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Abstract

A focused proof system provides a normal form to cut-free proofs in which the application of invertible
and non-invertible inference rules is structured. Within linear logic, the focused proof system of Andreoli
provides an elegant and comprehensive normal form for cut-free proofs. Within intuitionistic and classical
logics, there are various different proof systems in the literature that exhibit focusing behavior. These
focused proof systems have been applied to both the proof search and the proof normalization approaches
to computation. We present a new, focused proof system for intuitionistic logic, called LJF, and show how
other intuitionistic proof systems can be mapped into the new system by inserting logical connectives that
prematurely stop focusing. We also use LJF to design a focused proof system LKF for classical logic. Our
approach to the design and analysis of these systems is based on the completeness of focusing in linear logic
and on the notion of polarity that appears in Girard’s LC and LU proof systems.

1. Introduction

Cut-elimination provides an important normal form for sequent calculus proofs. But what normal forms
can we uncover about the structure of cut-free proofs? Since cut-free proofs play important roles in the
foundations of computation, such normal forms might find a range of applications in the proof normalization
foundations for functional programming or in the proof search foundations of logic programming.

1.1. About focusing

Andreoli’s focusing proof system for linear logic (the triadic proof system of [1]) provides a normal form
for cut-free proofs in linear logic. Although we describe this system, here called LLF, in more detail in
Section 2, we highlight two aspect of focusing proofs here. First, linear logic connectives can be divided into
the asynchronous connectives, whose right-introduction rules are invertible, and the synchronous connectives,
whose right introduction rules are not (generally) invertible. The search for a focused proof can capitalize on
this classification by applying (reading inference rules from conclusion to premise) all invertible rules in any
order (without the need for backtracking) and by applying a chain of invertible rules that focuses on a given
formula and its positive subformulas. Such a chain of applications, usually called a focus, terminates when
it reaches an asynchronous formula. Proof search can then alternate between applications of asynchronous
introduction rules and chains of synchronous introduction rules.

A second aspect of focusing proofs is that the synchronous/asynchronous classification of non-atomic
formulas must be extended to atomic formulas. The arbitrary assignment of positive (synchronous) and
negative (asynchronous) bias to atomic formulas can have a major impact on, not the existence of focused
proofs, but the shape of focused proofs. For example, consider the Horn clause specification of the Fibonacci
series:

fib(0, 0) ∧ fib(1, 1) ∧ ∀n∀f∀f ′[fib(n, f) ⊃ fib(n + 1, f ′) ⊃ fib(n + 2, f + f ′)].
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If all atomic formulas are given a negative bias, then there exists only one focused proof of fib(n, fn): this
one can be classified as a “backward chaining” proof and its size is exponential in n. On the other hand, if
all atomic formulas are given a positive bias, then there is an infinite number of focused proofs all of which
are classified as “forward chaining” proofs: the smallest such proof is of size linear in n.

1.2. Results

The contributions of this paper are the following. First, we introduce in Section 5 a new focusing proof
system LJF and show that it is sound and complete for intuitionistic logic. Notable features of LJF are that
it allows for atoms of different bias and it contains two versions of conjunction: while these conjunctions
are logically equivalent, they are affected by focusing differently. Furthermore, in Section 6, we show that
LJF satisfies cut-elimination.Second, in Section 7, we show how several other focusing proof systems can be
captured in LJF, in the sense of full completeness (one-to-one correspondence between proofs in different
systems). One should note that while there are many focusing proof systems for intuitionistic logic in the
literature, LJF appears to be the first to provide a single (intuitionistic) framework for capturing many of
them. Third, in Section 8, we use LJF to derive LKF, a focusing system for classical logic.

1.3. Methodology and Related work

There is a number of sequent calculus proof systems known to be complete for intuitionistic logic that
exhibit characteristics of focusing. Some of these proof systems fix globally on either forward chaining or
backward chaining. The early work on uniform proofs [2] and the LJT proof system [3] are both backward
chaining calculi (all atoms have negative bias) while the LJQ calculus [3, 4] selects the global preference
to be forward chaining (all atoms have positive bias). The PhD theses of Howe [5] and Chaudhuri [6] also
explored various focusing proof systems for both linear and intuitionistic logics. Less has been published
about systems that allow for mixing bias on atoms. While the λRCC proof system of Jagadeesan, Nadathur,
and Saraswat [7] is not a focusing system explicitly, it does allow for two polarities of atoms (agents and
constraints are positive and goals are negative) and for mixing both forward chaining and backward chaining
in a superset of the hereditary Harrop fragment of intuitionistic logic: forward chaining is used to model
constraint propagation and backward chaining is used to model goal-directed search.

