proof. We prove this by first proving the following compound statement by induction on the structure
of R: If A is a λ-normal formulao then, if 〈R,A〉 ∈ E then rep[[R, A]] is an expansion tree, and if 〈∼R,

∼A〉 ∈ E then ∼rep[[R, A]] is an expansion tree. The general case for formulaso not necessarily in λ-normal
form follows from the following argument: If 〈R, A′〉 ∈ E and A is a λ-normal form of A′, then 〈R, A〉 ∈ E
and rep[[R, A]] is an expansion tree. But rep[[R,A]] = rep[[R, ρA]] = rep[[R, A′]]. The inductive argument is
below.

Let R be a b-atom. If 〈R, A〉 ∈ E then rep[[R, A]] is the tree representation for ρR0 and is therefore an
expansion tree. If 〈∼R,∼A〉 ∈ E then rep[[∼R,∼A]] = ∼rep[[R,A]] and ∼rep[[R, A]] is a tree representation
of ∼ρR0 and is, therefore, an expansion tree.

If R = ∼R1 then A = ∼A1. If 〈R, A〉 ∈ E then 〈∼R1,∼A1〉 ∈ E and by the inductive hypothesis,
∼rep[[R1, A1]] is an expansion tree. But ∼rep[[R1, A1]] = rep[[∼R1,∼A1]] = rep[[R, A]]. If 〈∼R,∼A〉 ∈ E then
〈∼∼R1,∼∼A1〉 ∈ E . Then also, 〈R1, A1〉 ∈ E , so by the inductive hypothesis, rep[[R1, A1]] is an expansion
tree. Then so too is ∼∼rep[[R1, A1]] = ∼rep[[∼R1,∼A1]] = ∼rep[[R, A]].

If R = (∧ R1 R2), then A = A1 ∧A2. If 〈R, A〉 ∈ E then 〈R1, A1〉 ∈ E and 〈R2, A2〉 ∈ E and R1 and R2

share no selected variables in common. By the inductive hypothesis, if Q1 := rep[[R1, A1]] and Q2 := rep[[R2,

A2]] then Q1 and Q2 are expansion trees. But rep[[R,A]] = ∼[∼Q1 ∨∼Q2] is then an expansion tree. If 〈∼R,

∼A〉 ∈ E then 〈∼R1,∼A1〉 ∈ E and 〈∼R2,∼A2〉 ∈ E . By the inductive hypothesis, if Q1 := rep[[R1, A1]] and
Q2 := rep[[R2, A2]] then ∼Q1 and ∼Q2 are expansion trees. But ∼rep[[R, A]] = ∼∼[∼Q1 ∨ ∼Q2] is then an
expansion tree.

The cases for R equal to (∨ R1 R2) and (⊃ R1 R2) are very similar.
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Let R = (SEL y R1). If 〈R,A〉 ∈ E then A is either ∀x P or ΠB. In the first case, set B := [λxP ]. Now
〈R1, ρ(By)〉 ∈ E so by the inductive hypothesis, rep[[R1, ρ(By)]] is an expansion tree. Then so too is rep[[R,

A]] = ΠB0 +y rep[[R1, ρ(By)]]. If 〈∼R,∼A〉 ∈ E then A is ∃x P and 〈∼R1,∼ρ([λxP ]y)〉 ∈ E . By the inductive
hypothesis, ∼rep[[R1, ρ(By)]] is an expansion tree and, therefore, so is ∼rep[[R,A]] = ∼∼(Π[λx∼P 0] +y

∼rep[[R1, ρ([λxP ]y)]]).

Let R = (EXP (t1 R1) . . . (tn Rn)). If 〈R,A〉 ∈ E then A = ∃x P and for i = 1, . . . , n, 〈Ri, ρ([λxP ]ti)〉 ∈
E . By the inductive hypothesis, Qi := rep[[Ri, ρ([λxP ]ti)]] is an expansion tree for each i. Then so must
rep[[R,A]] = ∼(Π[λx∼P 0] +t01 Q1 + . . . +t0n Qn). If 〈∼R,∼A〉 ∈ E then A is either ∀x P or ΠB. In the first
case, set B := [λxP ]. Since 〈∼Ri,∼ρ(Bti)〉 ∈ E then Qi := rep[[Ri, ρ(Bti)]] is such that ∼Qi is an expansion
tree for all i. Hence, ∼rep[[R, A]] = ∼(ΠB0 +t01 Q1 + . . . +t0n Qn) is also an expansion tree. Q.E.D.

4.3.8. Proposition. Let 〈R, A〉 ∈ E or 〈∼R,∼A〉 ∈ E and set Q := rep[[R,A]]. Then A0 conv Sh(Q).

Proof. First notice that either Q or ∼Q is an expansion tree, so Sh is defined for Q. We shall prove
this Proposition, first in the case that A is in λ-normal form, by induction on the structure of R. The
general case follows by the following argument: If 〈R, A′〉 ∈ E and A is a λ-normal form of A′, then 〈R,

A〉 ∈ E and, hence, Q := rep[[R,A]] = rep[[R, A′]] is such that Sh(Q) conv A0 conv A′0. Now assume that A

is in λ-normal form.

If R is a b-atom, then A conv-I R. But Q is then the tree representation of ρR0. Hence, Sh(Q) = ρR0

and A0 conv-I Sh(Q).

If R = ∼R1, then A = ∼A1, with A1 in λ-normal form. Set Q1 := rep[[R1, A1]]. Then Q = ∼Q1. By
the inductive hypothesis, A0

1 conv-I Sh(Q1), so ∼A0
1 conv-I ∼Sh(Q1) and A0 conv-I Sh(Q).

If R = (∧ R1 R2) then A = A1 ∧ A2 with A1 and A2 in λ-normal form. Setting Q1 := rep[[R1, A1]]
and Q2 := rep[[R2, A2]], we have by the inductive hypothesis that A0

1 conv-I Sh(Q1) and A0
2 conv-I Sh(Q2).

Hence, A0 = ∼[∼A0
1 ∨ ∼A0

2] conv-I ∼[∼Sh(Q1) ∨ ∼Sh(Q2)] = Sh(∼[∼Q1 ∨ ∼Q2]) = Sh(Q).

The cases for when R is (∨ R1 R2) or (⊃ R1 R2) is very similar and omitted here.

Let R be (SEL y R1). In the case that 〈R, A〉 ∈ E , A is ∀x P or ΠB. In the first case, set B :=
[λxP ]. Now Q = ΠB0 +y rep[[R1, ρ(By)]], so Sh(Q) = ΠB0 = A0. If 〈∼R,∼A〉 ∈ E then A is ∃x P and
Q = ∼(Π[λx∼P 0] +y rep[[∼R1, ρ([λx∼P ]y)]] and Sh(Q) = ∼Π[λx∼P 0] = A0.

Let R be (EXP (t1 R1) . . . (tn Rn)). In the case that 〈R,A〉 ∈ E , A is ∃x P and Q is ∼(Π[λx∼P 0]+ . . .).
Hence, Sh(Q) = ∼Π[λx∼P 0] = A0. If 〈∼R,∼A〉 ∈ E , then A is either ∀x P or ΠB. In the first case, set
B := [λxP ]. Then Q is ΠB0 + . . . so Sh(Q) = ΠB0 = A0. Q.E.D.

4.3.9. Theorem. If 〈R, A〉 ∈ E then rep[[R, A]] is an expansion tree for A0.

Proof. Let 〈R, A〉 ∈ E and set Q := rep[[R, A]]. By Proposition 4.7, Q is an expansion tree. By Proposition
4.8, Sh(Q) conv A0, and by Proposition 4.2, no free variables in A, and therefore in A0, are selected in Q.
Hence, Q is an expansion tree for A0. Q.E.D.

Notice that there is an obvious mapping of expansion trees into list structures. Hence, E contains no
new expansion trees — just convenient representations of already defined expansion trees. A similar list
structure could be introduced to abbreviate skolem expansion trees. If 〈R, A〉 ∈ E and Q := rep[[R,A]], then
we say that Q is represented by the list structure R.
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CHAPTER 5

Sequential and Natural Deduction Proofs

Section 5.1: Introduction

In this chapter, we shall show how to transform ET-proofs for theorems into both cut-free sequential proofs
(in a calculus which is a slight extension of Gentzen’s LK calculus) and natural deduction proofs. Hence, we
will explicitly show how Herbrand’s Theorem in T , which is essentially our Relative Completeness result for
ET-proofs, implies the Hauptsatz for T .

Within the context of natural deduction proofs, we shall investigate various criteria relevant to the
“naturalness” and “readability” of proofs and how to have such criteria followed in our transformation
process. In particular, we shall define the notion of a “focused proof outline” and show how to construct
such proof outlines.

We shall use the symbol ⊥ to denote falsehood. We will not consider ⊥ as being part of our formulation
of T since in the occasions when we need to use it, it merely stands as an indicator that we are attempting
to prove a contradiction from certain hypotheses. It will never be used within a formula. We adopt the
convention that the one-node tree whose node is labeled with ⊥ is an expansion tree for ⊥. By convention,
also, we let ⊥ be the list representation for this expansion tree.

Section 5.2: Sequential Proofs

The logical system, LKH defined below, is a higher-order extension to Gentzen’s LK classical, logistic system.
We shall, however, make a few necessary and convenient modifications.

5.2.1. Definition. The following are the inference rules of the LKH proof system. We shall assume that
the reader is already familiar with Gentzen’s LK proof system (see [Gentzen35]). Here, A, C, P and A′ are
formulaso, such that A conv A′. B is a formulaoα, x and y are variablesα, and t is a formulaα. Γ, ∆, Θ and
Λ represent possibly empty, finite lists of formulaso.

Γ −→ Θ
Thinning

A,Γ −→ Θ

Γ −→ Θ
Thinning

Γ −→ Θ, A

A,A, Γ −→ Θ
Contraction

A, Γ −→ Θ

Γ −→ Θ, A,A
Contraction

Γ −→ Θ, A

∆, A, C, Γ −→ Θ
Interchange

∆, C, A, Γ −→ Θ

Γ −→ Θ, A, C, Λ
Interchange

Γ −→ Θ, C, A, Λ
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A, Γ −→ Θ
λ

A′,Γ −→ Θ

Γ −→ Θ, A
λ

Γ −→ Θ, A′

Γ −→ Θ, A A, ∆ −→ Λ
Cut

Γ, ∆ −→ Θ, Λ

Γ −→ Θ, A Γ −→ Θ, C ∧−IS
Γ −→ Θ, A ∧ C

A,Γ −→ Θ ∧−IA
A ∧ C, Γ −→ Θ

C, Γ −→ Θ ∧−IA
A ∧ C, Γ −→ Θ

A, Γ −→ Θ C, Γ −→ Θ ∨−IA
A ∨ C, Γ −→ Θ

Γ −→ Θ, A ∨−IS
Γ −→ Θ, A ∨ C

Γ −→ Θ, C ∨−IS
Γ −→ Θ, A ∨ C

Γ −→ Θ, A ∼−IA
∼A,Γ −→ Θ

A,Γ −→ Θ ∼−IS
Γ −→ Θ,∼A

A, Γ −→ Θ, C ⊃−IS
Γ −→ Θ, A⊃C

Γ −→ Θ, A C, ∆ −→ Λ ⊃−IA
A⊃C, Γ, ∆ −→ Θ, Λ

[λxP ]t,Γ −→ Θ
∀−IA

∀x P, Γ −→ Θ

Γ −→ Θ, [λxP ]y
∀−IS∗

Γ −→ Θ,∀x P

Bt, Γ −→ Θ
Π−IA

ΠB, Γ −→ Θ

Γ −→ Θ, By
Π−IS∗

Γ −→ Θ,ΠB

[λxP ]y, Γ −→ Θ
∃−IA∗

∃x P, Γ −→ Θ

Γ −→ Θ, [λxP ]t
∃−IS

Γ −→ Θ,∃x P

(*) The following proviso is placed on ∀−IS, Π−IS, and ∃−IA: The variable y is not free in any formula in
the lower sequent for each of these rules. We shall generally assume that the λ rule can be applied without
mention whenever one of the six quantifier rules is used.

Axioms in LKH are sequents of the form A −→ A, where A is any formulao. Derivation trees are the
same as defined in [Gentzen35]. A derivation tree is an LKH-proof of A if the root of the tree is the sequent
−→ A.
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There are numerous ways to simply Gentzen’s LK-calculus into equivalent calculi which contain fewer
connectives and fewer rules. We have decided to use Gentzen’s original formulation since the derivation
trees in this system are more difficult to build and the intuitive use of the connectives is important when we
discuss the “readability” of proofs. Since we shall be able to automate the building of LKH-proofs, it should
be clear that we could do the same with many of the variations of this proof system.

5.2.2. Example. The following is an LKH-proof of the theorem

[∃cι(oι) ∀poι .[∃uι .pu]⊃ .p.cp]⊃ .[∀xι ∃yι .Poιιxy]⊃∃fιι ∀zι .P z.fz.

∃y .Pxy −→ ∃y .Pxy
λ

∃y .Pxy −→ ∃u .Pxu Pz.c.Pz −→ Pz.c.Pz ⊃−IA
[∃u .Pzu]⊃Pz.c.Pz, ∃y .Pzy −→ Pz.c.Pz

∀−IA
∀p .[∃u .pu]⊃ p.cp, ∃y .Pzy −→ Pz.c.Pz

∀−IA
∀p .[∃u .pu]⊃ p.cp,∀x ∃y .Pxy −→ Pz.c.Pz

∀−IS
∀p .[∃u .pu]⊃ p.cp,∀x ∃y .Pxy −→ ∀z .Pz.c.Pz

∃−IS
∀p .[∃u .pu]⊃ p.cp,∀x ∃y .Pxy −→ ∃f ∀z .Pz.fz

∃−IA
∃c ∀p .[∃u .pu]⊃ p.cp, ∀x ∃y .Pxy −→ ∃f ∀z .Pz.fz

⊃−IS
∃c ∀p .[∃u .pu]⊃ .p.cp −→ [∀x ∃y .Pxy]⊃∃f ∀z .Pz.fz

⊃−IS
−→ [∃c ∀p .[∃u .pu]⊃ .p.cp]⊃ .[∀x ∃y .Pxy]⊃∃f ∀z .Pz.fz

5.2.3. Proposition. If the sequent Γ,∼A,∆ −→ Θ has a cut-free LKH-proof, then so must the se-

quent Γ, ∆ −→ Θ, A. If the sequent Γ −→ ∆,∼A, Θ has a cut-free LKH-proof, then so must the sequent

Γ, A −→ ∆, Θ.

