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Abstract

The theory of cut-free sequent proofs has been used to motivate and justify
the design of a number of logic programming languages. Two such languages,
λProlog and its linear logic refinement, Lolli [15], provide for various forms of
abstraction (modules, abstract data types, and higher-order programming) but
lack primitives for concurrency. The logic programming language, LO (Lin-
ear Objects) [2] provides some primitives for concurrency but lacks abstraction
mechanisms. In this paper we present Forum, a logic programming presenta-
tion of all of linear logic that modularly extends λProlog, Lolli, and LO. Forum,
therefore, allows specifications to incorporate both abstractions and concur-
rency. To illustrate the new expressive strengths of Forum, we specify in it
a sequent calculus proof system and the operational semantics of a program-
ming language that incorporates references and concurrency. We also show that
the meta theory of linear logic can be used to prove properties of the object-
languages specified in Forum.

This paper will appear in Theoretical Computer Science.
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1 Introduction

In [25] a proof theoretic foundation for logic programming was proposed in
which logic programs are collections of formulas used to specify the meaning of
non-logical constants and computation is identified with goal-directed search for
proofs. Using the sequent calculus, this can be formalized by having the sequent
Σ : ∆ −→ G denote the state of an idealized logic programming interpreter,
where the current set of non-logical constants (the signature) is Σ, the current
logic program is the set of formulas ∆, and the formula to be established, called
the query or goal, is G. (We assume that all the non-logical constants in G and
in the formulas of ∆ are contained in Σ.) A goal-directed or uniform proof is then
a cut-free proof in which every occurrence of a sequent whose right-hand side is
non-atomic is the conclusion of a right-introduction rule. The bottom-up search
for uniform proofs is goal-directed to the extent that if the goal has a logical
connective as its head, that occurrence of that connective must be introduced:
the left-hand side of a sequent is only considered when the goal is atomic. A
logic programming language is then a logical system for which uniform proofs
are complete. The logics underlying Prolog, λProlog, and Lolli [15] satisfy such
a completeness result.

The description of logic programming above is based on single-conclusion
sequents: that is, on the right of the sequent arrow in Σ : ∆ −→ G is a
single formula. This leaves open the question of how to define logic program-
ming in the more general setting where sequents may have multiple formulas on
the right-hand side [8]. When extending this notion of goal-directed search to
multiple-conclusion sequents, the following problem is encountered: if the right-
hand side of a sequent contains two or more non-atomic formulas, how should
the logical connectives at the head of those formulas be introduced? There
seems to be two choices. One choice simply requires that one of the possible
introductions be done [12]. This choice has the disadvantage that there might
be interdependencies between right-introduction rules: thus, the meaning of the
logical connectives in the goal would not be reflected directly and simply into
the structure of a proof, a fact that complicates the operational semantics of
the logic as a programming language. A second choice requires that all possible
introductions on the right can be done simultaneously. Although the sequent
calculus cannot deal directly with simultaneous rule application, reference to
permutabilities of inference rules [16] can indirectly address simultaneity. That
is, we can require that if two or more right-introduction rules can be used to de-
rive a given sequent, then all possible orders of applying those right-introduction
rules can, in fact, be done and the resulting proofs are all equal modulo per-
mutations of introduction rules. This approach, which makes the operational
interpretation of specifications simple and natural, is used in this paper.

We employ the logical connectives of Girard [9] (typeset as in that paper)
and the quantification and term structures of Church’s Simple Theory of Types
[6]. A signature Σ is a finite set of pairs, written c : τ , where c is a token and
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τ is a simple type (over some fixed set of base types). We assume that a given
token is declared at most one type in a given signature. A closed, simply typed
λ-term t is a Σ-term if all the non-logical constants in t are declared types in Σ.
The base type o is used to denote formulas, and the various logical constants
are given types over o. For example, the binary logical connectives have the
type o → o → o and the quantifiers ∀τ and ∃τ have the type (τ → o) → o,
for any type τ . Expressions of the form ∀τλx.B and ∃τλx.B will be written
more simply as ∀τx.B and ∃τx.B, or as ∀x.B and ∃x.B when the type τ is
either unimportant or can be inferred from context. A Σ-term B of type o is
also called a Σ-formula. In addition to the usual connectives present in linear
logic, we also add the infix symbol ⇒ to denote intuitionistic implication; that
is, B ⇒ C is equivalent to ! B −◦ C. The expression B ≡ C abbreviates the
formula (B −◦ C) & (C −◦B): if this formula is provable in linear logic, we say
that B and C are logically equivalent.

In the next section, the design of Forum is motivated by considering how to
modularly extend certain logic programming languages that have been designed
following proof theoretic considerations. In Section 3, Forum is shown to be
a logic programming language using the multiple conclusion generalization of
uniform proofs. The operational semantics of Forum is described in Section 4 so
that the examples in the rest of the paper can be understood from a program-
ming point-of-view as well as the declarative point-of-view. Sequent calculus
proof systems for some object-level logics are specified in Section 5, and various
imperative and concurrency features of a object-level programming language
are specified and analyzed in Sections 6 and 7.

Although Forum extends some existing logic programming languages based
on linear logic, there have been other linear logic programming languages pro-
posed that it does not extend or otherwise relate directly. In particular, the
language ACL by Kobayashi and Yonezawa [17, 18] captures simple notions of
asynchronous communication by identifying the send and read primitives with
two complementary linear logic connectives. Also, Lincoln and Saraswat have
developed a linear logic version of concurrent constraint programming and used
linear logic connectives to extend previous languages in this paradigm [19, 32].

2 Design issues

The following generalization of the definition of uniform proof was introduced
in [23] where it was shown that a certain logic specification inspired by the
π-calculus [27] can be seen as a logic program.

Definition 1 A cut-free sequent proof Ξ is uniform if for every subproof Ξ′ of
Ξ and for every non-atomic formula occurrence B in the right-hand side of the
end-sequent of Ξ′, there is a proof Ξ′′ that is equal to Ξ′ up to a permutation
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of inference rules and is such that the last inference rule in Ξ′′ introduces the
top-level logical connective of B.

Definition 2 A logic with a sequent calculus proof system is an abstract logic
programming language if restricting to uniform proofs does not lose complete-
ness.

Below are several examples of abstract logic programming languages.

• Horn clauses, the logical foundation of Prolog, are formulas of the form
∀x̄(G ⇒ A) where G may contain occurrences of & and >. (We shall use x̄
as a syntactic variable ranging over a list of variables and A as a syntactic
variables ranging over atomic formulas.) In such formulas, occurrences
of ⇒ and ∀ are restricted so that they do not occur to the left of the
implication ⇒. As a result of this restriction, uniform proofs involving
Horn clauses do not contain right-introduction rules for ⇒ and ∀.

• Hereditary Harrop formulas [25], the logical foundation of λProlog, result
from removing the restriction on ⇒ and ∀ in Horn clauses: that is, such
formulas can be built freely from >, &, ⇒, and ∀. Some presentations of
hereditary Harrop formulas and Horn clauses allow certain occurrences of
disjunctions (⊕) and existential quantifiers [25]: since such occurrences do
not add much to the expressiveness of these languages (as we shall see at
the end of this section), they are not considered directly here.

• The logic at the foundation of Lolli is the result of adding −◦ to the
connectives present in hereditary Harrop formulas: that is, Lolli programs
are freely built from >, &, −◦, ⇒, and ∀. As with hereditary Harrop
formulas, it is possible to also allow certain occurrences of ⊕ and ∃, as
well as the tensor ⊗ and the modal !.

• The formulas used in LO are of the form ∀x̄(G −◦ A1
.................................................

............
.................................. · · · .................................................

............
.................................. An) where

n ≥ 1 and G may contain occurrences of &, >, .................................................
............
.................................. , ⊥. Similar to the Horn

clause case, occurrences of −◦ and ∀ are restricted so that they do not
occur to the left of the implication −◦.

The reason that Lolli does not include LO is the presence of .................................................
............
.................................. and ⊥ in the

latter. This suggests the following definition for Forum, the intended super-
language: allow formulas to be freely generated from >, &, ⊥, .................................................

............
.................................. , −◦, ⇒, and

∀. For various reasons, it is also desirable to add the modal ? directly to this
list of connectives. Clearly, Forum contains the formulas in all the above logic
programming languages.

Since the logics underlying Prolog, λProlog, Lolli, LO, and Forum differ in
what logical connectives are allowed, richer languages modularly contain weaker
languages. This is a direct result of the cut-elimination theorem for linear logic.
Thus a Forum program that does not happen to use ⊥, .................................................

............
.................................. , −◦, and ? will, in fact,
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have the same uniform proofs as are described for λProlog. Similarly, a program
containing just a few occurrences of these connectives can be understood as a
λProlog program that takes a few exceptional steps, but otherwise behaves as
a λProlog program.

Forum is a presentation of all of linear logic since it contains a complete set
of connectives. The connectives missing from Forum are directly definable using
the following logical equivalences.

B⊥ ≡ B −◦ ⊥ 0 ≡ >−◦ ⊥ 1 ≡ ⊥−◦ ⊥
! B ≡ (B ⇒ ⊥)−◦ ⊥ B ⊕ C ≡ (B⊥ & C⊥)⊥ B ⊗ C ≡ (B⊥ .................................................

............
.................................. C⊥)⊥

∃x.B ≡ (∀x.B⊥)⊥

The collection of connectives in Forum are not minimal. For example, ? and .................................................
............
.................................. ,

can be defined in terms of the remaining connectives.

?B ≡ (B −◦ ⊥) ⇒ ⊥ and B
.................................................

............
.................................. C ≡ (B −◦ ⊥)−◦ C

The other logic programming languages we have mentioned can, of course,
capture the expressiveness of full logic by introducing non-logical constants and
programs to describe their meaning. Felty in [7] uses a meta-logical presentation
to specify full logic at the object-level. Andreoli [1] provides a “compilation-
like” translation of linear logic into LinLog (of which LO is a subset). Forum
has a more immediate relationship to all of linear logic since no non-logical
symbols need to be used to provide complete coverage of linear logic. Of course,
to achieve this complete coverage, many of the logical connectives of linear logic
are encoded using negations (more precisely, using “implies bottom”), a fact
that causes certain operational problems, as we shall see in Section 4.