We are interested in providing a flexible and unifying framework that can collect together important
aspects of many of these proof systems. There are several ways to motivate and validate the design of such
a system. One approach stays entirely within intuitionistic logic and works directly with invertibility and
permutability of inference rules. Such an approach has been taken in many papers, such as [2, 8, 4]. Our
approach uses linear logic, with its exponential operators ! and ?, as a unifying framework for looking at
intuitionistic (and classical) logic. The fact that Andreoli’s focused system was defined for full linear logic
provides us with a convenient platform for exploring the issues around focusing and polarity. We translate
intuitionistic logic into linear logic, then show that proof systems for intuitionistic logic match focused
proofs of the translated image (Section 3). A crucial aspect of understanding focusing in intuitionistic logic
is provided by identifying the precise relationship between Andreoli’s notion of polarity with Girard’s notion
of polarity found in the LC [9] and LU [10] systems (see Section 4).

Another system concerning polarity and focusing is found in the work of Danos, Joinet, and Schellinx
[11, 12]. Many techniques that they developed, such as inductive decorations, are used throughout our
analysis. Our work diverges from theirs in the adaptation of Andreoli’s system (LLF) as our main instrument
of construction. The LKη

p system of [12] describes focused proofs for classical logic. Its connections to
polarization and focusing were further explored and extended by Laurent, Quatrini, and de Falco [13] using
polarized proof nets. It may be tempting to speculate that the best way to arrive at a notion of intuitionistic
focusing is by simple modifications to these systems, such as restricting them to single-conclusion sequents.
Closer examination, however, reveals intricate issues concerning this approach. For example, the notion of
classical polarity appears to be distinct from and contrary to intuitionistic polarity, especially at the level of
atoms (see Sections 4 and 8). Resolving this issue would be central to finding systems that support combined
forward and backward chaining. Although the relationship between LKη

p and our systems is interesting, we
chose for this work to derive intuitionistic focusing from focusing in linear logic as opposed to classical logic.
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In Section 8, we show how a classical focusing calculus can then be derived from the new intuitionistic
system.

Focusing proof systems have been applied in a number of settings. The earliest work on focusing in
linear logic was motivated, in part, by logic programming: Andreoli’s original focusing paper [1] was used
to justify the design of the LO logic programming language [14]. The specialized proof systems for the
Lolli [15] and Forum [16] logic programming languages were justified by the completeness of uniform proofs,
which can be seen as a particular kinds of focused proofs in which all atoms are given negative polarity.
Chaudhuri, Pfenning, and Price in [17] restrict Andreoli’s focusing proof system for full linear logic to the
intuitionistic fragment and then show that adopting different global bias assignment for atoms leads to either
SLD-resolution or hyper-resolution on Horn clauses. The papers [3, 11, 12, 13] are motivated by foundational
issues in function programming and the λ-calculus. Also, Levy [18] presents focus-style proof systems for
typing in the λ-calculus and Curien and Herbelin [19] (among others) have noted the relationship between
forward chaining and call-by-value evaluation and between backward chaining and call-by-name evaluation.

While this paper is mostly concerned with first-order logics, we believe that most of our results can be
extended to include second-order quantification as well. Although this paper, which is an extended version
of the conference paper [20], is mostly self-contained, certain proofs are not presented in full detail in order
to save space: missing details can be found in [21].

2. Focusing in Linear Logic

We summarize the key results from [1] on focusing proofs for linear logic.
A literal is either an atomic formula or the linear negation of an atomic formula. A linear logic formula

is in negation normal form if it does not contain occurrences of −◦ and if all negations have atomic scope. If
K is literal, then K⊥ denotes its complement: in particular, if K is A⊥ then K⊥ is A.

Connectives in linear logic are either asynchronous or synchronous. The asynchronous connectives are
⊥,

............................................
...........
.......
................................. , ?, ⊤, &, and ∀ while the synchronous connectives are their de Morgan dual, namely, 1, ⊗, !, 0, ⊕,

and ∃. Asynchronous connectives are those where the right-introduction rule is always invertible. Formally,
a formula in negation normal form is of three kinds: literal, asynchronous (i.e., its top-level connective is
asynchronous), and synchronous (i.e., its top-level connective is synchronous).