Proof. This is easily proved by standard methods of moving ∼-introduction rules higher (i.e. closer to the
leaves) in cut-free LKH-derivations. Q.E.D.

5.2.4. Definition. By merit of the preceding proposition, we define the inference rules ∼−EA, for negation
elimination from the antecedent and ∼−ES for negation elimination from the succedent. Any cut-free LKH-
proof which contains these inference rules can be converted to a cut-free LKH-proof without these inference
rules.

Section 5.3: Natural Deduction Proofs

The list of natural deduction inference rules below is not a minimal set of inference rules. Instead they
represent the actual set of rules which our proof building algorithms described in subsequent sections will
use.

5.3.5. Definition. The inference rules we will be using in natural deduction proofs are listed below. Here, A,
A0, A1, . . . , An are formulaso, B is a formulaoα, x is a variableα, t is a formulaα, and H is a possibly empty
set of formulaso.
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Hypothesis Rule. From any set of hypotheses,
we can assert one of its members.

H, A ` A Hyp

Rule of λ-conversion. Here, A conv A0. H ` A

H ` A0 λ

Rule of Propositional Calculus. Here, H1 ∪
. . .∪Hn ⊂ H and the formula [A1 ∧ . . . ∧An]⊃A
is tautologous.

H1 ` A1

...
...

Hn ` An

H ` A RuleP

Rule of Indirect Proof. If a contradiction can
be inferred from the negation of A then we can
infer A.

H,∼A ` ⊥
H ` A IP

Universal Instantiation.
H ` ∀x .P

H ` [λx.P ]t ∀I
H ` ΠB

H ` Bt ∀I

Universal Generalization. x is not free in any
formula in H or in B.
H ` P

H ` ∀x P ∀G
H ` Bx

H ` ΠB ∀G

Rule of Choice. y is not free in H, B, or A.
H ` ∃x P

H, [λxP ]y ` A

H ` A RuleC

H ` ∼ΠB

H,∼By ` A

H ` A RuleC

Existential Generalization.
H ` [λx.P ]t

H ` ∃x P ∃G
H ` ∼.Bt

H ` ∼.ΠB ∃G

Rule of Cases. Here, H′ ⊂ H. H′ ` A ∨B

H′, A ` C

H′, B ` C

H ` C Cases

Deduction Rule. H, A1 ` A2

H ` A1⊃A2 Deduct

Quantifier and Negation Rule. Negations can
be moved in or out over quantifiers.
H ` ∼∀x P

H ` ∃x ∼P RuleQ

H ` ∼∃x P

H ` ∀x ∼P RuleQ
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H ` ∀x ∼P

H ` ∼∃x P RuleQ

H ` ∃x ∼P

H ` ∼∀x P RuleQ

We shall often combine the λ rule with the rule of universal instantiation and existential generalization,
so that we can directly infer .S

x
t P from ∀x P and ∃x P from .S

x
t P .

5.3.6. Definition. A natural deduction proof, ND-proof for short, is a list of proof lines, each of which must
follow from zero or more previous proof lines by one of the above rules of inference. A proof line is written
as

(l) H ` A J : l1, . . . , lp

where A is the line’s assertion, H is the possibly empty list of hypotheses on which the assertion relies, l is
the line’s label, J is its justification which is the name of an inference rule, and l1, . . . , lp are the lines used
in the inference. We will often use a proof line label to denote its assertion. Hence, a list of hypotheses
will generally be written as a set of labels. Since an ND-proof is a list of proof lines, the labels, which are
assumed to correspond in a 1 – 1 fashion to the proof lines, have an implied order. Hence, all the labels
l1, . . . , lp must appear prior to label l. For the convenience of reading examples, we shall list the term t in the
justification field when the inference rule used is either universal instantiation or existential generalization.

An incomplete ND-proof is an ND-proof in which some lines contain the non-justification NJ. Although
these lines have no justification, they may be used to justify lines which follow them.

We say that such a list of proof lines is an ND-proof of A, if the last line in the list asserts A and has
an empty list of hypotheses.

The variable occurrence x in the Rule of Choice or in Universal Generalization is said to be used critically
in the ND-proof. We call such variable occurrences critical variable occurrences.

5.3.7. Example. The following is an ND-proof of the theorem used in Example 5.2. This particular ND-proof
is not very elegant largely since the implication in line (6) is changed into its equivalent disjunctive form. A
more appropriate use of this line is to apply modus ponens to it and line (4). We have chosen to construct
this proof in this fashion because the first algorithm which we will use for constructing ND-proofs from
ET-proofs will produces ND-proofs of this kind. Later, in Section 5.6 we will describe another algorithm
which will realize that modus ponens would have been a better choice.

(1) 1 ` ∃c ∀p .[∃u .pu]⊃ .p.cp Hyp

(2) 2 ` ∀x ∃y .Pxy Hyp

(3) 3 ` ∀p .[∃u .pu]⊃ .p.cp Hyp

(4) 2 ` ∃y .Pzy ∀I : z, 2
(5) 5 ` Pzy Hyp

(6) 3 ` [∃u .Pzu]⊃ .P z.c.Pz ∀I : Pz, 3
(7) 3 ` [∼.∃u .Pzu] ∨ .Pz.c.Pz RuleP : 6
(8) 8 ` ∼.∃u .Pzu Hyp

(9) 8 ` ∼.P zy RuleQ,∀I : y, 8
(10) 5, 8 ` Pz.c.Pz RuleP : 5, 9
(11) 11 ` Pz.c.Pz Hyp

(12) 11 ` Pz.c.Pz RuleP : 11
(13) 3, 5 ` Pz.c.Pz Cases : 7, 10, 12
(14) 2, 3 ` Pz.c.Pz RuleC : 4, 13
(15) 2, 3 ` ∀z .Pz.c.Pz ∀G : 14
(16) 2, 3 ` ∃f ∀z .Pz.fz ∃G : [λv.c.Pv], 15
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(17) 1, 2 ` ∃f ∀z .Pz.fz RuleC : 1, 16
(18) 1 ` [∀x ∃y .Pxy]⊃ .∃f ∀z .Pz.fz Deduct : 17
(19) ` [∃c ∀p .[∃u .pu]⊃ .p.cp]⊃

[∀x ∃y .Pxy]⊃∃f ∀z .Pz.fz Deduct : 18

Section 5.4: Outline Transformations

In this section and the next we will show how to convert ET-proofs to natural deduction proofs. This
investigation is an immediate extension of the work described by Andrews in [Andrews80]. In that paper
Andrews described the key ideas of how to process a natural deduction proof in a top-down and bottom-up
fashion under the direction of information stored in a proof structure called a plan. Plans, when restricted to
FOL, are essentially the same as ET-proofs, although their definition is a bit more awkward. For example,
an important part of a plan is called a replication scheme, which specifies how often existential quantifiers
are instantiated. Use of replication schemes places several inconvenient restrictions on the names of bound
variables in a formula before and after the replication is applied. It is also difficult to perform a partial
replication on a formula — this being a particularly important operation in the process of constructing
natural deduction proofs. Both of these problems are characterized by the fact that replication schemes are
defined with respect to global properties of a formula. Expansion trees avoid these problems by being defined
with respect to local properties of formulas. What corresponds to partial application of a replication in an
ET-proof is the process of eliminating an expansion term from an expansion tree. These inconveniences of
plans complicated giving a complete analysis of this transformation process, and Andrews did not give one.
We shall show in this section that ET-proofs not only extend this process to HOL but also provide a much
more appropriate proof structure upon which to base this transformation.

In the rest of this chapter, references to ET-proofs shall actually be to grounded ET-proofs.

5.4.8. Definition. A proof outline, O, is a triple, 〈L, Σ, {Rl}〉, where:

(1) L is a list of proof lines which is a complete or incomplete ND-proof. A line with the justification
NJ represents a piece of a proof which must be completed. Let L0 be the set of all lines labels in
L which have this justification. These are called the sponsoring lines of O.

(2) Σ = {Γl→ l | l ∈ L0} is a set of sequents, where Γl ⊂ L \ L0 for each l ∈ L0. Also, the line labels
in Γl must precede l. The lines in Γl are said to support l and are called supporting lines. A line is
active if it is either a supporting line or a sponsoring line which does not assert ⊥.

(3) {Rl} represents a set of list structures, one for each active line. If l is a supporting line, then 〈∼Rl,

∼l〉 ∈ E . If l is a sponsoring line, then 〈Rl, l〉 ∈ E .

If Σ is not empty, we define the following formulas and tree structures. For each active line l, set
Ql := rep[[Rl, l]]. Let σ ∈ Σ. Then σ is the sequent Γz → z, for some z ∈ L0. If z does not assert ⊥ and Γz is
not empty then let Aσ be the formula [

∨
c∈Γz

∼c]∨ z and let Qσ be the expansion tree [
∨

c∈Γz
∼Qc]∨Qz. If

z asserts ⊥ then let Aσ be the formula
∨

c∈Γz
∼c and Qσ be the expansion tree

∨
c∈Γz

∼Qc. If Γz is empty,
then let Aσ be the formula Az and let Qσ be the expansion tree Qz. The following two conditions must also
be satisfied by an outline.

(4) If line a supports line z then the hypotheses of a are a subset of the hypotheses of z.

(5) If Σ is not empty, then Qσ is a (grounded) ET-proof for A0
σ for each σ ∈ Σ.
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It is easy to show that O has an active line if and only if Σ is not empty. We say that O is an outline
for A if the last line in O (more precisely, in L) has no hypotheses and asserts A.

5.4.9. Definition. Let A be a formula and R a list representation such that rep[[R, A]] is an ET-proof for A0.
Let z be the label for the proof line

(z) ` A NJ,

and set L := {z}, Σ := {→ z} and Rz := R. Then O0 := 〈L,Σ, {Rz}〉 is clearly an outline. We call this
outline the trivial outline for A based on R.

5.4.10. Example. A proof outline for the theorem in Example 5.7 is given by setting L = 〈1, 2, 3, 16, 17, 18, 19〉,
Σ = {2, 3→ 16} and

R2 = (EXP (z (SEL y Pzy)))
R3 = (EXP (Pz (⊃ (EXP (y Pzy)) Pz.c.Pz)))
R16 = (EXP ([λv.c.Pv] (SEL z Pz.c.Pz))),

where the lines in L are:

(1) 1 ` ∃c ∀p .[∃u .pu]⊃ .p.cp Hyp

(2) 2 ` ∀x ∃y .Pxy Hyp

(3) 3 ` ∀p .[∃u .pu]⊃ .p.cp Hyp

(16) 2, 3 ` ∃f ∀z .Pz.fz NJ

(17) 1, 2 ` ∃f ∀z .Pz.fz RuleC : 1, 16
(18) 1 ` [∀x ∃y .Pxy]⊃ .∃f ∀z .Pz.fz Deduct : 17
(19) ` [∃c ∀p .[∃u .pu]⊃ .p.cp]⊃

[∀x ∃y .Pxy]⊃∃f ∀z .Pz.fz Deduct : 18

It is easy to verify that rep[[∼R2 ∨ ∼R3 ∨ R16,∼2 ∨ ∼3 ∨ 16]] is an ET-proof for ∼2 ∨ ∼3 ∨ 16 and that
〈L, Σ, {R2, R3, R16}〉 is an outline.

5.4.11. Definition. A formula t is admissible in O if no free variable in t is selected in Rl for any active line
l. In other words, if t is admissible in O then t is admissible in Qσ (see Definition 2.34) for all σ ∈ Σ.

5.4.12. Definition. Below we list 18 transformations. These take an outline, O = 〈L, Σ, {Rl}〉 in which Σ is
not empty, and produce a new structure, O′ = 〈L′, Σ′, {R′l}〉, which we shall soon verify is also an outline.
We shall assume that any sequent of the form Γ→ ⊥ is simply another way to write the sequent Γ→ in
which the succedent is empty.

The D- rules will be responsible for simplifying the complexity of support lines, while the P- rules simplify
the complexity of sponsoring lines. The two transformations, RuleP1 and RuleP2, will be responsible for
giving a justification to a sponsoring line without creating a new sponsoring line. In this case, Σ′ result from
removing a sequent from Σ.

The transformations below explicitly describe how to compute new members of Σ′ and {R′l} from
members of Σ and {Rl}. If a sequent, σ, or active line, l, in O is unaffected by the transformation, then we
assume that σ ∈ Σ′ and R′l = Rl. The similar description for computing L′ from L is given by showing two
boxes of proof lines separated by an arrow. The box on the left contains lines present in L, while the box
on the right contains lines present in L′. If a line appears in the box on the right but not in the box on the
left, we add this new line to L′ in the position indicated by the alphabetical ordering of the line labels. If a
line appears in both boxes, then its justification has been changed from NJ in L to a new justification in L′.
It is always the case that all the lines in L are contained in L′.

If Σ′ is not empty, then each sequent σ′ ∈ Σ′ is of two kinds. If no line in σ′ was altered or inserted by
the transformation, then σ′ ∈ Σ. Otherwise, σ′ is constructed from a unique σ ∈ Σ. The D-Disj and P-Conj
transformations are the only transformations which will construct two sequents in Σ′ from a sequent in Σ.
All the other D- and P- transformations will construct one sequent in Σ′ from one in Σ.
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D-Lambda
Let a be a supporting line with assertion A. If A is not in λ-normal form, let B be a λ-normal form of A. Set
R′b := Ra and construct Σ′ by replacing line a with the line b (shown below) in each sequent of Σ. RuleX

represents any valid justification.

(a) H ` A RuleX ==> (b) H ` B λ : a

D-Conj
Here a is a supporting line in O. Σ′ is the result of replacing a with the lines b, c everywhere in Σ. Since 〈∼Ra,

∼.A1 ∧ A2〉 ∈ E , Ra = (∧ R1 R2), so set R′b := R1 and R′c := R2. It may be the case that both lines b and
c are really needed to prove all the lines supported by line a. Often, one of these lines may be unnecessary,
but to actually determine this requires doing a certain amount of “looking ahead.” For now, we must be
conservative in giving supports to sponsoring lines, but later, after we introduce matings in Section 5.6, we
will be able to determine which supports are truly necessary. This same comment applies equally well to
many of the following transformations.