As a presentation of linear logic, Forum may appear rather strange since
it uses neither the cut rule (uniform proofs are cut-free) nor the dualities that
follow from uses of negation (since negation is not a primitive). The execution
of a Forum program (in the logic programming sense of the search for a proof)
makes no use of cut or of the basic dualities. These aspects of linear logic,
however, are important in meta-level arguments about specifications written in
Forum. In Sections 5 and 6 we show some examples of how linear logic’s negation
and cut-elimination theorem can be used to reason about Forum specifications.

The choice of these primitives for this presentation of linear logic makes it
possible to keep close to the usual computational significance of backchaining,
and the presence of the two implications, −◦ and ⇒, makes the specification of
object-level inference rules natural. For example, the proof figure

(A)
...
B C

D
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Can be written at the meta-level using implications such as (A ⇒ B)−◦C−◦D.
Since we intend to use Forum as a specification language for type checking rules,
structured operational semantics, and proof systems, the presence of implica-
tions as primitives is desirable.

The logical equivalences

1−◦H ≡ H
1 ⇒ H ≡ H

(B ⊗ C)−◦H ≡ B −◦ C −◦H
B⊥ −◦H ≡ B

.................................................
............
.................................. H

B⊥ ⇒ H ≡ ? B
.................................................

............
.................................. H

!B −◦H ≡ B ⇒ H
! B ⇒ H ≡ B ⇒ H

(B ⊕ C)−◦H ≡ (B −◦H) & (C −◦H)
(∃x.B(x))−◦H ≡ ∀x.(B(x)−◦H)

can be used to remove certain occurrences of ⊗, ⊕, ∃, !, and 1 when they occur
to the left of implications. (In the last equivalence above, assume that x is
not free in H.) These equivalences are more direct than those that employ
the equivalences mentioned earlier that use negation via the “implies bottom”
construction. As a result, we shall allow their use in Forum specifications and
employ these equivalences to remove them when necessary.

Formulas of the form

∀ȳ(G1 ↪→ · · · ↪→ Gm ↪→ (A1
.................................................

............
.................................. · · · .................................................

............
.................................. Ap)), (m, p ≥ 0)

where G1, . . . Gm are arbitrary Forum formulas and A1, . . . Am are atomic for-
mulas, are called clauses. Here, occurrences of ↪→ are either occurrences of −◦ or
⇒. An empty .................................................

............
.................................. (p = 0) is written as ⊥. The formula A1

.................................................
............
.................................. · · · .................................................

............
.................................. Ap is the head

of such a clause. If p = 0 then we say that this clause has an empty head. The
formulas of LinLog [1] are essentially clauses in which p > 0 and the formula
G1, . . . , Gm do not contain −◦ and ⇒ and where ? has only atomic scope.

3 Proof Search

In this section we consider the abstract character of cut-free proofs over the con-
nectives of Forum. Let L1 be the set of all formulas over the logical connectives
⊥, .................................................

............
.................................. , >, &, −◦, ⇒, ?, and ∀. If C is a set or multiset of formulas, the notation

! C denotes the corresponding set or multiset that results from placing ! on each
of the formula occurrences in C: the notation ? C is defined similarly.

Let F be the sequent proof system given in Figure 1. In this proof system,
sequents have the form

Σ:Ψ; ∆ −→ Γ;Υ and Σ:Ψ; ∆ B−→ Γ;Υ,
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where Σ is a signature, ∆ is a multiset of formulas, Γ is a list of formulas, Ψ
and Υ are sets of formulas, and B is a formula. All of these formulas are from
L1 and are also Σ-formulas. (The introduction of signatures into sequents is
not strictly necessary but is desirable when this proof system is used for logic
programming specifications [22].) The intended meanings of these two sequents
in linear logic are

!Ψ, ∆ −→ Γ, ?Υ and ! Ψ,∆, B −→ Γ, ?Υ,

respectively. In the proof system of Figure 1, the only right rules are those for
sequents of the form Σ: Ψ;∆ −→ Γ;Υ. In fact, the only formula in Γ that can
be introduced is the left-most, non-atomic formula in Γ. This style of selection
is specified by using the syntactic variable A to denote a list of atomic formulas.
Thus, the right-hand side of a sequent matches A, B & C, Γ if it contains a
formula that is a top-level & for which at most atomic formulas can occur to its
left. Both A and Γ may be empty. Left rules are applied only to the formula
B that labels the sequent arrow in Σ:Ψ; ∆ B−→ A; Υ. The notation A1 + A2

matches a list A if A1 and A2 are lists that can be interleaved to yield A: that
is, the order of members in A1 and A2 is as in A, and (ignoring the order of
elements) A denotes the multiset set union of the multisets represented by A1

and A2.
As in Church’s Simple Theory of Types, we assume the usual rules of α, β,

and η-conversion and we identify terms up to α-conversion. A term is λ-normal
if it contains no β and no η redexes. All terms are λ-convertible to a term in
λ-normal form, and such a term is unique up to α-conversion. All formulas in
sequents are in λ-normal form: in particular, the notation B[t/x], used in ∀L
and ∀R, denotes the λ-normal form of the β-redex (λx.B)t.

We use the turnstile symbol as the mathematics-level judgment that a se-
quent is provable: that is, ∆ ` Γ means that the two-sided sequent ∆ −→ Γ
has a linear logic proof. The sequents of F are similar to those used in the LU
proof system of Girard [10] except that we have followed the tradition of [1, 14]
in writing the “classical” context (here, Ψ and Υ) on the outside of the sequent
and the “linear” context (here, ∆ and Γ) nearest the sequent arrow: in LU these
conventions are reversed.

Given the intended interpretation of sequents in F , the following soundness
theorem can be proved by simple induction on the structure of F proofs.

Theorem 1 (Soundness) If the sequent Σ:Ψ; ∆ −→ Γ;Υ has an F proof then
! Ψ, ∆ ` Γ, ?Υ. If the sequent Σ:Ψ; ∆ B−→ A; Υ has an F proof then ! Ψ, ∆, B `
Γ, ?Υ.

Completeness of the F proof system is a more difficult matter, largely be-
cause proofs can be built only in a greatly constrained fashion. In sequent proof
systems generally, left and right introduction rules can be interleaved, where as,
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Σ:Ψ; ∆ −→ A,>,Γ;Υ
>R

Σ: Ψ;∆ −→ A, B, Γ;Υ Σ:Ψ; ∆ −→ A, C, Γ;Υ
Σ:Ψ;∆ −→ A, B & C, Γ;Υ

& R

Σ:Ψ; ∆ −→ A, Γ;Υ
Σ:Ψ; ∆ −→ A,⊥, Γ;Υ

⊥R
Σ:Ψ;∆ −→ A, B, C, Γ;Υ

Σ:Ψ;∆ −→ A, B
.................................................

............
.................................. C, Γ;Υ

.................................................
............
.................................. R

Σ:Ψ; B, ∆ −→ A, C, Γ;Υ
Σ: Ψ;∆ −→ A, B −◦ C, Γ; Υ

−◦ R
Σ: B, Ψ;∆ −→ A, C, Γ;Υ

Σ:Ψ;∆ −→ A, B ⇒ C, Γ;Υ
⇒ R

y: τ, Σ:Ψ; ∆ −→ A, B[y/x], Γ;Υ
Σ:Ψ; ∆ −→ A, ∀τx.B, Γ;Υ

∀R Σ:Ψ; ∆ −→ A, Γ;B, Υ
Σ:Ψ; ∆ −→ A, ?B, Γ; Υ

?R

Σ: B, Ψ;∆ B−→ A; Υ
Σ: B, Ψ;∆ −→ A; Υ

decide !
Σ:Ψ; ∆ −→ A, B;B, Υ
Σ:Ψ; ∆ −→ A;B, Υ

decide ?

Σ: Ψ;∆ B−→ A; Υ
Σ:Ψ; B, ∆ −→ A; Υ

decide

Σ:Ψ; · A−→ A; Υ
initial

Σ:Ψ; · A−→ ·;A, Υ
initial ?

Σ: Ψ; · ⊥−→ ·; Υ
⊥L

Σ:Ψ; ∆ Bi−→ A; Υ

Σ:Ψ; ∆ B1&B2−→ A; Υ
& Li

Σ:Ψ; B −→ ·; Υ
Σ: Ψ; · ? B−→ ·; Υ

?L

Σ:Ψ; ∆1
B−→ A1; Υ Σ: Ψ;∆2

C−→ A2; Υ

Σ:Ψ; ∆1, ∆2
B

.................................................
............
.................................. C−→ A1 +A2; Υ

.................................................
............
.................................. L

Σ:Ψ; ∆
B[t/x]−→ A; Υ

Σ:Ψ;∆ ∀τ x.B−→ A; Υ
∀L

Σ:Ψ; ∆1 −→ A1, B; Υ Σ:Ψ; ∆2
C−→ A2; Υ

Σ:Ψ; ∆1, ∆2
B−◦C−→ A1 +A2; Υ

−◦ L

Σ:Ψ; · −→ B; Υ Σ:Ψ; ∆ C−→ A; Υ

Σ:Ψ; ∆ B⇒C−→ A; Υ
⇒ L

Figure 1: The F proof system. The rule ∀R has the proviso that y is not
declared in the signature Σ, and the rule ∀L has the proviso that t is a Σ-term
of type τ . In &Li, i = 1 or i = 2.
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in F , occurrences of introduction rules are constrained so that (reading from the
bottom up) right rules are used entirely until the linear part of the right-hand
side (Γ) is decomposed to only atoms, and it is only when the right-hand side is
a list of atoms that left introduction rules are applied. Completeness of F can
be proved by showing that any proof in linear logic can be converted to a proof
in F by permuting enough inference rules. Since there are many opportunities
for such permutations, such a completeness proof has many cases. Fortunately,
Andreoli has provided a nice packaging of the permutation aspects of linear logic
within a single proof system [1]. We show that the F proof system is simply a
variation of the proof system he provided.

Let L2 be the set of formulas all of whose logical connectives are from the
list ⊥, .................................................

............
.................................. , >, &, ?, ∀ (those used in L1 minus the two implications) along with

the duals of these connectives, namely, 1, ⊗, 0, ⊕, !, and ∃. Negations of atomic
formulas are also allowed, and we write B⊥, for non-atomic formula B, to denote
the formula that results from giving negations atomic scope using the de Morgan
dualities of linear logic. A formula is asynchronous if it has a top-level logical
connective that is either ⊥, .................................................