As mentioned in Section 1.1, the classification of non-atomic formulas as asynchronous or synchronous is
pushed to literals by assigning a fixed but arbitrary bias to atoms: an atom given a negative bias is linked
to asynchronous behavior while an atom given positive bias is linked to synchronous behavior. In Andreoli’s
original presentation of focusing [1], all atoms were classified as “positive” and their negations “negative.”
Girard made a similar assignment for LC [9]. In a classical setting, such a choice is possible since classical
negation simply flips bias. In intuitionistic systems, however, a more natural treatment is to assign an
arbitrary bias directly to atoms. This bias of atoms is extended to literals: negating a negative atom yields
a positive literal and negating a positive atom yields a negative literal.

The focusing proof system LLF for linear logic, presented in Figure 1, contains two kinds of sequents. In
the sequent Ψ: ∆ ⇑ L, the “zones” Ψ and ∆ are multisets and L is a list. This sequent encodes the usual
one-sided sequent − ?Ψ, ∆, L (here, we assume the natural coercion of lists into multisets). This sequent will
also satisfy the invariant that requires ∆ to contain only literals and synchronous formulas. In the sequent
Ψ: ∆ ⇓ F , the zone Ψ is a multiset of formulas and ∆ is a multiset of literals and synchronous formulas, and
F is a single formula. Notice that the bias of literals is explicitly referred to in the [R ⇑] and initial rules: in
particular, in the initial rules, the literal on the right of the ⇓ must be positive.

The following theorem, which was proved in [1], states that LLF is sound and complete for linear logic.

Theorem 1. Let F be a formula of linear logic. The F is provable in linear logic if and only if the sequent
·: · ⇑ F is provable in LLF.

It is a simple consequence of this theorem that changes to the bias assigned to atoms does not affect
provability of a linear logic formula: it can, however, affect the structure of focused proofs.
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Asynchronous phase

⊢ Ψ: ∆ ⇑ L

⊢ Ψ: ∆ ⇑ ⊥, L
[⊥]

⊢ Ψ: ∆ ⇑ F, G, L

⊢ Ψ: ∆ ⇑ F
............................................
...........
........
................................ G, L

[
............................................
...........
........
................................ ]

⊢ Ψ, F : ∆ ⇑ L

⊢ Ψ: ∆ ⇑ ?F, L
[?]

⊢ Ψ: ∆ ⇑ ⊤, L
[⊤]

⊢ Ψ: ∆ ⇑ F, L ⊢ Ψ: ∆ ⇑ G, L

⊢ Ψ: ∆ ⇑ F & G, L
[&]

⊢ Ψ: ∆ ⇑ B[y/x], L

⊢ Ψ: ∆ ⇑ ∀x.B, L
[∀]

⊢ Ψ: ∆, F ⇑ L

⊢ Ψ: ∆ ⇑ F, L
[R ⇑] provided that F is not asynchronous

Synchronous phase

⊢ Ψ: · ⇓ 1
[1]

⊢ Ψ: ∆1 ⇓ F ⊢ Ψ: ∆2 ⇓ G

⊢ Ψ: ∆1, ∆2 ⇓ F ⊗G
[⊗]

⊢ Ψ: · ⇑ F

⊢ Ψ: · ⇓ !F
[!]

⊢ Ψ: ∆ ⇓ F1

⊢ Ψ: ∆ ⇓ F1 ⊕ F2
[⊕l]

⊢ Ψ: ∆ ⇓ F2

⊢ Ψ: ∆ ⇓ F1 ⊕ F2
[⊕r]

⊢ Ψ: ∆ ⇓ B[t/x]

⊢ Ψ: ∆ ⇓ ∃x.B
[∃]

⊢ Ψ: ∆ ⇑ F

⊢ Ψ: ∆ ⇓ F
[R ⇓] provided that F is either asynchronous or a negative literal

Identity and Decide rules

If K a positive literal:
⊢ Ψ: K⊥ ⇓ K

[I1]
⊢ Ψ, K⊥: · ⇓ K

[I2]

If F is not a negative literal:
⊢ Ψ: ∆ ⇓ F

⊢ Ψ: ∆, F ⇑ ·
[D1]

⊢ Ψ, F : ∆ ⇓ F

⊢ Ψ, F : ∆ ⇑ ·
[D2]