(a) H ` A1 ∧A2 RuleX ==>
(b) H ` A1 RuleP : a

(c) H ` A2 RuleP : a

D-Disj
Let a be a disjunctive support line and let line z be a sponsor for line a. Enter the proof lines shown below.
Here H′ ⊂ H. Also, build Σ′ by replacing the sequent Γz → z with the two sequents Γ, b→m and Γ, n→ y,
where Γ := Γz \ {a}. Set R′m := Rz and R′y := Rz. Since 〈∼Ra,∼.A1 ∨A2〉 ∈ E , Ra = (∨ R1 R2). Thus, set
R′b := R1 and R′n := R2.

(a) H′ ` A1 ∨A2 RuleX

(z) H ` C NJ
==>

(b) b ` A1 Hyp

(m) H, b ` C NJ

(n) n ` A2 Hyp

(y) H, n ` C NJ

(z) H ` C Cases : a,m, y

D-Imp
With the set of transformations described in this section, we treat implication as if it were an abbreviation
of a disjunction. Σ′ is the result of replacing a with b in each sequent of Σ. Also, R′b := (∨ ∼R1 R2) where
Ra = (⊃ R1 R2). Apply D-Disj immediately on line b. In Section 5.6, we will introduce two transformations,
D-ModusPonens and D-ModusTollens, which will operate on implicational, support lines without needing to
convert them to their equivalent disjunctive form. One of those two rules may not always be applicable, so
we will not always be able to avoid using D-Imp.

(a) H ` A1⊃A2 RuleX ==> (b) H ` ∼A1 ∨A2 RuleP

D-All
If a is a universally quantified support line, then Ra has the form (EXP (t1 R1) . . . (tn Rn)). If none of the
terms, t1, . . . , tn are admissible in O, then we cannot apply this transformation to a. Otherwise, assume
that for some i, such that 1liln, ti is admissible in O. Enter line b with R′b := Ri. If n = 1, then line a should
no longer be active, so we replace every occurrence of a with b in the sequents of Σ to get Σ′. If n > 1, then
we require that both lines a and b are made active by placing b in the antecedent of every sequent which
contains a. In this case, we also change Ra to be the expansion tree in which the subtree Ri is removed.

(a) H ` ∀x P RuleX ==> (b) H ` [λx.P ]ti ∀I : a

(a) H ` ΠB RuleX ==> (b) H ` Bti ∀I : a
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D-Exists
If a is an existentially quantified support line, then Ra is of the form (SEL y R). Let z be a sponsor of a.
Construct Σ′ by replacing the sequent Γz → z with Γz \ {a} , b→ y. Also, set R′y := Rz and R′b := R.

(a) H ` ∃x P RuleX

(z) H ` C NJ
==>

(b) b ` [λxP ]y Hyp

(y) H, b ` C NJ

(z) H ` C RuleC : a, y

(a) H ` ∼.ΠB RuleX

(z) H ` C NJ
==>

(b) b ` ∼.By Hyp

(y) H, b ` C NJ

(z) H ` C RuleC : a, y

D-NotExists
If a asserts the formula ∼∃x P , then Ra is of the form ∼(EXP (t1 R1) . . . (tn Rn)). If none of the terms,
t1, . . . , tn are admissible in O, then we cannot apply this transformation to a. Otherwise, assume that for
some i, such that 1liln, ti is admissible in O. Enter line b with R′b := ∼Ri. If n = 1, then line a should no
longer be active, so we replace every occurrence of a with b in the sequents of Σ to get Σ′. If n > 1, then we
require that both lines a and b are made to be active by placing b is the antecedent of every sequent which
contains a. In this case, we also change Ra to be the expansion tree in which the subtree Ri is removed.

(a) H ` ∼∃x P RuleX ==> (b) H ` [λx∼P ]ti RuleQ, ∀I : a

D-Neg
Apply one of the following five sub-transformations to line a, depending on which one matches the structure
of a. Σ′ is the result of replacing a with b in each sequent of Σ. R′b is the result of applying the corre-
sponding negation rule to Ra. In all but the first sub-transformation, we must immediately apply the other
transformation indicated.

(a) H ` ∼∼A RuleX ==> (b) H ` A RuleP : a

(a) H ` ∼.A1 ∨A2 RuleX ==> (b) H ` ∼A1 ∧ ∼A2 RuleP : a

Apply D-Conj to line b.
(a) H ` ∼.A1 ∧A2 RuleX ==> (b) H ` ∼A1 ∨ ∼A2 RuleP : a

Apply D-Disj to line b.
(a) H ` ∼.A1⊃A2 RuleX ==> (b) H ` A1 ∧ ∼A2 RuleP : a

Apply D-Conj to line b.
(a) H ` ∼∀x P RuleX ==> (b) H ` ∃x ∼P RuleQ : a

Apply D-Exists to line b.

Each of the P- rules listed below will “process” a sponsoring line z. Let Σ0 := Σ \ {Γz → z}.
P-Lambda

If A is not in λ-normal form, let B be a λ-normal form of A. Set Σ′ := Σ0 ∪ {Γz → y} and R′y := Rz.

(z) H ` A NJ ==>
(y) H ` B NJ

(z) H ` A λ : y

P-Conj
Set Σ′ := Σ0 ∪ {Γz →m,Γz → y}. Since 〈Rz, A1 ∧ A2〉 ∈ E , then Rz = (∧ R1 R2). Set R′m := R1 and
R′y := R2.

(z) H ` A1 ∧A2 NJ ==>

(m) H ` A1 NJ

(y) H ` A2 NJ

(z) H ` A1 ∧A2 RuleP : m, y
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P-Disj1

Set Σ′ := Σ0 ∪ {Γz, a→x}. Since 〈Rz, A1 ∨ A2〉 ∈ E , Rz = (∨ R1 A2). Set R′a := ∼R1 and R′x := R2. We
shall introduce a variant of this rule, P-Disj2, later.

(z) H ` A1 ∨A2 NJ ==>

(a) a ` ∼A1 Hyp

(x) H, a ` A2 NJ

(y) H ` ∼A1⊃A2 Deduct : x

(z) H ` A1 ∨A2 RuleP : y

P-Imp

Set Σ′ := Σ ∪ {Γz, a→ y} and Ra := R1, Ry := R2, where Rz := (⊃ R1 R2).

(z) H ` A1⊃A2 NJ ==>

(a) a ` A1 Hyp

(y) H, a ` A2 NJ

(z) H ` A1⊃A2 Deduct : y

P-All

If z is a universally quantified sponsoring line, then Rz = (SEL v R) for some variable v. Set R′y := R and
Σ′ := Σ0 ∪ {Γz → y}.

(z) H ` ∀x P NJ ==>
(y) H ` [λxP ]v NJ

(z) H ` ∀x P ∀G : y

(z) H ` ΠB NJ ==>
(y) H ` Bv NJ

(z) H ` ΠB ∀G : y

P-Exists

If z is an existentially quantified sponsoring line, then Rz = (EXP (t1 R1) . . . (tn Rn)) for some n ≥ 1
and terms t1, . . . , tn. If none of these terms are admissible in O, then we cannot apply P-Exists to line z.
Otherwise, we must distinguish two cases. If n = 1, then we use ∃G to process line z. In this case, we set
R′y := R1 and Σ′ := Σ0 ∪ {Γz → y}. If n > 1, then we use the method of indirect proof to process this line.
Let ti be an admissible term for O. Here, R′b := Ri and R′a is the negation of the result of removing Ri from
the tree Rz. Also, R′y :=⊥ and Σ′ := Σ0 ∪ {Γz, a, b→ y}.

(z) H ` ∃x P NJ ==>

(y) H ` [λx.P ]t1 NJ

(z) H ` ∃x P ∃G : y

or

(a) a ` ∼∃x P Hyp

(b) a ` [λx∼P ]ti RuleQ, ∀I : a

(y) H, y ` ⊥ NJ

(z) H ` ∃x P IP : y
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(z) H ` ∼.ΠB NJ ==>

(y) H ` ∼.Bt1 NJ

(z) H ` ∼.ΠB ∃G : y

or

(a) a ` ΠB Hyp

(b) a ` Bti ∀I : a

(y) H, y ` ⊥ NJ

(z) H ` ∼.ΠB IP : y

P-NotAll

If z asserts ∼∀x P , then Rz = ∼(EXP (t1 R1) . . . (tn Rn)) for some n ≥ 1 and terms t1, . . . , tn. If none of
these terms are admissible in O, then we cannot apply P-NotAll to line z. Otherwise, we must distinguish
two cases. If n = 1, then we use RuleQ and ∃G to process line z. In this case, we set R′y := ∼R1 and
Σ′ := Σ0 ∪ {Γz → y}. If n > 1, then we use the method of indirect proof to process this line. Let ti be an
admissible term for O. Here, R′b := ∼Ri and R′a is (EXP (t1 R1) . . . (ti−1 Ri−1)(ti+1 Ri+1) . . . (tn Rn)).
Also, R′y :=⊥ and Σ′ := Σ0 ∪ {Γz, a, b→ y}.

(z) H ` ∼∀x P NJ ==>

(y) H ` [λx.∼P ]t1 NJ

(z) H ` ∼∀x P ∃G,RuleQ : y

or

(a) a ` ∀x P Hyp

(b) a ` [λxP ]ti ∀I : a

(y) H, a ` ⊥ NJ

(z) H ` ∼∀x P RuleP, IP : y

P-Neg

Apply one of the following five sub-transformations. Set Σ′ := Σ0∪{Γz → y}. Set R′y to be the corresponding
negation rule applied to Rz. In all but the first sub-transformation, we must immediately apply the other
transformation indicated.

(z) H ` ∼∼A NJ ==>
(y) H ` A NJ

(z) H ` ∼∼A RuleP : y

(z) H ` ∼.A1 ∨A2 NJ ==>
(y) H ` ∼A1 ∧ ∼A2 NJ

(z) H ` ∼.A1 ∨A2 RuleP : y

Apply P-Conj to line y.

(z) H ` ∼.A1 ∧A2 NJ ==>
(y) H ` ∼A1 ∨ ∼A2 NJ

(z) H ` ∼.A1 ∧A2 RuleP : y

Apply P-Disj1 to line y.

(z) H ` ∼.A1⊃A2 NJ ==>
(y) H ` A1 ∧ ∼A2 NJ

(z) H ` ∼.A1⊃A2 RuleP : y

Apply P-Conj to line y.

(z) H ` ∼∃x P NJ ==>
(y) H ` ∀x ∼P NJ

(z) H ` ∼∃x P RuleQ : y

Apply P-All to line y.
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RuleP1
If A1 and A2 are complementary, λ-normal signed atoms, then we have proved line z indirectly. Here
H1 ∪H2 ⊂ H. Set Σ′ := Σ0.

(a1) H1 ` A1 RuleX

(a2) H2 ` A2 RuleY

(z) H ` A NJ

==> (z) H ` A RuleP : a1, a2

RuleP2
If A1 and A2 are λ-normal, signed atoms such that A1 conv-I A2, then we have proved line z directly. Here
H1 ⊂ H2. Set Σ′ := Σ0.

(a) H1 ` A1 RuleX

(z) H2 ` A2 NJ
==> (z) H2 ` A2 RuleP : a

Notice that after a D- transformation is applied, the line a may or may not still be active, while after a
P- transformation is applied, the line z is no longer active.

The definition of these transformations may look more complicated then they need to be, and in a
sense, that is the case. For example, the D-Neg and P-Neg transformations are presented here as a composite
transformation, i.e. in most cases, when one of these transformations is applied, it is immediately followed by
the application of another transformation. This is done in this setting since we will show later (Proposition
5.15) that each transformation must eliminate one of the connectives ∧, ∨, ⊃, or quantifiers ∀ and ∃, so that
a corresponding introduction can be made in a parallel LKH-proof figure. The same comments apply also to
P-NotAll and D-NotExists. These two transformations could be simplified to P-Exists and D-All if we added
the obvious sub-transformation to both D-Neg and P-Neg. We have avoided doing this since Proposition
5.15 would not be provable. In an implementation of these transformations in which we only desire to build
ND-proofs, these transformations can be simplified.

For the rest of this chapter, we shall assume that O and O′ always refer to the outlines 〈L,Σ, {Rl}〉 and
〈L′,Σ′, {R′l}〉, respectively.

5.4.13. Lemma. Let O′ be the result of applying P-All, P-Exists, P-NotAll, D-All, D-Exists, or D-

NotExists to O, let σ′ ∈ Σ′ which is not in Σ, and let σ ∈ Σ be the sequent from which σ′ is constructed.

Then Qσ′ is the result of eliminating a top-level instantiated node of Qσ (see Definition 2.34), modulo adding

or dropping double negations from the top-level boolean structure of Qσ′ .

Proof. Of the six cases to consider, we shall show the case where the transformation applied is P-Exists
since this is the hardest case. The others follow similarly. Let lines a, b, y, z be as in the definition of P-
Exists, and let Rz = (EXP (t1 R1) . . . (tn Rn)) for some n ≥ 1. Then Qz = rep[[Rz, z]] = ∼(Π[λx∼P 0] +t01

∼Q1 + . . . +t0n ∼Qn), where Qi := rep[[Ri, ρ([λxP ]ti)]] for i = 1, . . . , n. σ must be the sequent Γz → z.
Qσ = [

∨
c∈Γz

∼Qc] ∨Qz.

Now we consider two cases. If n = 1, then y replaces z in σ, so σ′ is equal to the sequent Γz → y.
Now Qy = rep[[R1, y]] = rep[[R1, ρ([λxP ]t1)]] = Q1. Hence, Qσ′ is the result of replacing the subtree
∼(Π[λx∼P 0] +t01 ∼Q1) with Q1 while, if we were to eliminate the existential node, we would be replacing it
with ∼∼Q1.