............
.................................. , >, &, ?, or ∀, and is synchronous if it has a

top-level logical connective that is either 1, ⊗, 0, ⊕, !, and ∃. Figure 2 contains
the J proof system. Andreoli showed in [1] that this proof system is complete
for linear logic. Although he proved this only for the first-order fragment of
linear logic, it lifts to the higher-order case we are considering given Girard’s
proof of cut-elimination for full, higher-order linear logic [9].

The following theorem shows that the F and J proof systems are similar,
and in this way, the completeness for F is established. Before proving the com-
pleteness of F we state the following technical result used in the completeness
theorem.

Lemma 2 Let A and A′ be lists of atoms that are permutations of each other.
If the sequent Σ:Ψ;∆ −→ A,Γ;Υ has an F proof then so too does Σ: Ψ;∆ −→
A′, Γ;Υ. Similarly, if the sequent Σ:Ψ;∆ B−→ A; Υ has an F proof then so too
does Σ:Ψ;∆ B−→ A′; Υ.

Proof Completed by induction on the structure of proofs in F .

Theorem 3 (Completeness) Let Σ be a signature, ∆ be a multiset of L1 Σ-
formulas, Γ be a list of L1 Σ-formulas, and Ψ and Υ be sets of L1 Σ-formulas.
If ! Ψ,∆ ` Γ, ?Υ then the sequent Σ:Ψ; ∆ −→ Γ;Υ has a proof in F .

Proof Assume that ! Ψ, ∆ ` Γ, ? Υ. The main result of [1], extended to the
higher-order case, implies that the sequent Σ: Ψ⊥, Υ;∆⊥ ⇑ Γ has a J proof. We
now show how to convert such a proof into a proof of F .

When B is an L1 formula, we define B0 to be the L2 formula that results
from replacing subformulas of B of the form C −◦D with C⊥ .................................................

............
.................................. D and of the

form C ⇒ D with ? C⊥ .................................................
............
.................................. D. The formula B0 is either asynchronous or atomic
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Σ:Ψ; ∆ ⇑ L

Σ:Ψ; ∆ ⇑ ⊥, L
[⊥]

Σ:Ψ; ∆ ⇑ F, G, L

Σ: Ψ;∆ ⇑ F
.................................................

............
.................................. G,L

[..
...............................................
............
.................................. ]

Σ:Ψ, F ;∆ ⇑ L

Σ:Ψ; ∆ ⇑ ? F, L
[?]

Σ: Ψ;∆ ⇑ >, L
[>]

Σ:Ψ; ∆ ⇑ F, L Σ:Ψ; ∆ ⇑ G,L

Σ:Ψ; ∆ ⇑ F & G,L
[&]

y : τ, Σ:Ψ; ∆ ⇑ B[y/x], L
Σ:Ψ; ∆ ⇑ ∀τx.B, L

[∀]
Σ: Ψ; · ⇓ 1

[1]

Σ:Ψ; ∆1 ⇓ F Σ:Ψ; ∆2 ⇓ G

Σ:Ψ; ∆1, ∆2 ⇓ F ⊗G
[⊗]

Σ:Ψ; · ⇑ F

Σ: Ψ; · ⇓ ! F
[!]

Σ:Ψ; ∆ ⇓ Fi

Σ:Ψ; ∆ ⇓ F1 ⊕ F2
[⊕i]

Σ:Ψ;∆ ⇓ B[t/x]
Σ:Ψ; ∆ ⇓ ∃τx.B

[∃]

Σ:Ψ; ∆, F ⇑ L

Σ:Ψ;∆ ⇑ F, L
[R ⇑] provided that F is not asynchronous

Σ:Ψ; ∆ ⇑ F

Σ:Ψ; ∆ ⇓ F
[R ⇓] provided that F is either asynchronous or an atom

Σ:Ψ; A ⇓ A⊥
[I1] Σ: Ψ, A; · ⇓ A⊥

[I2]

Σ:Ψ;∆ ⇓ F

Σ:Ψ; ∆, F ⇑ · [D1]
Σ:Ψ; ∆ ⇓ F

Σ:Ψ, F ;∆ ⇑ · [D2]

Figure 2: The J proof system. The rule [∀] has the proviso that y is not declared
in Σ, and the rule [∃] has the proviso that t is a Σ-term of type τ . In [⊕i], i = 1
or i = 2.
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while (B0)⊥ is either synchronous or the negation of an atom. Notice that if B0

is equal to E
.................................................

............
.................................. F , then there are formulas C and D of L1 so that D0 is F , and

either B is C
.................................................

............
.................................. D and E is C0, B is C −◦D and E is (C0)⊥, or B is C ⇒ D

and E is ?(C0)⊥.
Let Ψ be a set of formulas of the form B0 and (B0)⊥, where B is from L1;

let ∆ be a multiset of formulas that are either atomic or of the form (B0)⊥,
where B is from L1; let L be a list of formulas of the form B0, where B is from
L1; and let F be (B0)⊥ where B is an L1 formula. Given these restrictions on
Ψ and ∆, we define the following pair of functions on sets of such formulas:

[Ψ]− = {B | (B0)⊥ ∈ Ψ} [Ψ]+ = {B | B0 ∈ Ψ}.
Clearly the resulting sets are sets of L1 formulas. We similarly define [∆]− to
be the corresponding multiset of L1. The corresponding value for [∆]+ would
be a multiset of atomic formulas, but in the proof below, we need to consider
[∆]+ to be a list, which is the underlying multiset put in some arbitrary but
fixed order. We now prove by mutual induction on the heights of J proofs the
following two facts.

• If Σ:Ψ; ∆ ⇑ L has a J proof then Σ: [Ψ]−; [∆]− −→ [∆]+, L; [Ψ]+ has an
F proof.

• If Σ:Ψ; ∆ ⇓ (B0)⊥ has a J proof then Σ: [Ψ]−; [∆]−
B−→ [∆]+; [Ψ]+ has

an F proof.

Consider the possible last rules in the proofs of Σ: Ψ; ∆ ⇑ L and Σ: Ψ; ∆ ⇓
(B0)⊥.

Case: [>]. In this case, L has > as its first element. Thus the corresponding
F proof is >R.

Case: [1]. In this case, B is ⊥ and ∆ is empty, and the corresponding F proof
is ⊥L.

Case: [I1]. Thus B is the atomic formula A and ∆ is the multiset containing
just one occurrence of A. The corresponding F proof is initial.

Case: [I2]. Thus B is the atomic formula A, ∆ is the empty multiset, and Ψ
is a set containing A. The corresponding F proof is initial ?.

Case: [⊥]. In this case, the corresponding F proof is built using ⊥R.

Case: [..
...............................................
............
.................................. ]. In this case, L is a list with head E

.................................................
............
.................................. F and tail L′. Let B be the

L1 formula so that B0 is E
.................................................

............
.................................. F . There are three subcases to consider

depending on structure of B.

Subcase: B is C
.................................................

............
.................................. D and E is C0. In this case, the corresponding J

proof is built using .................................................
............
.................................. R.
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Subcase: B is C −◦D and E is (C0)⊥. In this case,

Σ:Ψ; ∆ ⇑ (C0)⊥, D0, L′

has a smaller proof. However, the only inference rule that can yield
this sequent as a conclusion is [R ⇑]. Thus, Σ: Ψ;∆, (C0)⊥ ⇑ D0, L′

has a smaller J proof. Using the inductive hypothesis and the −◦R
rule provides the desired F proof.

Subcase: B is C ⇒ D and E is ?(C0)⊥. In this case,

Σ:Ψ; ∆ ⇑ ?(C0)⊥, D0, L′

has a smaller proof. However, the only inference rule that can yield
this sequent as a conclusion is [?]. Thus, Σ:Ψ, (C0)⊥;∆ ⇑ D0, L′ has
a smaller J proof. Using the inductive hypothesis and the ⇒R rule
provides the desired F proof.

Case: [?]. In this case, the list L is of the form ?(B0), L′ for some B in L1

and the sequent Σ: Ψ, B0; ∆ ⇑ L′ has a smaller J proof. By the inductive
hypothesis, we have that the sequent Σ: [Ψ]−;∆⊥ −→ [∆]+, L; B, [Ψ]+ is
provable in F and by using ?R we can obtain a proof of the desired F
proof.

Case: [!]. In this case, B is a formula of the form ?C and the sequent Σ: Ψ; ∆ ⇓
(C0)⊥ is provable in J . But the only way this can be proved is by the
[R ⇓], so the sequent Σ: Ψ; (C0)⊥ ⇑ · has a smaller J proof. By the
inductive hypothesis, we have that the sequent Σ: [Ψ]−;C −→ ·; [Ψ]+ is
provable in F . Now using ?L, we have the desired F proof.

Case: [R ⇓]. Not possible.

Case: [&] and [∀]. A simple use of induction and the &R and ∀R rules yield
the desired F proofs.

Case: [⊗]. In this case, B is either of the form C
.................................................

............
.................................. D, C −◦D, or C ⇒ D.

Subcase: B is C
.................................................

............
.................................. D. In this case, the proof of Σ: Ψ;∆ ⇓ (C0)⊥⊗(D0)⊥

has immediate subproofs of Σ: Ψ;∆1 ⇓ (C0)⊥ and Σ: Ψ;∆2 ⇓ (D0)⊥

where ∆ is the multiset union of ∆1 and ∆2. The inductive hypoth-
esis provides us with proofs of the sequents

Σ: [Ψ]−; [∆1]−
C−→ [∆1]+; [Ψ]+ and Σ: [Ψ]−; [∆2]−

D−→ [∆2]+; [Ψ]+.

Using .................................................
............
.................................. L we obtain a proof of the sequent Σ: [Ψ]−; [∆]−

C
.................................................

............
.................................. D−→ [∆1]++

[∆2]+; [Ψ]+. It might not be the case that the list [∆1]+ + [∆2]+ is
the same list as [∆]+ (remember the ordering here was arbitrary and
fixed), so we might need to use Lemma 2 to finally obtain a proof of

Σ: [Ψ]−; [∆]−
C

.................................................
............
.................................. D−→ [∆]+; [Ψ]+.
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Subcase: B is C −◦D. In this case, the proof of Σ: Ψ; ∆ ⇓ C0 ⊗ (D0)⊥

has immediate subproofs of Σ:Ψ; ∆1 ⇓ C0 and Σ:Ψ; ∆2 ⇓ (D0)⊥

where ∆ is the multiset union of ∆1 and ∆2. Since C0 is either
asynchronous or atomic, the only inference rule that yields the first
of these sequents is [R ⇓]. Thus the sequent Σ: Ψ; ∆1 ⇑ C0 has
a smaller proof. Using the inductive hypotheses, we conclude that
sequents

Σ: [Ψ]−; [∆1]− −→ [∆1]+, C; [Ψ]+

and
Σ: [Ψ]−; [∆2]−

D−→ [∆2]+; [Ψ]+

have F proofs. Using −◦L we obtain a proof of the sequent

Σ: [Ψ]−; [∆]−
C−◦D−→ [∆1]+ + [∆2]+; [Ψ]+.