Figure 1: The focused proof system LLF for linear logic

3. Translating Intuitionistic Logic

The most well-known translation of intuitionistic logic into linear logic is likely the “(·)◦” translation
given by Girard in [22]: there, the intuitionistic implication A ⊃ B is translated into the linear logic formula
!A−◦B (atoms are also translated to atoms). Unfortunately, this translation rules out modeling certain kinds
of proofs as a focused proof (in particular, backward chaining proofs) and it forces atoms to have negative
polarity. For example, the intuitionistic sequent a, a ⊃ b, b ⊃ c ⊢I c has two different proofs corresponding to
forward chaining from a (⊃ L with a ⊃ b) and backward chaining from c (⊃ L with b ⊃ c). Using the above
translation on this intuitionistic sequent yields the focused sequent a⊥, !a⊗ b⊥, !b⊗ c⊥; c ⇑ · for which there
is only one focused proof: using [D2] with !b ⊗ c⊥ leads to a proof (corresponding to backward chaining)
while using [D2] on !a⊗ b⊥ leads to a failed proof attempt. This translation of intuitionistic logic into linear
logic is closely related to the LJT proof system for backward chaining proof search (see Section 7).

The translation we will use to derive a unified focusing system for intuitionistic logic (called LJF in
Section 5) is inspired by the polarized translation of LU. For the purpose of providing completeness proofs
later on, we first present a translation, given in Table 1, that maps unfocused LJ proofs to focused linear
logic proofs. As is customary, intuitionistic negation is defined as A ⊃ false. The translation induces a
bijection between arbitrary LJ proofs and LLF proofs of the translated image in the following sense. First
notice that this translation is asymmetric: the intuitionistic formula A is translated using A1 if it occurs
on the right-side of an LJ sequent and as A0 if it occurs on the left-side. Since this translation is used to
capture cut-free proofs, such distinctions are not problematic. Since the left-hand side of a sequent in LJ
will be negated when translated to a one-sided linear logic sequent, (B0)⊥ is also shown.

The liberal use of ! in this translation throttles focusing in the following sense. In contrast to unfocused
sequent calculus where inference rules are applied independently of each other, focused proof systems organize
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B B1 B0 (B0)⊥

atom Q Q Q Q⊥

true 1 ⊤ 0

false 0 0 ⊤

P ∧Q !(P 1 & Q1) !P 0 & !Q0 ?(P 0)⊥ ⊕ ?(Q0)⊥

P ∨Q !P 1 ⊕ !Q1 !P 0 ⊕ !Q0 ?(P 0)⊥ & ?(Q0)⊥

P ⊃ Q !(?(P 0)⊥
............................................
...........
.......
................................. Q1) !P 1 −◦ !Q0 !P 1 ⊗ ?(Q0)⊥

∃xP ∃x!P 1 ∃x!P 0 ∀x?(P 0)⊥

∀xP !∀xP 1 ∀x!P 0 ∃x?(P 0)⊥

Table 1: The 0/1 translation used to encode LJ proofs into linear logic.

a proof into alternating phases of asynchronous and synchronous rules. Focusing on the formula !P , however,
forces the immediate release of the focus and returns the sequent to an unfocused sequent. Furthermore, the
translation of every formula B1 is synchronous or atomic at the outer-most layer. These characteristics of
the translation ensures that a focused proof is always returned to an unfocused sequent after the introduction
of each corresponding intuitionistic connective, thus mimicking an unfocused sequent calculus.

Although nominally a multiset, the unbounded context of a LLF sequent is, in fact, treated additively. In
mapping intuitionistic logic to linear logic, the left-hand side contexts of sequents are also treated additively.
The contexts never decrease from conclusion to premise. We will not be able to directly account for certain
known optimizations for LJ proofs: for example, the left introduction rule for implication can be optimized
so that the introduced implication is maintained in one premise but not the other (c.f., [23]). However, as
our translation will remain faithful to intuitionistic provability, one can expect other refinements to remain
admissible in the new intuitionistic sequent calculus that we derive. We therefore consider such optimizations
as an orthogonal issue.

Figure 2 provides a sequent calculus proof system for intuitionistic logic in which the left-hand-side of
the sequent arrow is a set of formulas. In each left-introduction rule, the principal formula is assumed to
also be a side-formula: in this way, the principle formula is retained in all premises. This variant of LJ bares
close resemblances to the “G3i” calculus [24] particularly since contraction and weakening are not explicit
inference rules. In Figure 2, the additive version of ∧L is used instead of the following multiplicative rule

A, B, Γ ⊢I R

A ∧B, Γ ⊢I R
∧L.

Such variations are common in intuitionistic calculi. One of the results of this paper is the further clarification
of these variations. We will later discuss when one version of ∧might be preferable to the other and eventually
offer a proof system that includes both.