Now assume that n > 1. Then the sequent σ′ is equal to Γz, a, b→. But

Qa = rep[[∼(EXP (t1 R1) . . . (ti−1 Ri−1)(ti+1 Ri+1) . . . (tn Rn)),∼∃x P ]]

= ∼∼(Π[λx∼P 0] +t01 ∼Q1 + . . . +t0i−1 ∼Qi−1 +t0i+1 ∼Qi+1 + . . . +t0n ∼Qn)
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and Qb = ∼Qi. Hence, Qσ′ is the result of replacing the subtree ∼(Π[λx∼P 0] +t01 ∼Q1 + . . . +t0n ∼Qn) with
∼Qa ∨ ∼Qb, while if we eliminate the ith descendant of this existential node, we would get

∼[(Π[λx∼P 0] +t01 ∼Q1 + . . . +t0i−1 ∼Qi−1 +t0i+1 ∼Qi+1 + . . . +t0n ∼Qn) ∧ ∼Qi].

Modulo double negations, this is the same as ∼Qa ∨ ∼Qb. Q.E.D.

5.4.14. Proposition. Let O be an outline, and let O′ be the result of applying one of the transformations

described in Definition 5.12. Then O′ is an outline.

Proof. It is straightforward to verify that conditions (1)–(4) of the definition for outlines are satisfied by O′
no matter which transformation is applied. We need to clearly examine condition (5). If the transformation
which was applied was either RuleP1 or RuleP2, then this condition is trivial to check since Σ′ ⊂ Σ. So
assume that the transformation applied was other than these two. Let σ′ ∈ Σ′. If σ′ ∈ Σ then Qσ′ is clearly
an ET-proof for Aσ′ . Thus, assume that σ′ /∈ Σ and let σ ∈ Σ be the sequent from which σ′ was constructed.
We must verify that Qσ′ is an ET-proof for Aσ′ .

We must first show that Qσ′ is an expansion tree for Aσ′ . Since Qz is an expansion tree for z when z is
a sponsoring line, and ∼Qa is an expansion tree for ∼a when a is a supporting line, we must show that the
combination of these trees in Qσ′ is an expansion tree for the combination of these assertions in Aσ′ . This
means showing that Qσ′ is a sound expansion tree. First remember that Qσ is sound. In the case of all the
transformations other than D-All, D-Exists, D-NotExists, P-All, P-Exists, and P-NotAll, the free variables
in Sh(Qσ) and the selected variables in Qσ do not change in Sh(Qσ′) and Qσ′ , respectively. Thus, in this
case, Qσ′ must be sound. In the case of one of these six transformations, Qσ′ is essentially the elimination
of a top-level instantiated node (by the above lemma). Hence, by Proposition 2.35 (4), Qσ′ is sound. Note
that adding or dropping double negations does not change the soundness of an expansion tree. Thus, Qσ′ is
sound and, therefore, an expansion tree for Aσ′ .

Next we must verify that <Qσ′ is acyclic, given that <Qσ is acyclic. In the case that the transformation
applied is other than D-All, D-Exists, D-NotExists, P-All, P-Exists, or P-NotAll, the relative dominance of
existential and universal nodes in Qσ′ is the same as it is in Qσ. Hence, <Qσ′ is acyclic. If the transformation
applied was one of the above six, then, by the above lemma and Proposition 2.35 (2), we know that <Qσ′ is
acyclic.

Finally, we need to show that Fm(Qσ′) is tautologous. First assume that the transformation applied
is either D-All, D-Exists, D-NotExists, P-All, P-Exists, or P-NotAll. Then, again by the above lemma and
Proposition 2.35 (3), since Fm(Qσ) is tautologous, then so is Fm(Qσ′). Notice that adding or dropping
double negations to an expansion tree corresponds to the same operation in the tree’s Fm value. If the
transformation was D-Lambda or P-Lambda, then Qσ = Qσ′ and the result follows trivially. If the trans-
formation was either D-Neg or P-Neg, then we either drop a double negation, in which case the result is
immediate, or we reduce this case to another transformation. If the transformation was D-Imp, then we
essentially reduce this problem to one for D-Disj. Hence, we only have to consider the following five cases.

Case D-Conj: Here σ is Γ, a→ z and σ′ is Γ, b, c→ z where Γ := Γz \ {a}. Now Qσ′ is the expansion
tree [

∨
c∈Γ∼Qc] ∨ ∼Q′b ∨ ∼Q′

c ∨ Qz while Qσ is the expansion tree [
∨

c∈Γ∼Qc] ∨ ∼[Q′b ∧ Q′c] ∨ Qz. Hence,
Fm(Qσ) ≡ Fm(Qσ′) and Fm(QO′) is tautologous.

Case P-Disj1: Here σ is Γz → z and σ′ is Γz, a→x. Qσ′ is the expansion tree [
∨

c∈Γz
∼Qc] ∨ ∼∼Q′

a ∨ Q′
x

while Qσ is the expansion tree [
∨

c∈Γz
∼Qc] ∨ [Q′a ∨ Q′

x]. Hence, Fm(Qσ′) ≡ Fm(Qσ) and Fm(QO′) is
tautologous.
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Case P-Imp: Here σ is Γz → z and σ′ is Γz, a→ y. Qσ′ is the expansion tree [
∨

c∈Γz
∼Qc] ∨∼Q′a ∨Q′y while

Qσ is the expansion tree [
∨

c∈Γz
∼Qc]∨[Q′a⊃Q′x]. Hence, Fm(Qσ′) ≡ Fm(Qσ) and Fm(QO′) is tautologous.

Case P-Conj: Here σ is Γz → z and σ′ is either Γz →m or Γz → y. Qσ′ is either the expansion tree
[
∨

c∈Γz
∼Qc] ∨ Q′

m or [
∨

c∈Γz
∼Qc] ∨ Q′y while Qσ is the expansion tree [

∨
c∈Γz

∼Qc] ∨ [Q′m ∧ Q′y]. Hence,
Fm(Qσ) truth-functionally implies Fm(Qσ′) which must, therefore, be tautologous.

Case D-Disj: Here, σ is Γ, a→ z and σ′ is either Γ, b→ z or Γ, n→ z, where Γ := Γz \ {a}. Now Qσ is
[
∨

c∈Γ∼Qc] ∨ ∼[Q′b ∨ Q′
n] ∨ Qz while Qσ′ is either [[

∨
c∈Γ∼Qc] ∨ ∼Q′b ∨ Qz] or [[

∨
c∈Γ∼Qc] ∨ ∼Q′n ∨ Qz].

Hence, Fm(Qσ) truth-functionally implies Fm(Qσ′), which must, therefore, be tautologous. Q.E.D.

5.4.15. Proposition. Let O′ be the result of applying one of the transformations in Definition 5.12 to the

outline O. Let Σ and Σ′ be the sequent sets associated with O and O′. If each sequent in Σ′ has a cut-free

LKH-proof, then each sequent in Σ has a cut-free LKH-proof.

Proof. If the transformation which was applied was either RuleP1 or RuleP2, then Σ′ ⊂ Σ and the result
is immediate. In the cases where a D- or P- transformation was applied, either one or two sequents in Σ′ are
constructed from a sequent in Σ. (More than one or two sequents in Σ′ may have been constructed, however,
from the application of some transformations.) Below we show how to combine cut-free LKH-proofs for those
one or two sequents to give a cut-free LKH-proof of the original sequent in Σ. Let C denote the formula
asserted by a line supported by a. We shall not specify when the inference rule of interchange is used, since
it will be easy for the reader to insert them in the inference figure where they are required.

Case D-Lambda:
Γ, B −→ C

λ
Γ, A −→ C

Case D-Conj:

Γ, A1, A2 −→ C ∧−IA
Γ, A1 ∧A2, A2 −→ C ∧−IA

Γ, A1 ∧A2, A1 ∧A2 −→ C
Contraction

Γ, A1 ∧A2 −→ C

Case D-Disj:
Γ, A1 −→ C Γ, A2 −→ C ∨−IA

Γ, A1 ∨A2 −→ C

Case D-Imp:
Γ,∼A1 −→ C ∼−EA
Γ −→ C, A1 Γ, A2 −→ C ⊃−IA

A1⊃A2,Γ −→ C

Case D-All: First assume that line a asserts ∀x P . If n > 1, then

Γ,∀x P, [λx.P ]ti −→ C
∀−IA

Γ, ∀x P, ∀x P −→ C
Contraction

Γ, ∀x P −→ C
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If n = 1, the the figure is simply

Γ, [λx.P ]t1 −→ C
∀−IA

Γ, ∀x P −→ C

If line a asserts ΠB, then the above two figures are repeated, except that Π−IA is used instead of ∀−IA.

Case D-Exists: If line a asserts ∃x P , then the figure is

Γ, [λxP ]y −→ C
∃−IA

Γ, ∃x P −→ C

If line a asserts ∼ΠB, then the figure is

Γ,∼By −→ C ∼−EA
Γ −→ C, By

Π−IS
Γ −→ C, ΠB ∼−IA
Γ,∼ΠB −→ C

The proviso on the eigenvariable y is met since Qσ is a sound expansion tree for Aσ, i.e. since y ∈ SQσ ,

y is not free in Aσ and, therefore, not in P , C, B, or any formula in Γ.

Case D-NotExists:

If n = 1 then

Γ, [λx∼P ]t1 −→ C
λ

Γ,∼[λxP ]t1 −→ C
∼−EA

Γ −→ C, [λxP ]t1 ∃−IS
Γ −→ C,∃x P ∼−IA
Γ,∼∃x P −→ C

If n > 1 then

Γ,∼∃x P, [λx∼P ]ti −→ C
λ

Γ,∼∃x P,∼[λxP ]ti −→ C
∼−EA

Γ,∼∃x P −→ C, [λxP ]ti ∃−IS
Γ,∼∃x P −→ C, ∃x P ∼−IA
Γ,∼∃x P,∼∃x P −→ C

Contraction
Γ,∼∃x P −→ C
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Case D-Neg:

If a asserts ∼∼A then

Γ, A −→ C ∼−IS
Γ −→ C,∼A ∼−IA
Γ,∼∼A −→ C

If a asserts ∼.A1 ∨A2 then

Γ,∼A1,∼A2 −→ C ∼−EA
Γ,∼A2 −→ C,A1 ∼−EA
Γ −→ C, A1, A2 ∨−IS

Γ −→ C,A1 ∨A2, A2 ∨−IS
Γ −→ C, A1 ∨A2, A1 ∨A2

Contraction
Γ −→ C, A1 ∨A2 ∼−IA

Γ,∼.A1 ∨A2 −→ C

If a asserts ∼.A1 ∧A2 then

Γ,∼A1 −→ C ∼−EA
Γ −→ C,A1

Γ,∼A2 −→ C ∼−EA
Γ −→ C, A2 ∧−IA

Γ −→ C, A1 ∧A2 ∼−IA
Γ,∼.A1 ∧A2 −→ C

If a asserts ∼.A1⊃A2 then

Γ, A1,∼A2 −→ C ∼−EA
Γ, A1 −→ C, A2 ⊃−IS
Γ −→ C, A1⊃A2 ∼−IA

Γ,∼.A1⊃A2 −→ C

If a asserts ∼∀x P then

Γ, [λx∼P ]y −→ C
λ

Γ,∼[λxP ]y −→ C
∼−EA

Γ −→ C, [λxP ]y
∀−IS

Γ −→ C,∀x P ∼−IA
Γ,∼∀x P −→ C

As in the D-Exists case, the proviso on the eigenvariable is meet.
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Case P-Lambda:
Γ −→ B

λ
Γ −→ A

Case P-Conj:
Γ −→ A1 Γ −→ A2 ∧−IA

Γ −→ A1 ∧A2

Case P-Disj1:

Γ,∼A1 −→ A2 ∼−EA
Γ −→ A1, A2 ∨−IS, twice

Γ −→ A1 ∨A2, A1 ∨A2
Contraction

Γ −→ A1 ∨A2

Case P-Imp:
Γ, A1 −→ A2 ⊃−IS

Γ −→ A1⊃A2

Case P-All:

If a asserts ∀x P , then

Γ −→ [λxP ]y
∀−IS

Γ −→ ∀x P

If a asserts ΠB, then repeat the above figure using Π−IS. As in the D-Exists case, the proviso on the
eigenvariable y is meet.

Case P-Exists:

If n = 1 and a asserts ∃x P , then

Γ −→ [λxP ]t1 ∃−IS
Γ −→ ∃x P

If n > 1 and a asserts ∃x P , then

Γ,∼∃x P,∼[λxP ]ti −→
∼−EA twice

Γ −→ ∃x P, [λxP ]ti ∃−IS
Γ −→ ∃x P, ∃x P

Contraction
Γ −→ ∃x P

If n = 1 and a asserts ΠB, then

Γ −→ ∼Bt1 ∼−ES
Γ, Bt1 −→

Π−IA
Γ,ΠB −→ ∼−IS
Γ −→ ∼ΠB
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If n > 1 and a asserts ΠB, then

Γ, ΠB, Bti −→
Π−IA

Γ, ΠB, ΠB −→
Contraction

Γ,ΠB −→ ∼−IS
Γ −→ ∼ΠB

Case P-NotAll:

If n = 1 then

Γ, [λx∼P ]t1 −→ C
λ

Γ,∼[λxP ]t1 −→ C
∼−EA

Γ −→ C, [λxP ]t1 ∃−IS
Γ −→ C,∃x P ∼−IA
Γ,∼∃x P −→ C

If n > 1 then

Γ,∼∃x P, [λx∼P ]t1 −→ C
λ

Γ,∼∃x P,∼[λxP ]t1 −→ C
∼−EA

Γ,∼∃x P −→ C, [λxP ]t1 ∃−IS
Γ,∼∃x P −→ C, ∃x P ∼−IA
Γ,∼∃x P,∼∃x P −→ C

Contraction
Γ,∼∃x P −→ C

Case P-Neg:

If z asserts ∼∼A, then

Γ −→ A ∼−IA
Γ,∼A −→ ∼−IS
Γ −→ ∼∼A

If z asserts ∼.A1 ∨A2 then

Γ −→ ∼A1 ∼−ES
Γ, A1 −→

Γ −→ ∼A2 ∼−ES
Γ, A2 −→ ∨−IA

Γ, A1 ∨A2 −→ ∼−IS
Γ −→ ∼.A1 ∨A2

If z asserts ∼.A1 ∧A2 then
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Γ,∼∼A1 −→ ∼A2 ∼−EA
Γ −→ ∼A2,∼A1 ∼−ES
Γ, A1 −→ ∼A2 ∼−ES
Γ, A1, A2 −→ ∧−IA twice

Γ, A1 ∧A2, A1 ∧A2 −→
Contraction

Γ, A1 ∧A2 −→ ∼−IS
Γ −→ ∼.A1 ∧A2

If z asserts ∼.A1⊃A2 then

Γ −→ A1

Γ −→ ∼A2 ∼−ES
Γ, A2 −→ ⊃−IA

Γ, Γ, A1⊃A2 −→
several Contractions

Γ, A1⊃A2 −→ ∼−IA
Γ −→ ∼.A1⊃A2

If z asserts ∼∃x P then

Γ −→ [λx∼P ]y
λ

Γ −→ ∼[λxP ]y
∼−ES

Γ, [λxP ]y −→
∃−IA

Γ, ∃x P −→ ∼−IS
Γ −→ ∼∃x P

Q.E.D.