As above, it might not be the case that the list [∆1]+ + [∆2]+ is the
same list as [∆]+, so we might need to use Lemma 2 to finally obtain
a proof of Σ: [Ψ]−; [∆]−

C−◦D−→ [∆]+; [Ψ]+.

Subcase: B is C ⇒ D. In this case, the proof of Σ: Ψ;∆ ⇓ !(C0)⊗(D0)⊥

has immediate subproofs of Σ: Ψ; ∆1 ⇓ !(C0) and Σ: Ψ; ∆2 ⇓ (D0)⊥

where ∆ is the multiset union of ∆1 and ∆2. The only inference rule
that yields the first of these sequents is [!], and this is only possible
only if ∆1 is empty and ∆2 is equal to ∆. Thus the sequent Σ:Ψ; · ⇑
C0 has a smaller proof. Using the inductive hypotheses, we conclude
that Σ: [Ψ]−; · −→ C; [Ψ]+ and Σ: [Ψ]−; [∆]−

D−→ [∆]+; [Ψ]+. Using
⇒L we obtain a proof of the sequent Σ: [Ψ]−; [∆]−

C⇒D−→ [∆]+; [Ψ]+.

Case: [⊕i]. This case follows using the inference rule &Li.

Case: [∃]. This case follows using the inference rule ∀L.

Case: [R ⇑]. The list L must have the atomic formula A as its first element
and L′ as its tail and the sequent Σ: Ψ; ∆, A ⇑ L′ has a shorter proof. By
the inductive hypothesis we know that Σ: [Ψ]−; [∆]− −→ [∆, A]+, L′; [Ψ]+
has an F proof and by using Lemma 2 we know that

Σ: [Ψ]−; [∆]− −→ [∆]+, A, L′; [Ψ]+

has an F proof.

Case: [D1] and [D2]. The [D1] case follows immediately from the use of the
inductive hypothesis and the decide inference rules. The [D2] case follows
immediately from the use of the inductive hypothesis and either the decide!
or decide? inference rules.
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This proof actually describes an algorithm for converting a J proof into a cor-
responding F proof. The corresponding proofs are nearly the same — just
different connectives and different bookkeeping is involved.

The completeness of F immediately establishes Forum as an abstract logic
programming language.

Notice that the form of the ?L rule is different from the other left introduction
rules in that none of the sequents in its premise contain an arrow labeled with
a formula. Thus, using this rule causes the “focus” of proof construction, which
for left rules is directed by the subformulas of the formula labeling the sequent
arrow, to be lost. If we were to replace that rule with the rule

Σ: Ψ; · B−→ ·; Υ
Σ: Ψ; · ? B−→ ·; Υ

?L′

that keeps the “focus”, then the resulting proof system is not complete. In
particular, the linear logic theorems ? a −◦ ? a and ? a −◦ ?((a −◦ b) −◦ b) would
not be provable. Section 5 contains an occasion (Lemma 7) when using ? L′

instead of ?L is complete.

4 Operational reading of programs

We shall not discuss the many issues involved with building an interpreter or
theorem prover for Forum. Certainly, work done on the implementations of
languages such as λProlog, Lolli, and LO would all be applicable here. For
now, we attempt to give the reader an understanding of what the high-level
operational behavior of proof search is like using Forum specifications. Clearly,
that semantics is an extension of these other logic programming languages, so
we shall focus on those features that are novel to Forum and which are needed
for the examples in the following sections.

First we comment on how the impermutabilities of some inference rules of
linear logic are treated in Forum. In particular, an analogy exists between the
embedding of all of linear logic into Forum and the embedding of classical logic
into intuitionistic logic via a double negation translation. In classical logic,
contraction and weakening can be used on both the left and right of the sequent
arrow: in intuitionistic logic, they can only be used on the left. The familiar
double negation translation of classical logic into intuitionistic logic makes it
possible for the formula B⊥⊥ on the right to be moved to the left as B⊥, where
contractions and weakening can be applied to it, and then moved back to the
right as B. In this way, classical reasoning can be regained indirectly. Similarly,
in linear logic when there are, for example, non-permutable right-rules, one of
the logical connectives involved can be rewritten so that the non-permutability
is transferred to one between a left rule above a right rule. For example, the
bottom-up construction of a proof of the sequent −→ a ⊗ b, a⊥ .................................................

............
.................................. b⊥ must
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first introduce the .................................................
............
.................................. prior to the ⊗: the context splitting required by ⊗ must

be delayed until after the .................................................
............
.................................. is introduced. This sequent, written using the

connectives of Forum, is −→ (a⊥ .................................................
............
.................................. b⊥) −◦ ⊥, a⊥ .................................................

............
.................................. b⊥. In this case, −◦ and

.................................................
............
.................................. can be introduced in any order, giving rise to the sequent a⊥ .................................................

............
.................................. b⊥ −→

a⊥, b⊥. Introducing the .................................................
............
.................................. now causes the context to be split, but this occurs

after the right-introduction of .................................................
............
.................................. . Thus, the encoding of some of the linear

logic connectives into the set used by Forum essentially amounts to moving any
“offending” non-permutabilities to where they are allowed.

We shall use the term backchaining to refer to an application of either the
decide or the decide! inference rule followed by a series of applcations of left-
introduction rules. This notion of backchaining generalizes the usual notion
found in the logic programming literature.

Sequents in linear logic and F contain multisets as (part of) their right-hand
and left-hand sides. If we focus on the right-hand side, then the generalization
of backchaining contained in the F proof system can be used to do multiset
rewriting. As is well known, multiset rewriting is a natural setting for the
specification of some aspects of concurrent computation. Given that multiset
rewriting is only one aspect of the behavior of linear logic, such concurrent
specifications are greatly enriched by the rest of higher-order linear logic. In
particular, Forum allows for the integration of some concurrency primitives and
various abstractions mechanisms in one declarative setting (see Section 6 for
such an example specification).

To illustrate how multiset rewriting is specified in Forum, consider the clause

a
.................................................

............
.................................. b ◦− c

.................................................
............
.................................. d

.................................................
............
.................................. e.

When presenting examples of Forum code we often use (as in this example)
◦− and ⇐ to be the converses of −◦ and ⇒ since they provide a more natural
operational reading of clauses (similar to the use of :- in Prolog). Here, .................................................

............
.................................. binds

tighter than ◦− and ⇐. Consider the sequent Σ:Ψ; ∆ −→ a, b, Γ;Υ where the
above clause is a member of Ψ. A proof for this sequent can then look like the
following.

Σ:Ψ; ∆ −→ c, d, e, Γ;Υ
Σ:Ψ; ∆ −→ c, d

.................................................
............
.................................. e, Γ;Υ

Σ: Ψ;∆ −→ c
.................................................

............
.................................. d

.................................................
............
.................................. e,Γ; Υ

Σ:Ψ; · a−→ a; Υ Σ:Ψ; · b−→ b; Υ

Σ:Ψ; · a
.................................................

............
.................................. b−→ a, b; Υ

Σ:Ψ; ∆ c
.................................................

............
.................................. d
.................................................

............
.................................. e−◦a.................................................

............
.................................. b−→ a, b, Γ;Υ

Σ:Ψ; ∆ −→ a, b, Γ;Υ

We can interpret this fragment of a proof as a reduction of the multiset a, b, Γ
to the multiset c, d, e, Γ by backchaining on the clause displayed above.

Of course, a clause may have multiple, top-level implications. In this case,
the surrounding context must be manipulated properly to prove the sub-goals
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that arise in backchaining. Consider a clause of the form

G1 −◦G2 ⇒ G3 −◦G4 ⇒ A1
.................................................

............
.................................. A2

labeling the sequent arrow in the sequent Σ:Ψ; ∆ −→ A1, A2,A; Υ. An attempt
to prove this sequent would then lead to attempt to prove the four sequents

Σ:Ψ; ∆1 −→ G1,A1; Υ Σ:Ψ; · −→ G2; Υ

Σ:Ψ; ∆2 −→ G3,A2; Υ Σ:Ψ; · −→ G4; Υ

where ∆ is the multiset union of ∆1 and ∆2, and A is A1 + A2. In other
words, those subgoals immediately to the left of an ⇒ are attempted with
empty bounded contexts: the bounded contexts, here ∆ and A, are divided up
and used in attempts to prove those goals immediately to the left of −◦.

Although the innermost right-hand context of sequents in F is formally
treated as a list, the order in the list is not “semantically” important: that list
structure is only used to allow for a more constrained notion of proof search. It
is easy to prove that a more general version of Lemma 2 holds.

Corollary 4 Let Γ and Γ′ be lists of formulas that are permutations of each
other. If Σ:Ψ; ∆ −→ Γ; Υ has an F proof then so too does Σ:Ψ; ∆ −→ Γ′; Υ.

Proof This corollary can be proved by either referring to the soundness
and completeness of F and the commutativity of .................................................

............
.................................. or showing that all right-

introduction rules in F permute over each other.
A particularly difficult aspect of Forum to imagine implementing directly is

backchaining over clauses with empty heads. For example, consider attempting
to prove a sequent with right-hand sideA and with the clause ∀x̄(G−◦⊥) labeling
the sequent arrow. This clause can be used in a backchaining step, regardless
of A’s structure, yielding the new right-hand side A, θG, for some substitution
θ over the variables x̄. Such a clause provides no overt clues as to when it can
be effectively used to prove a given goal: backchaining using a clause with an
empty head is always successful. See [21] for a discussion of a similar problem
when negated clauses are allowed in logic programming based on minimal or
intuitionistic logic. As we shall see in the next section, the specification of the
cut rule for an object-level logic employs just such a clause: the well known
problems of searching for proofs involving cut thus apply equally well to the
search for F proofs involving such clauses. Also, the encoding of various linear
logic connectives into Forum involve clauses with empty heads. (Notice that
clauses with empty heads are not allowed in LO.)

5 Specifying object-level sequent proofs

Given the proof-theoretic motivations of Forum and its inclusion of quantifica-
tion at higher-order types, it is not surprising that it can be used to specify
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proof systems for various object-level logics. Below we illustrate how sequent
calculus proof systems can be specified using the multiple conclusion aspect of
Forum and show how properties of linear logic can be used to infer properties
of the object-level proof systems. We shall use the terms object-level logic and
meta-level logic to distinguish between the logic whose proof system is being
specified and the logic of Forum.

Consider the well known, two-sided sequent proof systems for classical, intu-
itionistic, minimal, and linear logic. The distinction between these logics can be
described, in part, by where the structural rules of thinning and contraction can
be applied. In classical logic, these structural rules are allowed on both sides of
the sequent arrow; in intuitionistic logic, only thinning is allowed on the right of
the sequent arrow; in minimal logic, no structural rules are allowed on the right
of the sequent arrow; and in linear logic, they are not allowed on either side of
the arrow. This suggests the following representation of sequents in these four
systems. Let bool be the type of object-level propositional formulas and let left
and right be two meta-level predicates of type bool → o. Sequents in these four
logics can be specified as follows.

Linear: The sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥ 0) can be represented
by the meta-level formula

left B1
.................................................

............
.................................. · · · .................................................

............
.................................. left Bn

.................................................
............
.................................. right C1

.................................................
............
.................................. · · · .................................................

............
.................................. right Cm.

Minimal: The sequent B1, . . . , Bn −→ C (n ≥ 0) can be represented by the
meta-level formula

? left B1
.................................................

............
.................................. · · · .................................................

............
.................................. ? left Bn

.................................................
............
.................................. right C.

Intuitionistic: Intuitionistic logic contains the sequents of minimal logic and
sequents with empty right-hand sides, i.e., of the form B1, . . . , Bn −→,
where n ≥ 0. These additional sequents can represented by the meta-level
formula

? left B1
.................................................

............
.................................. · · · .................................................

............
.................................. ? left Bn.

Classical: The sequent B1, . . . , Bn −→ C1, . . . , Cm (n, m ≥ 0) can be repre-
sented by the meta-level formula

? left B1
.................................................

............
.................................. · · · .................................................

............
.................................. ? left Bn

.................................................
............
.................................. ? right C1

.................................................
............
.................................. · · · .................................................

............
.................................. ? right Cm.

The left and right predicates are used to identify which object-level formulas
appear on which side of the sequent arrow, and the ? modal is used to mark the
formulas to which weakening and contraction can be applied.

We shall focus only on an object-logic that is minimal in this section. To
denote first-order object-level formulas, we introduce the binary, infix symbols
∧, ∨, and ⊃ of type bool → bool → bool, and the symbols ∀̂ and ∃̂ of type

17



(⊃ R) right (A ⊃ B) ◦− (?(left A) .................................................
............
.................................. right B).

(⊃ L) ?(left (A ⊃ B)) ◦− right A ◦− ?(left B).
(∧R) right (A ∧B) ◦− right A ◦− right B.
(∧L1) ?(left (A ∧B)) ◦− ?(left A).
(∧L2) ?(left (A ∧B)) ◦− ?(left B).
(∀̂R) right (∀̂B) ◦− ∀x(right (Bx)).
(∀̂L) ?(left (∀̂B)) ◦− ?(left (Bx)).

(Initial) right B
.................................................

............
.................................. ?(left B).

(Cut) ⊥ ◦− ?(left B) ◦− right B.

Figure 3: Specification of the LM1 sequent calculus.

(i → bool) → bool: the type i will be used to denote object-level individuals.
Figure 3 is a specification of minimal logic provability using the above style
of sequent encoding for just the connectives ∧, ⊃, and ∀̂. (The connectives ∨
and ∃̂ will be addressed later.) Expressions displayed as they are in Figure 3
are abbreviations for closed formulas: the intended formulas are those that
result by applying ! to their universal closure. The operational reading of these
clauses is quite natural. For example, the first clause in Figure 3 encodes the
right-introduction of ⊃: operationally, an occurrence of A ⊃ B on the right is
removed and replaced with an occurrence of B on the right and a (modalized)
occurrence of A on the left (reading the right-introduction rule for ⊃ from the
bottom). Notice that all occurrences of the left predicate in Figure 3 are in the
scope of ?. If occurrences of such modals in the heads of clauses were dropped,
it would be possible to prove meta-level goals that do not correspond to any
minimal logic sequent: such goals could contain left-atoms that are not prefixed
with the ? modal.

We say that the object-level sequent B0, . . . , Bn −→ B has an LM1-proof
if it has one in the sense of Gentzen [8] using the corresponding object-level
inference rules (⊃ R), (⊃ L), (∧R), (∧L1), (∧L2), (∀̂R), (∀̂L), (Initial), (Cut).

Let LM1 be the set of clauses displayed in Figure 3 and let Σ1 be the set of
constants containing object-logical connectives ∀̂, ⊃, and ∧ along with the two
predicates left and right and any non-empty set of constants of type i (denoting
members of the object-level domain of individuals). Notice that object-level
quantification is treated by using a constant of second order, ∀̂ : (i → bool) →
bool, in concert with meta-level quantification: in the two clauses (∀̂R) and (∀̂L),
the type of B is i → bool. This style representation of quantification is familiar
from Church [6] and has been used to advantage in computer systems such as
λProlog [7], Isabelle [29], and Elf [30]. This style of representing object-level
syntax is often called higher-order abstract syntax.

To illustrate how these clauses specify the corresponding object-level infer-
ence rule, consider in more detail the first two clauses in Figure 3. Backchaining
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on the F sequent

Σ1:LM1; · −→ right(B0 ⊃ C0); left(B1), . . . , left Bn

using the (⊃ R) clause in LM1 (i.e., use decide!, ∀L twice, and −◦L) yields the
sequent

Σ1: LM1; · −→ ?(left B0)
.................................................

............
.................................. right C0; left(B1), . . . , left Bn,

which in turns is provable if and only if the sequent

Σ1: LM1; · −→ right C0; left B0, . . . , left Bn

is provable. Thus, proving the object-level sequent B1, . . . , Bn −→ B0 ⊃ C0

has been successfully reduced to proving the sequent B0, . . . , Bn −→ C0. Now
consider the sequent

Σ1:LM1; · −→ right(C); left(C0 ⊃ B0), left(B1), . . . , left Bn.

Using the decide! inference rule to select the (⊃ L) clause, and using two in-
stances of ∀L, we get the sequent whose right-hand and left-hand sides have not
changed but where the sequent arrow is labeled with

? left B0 −◦ right(C0)−◦ ? left(C0 ⊃ B0).

Using −◦L twice yields the following three sequents:

Σ1: LM1; · −→ right(C); left(C0 ⊃ B0), left B0, . . . , left Bn

Σ1: LM1; · −→ right(C0); left(C0 ⊃ B0), left(B1), . . . , left Bn

Σ1: LM1; · ? left(C0⊃B0)−→ ·; left(C0 ⊃ B0), left(B1), . . . , left Bn

The last sequent is immediately provable using the ?L, decide, and initial ?
inference rules. Notice that the formula right(C0) could have moved to either
the first or second sequent: if it had moved to the first sequent, no proof in
F of that sequent is possible (provable F sequents using LM1 contain at most
one right formula in the right, inner-most context). Thus, we have succeeded in
reducing the provability of the object-level sequent C0 ⊃ B0, B1, . . . , Bn −→ C
to the provability of the sequents

C0 ⊃ B0, B1, . . . , Bn −→ C0 and C0 ⊃ B0, B0, . . . , Bn −→ C.

As we shall show in the proof of Proposition 5, these are the only possible
reductions available using the clauses in LM1.

In a similar fashion, we can trace the use of decide! on the (Initial) and
(Cut) clauses to see these are equivalent to the inference rules

Σ1:LM1; · −→ right B; left B,L

19



and
Σ1:LM1; · −→ right C;L Σ1: LM1; · −→ right B; left C,L

Σ1:LM1; · −→ right B;L ,

respectively, where L is a syntactic variable denoting a finite set of left-atoms.
In many ways, this style presentation of inference rules for LM1 can be

judged superior to the usual presentation using inference figures. For example,
consider the following inference figures for ∧R and ⊃L taken from [8].

Γ −→ Θ, A Γ −→ Θ, B

Γ −→ Θ, A ∧B
∧ R

Γ −→ Θ, A B, ∆ −→ Λ
A ⊃ B, Γ, ∆ −→ Θ,Λ

⊃ L

In these inference rules, the context surrounding the formulas being introduced
must be explicitly mentioned and managed: in the ∧R figure, the context is
copied, while in the ⊃L, the context is split to different branches (again, read-
ing these inference figure bottom up). In the Forum specification, the context
is manipulated implicitly via the use of the meta-level conjunctions: context
copying is achieved using the additive conjunction & and context splitting is
achieved using iterated ◦− (i.e., using the multiplicative conjunction ⊗). Simi-
larly, the structural rules of contraction and thinning can be captured together
using the ? modal. Since the meta-logic captures so well many of the structural
properties of the object-level proof system we can reason about properties of
the object-level system using meta-level properties of Forum and linear logic.
Of course, this approach to sequent calculus is also limited since Forum can-
not naturally capture a number of features that are captured by conventional
sequent figures: for example, the structural rule of exchange.

Notice that the well known problems with searching for proofs containing
cut rules are transferred to the meta-level as problems of using a clause with ⊥
for a head within the search for cut-free proofs (see Section 3).

Proposition 5 (Correctness of LM1) The sequent B1, . . . , Bn −→ B0 (n ≥
0) has an LM1-proof if and only if Σ1:LM1; · −→ right B0; left B1, . . . , left Bn

has a proof in F .

Proof For the forward direction, an LM1-proof can be converted into a F
proof of the corresponding meta-level formula by mapping the sequence of in-
ference rules in the LM1-proof into the sequence of clauses used in backchaining
in the proof from F . Additionally, right-introductions for .................................................