Section 5.5: Naive Construction of Proof Outlines

In this section, we will present an algorithm which will non-deterministically select outline transformations to
be applied to a given outline. If the resulting outline contains active lines, this selection process is repeated.
Hence, the final outline produced by this algorithm will contain no active lines and will, therefore, represent
an ND-proof. Before we present the algorithm, we first prove two propositions which will guarantee that the
selection of transformations is possible at various steps in the algorithm.

5.5.16. Proposition. If O is an outline which contains an active line which does not assert a λ-normal,

signed atom, then some D- or P- transformation can be applied to O.

Proof. Let O be an outline and let l be an active line of O which does not assert a λ-normal, signed atom.
If line l asserts a formula which is not in λ-normal form, apply either D-Lambda or P-Lambda (depending
on whether or not l is supporting or sponsoring). If l asserts a formula which is a conjunction, disjunction,
implication or the negation of such a line, then apply either D-Conj, P-Conj, D-Disj, P-Disj1, D-Imp, P-Imp,
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or D-Neg, P-Neg to line l. If the assertion of l is a double negation, then apply either D-Neg or P-Neg. If l

is a supporting line which asserts a formula of the form ∃x P or ∼ΠB, apply D-Exists, or if it is in the form
∼∀x P then apply D-Neg. If l is a sponsoring line which asserts a formula of the form ∀x P or ΠB apply
P-All, or if it asserts a formula of the form ∼∃x P then apply P-Neg. None of the transformations mentioned
above have any provisos attached to them, so they may be applied whenever an appropriate active line is
present.

Now assume that the only active lines assert either signed atoms or are supporting lines asserting
formulas of the form ∀x P , ΠB, or ∼∃x P or are sponsoring lines asserting formulas of the form ∃x P , ∼Πx,
or ∼∀x P . Let σ ∈ Σ be such that it contains an active line with such a quantified assertion (such as l).
Thus Qσ contains top-level, existential nodes. Since Qσ is grounded, these existential nodes are instantiated.
Also, since Qσ is an ET-proof for Aσ, <Qσ is acyclic, and by Proposition 2.36, one of these nodes can be
eliminated. But this means that the proviso for D-All, P-Exists, D-NotExists, or P-NotAll concerning the
admissibility of an expansion term can be meet. Thus one of these four transformations must be applicable.

Q.E.D.

5.5.17. Proposition. If O is an outline in which all the active lines assert λ-normal, signed atoms, then

either RuleP1 or RuleP2 can be applied to σ, for each σ ∈ Σ.

Proof. Assume that there is some sequent σ ∈ Σ for which RuleP1 or RuleP2 does not apply. Let σ be
given by the sequent l1, . . . , lm −→ l for active lines l1, . . . , lm, l. (If l asserts ⊥, the following argument is
simplified.) Fm(Qσ) is then ∼l1 ∨ . . . ∨ ∼lm ∨ l. Now none of these disjuncts are complementary, since, if
∼li and ∼lj were complementary (for some i, j such that 1li, jlm) then li and lj would be complementary
and RuleP1 is applicable, and if ∼li and l were complementary, then li conv-I l and RuleP2 is applicable.
But this implies that Fm(Qσ) cannot be tautologous, and this contradicts the fact that Qσ is an ET-proof
for Aσ. Hence, either RuleP1 or RuleP2 must be applicable to σ. Q.E.D.

5.5.18. Algorithm. Apply transformations to the initial outline O0, stopping when there are no active lines
left to process. The resulting outline O is an ND-proof of the same formula for which O0 was an outline.

(1) Initialize: Set O := O0.

(2) λ-normalize: If any active line in O is not in λ-normal form, apply either P- or D-Lambda to it,
and repeat step 2. Otherwise, do step 3.

(3) Remove top-level double negations: If any active line is a top-level double negation, then apply
either P- or D-Neg to that line and repeat step 3. Otherwise, do step 4.

(4) If all active lines of O are λ-normal, signed atoms, then do step (6), otherwise do step (5).

(5) By Proposition 5.16, some D- or P- transformation can be applied to O. Set O to the result of
applying any such transformation, and then do step 2.

(6) By Proposition 5.17, either RuleP1 or RuleP2 can be applied to each of the sequents in O. Set O
to be the result of applying one of these transformations to each of the sequents. O will have no
active lines, and the algorithm is finished.

In order to prove that this algorithm terminates we must define measures for tautologous formulas,
expansion trees (their list representations), and outlines. The measure for a tautologous formula is bases on
the number of clauses it contains. We give our own recursive definition of clauses below. Here, if A1 and A2

are sets, then A1 ∪∪ A2 := {ξ1 ∪ ξ2 | ξ1 ∈ A1, ξ2 ∈ A2}.
5.5.19. Definition. Let D be a λ-normal formulao. We shall define two sets, CD and VD, which are both sets
of sets of b-atom subformula occurrences in D, by joint induction on the boolean structure of D. CD is the
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set of clauses in D while VD is the set of “dual” clauses in D. Dual clauses have been called vertical paths
by Andrews (see [Andrews81]).

(1) If D is a b-atom, then CD := {{D}} and VD := {{D}}.
(2) If D = ∼D1 then CD := VD1 and VD := CD1 .

(3) If D = D1 ∨D2 then CD := CD1 ∪∪ CD2 and VD := VD1 ∪ VD2 .

(4) If D = D1 ∧D2 then CD := CD1 ∪ CD2 and VD := VD1 ∪∪ VD2 .

(5) If D = D1⊃D2 then CD := VD1 ∪∪ CD2 and VD := CD1 ∪ VD2 .

If B is a finite set, we write | B | to denote the cardinality of B.

The number cl(O), defined below, can be thought of as the maximum number of subproofs (sequents)
which must be examined in O before we have given justifications to all the proof lines in O. The naive
algorithm for constructing ND-proofs from outlines will in fact generate all of these subproofs before it
terminates. In general, many of these subproofs are redundant and/or trivial. In the next section we use a
criterion called focusing to recognize and avoid some of these subproofs.

5.5.20. Definition. Let A be a formulao, and let A′ be a λ-normal form of A. We define cl(A) to be the
number of clauses in A′, i.e. cl(A) :=| CA′ |. (Clearly, the choice of A′ does not affect this value.) Let
O = 〈L,Σ, {Rl}〉 be an outline with active lines. We define

cl(O) :=
∑

σ∈Σ

cl(Fm(Qσ)).

Let R be a list representation such that either 〈R, A〉 ∈ E or 〈∼R,∼A〉 ∈ E for some formula A. The measure
of R, #R, is defined to be the number of occurrences of ∧, ∨, ⊃, SEL, and expansion terms in R. We now
define the measure of the outline O to be the ordinal number

#O := ω · (cl(O)− |Σ |) +
∑

l

#Rl

where the sum is over active lines in O and ω is the order type of the natural numbers.

5.5.21. Example. If R is the list structure

(EXP (u (SEL v (⊃ Pv Pu)))(v (SEL w (⊃ Pw Pv))))

then #R = 6. If O is the outline in Example 5.10, then #R2 = 2, #R3 = 3, #R16 = 2, cl(O) =
cl(∼Pzy ∨ ∼[Pzy⊃Pz.c.Pz] ∨ Pz.c.Pz) = 2, and #O = ω · 1 + 7.

5.5.22. Proposition. If O is an outline and O′ is the result of applying a D- or P- transformation to O,

then cl(O) = cl(O′).
Proof. We shall prove this by showing that (a) if σ ∈ Σ gives rise to one sequent σ′ ∈ Σ′ then cl(Fm(Qσ)) =
cl(Fm(Qσ′)), or (b) if σ gives rise to two sequents σ′ and σ′′ then cl(Fm(Qσ)) = cl(Fm(Qσ′))+cl(Fm(Qσ′′)).

If the transformation applied was either D-Lambda or P-Lambda (case (a)), Qσ = Qσ′ , so we clearly
have cl(Fm(Qσ)) = cl(Fm(Qσ′)). If the transformation applied was either D-Neg or P-Neg when they only
remove double negations (case (a)), then Qσ′ is the result of removing a double negation from Qσ. Fm(Qσ′)
is then the result of dropping double negations from Fm(Qσ) and, clearly, cl(Fm(Qσ)) = cl(Fm(Qσ′)).
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If Qσ′ is the result of eliminating a top-level universal or existential node from Qσ (modulo double
negations), it is easy to show that cl(Fm(Qσ)) = cl(Fm(Qσ′)). Hence, this Proposition holds for the cases
where the transformation is either D-All, D-NotExists, D-Exists, P-All, P-Exists, or P-NotAll, which all fall
under case (b).

If the transformation applied was D-Conj (case (a)) then Qσ is [
∨

c∈Γ∼Qc] ∨∼[Q′b ∧Q′
c] ∨Qz and Qσ′

is [
∨

c∈Γ∼Qc] ∨ ∼Q′b ∨ ∼Q′c ∨Qz. Clearly, we then have cl(Fm(Qσ)) = cl(Fm(Qσ′)).

If the transformation applied was P-Disj1 then Qσ is [
∨

c∈Γz
∼Qc]∨ [Q′a ∨Q′

x] and Qσ′ is [
∨

c∈Γz
∼Qc]∨

∼∼Q′
a ∨Q′

x. Again, we then have cl(Fm(Qσ)) = cl(Fm(Qσ′)).

If the transformation applied was P-Imp then Qσ is [
∨

c∈Γz
∼Qc]∨ [Q′

a⊃Q′
x] and Qσ′ is [

∨
c∈Γz

∼Qc]∨
∼Q′a ∨Q′x. Again, we then have cl(Fm(Qσ)) = cl(Fm(Qσ′)).

If the transformation was P-Conj (case (b)) then Qσ is [
∨

c∈Γz
∼Qc]∨[Q′m∧Q′

y], Qσ′ is [
∨

c∈Γz
∼Qc]∨Q′

m,
and Qσ′′ is [

∨
c∈Γz

∼Qc] ∨Q′y. It is easy to now verify that cl(Fm(Qσ)) = cl(Fm(Qσ′)) + cl(Fm(Qσ′′)).

If the transformation was D-Disj then Qσ is [
∨

c∈Γ∼Qc]∨∼[Q′b∨Q′n]∨Qz, Qσ′ is [[
∨

c∈Γ∼Qc]∨∼Q′b∨Qz],
and Qσ′′ is [[

∨
c∈Γ∼Qc] ∨ ∼Q′

n ∨ Qz]. Again, it is easy to now verify that cl(Fm(Qσ)) = cl(Fm(Qσ′)) +
cl(Fm(Qσ′′)).

The only transformations left to consider are D-Imp and both D-Neg and P-Neg when they do not simply
remove double negations. But their application reduces to one of the transformation already considered.

Q.E.D.

5.5.23. Proposition. Let O be an outline and O′ be the result of applying a D- or P- transformation to

O. If the transformation was either P-Lambda or D-Lambda, or if it was P-Neg or D-Neg, when they only

remove double negations, then #O′ = #O. In all other cases, #O′ < #O.

Proof. First assume that the transformation was either D-Lambda or P-Lambda. Then | Σ |=| Σ′ | and
the expansion trees associated with active lines in O are the same as those associated with active lines in
O′. Hence, #O′ = #O. If the transformation was either D-Neg or P-Neg where only double negations were
removed, then again |Σ |=|Σ′ |. Also the #-value of the expansion trees associated with active lines do not
change since the number of negations in expansion trees are not counted. Thus #O′ = #O.

If the transformation applied was either D-Disj or P-Conj, then | Σ′ |>| Σ | and #O′ < #O. If the
transformation was any one of the remaining ones, then |Σ |=|Σ′ | and some ∧, ∨, ⊃, SEL, or expansion term
is removed from an expansion tree associated with some active line. Hence, again we must have #O′ < #O
since

∑
l #R′l <

∑
l #Rl. Q.E.D.

5.5.24. Theorem. Algorithm 5.18 terminates when applied to any proof outline. Hence, if R represents an

ET-proof of some formulao A, then Algorithm 5.18 will construct an ND-proof for A from the trivial outline

for A based on R. Similarly, a cut-free LKH-proof can be effectively constructed for the sequent →A.

Proof. We first consider the termination of this algorithm. The loop consisting of step (2) and the loop
consisting of step (3) must terminate. (By Proposition 5.23, the value of #O is not changed in these loops.)
Let us now look at the loop termination condition in line (4). Assume that O is an outline whose active
lines are all in λ-normal form and none of which are double negations, i.e. O has been processed by steps (2)
and (3). Now, an active lines, l, in O assert only signed atoms if and only if #Rl = 0. This latter condition
is also equivalent to cl(Fm(Qσ)) = 1 for each σ ∈ Σ. Hence, all the active lines in O assert signed atoms if
and only if #O = 0.

Now, each time we do step (5), the measure ofO decreases (Proposition 5.23). Hence, we must eventually
enter line (4) with #O = 0, which is equivalent to the termination condition.

52



5.5: Naive Construction of Proof Outlines

After the remaining sequents in O are processed by either RuleP1 or RuleP2 (guaranteed by Proposition
5.17), the final outline, since it contains no active lines, will be a completed ND-proof. If we had started
this algorithm on a trivial proof outline of A based on R, the resulting outline would then be an ND-proof
for A reflecting some of the structure of the ET-proof R. If we were to use Proposition 5.15, each time a
transformation (other than RuleP1 or RuleP2) was applied, we could build a LKH-proof figure (without
the cut inference) which has as leaves the sequents in Σ and has as a root the sequent →A. A complete
LKH-proof could then be constructed if we produce a cut-free LKH-proof of any sequent to which we have
applied either RuleP1 or RuleP2. In the case of RuleP1, we have two complementary, signed atoms A1 and
A2 which are the assertions of active lines, a1 and a2. We may assume that A2 conv-I ∼A1. Then the
sequent, Γ, a1, a2 −→ z, where Γ := Γz \ {a1, a2}, has the following cut-free proof.