............
.................................. , &, ∀, and ? will

need to be inserted in a straightforward fashion.
For the reverse direction we need to read off the series of decide! infer-

ence rules in a proof from F of Σ1: LM1; · −→ right C0; left C1, . . . , left Cn to
construct an LM1-proof of C1, . . . , Cn −→ C0. Using the multiset rewriting
notion of proof construction given in Section 4 makes this reading from proofs
in F particular simple. However, that multiset rewriting paradigm was only
described for clauses with atoms in the head: clauses in LM1 contain formulas
of the form ?(left B) in their head. We need to extend this notion of multiset
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rewriting to include such formulas. To do this, we first show the following two
technical lemmas about the structure of proofs in F based on LM1. The term
LM1-derivative is defined as follows:

1. If D ∈ LM1 then D is an LM1-derivative.

2. If ∀τx.D is an LM1-derivative and t is a Σ1-term of type τ , then D[t/x]
is an LM1-derivative.

3. If D1
.................................................

............
.................................. D2 is an LM1-derivative then D1 and D2 are LM1-derivatives.

4. If G−◦D is an LM1-derivative then D is an LM1-derivative.

5. If ? D is an LM1-derivative then D is an LM1-derivative.

6. Nothing else is an LM1-derivative.

Notice that all atoms of the form right A and left A are LM1-derivatives and if
?D is an LM1-derivative, then D is of the form left A.

Lemma 6 If n ≥ 0 and the sequent Σ1: LM1; · −→ right C0; left C1, . . . , left Cn

has a proof in F , then every sequent in that proof is of the form

Σ: LM1;L1 −→ Γ;L2 or Σ: LM1;L1
D−→ Γ;L2

where Σ is a signature containing Σ, L1 is a multiset of left-atoms containing at
most one formula, L2 is a set of left-atoms containing {left C1, . . . , left Cn}, D is
an LM1-derivative, and Γ is a list of formulas of the form ?(left A1)

.................................................
............
.................................. right A2,

∀x(right (Bx)), right A, ?(left A), left A, and ⊥. Here, A, A1, and A2 are
Σ-terms of type bool, and B is a Σ-term of type i → bool.

Proof This lemma can be proved by induction on the distance of sequents
from the root sequent. Clearly the root itself satisfies the condition on sequents.
Next, we need to show that if the conclusion of an inference rule satisfies these
conditions, the premises of that inference rule also satisfies these conditions.
The only inference rules that can have such a sequents as conclusions are &R,
⊥R, ∀R, ?R, decide ?, decide!, decide, initial, initial ? −◦L, ∀L, and ?L. An
examination of these rules confirms the inductive step of the proof.

Lemma 7 Let L be a set of left-atoms, D be an LM1-derivative, A be a list of
Σ1-atomic formulas, and A be a Σ1-term of type bool. If either

Σ1:LM; left A −→ A;L or Σ1: LM; left A
D−→ A;L

has a proof in F then A is the one element list containing left A or A is empty
and left A ∈ L.
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Proof Assume not. Then one of these sequents is provable but the conditions
on A and L are not satisfied. Pick the proof in F that has the smallest height
and consider the various inference rules that can terminate that proof. Clearly,
that proof does not end in a right-introduction rule or an initial rule. If the last
rule was any of the other rules (the decide rules or the left-introduction rules),
then one of the premises would contain a sequent that similarly does not satisfy
the conditions in the lemma. This is then a contradiction since that sequent
has a proof of smaller height.

The implication of this lemma is that the inference rule ? L′ can be used
in place of ?L (see the end of Section 3) when using the LM1 theory. More

specifically, if the sequent Σ1:LM1; · ? left B−→ ·;L is provable then left B ∈ L.
Given this result, the multiset rewriting paradigm can be extended to those
clause in LM1.

The correctness proof for LM1 is now easy to finish: given a proof in F of

Σ1:LM1; · −→ right C0; left C1, . . . , left Cn,

just read off of it the series of decide! rules that are used to select members of
the LM1 set of clauses. Applying the sequent inference rules that correspond to
those clauses yields an LM1 proof of C1, . . . , Cn −→ C0.

So far we have only discussed the operational interpretation of the specifi-
cation in Figure 3. It is delightful, however, to note that this specification has
some meta-logical properties that go beyond its operational reading. In partic-
ular, the specifications for the initial and cut inference rules together imply the
equivalences (right B)⊥ ≡ ?(left B) and (right B) ≡ !(right B). That is, we
have the (not too surprising) fact that left and right are related by a meta-level
negation, and that this is guaranteed by reference only to the specifications for
the initial and cut rules. Given these equivalences, it is possible to eliminate
references to left in the LM1 specification. The result would be a specification
quite similar to one for specifying a natural deduction proof system for minimal
logic. To this end, consider the specification of the NM1 natural deduction proof
system given in Figure 4. The specification there is similar to those given using
intuitionistic meta-logics [7, 29] and dependent typed calculi [3, 13].

Proposition 8 (Correctness of NM1) The formula B0 has an NM1 proof
from the assumptions B1, . . . , Bn (n ≥ 0) if and only if

Σ1: NM1, right B1, . . . , right Bn; · −→ right B0; ·
has a proof in F .

Proof The correctness proof for natural deduction based on intuitionistic
logic and type theories that can be found in [7, 13, 29] can be used here as well.
The only difference is that in Figure 4, certain occurrences of ⇐ are replaced
with occurrences of ◦−. This replacement can be justified using Proposition 6 of
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(⊃ I) right (A ⊃ B) ◦− (right A ⇒ right B).
(⊃ E) right B ◦− right A ◦− right (A ⊃ B).
(∧I) right (A ∧B) ◦− right A ◦− right B.

(∧E1) right A ◦− right (A ∧B).
(∧E2) right B ◦− right (A ∧B).
(∀̂I) right (∀̂B) ◦− ∀x(right (Bx)).
(∀̂E) right (Bx) ◦− right (∀̂B).

Figure 4: Specification of the NM1 natural deduction calculus.

[15] in which it is shown that when translating an intuitionistic theory to linear
logic, positive occurrences of intuitionistic implications can be translated using
by −◦ while negative occurrences can be translated using ⇒. It follows that
these two presentations of NM1 prove the same sequents of the form displayed
in this Proposition.

We can now supply a meta-logical proof that NM1 and LM1 prove the same
object-level theorems. The following two lemmas supply the necessary implica-
tions.

Lemma 9 ` LM1 ≡ [(⊗NM1)⊗ Initial⊗ Cut].

Proof As we remarked before the formulas Initial and Cut in LM1 entail the
equivalences (right B)⊥ ≡ ?(left B) and (right B) ≡ !(right B). If we apply
these two equivalences along with the linear logic equivalences

p⊥ ◦− q⊥ ≡ q ◦− p (! p)⊥ .................................................
............
.................................. q ≡ p ⇒ q (p⊥ & q⊥)⊥ ≡ p⊕ q

to the first seven clauses in Figure 3, we get the seven clauses in Figure 4. (The
last two clauses of LM1 become linear logic theorems.) Clearly, LM1 ` (⊗NM1).
The proof of the converse entailment follows by simply reverse the steps taking
above: we can work backwards from NM1 to LM1 by equivalences.

Before we establish that LM1 and NM1 prove the same object-level formulas
(Theorem 13), we need a couple of technical lemmas.

Lemma 10 If Σ1:NM1; · −→ right B; · has a proof in F , then Σ1: LM1; · −→
right B; · has a proof in F .

Proof This follows directly from Lemma 9, cut-elimination for linear logic,
and the soundness and completeness results for F .

Lemma 11 If Σ1:NM1, Cut, Initial; · −→ right B; · has a proof in F , then
Σ1: NM1; · −→ right B; · has a proof in F .

Proof Let Ξ be a proof in F of Σ1: NM1,Cut, Initial; · −→ right B; ·. We
show we can always eliminate occurrences of decide! rules in Ξ that select the
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Cut clause. Once they have all been eliminated, the Initial clause is also not
selected.

Consider the sequent that occurs the highest in Ξ that is also the conclusion
of a decide! rule that select Cut. As we noted earlier, that sequent is of the form

Σ: NM1, Cut, Initial; · −→ right B;L

and it has above it subproofs Ξ1 and Ξ2 of the sequents

Σ: NM1; · −→ right C;L and Σ: NM1; · −→ right B; left C,L,

respectively. We can now transform Ξ2 into Ξ′2 as follows: first remove left C
from the right-most context of all of its sequents and for every occurrence of the
initial rule in Ξ2 of the form

Σ1: NM1; · −→ right C; left C,L ,

replace that subproof in Ξ2 with Ξ1. The resulting Ξ′2 is a proof of

Σ: NM1, Cut, Initial; · −→ right B;L

and, since Ξ1 and Ξ2 do not contain occurrences of decide! that selected Cut,
neither does Ξ′2. In this way, we have reduced the number of backchainings
using Cut in Ξ by one.

Continuing in this fashion, we can eliminate all such uses of the Cut clause
in proving the sequent Σ1: NM1,Cut, Initial; · −→ right B; ·. Since backchaining
on Cut introduces left-atoms and backchaining on Initial eliminates such atoms
(reading from bottom-up), if there there are no such occurrences of Cut, then
there are no such occurrences of Initial. Hence, we have described a proof in F
of Σ1: NM1; · −→ right B; ·.

Lemma 12 If Σ1:LM1; · −→ right B; · has a proof in F , then Σ1: NM1; · −→
right B; · has a proof in F .

Proof Assume Σ1: LM1; · −→ right B; · has a proof in F . Using Lemma 9,
cut-elimination for linear logic, and the soundness and completeness results for
F , the sequent

Σ1: NM1,Cut, Initial; · −→ right B; ·
has a proof in F . Now using Lemma 11, we have that Σ1: NM1; · −→ right B; ·
has a proof in F .

The following theorem follows from results of Gentzen [8]. We supply a new
proof here using linear logic as a meta-theory.

Theorem 13 The sequent −→ B has an LM1 proof if and only if B has an
NM1-proof (from no assumptions).
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(∨R1) right (A ∨B) ◦− right A.
(∨R2) right (A ∨B) ◦− right B.
(∨L) ?(left (A ∨B)) ◦− ?(left A) & ?(left B).
(∃̂R) right (∃̂B) ◦− right (Bx).
(∃̂L) ?(left (∃̂B)) ◦− ∀x(?(left (Bx))).

Figure 5: Sequent rules for disjunction and existential quantification.

(∨I1)′ right (A ∨B) ◦− right A.
(∨I2)′ right (A ∨B) ◦− right B.
(∨E)′ ⊥ ◦− right (A ∨B)

◦− (right A ⇒ ⊥) & (right B ⇒ ⊥).
(∃̂I)′ right (∃̂B) ◦− right (Bx).
(∃̂E)′ ⊥ ◦− right (∃̂B)

◦− ∀x(right (Bx) ⇒ ⊥).

Figure 6: Equivalent forms of the clauses in Figure 5.

(∨I1) right (A ∨B) ◦− right A.
(∨I2) right (A ∨B) ◦− right B.
(∨E) right E ◦− right (A ∨B)

◦− (right A ⇒ right E)
◦− (right B ⇒ right E).

(∃̂I) right (∃̂B) ◦− right (Bx).
(∃̂E) right E ◦− right (∃̂B)

◦− ∀x(right (Bx) ⇒ right E).

Figure 7: Natural deduction rules for disjunction and existential quantification.

Proof This theorem follows immediately from Propositions 5 and 8 and Lem-
mas 10 and 12.

Now consider adding to our object-logic disjunction and existential quan-
tification. Let Σ2 be Σ1 with the constants ∨ and ∃̂ added. Let LM2 be the
sequent system that results from adding the five clauses in Figure 5 to LM1.
Note the use of & in the specification of (∨L): this conjunction is needed since
the right-hand of the object-level sequent is copied in this inference rule.

Applying the equivalences (right B)⊥ ≡ ?(left B) and (right B) ≡ !(right B)
to the clauses displayed in Figure 5, we get the formulas in Figure 6. The
clauses for (∨E)′ and (∃̂E)′ could also be written more directly as the linear
logic formulas

(right A)⊕ (right B) ◦− right (A ∨B).
∃x(right (Bx)) ◦− right (∃̂B).
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(using the equivalence (right B) ≡ !(right B)).
Figure 7 contains the usual introduction and elimination rules for natural

deduction for ∨ and ∃̂. The only difference between the clauses in that Figure
and those in Figure 6 is that the natural deduction rules for disjunction and
existential quantification use the atom right E instead of ⊥ in the elimination
rules for ∨ and ∃̂. While this difference does not allow us to directly generalize
Lemma 9 to include these two connectives, it is possible to show that the clauses
in Figure 6 or in Figure 7 prove the same object-level theorems. For example,
let NM′

2 be the set of clauses formed by adding the clauses in Figure 6 to NM1

and consider using decide! rule with the (∨E)′ clause to prove the F sequent

Σ2:NM′
2,R; · −→ right E; ·.

This would lead to subproofs of the form

Σ2: NM′
2, right A,R; · −→ right E; · and Σ2:NM′

2, right A,R; · −→ right E; ·.

Here, we assume that R is a set of right-atoms containing right (A ∨ B). This
is, of course, the same reduction in proof search if (∨E) (from Figure 7) was
used instead. A similar observation holds for using either (∃E)′ or (∃E). Given
these observations, we could prove the generalization of Theorem 13 using LM2

and NM2. Notice that the specifications of NM1 and NM2 avoid using either .................................................
............
..................................

or ⊥, and as a result, they can be modeled using on intuitionistic linear logic,
in fact, a simple subset of that like Lolli [15].

Most logical or type-theoretic systems that have been used for meta-level
specifications of proof systems have been based on intuitionistic principles: for
example, λProlog [7], Isabelle [29], and Elf [30]. Although these systems have
been successful at specifying numerous logical systems, they have important
limitations. For example, while they can often provide elegant specifications
of natural deduction proof systems, specifications of sequent calculus proofs
are often unachievable without the addition of various non-logical constants
for the sequent arrow and for forming lists of formulas (see, for example, [7]).
Furthermore, these systems often have problems capturing substructural logics,
such as linear logic, that do not contain the usual complement of structural
rules. It should be clear from the above examples that Forum allows for both
the natural specification of sequent calculus and the possibility of handling some
substructural object-logics.

6 Operational Semantics Examples

Evaluation of pure functional programs has been successfully specified in intu-
itionistic meta-logics [11] and type theories [4, 30] using structured operational
semantics and natural semantics. These specification systems are less successful
at providing natural specifications of languages that incorporate references and
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concurrency. In this section, we consider how evaluation incorporating refer-
ences can be specified in Forum; specification of concurrency primitives will be
addressed in the following section.

Consider the presentation of call-by-value evaluation given by the following
inference rules (in natural semantics style).

M ⇓ (abs R) N ⇓ U (R U) ⇓ V

(app M N) ⇓ V (abs R) ⇓ (abs R)

Here, we assume that there is a type tm representing the domain of object-level,
untyped λ-terms and that app and abs denote application (at type tm → tm →
tm) and abstraction (at type (tm → tm) → tm). Object-level substitution is
achieved at the meta-level by β-reduction of the meta-level application (R U)
in the above inference rule. A familiar way to represent these inference rules in
meta-logic is to encode them as the following two clauses using the predicate
eval of type tm → tm → o (see, for example, [11]).

eval (app M N) V ◦− eval M (abs R)
◦− eval N U ◦− eval (R U) V.

eval (abs R) (abs R).

In order to add side-effecting features, this specification must be made more
explicit: in particular, the exact order in which M , N , and (R U) are eval-
uated must be specified. Using a “continuation-passing” technique from logic
programming [33], this ordering can be made explicit using the following two
clauses, this time using the predicate eval at type tm → tm → o → o.

eval (app M N) V K ◦−
eval M (abs R) (eval N U (eval (R U) V K)).

eval (abs R) (abs R) K ◦− K.

From these clauses, the goal (eval M V >) is provable if and only if V is the
call-by-value value of M . It is this “single-threaded” specification of evaluation
that we shall modularly extend with non-functional features.

Consider adding to this specification a single global counter that can be
read and incremented. To specify such a counter we place the integers into
type tm, add several simple functions over the integers, and introduce the two
symbols get and inc of type tm. The intended meaning of these two constants is
that evaluating the first returns the current value of the counter and evaluating
the second increments the counter’s value and returns the counter’s old value.
We also assume that integers are values: that is, for every integer i the clause
∀k(eval i i k ◦− k) is part of the evaluator’s specification.

Figure 8 contains three specifications, E1, E2, and E3, of such a counter:
all three specifications store the counter’s value in an atomic formula as the
argument of the predicate r. In these three specifications, the predicate r is
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E1 = ∃r[ (r 0)⊥ ⊗
!∀K∀V (eval get V K

.................................................
............
.................................. r V ◦− K

.................................................
............
.................................. r V ))⊗

!∀K∀V (eval inc V K
.................................................

............
.................................. r V ◦− K

.................................................
............
.................................. r (V + 1))]

E2 = ∃r[ (r 0)⊥ ⊗
! ∀K∀V (eval get (−V ) K

.................................................
............
.................................. r V ◦− K

.................................................
............
.................................. r V )⊗

! ∀K∀V (eval inc (−V ) K
.................................................

............
.................................. r V ◦− K

.................................................
............
.................................. r (V − 1))]

E3 = ∃r[ (r 0)⊗
! ∀K∀V (eval get V K ◦− r V ⊗ (r V −◦K))⊗
! ∀K∀V (eval inc V K ◦− r V ⊗ (r (V + 1)−◦K)]

Figure 8: Three specifications of a global counter.

existentially quantified over the specification in which it is used so that the
atomic formula that stores the counter’s value is itself local to the counter’s
specification (such existential quantification of predicates is a familiar technique
for implementing abstract data types in logic programming [20]). The first two
specifications store the counter’s value on the right of the sequent arrow, and
reading and incrementing the counter occurs via a synchronization between
an eval-atom and an r-atom. In the third specification, the counter is stored
as a linear assumption on the left of the sequent arrow, and synchronization
is not used: instead, the linear assumption is “destructively” read and then
rewritten in order to specify the get and inc functions (counters such as these
are described in [15]). Finally, in the first and third specifications, evaluating
the inc symbol causes 1 to be added to the counter’s value. In the second
specification, evaluating the inc symbol causes 1 to be subtracted from the
counter’s value: to compensate for this unusual implementation of inc, reading
a counter in the second specification returns the negative of the counter’s value.

The use of ⊗, !, ∃, and negation in Figure 8, all of which are not primitive
connectives of Forum, is for convenience in displaying these abstract data types.
The equivalence

∃r(R⊥1 ⊗ ! R2 ⊗ ! R3)−◦G ≡ ∀r(R2 ⇒ R3 ⇒ G
.................................................

............
.................................. R1)

directly converts a use of such a specification into a formula of Forum (given
α-conversion, we may assume that r is not free in G).

Although these three specifications of a global counter are different, they
should be equivalent in the sense that evaluation cannot tell them apart. Al-
though there are several ways that the equivalence of such counters can be
proved (for example, operational equivalence), the specifications of these coun-
ters are, in fact, logically equivalent.

Proposition 14 The three entailments E1 ` E2, E2 ` E3, and E3 ` E1 are
provable in linear logic.
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Proof The proof of each of these entailments proceeds (in a bottom-up fash-
ion) by choosing an eigen-variable to instantiate the existential quantifier on the
left-hand specification and then instantiating the right-hand existential quan-
tifier with some term involving that eigen-variable. Assume that in all three
cases, the eigen-variable selected is the predicate symbol s. Then the first en-
tailment is proved by instantiating the right-hand existential with λx.s (−x);
the second entailment is proved using the substitution λx.(s (−x))⊥; and the
third entailment is proved using the substitution λx.(s x)⊥. The proof of the
first two entailments must also use the equations

{−0 = 0,−(x + 1) = −x− 1,−(x− 1) = −x + 1}.

The proof of the third entailment requires no such equations.
Clearly, logical equivalence is a strong equivalence: it immediately implies

that evaluation cannot tell the difference between any of these different specifi-
cations of a counter. For example, assume E1 ` eval M V >. Then by cut and
the above proposition, we have E2 ` eval M V >.

It is possible to specify a more general notion of reference from which a
counter such as that described above can be built. Consider the specification in
Figure 9. Here, the type loc is introduced to denote the location of references,
and three constructors have been added to the object-level λ-calculus to manip-
ulate references: one for reading a reference (read), one for setting a reference
(set), and one for introducing a new reference within a particular lexical scope
(new). For example, let m and n be expressions of type tm that do not contain
free occurrences of r, and let F1 be the expression

(new (λr(set r (app m (read r)))) n).