A1 −→ A1 ∼−IA
A1,∼A1 −→

several Thinnings
Γ, A1,∼A1 −→ z

λ
Γ, A1, A2 −→ z

In the case of RuleP2, we have the following cut-free proof for Γ, a −→ z, where Γ := Γz \ {a}. Here, the
assertion in line a is an alphabetic variant of the assertion in line z.

a −→ a
several Thinnings

Γ, a −→ a
λ

Γ, a −→ z

Using these in two inference figures and the rules for constructing new inference figures given in Proposition
5.15, we can construct a cut-free LKH-proof for the sequent −→ A.

Notice that we now have a proof of Takahashi’s cut-elimination theorem ([Takahashi67]) for T , which
is a generalization of Gentzen’s Hauptsatz for T . If T̀ A, then A has an ET-proof which can be converted
to a cut-free LKH-proof of A. Q.E.D.

Notice that if we have an outline with a sponsoring line of the form A⊃B, it is a complete procedure to
try to prove B from the hypothesis A. That is, we do not need to have the contrapositive inference available
to build ND-proofs. Use of the contrapositive rule may, however, make an ND-proof more readable.

At this point we can add to our list of transformations four more transformations. They are useful to
note here since their use can result in shorter final ND-proofs. For example, the following transformation is
obviously valid.

RuleP
Let lines a1, . . . , an be some of the supports of z, such that [A1 ∧ . . .∧An]⊃A is tautologous. Then we can
change the justification of line z from NJ to RuleP : a1, . . . , an. Σ′ is Σ0.

(a1) H1 ` A1 RuleX

...
...

...

(an) Hn ` An RuleX

(z) H ` A NJ

==> (z) H ` A RuleP : a1, . . . , an
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5.5.25. Definition. A function, T , on outlines is called a safe transformation if whenever O is an outline and
O′ is the result of applying T to O, O′ is an outline for the same formula as O and #O′ < #O.

All the transformations described to this point, except D-Lambda, P-Lambda and D-Neg, P-Neg when
these simply remove double negations, are safe transformation. Any safe transformation can be added to the
set of transformations selected in line (5) of Algorithm 5.18 without upsetting the termination or correctness
of that algorithm. One easy way to show that a transformation is safe is to show that it is the composition
of several other safe transformations. Hence, we make the following definition.

5.5.26. Definition. A transformation for outlines, say T , is closely derived from other transformations,
T1, . . . , Tn if for any outlineO for which T is applicable, the outlinesO1 := T (O) andO2 := Tn(Tn−1 . . . (T1(O)) . . . )
are such that the sets {Qσ1 | σ1 ∈ Σ1} and {Qσ2 | σ2 ∈ Σ2} are the same modulo adding or dropping double
negations. The outlines O1 and O2 will generally differ in the non-active lines they contain. Notice, that any
clause in any subproof, Qσ1 , of O1 corresponds to a clause in some subproof, Qσ2 of O2, and vice versa.

If T is closely derived from D-Lambda, P-Lambda, D-Neg, P-Neg (when they only remove double
negations) and at least one safe transformations, T is safe.

Since there was nothing special about using the negation of the first disjunct as a hypothesis to prove
the second disjunct in P-Disj1, the following transformation behaves essentially the same.

P-Disj2

Set Σ′ := Σ0 ∪ {Γz, a→ y}. Since 〈Rz, A1 ∨A2〉 ∈ E , Rz = (∨ R1 R2). Set R′a := ∼R2 and R′y := R1.

(z) H ` A1 ∨A2 NJ ==>

(a) a ` ∼A2 Hyp

(x) H, a ` A1 NJ

(y) H ` ∼A2⊃A1 Deduct : x

(z) H ` A1 ∨A2 RuleP : y

We can also introduce the contrapositive transformation. This can be used whenever P-Imp is used.

P-Contrapositive

Set Σ′ := Σ ∪ {Γz, a→x} and Ra := ∼R2, Rx := ∼R1, where Rz := (⊃R1 R2).

(z) H ` A1⊃A2 NJ ==>

(a) a ` ∼A2 Hyp

(x) H, a ` ∼A1 NJ

(y) H ` ∼A2⊃∼A1 Deduct : x

(z) H ` A1⊃A2 RuleP : y

Notice that the active lines left after applying P-Contrapositive are those left after applying P-Disj2 to
the equivalent disjunctive form of line z. Thus, P-Contrapositive is closely derived from P-Disj2. Proposition
5.15 is still true if we add in the above three transformations. This is obvious in the case of RuleP and P-Disj2.
For the P-Contrapositive case, the following inference figure will work.

Γ,∼A2 −→ ∼A1 ∼−ES
Γ,∼A2, A1 −→ ∼−EA
Γ, A1 −→ A2 ⊃−IS
Γ −→ A1⊃A2

We can now describe how the ND-proof in Example 5.7 could be constructed by appling Algorithm 5.18
to the outline in Example 5.10. Below we list a possible sequence of transformations which this algorithm
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could apply to the outline. Along with the transformation, we list the sequents which are present in the
outline after that transformation was applied.

Transformation Sequents

P-Exists 2, 3→ 15
P-All 2, 3→ 14
D-All 3, 4→ 14

D-Exists 3, 5→ 13
D-All 5, 6→ 13
D-Imp 5, 8→ 10 5, 11→ 12

D-NotExists 5, 9→ 10 5, 11→ 12
RuleP1 5, 11→ 12
RuleP2 −

Section 5.6: Focused Construction of Proof Outlines

The outlines which are generated by the algorithm presented in the previous section are generally very
redundant. For example, assume that lines 1, 50, and 100 (shown below) are the active lines of an outline.

(1) H ` ∀x .Px ∨Mx RuleX

(50) H1 ` A1 NJ

(100) H2 ` A2 NJ

where R1, the expansion tree for line 1, has the list representation (EXP (t′ R′) (t′′ R′′)) for some formulas
t′, t′′ and list structures R′, R′′, and line 1 supports both lines 50 and 100. In order to process line 1, we
would apply D-All to it twice (assuming that t′ and t′′ are admissible in this outline). The new active lines
would then be:

(2) H ` Pt′ ∨Mt′ ∀I : 2
(3) H ` Pt′′ ∨Mt′′ ∀I : 2
(50) H1 ` A1 NJ

(100) H2 ` A2 NJ

where the expansion trees for line 2 and 3 are R2 = R′ and R3 = R′′. Here, lines 2 and 3 support both lines
50 and 100. As is often the case, both instances of line 1 need not be needed to support the sponsors of
line 1. For example, assume that line 2 is needed to finish proving line 50 but is not necessary to prove line
100, while line 3 is needed to finish proving line 100 but not line 50. In this case, we would like to remove
line 3 as a support from line 50 and remove line 2 as a support of line 100. This would result in focusing
the outline building process. The resulting ND-proof would be much easier to read. Also, once an outline
becomes unfocused in this sense, it can become crowded with unnecessary lines. For example, in the above
outline fragment, if we applied D-Disj to line 2 twice (in order to “deactivate” it) while it supports both
lines 50 and 100, we would get an outline whose active lines are shown below.

(3) H ` Pt′′ ∨Mt′′ ∀I : 3
(4) 4 ` Pt′ Hyp

(25) H1, 4 ` A1 NJ

(26) 26 ` Mt′ Hyp

(49) H1, 26 ` A1 NJ

(51) 51 ` Pt′ Hyp
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(75) H2, 51 ` A2 NJ

(76) 76 ` Mt′ Hyp

(99) H2, 76 ` A2 NJ

where the justification for lines 50 and 100 are changed to be Cases : 2, 25, 49 and Cases : 2, 75, 99, resp.
If we could have determined that line 2 was not needed to prove line 100, then we would not have added
lines 49,51,75,76, or 99 when we applied D-Disj. Also notice that line 3, in the above outline, is a support
for lines 25, 49, 75, and 99, and hence, if we were to apply D-Disj with respect to these lines, we would
get 8 new sponsoring lines and 8 new supporting lines. After these applications of D-Disj, we would have a
total of 24 new lines added to our outline. If we could have simplified the the supports prior to doing these
transformations, we would have only entered 8 new lines.

To use a disjunction in a deduction, we generally have to argue by cases and much of the case analysis
in the above example is often unavoidable. However, if we wish to use an implication in a deduction, we
seldom use the Rule of Cases on the equivalent disjunctive form of this implication. Unfortunately, this is
how our naive algorithm will use such a support line. Much more appropriate would, of course, be to use
such a line in conjunction with modus ponens. But again, this requires us to have some ability to look ahead
to see exactly when modus ponens is correct. As it turns out, a solution to the problem of determining
which support lines are truly needed to prove their sponsoring line also provides us with the tools needed to
determine when modus ponens can correctly be used with an implicational support line. Below we introduce
several concepts which will allow us to solve these problems.

5.6.27. Definition. Let D be a λ-normal formulao. Let M be a set of unordered pairs of b-atom subformula
occurrences of D, such that if {H, K} ∈ M, then H conv-I K, and either H occurs positively and K occurs
negatively in D, or H occurs negatively and K occurs positively in D. Such a set M is called a mating for
D. If {H,K} ∈ M we say that H and K are M-mated, or simply mated if the mating can be determined
from context. If it is also the case that for any ξ ∈ CD there is a {H,K} ∈ M such that {H, K} ⊂ ξ, then we
say that M is a clause-spanning mating (cs-mating, for short) for D. In this case, we shall also say that M
spans D. If D is a set of λ-normal formulaso, we say that M is a mating (cs-mating) for D if M is a mating
(cs-mating) for ∨D. Here, the order by which the disjunction ∨D is constructed is taken to be arbitrary but
fixed.

The notion of a mating used by Andrews in [Andrews81] is a bit more general than the one we have
defined here. In that paper, a mating, M, was a set of pairs, 〈H, K〉, such that there was a substitution
θ which made them complementary, i.e. θK = ∼θH. Except for this difference, the notion of a cs-mating
corresponds very closely to his notion of a p-acceptable mating. Bibel in [Bibel81] also exploits matings for
various theorem proving and metatheoretical application.

5.6.28. Definition. Let H be a b-atom subformula occurrence in D. Let Ĥ be equal to H if H occurs
positively in D and ∼H otherwise. (Notice that although Ĥ is defined with respect to D, we drop this
reference to D for notational convention.) We also define

ĈD :=
∧

ξ∈CD

∨

H∈ξ

Ĥ and V̂D :=
∨

ξ∈VD

∧

H∈ξ

Ĥ.

Here, ĈD is a conjunctive normal form of D and V̂D is a disjunctive normal form of D. It is straightforward
to show that D ≡ ĈD and D ≡ V̂D.
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5.6.29. Proposition. Let D be in λ-normal form. D is tautologous if and only if D has a cs-mating.

Proof. Since D ≡ ĈD, D is tautologous if and only if every
∨

H∈ξ Ĥ is tautologous for each ξ ∈ CD. But
∨

H∈CD
Ĥ is tautologous if and only if ξ contains two b-atom subformulas occurrences H and K of D such

that one occurs positively and the other occurs negatively in D and H conv-I K. This is precisely the

criterion by which D has a cs-mating. Q.E.D.

5.6.30. Definition. Let D be a finite, nonempty set of formulaso, and let M be a mating for D. With

respect to D and M, define ≈0 to be the binary relation on D such that when D1, D2 ∈ D, D1 ≈0 D2 if D1

contains a b-atom subformula occurrence H and D2 contains a b-atom subformula occurrence K such that

{H, K} ∈ M. Let ≈ be the reflexive, transitive closure of ≈0. Clearly ≈ is an equivalence relation on D. If

D ∈ D, we shall write [D]≈ to denote the equivalence class (partition) of D which contains D.

5.6.31. Theorem. Let D be a finite, nonempty set of formulaso. M is a cs-mating for D if and only if M
spans at least one of the ≈-partitions of D.

Proof. Assume that while M is a cs-mating for D, M does not span any ≈-partition of D. Let P1, . . . ,Pn

be the ≈-partitions of D. Hence, for each i = 1, . . . , n, there is a clause in ∨Pi, ξi ∈ C∨Pi , which does contain

a mated pair. Let ξ := ξ1 ∪ . . . ∪ ξn. ξ is a clause in ∨D and hence, must have a mated pair H and K, and

these are such that there are distinct integers i, j such that 1li, jln and H ∈ ξi and K ∈ ξj . This implies

that there is some formula, E ∈ Pi, and some formula F ∈ Pj such that E ≈0 F . This contradicts the fact

that Pi and Pj are distinct ≈-partitions. Hence, M must span some ≈-partition of D.

The converse is trivially true. Q.E.D.

Below is our definition of such a criterion. The information necessary in making this determination is

contained in the connection information of a cs-mating.

5.6.32. Definition. Let O = 〈L, Σ, {Rl}〉 be an outline and for each σ ∈ Σ, let Mσ be a cs-mating for

Fm(Qσ). Set M :=
⋃

σ∈ΣMσ. M is called a cs-mating for O. (Notice that M is also a cs-mating for each

Fm(Qσ).) Let Dl be the formula Fm(Ql) if l is a sponsoring line or Fm(∼Ql) if l is a supporting line. Let

σ ∈ Σ be a sequent Γz → z, and let Dσ be the set of formulas Dσ := {Dl | l ∈ Γz} ∪ {Dz} if z does not

assert ⊥ or Dσ := {Dl | l ∈ Γz} if z does assert ⊥. Notice, that Qσ =
∨

l Dl where the disjunction is taken

over the (active) lines in σ. We say that O is M-focused if for each σ ∈ Σ, Dσ is composed of exactly one

≈-partition.

Let O = 〈L, Σ, {Rl}〉 be an outline and let M be a cs-mating for Fm(Qσ). If O is not M-focused, then

there must be a σ ∈ Σ such that Dσ has too many members, i.e. there are at least two ≈-partitions of Dσ.