This expression represents the program that first evaluates n; then allocates a
new, scoped reference cell that is initialized with n’s value; then overwrites this
new reference cell with the result of applying m to the value currently stored in
that cell. Since m does not contain a reference to r, it should be the case that
this expression has the same operational behavior as the expression F2 defined
as

(app (abs λx(app m x)) n).

Below we illustrate the use of meta-level properties of linear logic to prove the
fact that F1 and F2 have the same operational behaviors.

Let Ev be the set of formulas from Figure 9 plus the two formulas displayed
above for the evaluation of app and abs. An object-level program may have both
a value and the side-effect of changing a store. Let S be a syntactic variable
for a store: that is, a formula of the form ref h1 u1

.................................................
............
.................................. . . .

.................................................
............
.................................. ref hn un (n ≥ 0),

where all the constants h1, . . . , hn are distinct. A store is essentially a finite
function that maps locations to values stored in those locations. The domain of
a store is the set of locations it assigns: in the above case, the domain of S is
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read : loc → tm
set : loc → tm → tm

new : (loc → tm) → tm → tm
assign : loc → tm → o → o

ref : loc → tm → o

eval (set L N) V K ◦− eval N V (assign L V K).
eval (new R E) V K ◦− eval E U (∀h(ref h U

.................................................
............
.................................. eval (R h) V K)).

eval (read L) V K
.................................................

............
.................................. ref L V ◦− K

.................................................
............
.................................. ref L V.

assign L V K
.................................................

............
.................................. ref L U ◦− K

.................................................
............
.................................. ref L V.

Figure 9: Specification of references.

{h1, . . . , hn}. A garbaged state is a formula of the form ∀h̄.S, where S is a state
and ∀h̄ is the universal quantification of all the variables in the domain of S.
Given the specification of the evaluation of new in Figure 9, new locations are
modeled at the meta-level using the eigen-variables that are introduced by the
∀R inference rule of F .

Consider, for example, the program expression F3 given as

(new λr(read r) 5).

This program has the value 5 and the side-effect of leaving behind a garbaged
store. More precisely, the evaluation of a program M in a store S yields a value
V , a new store S′, and a garbaged store G if the formula

∀k[k .................................................
............
.................................. S′ .................................................

............
.................................. G−◦ eval M V k

.................................................
............
.................................. S]

is provable from the clauses in Ev and the signature extended with the domain of
S. An immediate consequence of this formula is that the formula eval M V > .................................................

............
..................................

S is provable: that is, the value of M is V if the store is initially S. The
references specified here obey a block structured discipline in the sense that the
domains of S and S′ are the same and any new references that are created in
the evaluation of M are collected in the garbaged store G.

A consequence of the formulas in Ev is the formula

∀k[k .................................................
............
.................................. ∀h(ref h 5)−◦ eval F3 5 k].

That is, evaluating expression F3 yields the value 5 and the garbaged store
∀h(ref h 5). An immediate consequence of this formula is the formula

∀k[k .................................................
............
.................................. S

.................................................
............
.................................. ∀h(ref h 5)−◦ eval F3 5 k

.................................................
............
.................................. S];

in other words, this expression can be evaluated in any store without changing it.
Because of their quantification, garbaged stores are inaccessible: operationally
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(but not logically) ∀h(ref h 5) can be considered the same as ⊥ in a manner
similar to the identification of (x)x̄y with the null process in the π-calculus [27].

We can now return to the problem of establishing how the programs F1 and
F2 are related. They both contain the program phrases m and n, so we first
assume that if n is evaluated in store S0 it yields value v and mutates the store
into S1, leaving the garbaged store G1. Similarly, assume that if m is evaluated
in store S1 it yields value (abs u) and mutates the store into S2 with garbaged
store G2. That is, assume the formulas

∀k[k .................................................
............
.................................. S1

.................................................
............
.................................. G1 −◦ eval n v k

.................................................
............
.................................. S0] and

∀k[k .................................................
............
.................................. S2

.................................................
............
.................................. G2 −◦ eval m (abs u) k

.................................................
............
.................................. S1].

From these formulas and those in Ev, we can infer the following formulas.

∀W∀k[eval (u v) W k
.................................................

............
.................................. S2

.................................................
............
.................................. G1

.................................................
............
.................................. G2

.................................................
............
.................................. ∀h(ref h v) −◦ eval F1 W k

.................................................
............
.................................. S0]

∀W∀k[eval (u v) W k
.................................................

............
.................................. S2

.................................................
............
.................................. G1

.................................................
............
.................................. G2 −◦ eval F2 W k

.................................................
............
.................................. S0]

That is, if the expression (u v) has value W in store S2 then both expressions
F1 and F2 yield value W in store S1. The only difference in their evaluations is
that F1 leaves behind an additional garbaged store. Since the continuation k is
universally quantified in these formulas, F1 and F2 have these behaviors in any
evaluation context.

Clearly resolution at the meta-level can be used to compose the meaning of
different program fragments into the meaning of larger fragments. Hopefully,
such a compositional approach to program meaning can be used to aid the
analysis of programs using references.

7 Specification of Concurrency primitives

Concurrency primitives similar to those found in the π-calculus were shown
in [23] to be expressible naturally in a fragment of linear logic subsumed by
Forum. Below we show how concurrency primitives, inspired by those found in
Concurrent ML (CML) [31] can be specified in Forum. Consider the specification
in Figure 10. The first eight clauses specify the straightforward evaluation rules
for the corresponding eight data constructors. The next three clauses defined the
meaning of the three special forms sync, spawn, and newchan. The remaining
clauses specify the event predicate.

This specification allows for multiple threads of evaluation. Evaluation of
the spawn function initiates a new evaluation thread. The newchan function
causes the meta-logic to pick a new eigen-variable (via the ∀c quantification)
and then to assume that that eigen-variable is a value (via the assumption
∀I(eval c c I ◦− I)): such a new value can be used to designate new channels
for use in synchronization. The name-restriction operator of the π-calculus can
be modeled using universal quantification in a similar fashion [23].
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The sync primitive allows for synchronization between threads: its use causes
an “evaluation thread” to become an “event thread.” The behaviors of event
threads are described by the remaining clauses in Figure 10. The primitive
events are transmit and receive and they represent two halves of a synchro-
nization between two event threads. Notice that the clause describing their
meaning is the only clause in Figure 10 that has a head with more than one
atom. The non-primitive events choose, wrap, guard, and poll are reduced
to other calls to event and eval. The choice event is implemented as a local,
non-deterministic choice. (Specifying global choice, as in CCS [26], would be
much more involved.) The wrap and guard events chain together evaluation
and synchronization but in direct orders.

The only use of & and > in any of our evaluators is in the specification
of polling: in an attempt to synchronize with (poll E) (with the continuation
K) the goal (event E U >) & K is attempted (for some unimportant term U).
Thus, a copy of the current evaluation threads is made and (event E U >) is
attempted in one of these copies. This atom is provable if and only if there is a
complementary event for E in the current environment, in which case, the con-
tinuation > brings us to a quick completion and the continuation K is attempted
in the original and unspoiled context of threads. If such a complementary event
is not present, then the other clause for computing a polling event can be used,
in which case, the result of the poll is none, which signals such a failure. The
semantics of polling, unfortunately, is not exactly as intended in CML since it is
possible to have a polling event return none even if the event being tested could
be synchronized. This analysis of polling is similar to the analysis of testing in
process calculus as described in [23]. As is discussed there, this problem with
polling can be addressed if the meta-logic allows certain forms of negation-as-
failure.

About this specification, we shall not prove anything formal, although it
should be clear that the approach to reasoning about object-level programs
using meta-level resolution, as in the last section, should be applicable here as
well.

In the [5], Chirimar presents a specification of a programming language mo-
tivated by Standard ML [28]. In particular, a specification for the call-by-value
λ-calculus is provided, and then modularly extended with the specifications of
references, exceptions, and continuations: each of these features is specified
without complicating the specifications of other the features.

8 Conclusions

We have given a presentation of linear logic that modularly extends the proof
theory of several known logic programming languages. The resulting speci-
fication language, named Forum, provides the abstractions and higher-order
judgments available in intuitionistic-based meta-logics as well as primitives for
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eval, event : tm → tm → o → o.
none : tm.

guard, poll, receive, some, sync : tm → tm.
choose, transmit, wrap : tm → tm → tm.

spawn, newchan : (tm → tm) → tm.

eval none none K ◦− K.
eval (guard E) (guard V ) K ◦− eval E V K.

eval (poll E) (poll V ) K ◦− eval E V K.
eval (receive E) (receive V ) K ◦− eval E V K.

eval (some E) (some V ) K ◦− eval E V K.
eval (choose E F ) (choose U V ) K ◦− eval E U (eval F V K).

eval (transmit E F ) (transmit U V ) K ◦− eval E U (eval F V K).
eval (wrap E F ) (wrap U V ) K ◦− eval E U (eval F V K).

eval (sync E) V K ◦− eval E U (event U V K).
eval (spawn R) unit K ◦− (eval (R unit) unit ⊥) .................................................

............
.................................. K.

eval (newchan R) V K ◦− ∀c(∀I(eval c c I ◦− I) ⇒ eval (R c) V K).

event (receive C) V K
.................................................

............
.................................. event (transmit C V ) unit L ◦− K

.................................................
............
.................................. L.

event (choose E F ) V K ◦− event E V K.
event (choose E F ) V K ◦− event F V K.
event (wrap E F ) V K ◦− event E U (eval (app F U) V K).

event (guard F ) V K ◦− eval (app F unit) U (event U V K).
event (poll E) (some E) K ◦− (event E U >) & K.

event (poll E) none K ◦− K.

Figure 10: Specifications of some primitives similar to those found in Concurrent
ML.
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synchronization and communications. We have illustrated the possible uses of
Forum by providing example specifications of object-level sequent systems and
of the operational semantics of programming languages. Since the resulting
specifications are natural and simple, properties of the meta-logic can be mean-
ingful employed to prove properties about the specified object-languages.

Forum appears to be useful for other kinds of semantic specifications as
well. In [5], Chirimar specified the operation semantics of a prototypical RISC
machine: he specified its sequential and pipelined operational semantics, along
with optimizations such as call-forwarding and early branch resolution. He
also proved that sequential and pipelined specification were equivalent, and he
addressed the problem of code equivalence and analyzed the problem of code
rescheduling. His proofs and analyses made use of familiar aspects of proof
theory and linear logic.
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