The above theorem tells us that we really only require one partition. What we need is a transformation

which will permit us to remove elements of Dσ. Since this may be done by either removing a support from

a sponsoring line or by changing the assertion of the sponsoring line to ⊥, we need the following two outline

transformations.
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P-Thinning
We may replace line z with line y as a sponsoring line, provided that what we get is still an outline. In this
case, set Σ′ := Σ0 ∪ {Γz → y}, where Σ0 := Σ \ {Γz → z}.

(z) H ` A NJ ==>
(y) H ` ⊥ NJ

(z) H ` A RuleP : y

D-Thinning

If line a supports line z, then we can drop line a as a support of line z, provided that what we get is still an
outline.

Notice that Proposition 5.22 is not true of these transformations. In particular, if O′ results from
applying either P-Thinning or D-Thinning to an outline O, cl(O′)lcl(O). This helps account for the fact
that using these transformations will generally shorten the final ND-proofs derived from them, since the
maximum number of subproofs we need to examine has been reduced.

Although the provisos for these two transformations are very strong, we shall still be able to focus an
outline which is not focused by applying these two transformations. The following algorithm will preform
this task.

5.6.33. Algorithm. Let the outline O = 〈L,Σ, {Rl}〉 and the cs-mating M for O be given. For each σ ∈ Σ,
do steps (1) and (2) below.

(1) Let P be a ≈-partition of Dσ which is spanned by M. Let B := Γz ∪ {z} if z does not assert ⊥
and B := Γz, otherwise. Hence, Dσ = {Dl | l ∈ B}. Let B′ be the set B less those lines l such that
Dl ∈ P.

(2) If B′ is not empty, then for each l ∈ B′ do either step (2.1) or step (2.2).

(2.1) If l = z then apply P-Thinning to remove z as a sponsoring line.

(2.1) If l ∈ Γz then apply D-Thinning to remove l as a support of line z.

5.6.34. Theorem. Let O = 〈L,Σ, {Rl}〉 be an outline, and let M be a cs-mating for O. If O is not

M-focused, then Algorithm 5.33, when applied to O and M, will produce an outline which is M-focused.

Proof. Let O′ = 〈L′, Σ′, {R′l}〉 be the structure which results from applying either P- or D-Thinning to
an outline O as determined by the algorithm above. Of the five conditions to check to verify that O′ is an
outline, only the last one needs to be looked at closely here. Now, let σ ∈ Σ be the sequent affected by the
application of the P- or D-Thinning transformation, and let σ′ be the sequent that derives from σ. In either
of the thinning transformations, Dσ′ ⊂ Dσ, so <Q′σ is a subrelation of <Qσ and, therefore, is acyclic. Also,
since Dσ′ contains a ≈-partition which is spanned by M, ∨D′, and therefore Fm(Qσ′), is tautologous, and
O′ is an outline. Thus each application of a thinning transformation is valid. It is easy to see that when the
algorithm halts, the resulting outline must be M-focused.

Notice that Proposition 5.15 is still true if we were to permit the thinning transformations to be used
along with the transformations listed in Definition 5.12. If we have a cut-free LKH-proof of the sequent σ′

then we get one for σ by simply adding the Thinning inference to this LKH-proof figure. Q.E.D.

Now that we know how to focus an outline, we look at how to modify some of our transformations so
that a focused outline can often be transformed directly to another focused outline without applying either
the P- or D-Thinning transformations explicitly. Consider the following transformations.

58



5.6: Focused Construction of Proof Outlines

P-DropDisji
Let i = 1, 2, and set j := 3 − i. Let M be a cs-mating for Qσ, let Q1 ∨ Q2 := Qz, and let D :=
{Fm(∼Ql) | l ∈ Γz}. If there is a ≈-partition of D ∪ {Fm(Qi)} which is spanned by M, then we can drop
the disjunct Aj , as below. Here, R′y := Qi and Σ′ := Σ0 ∪ {Γz → y}.

(z) H ` A1 ∨A2 NJ ==>
(y) H ` Ai NJ

(z) H ` A1 ∨A2 RuleP : y

Notice that P-DropDisj1 is a closely derived transformation since we would have the essentially the same
effect (i.e. an outline with the same active lines) if we had first applied P-Disj1 and then applied D-Thinning
to remove the hypothesis line a from its support line. P-DropDisj2 is related to P-Disj2 in the same fashion.

D-BackChaini

Let i = 1, 2 and set j := 3− i. Let a be a disjunctive support line which is supported by z, and let σ be the
sequent Γ, a→ z. Let M be a cs-mating for Fm(Qσ), (∨ R1 R2) := Ra, Q1 := rep[[R1, A1]], Q2 := rep[[R2,

A2]], and D := {Fm(∼Qi)} ∪ {Fm(∼Ql) | l ∈ Γ}. If D is spanned by M then add the lines below to the
outline. If we let Σ0 := Σ \ {Γz → z} then Σ′ := Σ0 ∪ {Γ→m, Γ, n→x}. Also, set R′m := ∼Ri, R′n := Rj ,
and R′x := Rz.

(a) H ` A1 ∨A2 RuleX

(z) H1 ` C NJ
==>

(m) H1 ` ∼Ai NJ

(n) n ` Aj Hyp

(x) H1, n ` C NJ

(y) H1 ` Aj ⊃C Deduct : x

(z) H1 ` C RuleP : a,m, y

In order to justify this transformation, we shall show that D-BackChaini is closely derived from D-Disj
and P-Thinning. We do this by showing that if O is an outline for which D-BackChaini can be applied
to the disjunctive support line a to get the outline O1 = 〈L1, Σ1, {R1

l }〉, then D-Disj and P-Thinning
can be applied to O in such a fashion that a third outline O2 = 〈L2,Σ2, {R2

l }〉 is constructed such that
{Qσ | σ ∈ Σ1} = {Qσ | σ ∈ Σ2}. Let σ be a sequent in O of the form Γ, A1 ∨ A2→ z, such that the
proviso that D is spanned by M is satisfied. After applying D-BackChain, σ gives rise to the two sequents
σ1 := Γ→∼Ai and σ2 := Γ, Aj → z. If we were to apply D-Disj to line a in O, σ gives rise to the two sequents
σ3 := Γ, Ai→ z and σ4 := Γ, Aj → z. Since D = Dσ3 \ {Fm(Qz)} and it is spanned by M, line z would be
one of the lines our thinning Algorithm 5.33 would remove as a sponsoring line. Hence, the structure, say
O2, which results from applying P-Thinning to line z is thus an outline, with the sequents σ5 := Γ, A1→
and σ4 replacing σ in O. But since Qσ1 = Qσ5 and Qσ2 = Qσ4 , {Qσ | σ ∈ Σ1} = {Qσ | σ ∈ Σ2}. Hence,
D-BackChain is closely derived from D-Disj and P-Thinning.

Since implication can be thought of disjunctively (in T , anyway), the following two transformations can
be thought of as two variants of D-BackChaini (which is the reason the D-BackChain transformation was
given its name).

D-ModusPonens
Let M be a cs-mating for Fm(Qσ). Let a be an implicational support line, which is sponsored by line z

and let σ be the sequent Γ, a→ z, (⊃ R1 R2) := Ra, Q1 := rep[[R1, A1]], Q2 := rep[[R2, A2]], and D :=
{Fm(Q1)} ∪ {Fm(∼Ql) | l ∈ Γ}. If D is spanned by M then add the lines below to the outline, otherwise
this transformation cannot be applied. If we set Σ0 := Σ \ {Γz → z} then Σ′ := Σ0 ∪ {Γ→m, Γ, n→x}.
Also, set R′m := R1, R′n := R2, and R′x := Rz.
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(a) H ` A1⊃A2 RuleX

(z) H1 ` C NJ
==>

(m) H1 ` A1 NJ

(n) n ` A2 Hyp

(x) H1, n ` C NJ

(y) H1 ` A2⊃C Deduct : x

(z) H1 ` C RuleP : a,m, y

D-ModusTollens
This is a same as above, except that D := {Fm(∼Q2)} ∪ {Fm(∼Ql) | l ∈ Γ} and R′m := ∼R2, R′n := ∼R1,
and R′x := Rz.

(a) H ` A1⊃A2 RuleX

(z) H1 ` C NJ
==>

(m) H1 ` ∼A2 NJ

(n) n ` ∼A1 Hyp

(x) H1, n ` C NJ

(y) H1 ` ∼A1⊃C Deduct : x

(z) H1 ` C RuleP : a,m, y

If A2 conv-I C in D-ModusPonens, we clearly do not need to add lines n, x, y to the outline if we also
give line z the justification RuleP : a, m. This way we could avoid proving an obvious subproof. This
strengthed form of D-ModusPonens is not technically a closely derived transformation in the strong sense of
5.26, but this modification is clearly valid. The same comments apply to D-ModusTollens if A1 and C are
complementary.

Now we show how we can construct a much more readable ND-proof from the proof outline in Example
5.10. If to that outline we applied P-Exists, P-All, and apply D-All to line 2 and then line 3, we have the
following outline.

(1) 1 ` ∃c ∀p .[∃u .pu]⊃ .p.cp Hyp

(2) 2 ` ∀x ∃y .Pxy Hyp

(3) 3 ` ∀p .[∃u .pu]⊃ .p.cp Hyp

(4) 2 ` ∃y .Pzy ∀I : z, 2
(5) 3 ` [∃u .Pzu]⊃ .P z.c.Pz ∀I : Pz, 3
(14) 2, 3 ` Pz.c.Pz NJ

(15) 2, 3 ` ∀z .Pz.c.Pz ∀G : 14
(16) 2, 3 ` ∃f ∀z .Pz.fz ∃G : [λv.c.Pv], 15
(17) 1, 2 ` ∃f ∀z .Pz.fz RuleC : 1, 16
(18) 1 ` [∀x ∃y .Pxy]⊃ .∃f ∀z .Pz.fz Deduct : 17
(19) ` [∃c ∀p .[∃u .pu]⊃ .p.cp]⊃

[∀x ∃y .Pxy]⊃∃f ∀z .Pz.fz Deduct : 18

The active lines are 4, 5, 14 and the expansion trees associated with them are

R4 = (SEL y Pzy)
R5 = (⊃ (EXP (y Pzy)) Pz.c.Pz)
R14 = Pz.c.Pz.

These actives line form the sequent 4, 5→ 14. Let Q4, Q5, Q14 be the trees represented by R4, R5, R14, resp.
Then we have

D4 := ∼Fm(Q4) = ∼Pzy = A1
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D5 := ∼Fm(Q5) = ∼.P zy⊃Pz.c.Pz = ∼.A2⊃A3
D14 := Fm(Q14) = Pz.c.Pz = A4

where A1, A2, A3, A4 are used to name b-atom occurrences. If we set M := {(A1, A2), (A3, A4)}, it is easy
to verify that M is a cs-mating for the set {D4, D5, D14} and, therefore, for the entire outline. To check if
the proviso on D-ModusPonens holds with respect to line 5, we first build the set D := {A2,∼A1} and then
check whether M is a cs-mating for this set. Since, this is indeed the case, we can apply D-ModusPonens to
this outline. If we use the strong form described above, we would add the new line

(6) 3 ` ∃u Pzu NJ

and change the justification of line 14 to be RuleP : 5, 6. The RuleP transformation could be applied to the
resulting outline to give the justification of RuleP : 4 to the new line 6. The use of modus ponens in this
case is quite obvious. In fact, even the strong form of the our D-ModusPonens transformation over looked
the fact that we did not need to enter the new line 6, since it was essentially already present as line 4. In an
implementation of the D- and P- transformations, when the schemes listed above mention that a new proof
line should be entered, it should only be entered if it in fact is not already present.

Appendix 2 contains a more involved example where the use of D-ModusPonens is not so obvious.
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APPENDIX A

Two Independence Results

Section A.1: Introduction

If we restrict our attention to formulas of T which are first-order in nature, ET-proofs would essentially

satisfy Gentzen’s “subformula property” (see [Gentzen35]). Proof structures with this property can provide

valuable information concerning the metatheory of the logic being investigated. For example, from the

completeness of cut-free LK derivations, Gentzen was able to conclude, using the subformula property of

these derivations, that first-order logic is consistent. Because the nature of substitution in HOL is much

more complex than in the first-order case, it would be unreasonable to expect to find proof structures for

T with Gentzen’s formulation of the subformula property. Instead, let us say that a proof structure for

a formula A has the “generalized subformula property” if that structure is composed of subformulas of

A or of subformulas of substitution instances of formulas in the structure. Clearly, ET-proofs have the

generalized subformula property. So too are the two natural deduction-style proof structures which we

presented in Chapter 5. It turns out that completeness results for such proof structures can also provide

valuable information concerning the metatheory of T . For example, the refutation system described in

[Andrews74] has the generalized subformula property and this was used by Andrews to demonstrate that

equality in T was rather weak and nonextensional. In Section 5.2, we shall repeat his demonstration using

ET-proofs rather than refutations to prove these same results. The availability of list representations will

make these proofs straightforward. In Section 5.3 we shall use this same property of ET-proofs to show

that the Axioms of Choice and Descriptions are not derivable in T . These proofs are very much different

than the frame-semantic proofs of these independence results provided by Andrews in [Andrews72a]. The

proofs presented there, however, are a bit stronger since he was working in a formulation of HOL which was

extensional.

Smullyan’s term analytic, for describing certain types of proof systems (see [Smullyan68]), is a much

better term than the more vague “generalized subformula property.” ET-proofs are clearly analytic in

Smullyan’s sense.
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Section A.2: Equality is Nonextensional in T

As is well known for T , the equality relation, Eoαα, for any type α, can be defined by the formula
[λxαλyα∀Uoα .Ux⊃Uy]. We shall generally write the formula EoααAB in the more familiar infix nota-
tion, A = B. After we define our notion of a substitution for a list of variables, we shall then prove, using
ET-proofs, Theorem 2 of [Andrews74].

A.2.1. Definition. A substitution θ for a finite list of variables x1, . . . , xn (n ≥ 0) is a set of pairs
{(x1, t1), . . . , (xn, tn)} such that for each i = 1, . . . , n, xi and ti have the same type. The application of θ

to A is the formula θA := ρ([λx1 . . . λxn.A]t1 . . . tn). Notice that if θ = {(x, t)} then θA and ρ( .S
x
t
A) are the

same formula, where the operator .S
x
t

was defined in Chapter 2.

A.2.2. Theorem. Let T be the formula ∃x1 . . . ∃xn .A = B where A and B are formulasα. T̀ T if and

only if there is a substitution, θ, for the variables x1, . . . , xn such that θA and θB are the same formula.

Proof. We can assume that all the variables, x1, . . . , xn are distinct, since we could easily remove the vac-
uous occurrences of a duplicated variables. First assume that such a substitution θ = {(x1, t1), . . . , (xn, tn)}
exists. Let R be the list structure

(EXP (t1 . . . (EXP (tn (SEL U (⊃ U [θA] U [θB])))) . . .))

where U is a variableoα different from x1, . . . , xn and not free in t1, . . . , tn, A,B. Clearly, R represents an
expansion tree which is an ET-proof for T .

Now assume that T̀ T . For the sake of readable, assume that n = 2. How to proceed when n is other
than 2 will be clear. T must then have an ET-proof Q with a list representation given by

(EXP (t1 (EXP (s1
1 (SEL U1

1 R1
1)) . . . (s1

p1
(SEL U1

p1
R1

p1
))))

...
(tq (EXP (sq

1 (SEL Uq
1 Rq

1)) . . . (sq
pq

(SEL Uq
pq

Rq
pq

)))))

where t1, . . . , tq are formulas of the same type as x1, s1
1, . . . , sq

pq
are formulas of the same type as x2,

U1
1 , . . . , Uq

pq
are distinct variablesoα such that U i

j is not free in either ti or si
j , and if θi

j := {(x1, ti), (x2, s
i
j)}

then Ri
j is the list structure (⊃ Ai

j Bi
j) where Ai

j = θi
j(U

i
jA) and Bi

j = θi
j(U

i
jB). Now Fm(Q) is truth-

functionally equivalent to
[A1

1⊃B1
1 ] ∨ . . . ∨ [Aq

pq
⊃Bq

pq
].

Since this must be tautologous there must be integers i, j, k, l such that 1li, klq, 1ljlpi, 1lllpk, and Ai
j and

Bk
l are the same formula. Since the head of Ai

j is U i
j and for Bk

l it is Uk
l , i = k and j = l. But this implies

that θi
jA and θi

jB are the same formula. Hence, the desired substitution is θi
j . Q.E.D.

A.2.3. Corollary. The η-rule scheme formulas

(ηαβ) ∀fαβ [λx.fx] = f

and, therefore, the Axiom of Extensionality scheme formulas

(EXαβ) ∀fαβ ∀gαβ .∀xβ [fx = gx]⊃ f = g

are not derivable in T .

Proof. If (ηαβ) were derivable, then for any particular variableαβ f , T̀ [λx.fx] = f . But this contradicts
the preceding theorem (when n = 0). Also, it is easy to show that T̀ ∀x .[λx.fx]x = fx. Hence, if EXαβ

were provable in T then we would be able to conclude that T̀ [λx.fx] = f . Hence, EXαβ is not derivable
in T . Q.E.D.
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Section A.3: The Axioms of Choice and Descriptions are Not Derivable in T

As in [Andrews72a], let the Axiom of Choice be given by the formula scheme

(ACα) ∃cα(oα) ∀poα .[∃xα px]⊃ p.cp

and let the Axiom of Descriptions be given by the formula scheme

(Dα) ∃ια(oα) ∀xα .x = ι[Eoααx].

The fact that T̀ ACα⊃Dα is easy to verify by providing the following ET-proof. Notice that this ET-proof
is not grounded since two of its leaves are labeled with y = c.Ey, which is an abbreviation of a universally
quantified formula. Also notice that the formula Eoααyα represents the singleton set containing y.

(⊃ (SEL c (EXP (Ey (⊃ (EXP (y (SEL Uoα (⊃ Uy Uy)))) y = c.Ey))))
(EXP (c (SEL y y = c.Ey))))

If we prove that Dα is not derivable, it will immediately follow that ACα is not derivable. Andrews showed
that ACι and Dι were not derivable in a system of higher-order logic which was extensional. His proofs
were based on the use of frame semantics. Below we shall prove that ACα and Dα are not derivable in T by
a simpler argument which uses the completeness result for ET-proofs. Since T is nonextensional, Andrews
results are actually a bit stronger than the ones presented below.

A.3.4. Theorem. Dα is not derivable in T .

Proof. Let α be any type symbol, and assume that T̀ Dα. Thus Dα must have an ET-proof Q with a
list representation of the form

(EXP (ι1 (SEL x1 (SEL R1 (⊃ R1[ι1.Ex1] R1x1))))
...

(ιn (SEL xn (SEL Rn (⊃ Rn[ιn.Exn] Rnxn)))))

where n ≥ 1, x1, . . . , xn are distinct variablesα, R1, . . . , Rn are distinct variablesoα, and ι1, . . . , ιn are
formulasα(oα). Fm(Q) is then truth-functionally equivalent to a λ-normal form of

[R1[ι1.Ex]⊃R1x1] ∨ . . . ∨ [Rn[ιn.Ex]⊃Rnxn].

But this is tautologous only if there are two integers i, j such that 1li, jln and Rixi conv Rj .ιj .Exj . This is
only possible if i = j and xi conv ιi.Exi. Using Huet’s unification algorithm [Huet75], we can then say that
the disagreement pair 〈xi, ι.Exi〉, where ι is a some variableα(oα) must have a unifier, θ = {(ι, ιi)}. However,
Huet’s MATCH procedure yields as the only possible unifier the formula ιi = [λwoα.xi]. But this implies
that the dependency relation <Q is cyclic — xi is free in ιi and is selected in the scope of the ιi expansion
— which contradicts the fact that Q is an ET-proof. Hence, Dα has no ET-proof and is, therefore, not
derivable in T . Q.E.D.

As we mentioned above, the fact that ACα is not derivable in T follows immediately. A direct proof of
this fact, however, could be done in a fashion identical to the above proof.
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APPENDIX B

An Example

If the function fιι has an iterate gιι = f ◦ . . . ◦ f (where the composition is done n ≥ 1 times) which has a

unique fixed point, then f must have a fixed point. This theorem is easily stated in HOL. First, let Jo(ιι)(ιι)

represent the relation among functions from individuals to individuals such that Jfg is true if g is an iterate

of f . J can be defined as the following λ-term.

λfλg∀po(ιι) .[pf ∧ ∀hιι .ph⊃ p.λtι.f.ht]⊃ pg

Also, let the expression ∃1x.Px be an abbreviation for the formula

∃x .Px ∧ ∀y .Py⊃ y = x.

Equality is an abbreviation for the formula λxλy∀U .Ux⊃Uy, as described in the previous appendix. Now

let Ψ be the following HOL formula. (See [Andrews71] for a refutation of ∼Ψ.)

∀f .[∃g .Jfg ∧ ∃1x .gx = x]⊃∃y .fy = y

In order to deal with abbreviations within proof structures, we shall adopt the following simplistic ap-

proach to them. If B is a formula containing abbreviations, and B′ is the result of replacing all abbreviations

with the formulas which stand for them, then if Q is an expansion tree for B′, we shall also say that Q is an

expansion tree for B. In the context of outlines, we introduce the Def inference rule which permits us to

infer the result of introducing or removing an abbreviation. We also allow the following two transformation

rules.

D-Def
Let a be a supporting line with assertion A. If A is a top-level abbreviations, let B be the result of removing
that abbreviation from A. Set R′b := Ra and construct Σ′ by replacing line a with the line b in each sequent
of Σ.

(a) H ` A RuleX ==> (b) H ` B Def : a
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P-Def
Let z be a sponsoring line with assertion A. If A is a top-level abbreviation, let B be the result of removing
that abbreviation from A. Set Σ′ := Σ0 ∪ {Γz → y} and R′y := Rz. (Σ0 := Σ \ {Γz → z}.)

(z) H ` A NJ ==>
(y) H ` B NJ

(z) H ` A Def : y

Now to return to our theorem Ψ. In order to specify an ET-proof for Ψ, we first define some smaller
trees.

R50 = (∧ (SEL U (⊃ U [f.fx] U [f.fx]))
(SEL h (⊃ (EXP (λx.V [fx] (⊃ V [f.h.fx] V [f.f.hx])))

(SEL V (⊃ V [f.h.fx] V [f.f.hx])))))

R7 = (EXP (λx.U [fx] (⊃ U [f.gx] U [fx])))

R51 = (EXP (U (⊃ U [g.fx] U [f.gx])))

R92 = (SEL U (⊃ U [g.fx] U [fx]))

R100 = (SEL f (⊃ (SEL g (∧ (EXP (λk.k[fx] = f [kx] (⊃ R50 R51)))
(SEL x (∧ R7

(EXP ([fx] (⊃ R92 (EXP (W (⊃ W [fx] Wx))))))))))
(EXP (x (SEL w (⊃ W [fx] Wx))))))

It is easy to checked that R100 is an ET-proof for Ψ. We now show how an outline for Ψ can be built
by applying outline transformation rules. Assume that we start with the trival outline for Ψ based on R100,
where the sole line in this outline is 100. We can then apply the following transformations. Listed with the
transformation is the set of sequents associated with the outline which results after the transformation is
applied. We shall freely use the λRules without explicitly specifying them.

Transformation Sequents

P-All → 99
P-Imp 1→ 98

D-Exists 2→ 97
D-Conj 3, 4→ 97
D-Def 3, 5→ 97

D-Exists 3, 6→ 96
P-Exists 3, 6→ 95
D-Conj 3, 7, 8→ 95
D-Def 7, 8, 9→ 95

The lines in the resulting outline are the following.

(1) 1 ` ∃g .Jfg ∧ ∃1x .gx = x Hyp

(2) 2 ` Jfg ∧ ∃1x .gx = x Hyp

(3) 2 ` Jfg RuleP : 2
(4) 2 ` ∃1x.gx = x RuleP : 2
(5) 2 ` ∃x .gx = x ∧ ∀z .gz = z ⊃ z = x Def : 4
(6) 6 ` gx = x ∧ ∀z .gz = z ⊃ z = x Hyp

(7) 6 ` gx = x RuleP : 6
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(8) 6 ` ∀z .gz = z ⊃ z = x RuleP : 6
(9) 2 ` ∀p .[pf ∧ ∀h .ph ⊃ p.λt.f.ht] ⊃ pg Def : 3
(95) 1, 2, 6 ` fx = x NJ

(96) 1, 2, 6 ` ∃y .fy = y ∃G : 95
(97) 1, 2 ` ∃y .fy = y RuleC : 5, 96
(98) 1 ` ∃y .fy = y RuleC : 1, 97
(99) ` [∃g .Jfg ∧ ∃1x .gx = x]⊃∃y .fy = y Deduct : 98
(100) ` ∀f .[∃g .Jfg ∧ ∃1x .gx = x]⊃∃y .fy = y ∀G : 99

We now apply the following transformations to this outline.

Transformation Sequents

D-All 7, 9, 10→ 95
D-ModusPonens 7, 9→ 94

D-All 7, 11→ 94
D-ModusPonens 7→ 50 7, 51→ 92

D-Thinning → 50 7, 51→ 92

The resulting outline contains the following additional lines.

(10) 6 ` g[fx] = fx⊃ fx = x ∀I : fx, 8
(11) 2 ` [f [fx] = f [fx] ∧ ∀h .h[fx] = f [hx] ⊃ f [h[fx]] = f [f [hx]]]⊃

g[fx] = f [gx] ∀I : λk.k[fx] = f [kx], 9
(50) 1, 2, 6 ` f [fx] = f [fx] ∧ ∀h .h[fx] = f [hx] ⊃ f [h[fx]] = f [f [hx]] NJ

(51) 51 ` g[fx] = f [gx] Hyp

(92) 1, 2, 6, 51 ` g[fx] = fx NJ

(93) 1, 2, 6 ` g[fx] = f [gx]⊃ g[fx] = fx Deduct : 92
(94) 1, 2, 6 ` g[fx] = fx RuleP:11,50,93

Let us look closer at the last two transformations. Prior to the application of D-ModusPonens the only
sequent in the outline was 7, 11 −→ 94. The list representations associated with line 7 is given above. The
list representations for lines 11 and 94 are given below.

R11 = (⊃ R50 R51)
R94 = R92

We now must define the following formulaso in order to determine how D-ModusPonens was used.

D7 := ∼Fm(Q7) = ∼.U [f.gx]⊃U [fx]
D11 := ∼Fm(Q11) = ∼. [[U [f.fx]⊃U [f.fx]]∧

.[V [f.h.fx]⊃V [f.f.hx]]⊃ .V [f.h.fx]⊃V [f.f.hx]]
⊃ .U [g.fx]⊃U [f.gx]

D′ := [U [f.fx]⊃U [f.fx]] ∧ .[V [f.h.fx]⊃V [f.f.hx]]⊃ .V [f.h.fx]⊃V [f.f.hx]
D′′ := ∼.U [g.f.x]⊃U [f.gx]
D94 := Fm(Q94) = U [g.fx]⊃U [fx]
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Notice that D11 ≡ .D′ ∧D′′. If we rewrite these formulas using names to replace b-atom occurrence within
these formulas, we would have something like the following.

D7 := ∼Fm(Q7) = ∼.A1⊃A2
D11 := ∼Fm(Q11) = ∼. [[A3⊃A4] ∧ .[A5⊃A6]⊃ .A7⊃A8]

⊃ .A9⊃A10
D′ := [A3⊃A4] ∧ .[A5⊃A6]⊃ .A7⊃A8
D′′ := ∼.A9⊃A10
D94 := Fm(Q94) = A11⊃A12

Set D := {D7, D11, D94}. A cs-mating for ∨D would be

M := {(A1, A10), (A2, A12), (A3, A4), (A5, A7), (A6, A8), (A9, A11)}.

Notice that M spans the set {D7, D
′}. Hence, we can call D-ModusPonens as was specified above. The

subsequent call to D-Thinning is caused by the fact that M actually spans a subset of this set, i.e. the set
{D′}. Hence, line 7 is not needed in proving line 50.

At this point in building an outline for Ψ, we have reduced its proof to some simple theorems about
equality. None of the transformations permitted to this point do anything special with equality, except
for D-Def and P-Def which simply replace it with the formula it stands for. Although this is not a very
sophisticated use of equality, it is complete for T . We shall leave the completion of this example to the
reader.
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