The following proposition relates focused proofs under the 0/1 translation with intuitionistic proofs. Note
that since R1 is always synchronous or atomic, ⊢ (Γ0)⊥ :⇑ R1 is interchangeable with ⊢ (Γ0)⊥ : R1 ⇑.

Proposition 2. Let (Γ0)⊥ be the multiset {(D0)⊥ | D ∈ Γ}. The focused proofs of ⊢ (Γ0)⊥ :⇑ R1 are in
bijective correspondence with the proofs of Γ ⊢I R.

Proof A bijective mapping between proofs can be described by a simple recursion on structure of proofs.
We show the following representative cases.
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A, Γ ⊢I A
ID, A atomic

false, Γ ⊢I R
falseL

Γ ⊢I true
trueR

Ai, Γ ⊢I R

A1 ∧A2, Γ ⊢I R
∧L

Γ ⊢I A Γ ⊢I B

Γ ⊢I A ∧B
∧R

A, Γ ⊢I R B, Γ ⊢I R

A ∨B, Γ ⊢I R
∨L

Γ ⊢I Ai

Γ ⊢I A1 ∨A2
∨R

Γ ⊢I A B, Γ ⊢I R

A ⊃ B, Γ ⊢I R
⊃L

Γ, A ⊢I B

Γ ⊢I A ⊃ B
⊃ R

A[t/x], Γ ⊢I R

∀xA, Γ ⊢I R
∀L

Γ ⊢I A

Γ ⊢I ∀yA
∀R

A, Γ ⊢I R

∃yA, Γ ⊢I R
∃L

Γ ⊢I A[t/x]

Γ ⊢I ∃xA
∃R

Figure 2: A proof system based on “G3i” for intuitionistic logic. In ∀R and ∃L, y is not free in the conclusion.

1. ((D1 ∧D2)
0)⊥ = (!D0

1&!D0
2)
⊥ = ?(D0

1)
⊥ ⊕ ?(D0

2)
⊥ ∈ (Γ0)⊥:

⊢ (Γ0)⊥, (D0
i )
⊥ : R1 ⇑

⊢ (Γ0)⊥ : R1 ⇑ ?(D0
i )⊥

[?]

⊢ (Γ0)⊥ : R1 ⇓ ?(D0
i )⊥

[R ⇓]

⊢ (Γ0)⊥ : R1 ⇓ ?(D0
1)
⊥ ⊕ ?(D0

2)
⊥

[⊕]

⊢ (Γ0)⊥ : R1 ⇑
[D2]

←→
Γ, Di ⊢I R

Γ, D1 ∧D2 ⊢I R
∧L

2. (G1 ∧G2)1 = !(G1
1 & G1

2).

⊢ (Γ0)⊥;⇑ G1
1 ⊢ (Γ0)⊥;⇑ G1

2

⊢ (Γ0)⊥ :⇑ G1
1 & G1

2

[&]

⊢ (Γ0)⊥ :⇓ !(G1
1 & G1

2)
[!]

⊢ (Γ0)⊥ : !(G1
1 & G1

2) ⇑
[D1]

←→
Γ ⊢I G1 Γ ⊢I G2

Γ ⊢I G1 ∧G2
∧R

3. ((G ⊃ D)0)⊥ = (!G1 −◦ !D0)⊥ = !G1 ⊗ ?(D0)⊥ ∈ (Γ0)⊥:

⊢ (Γ0)⊥ :⇑ G1

⊢ (Γ0)⊥ :⇓ !G1
[!]

⊢ (Γ0)⊥, (D0)⊥ : R1 ⇑

⊢ (Γ0)⊥ : R1 ⇑ ?(D0)⊥
[?]

⊢ (Γ0)⊥ : R1 ⇓ ?(D0)⊥
[R ⇓]

⊢ (Γ0)⊥ : R1 ⇓ !G1 ⊗ ?(D0)⊥
[⊗]

⊢ (Γ0)⊥ : R1 ⇑
[D2]

←→
Γ ⊢I G Γ, D ⊢I R

Γ, D ⊃ G ⊢I R
⊃ L

4. (D ⊃ G)1 = !(!D0 −◦ G1) = !(G1 ............................................
...........
........
................................ ?(D0)⊥):

⊢ (D0)⊥, (Γ0)⊥ :⇑ G1

⊢ (Γ0)⊥ :⇑ G1, ?(D0)⊥
[?]

⊢ (Γ0)⊥ :⇑ G1 ............................................
...........
........
................................ ?(D0)⊥

[
............................................
...........
.......
................................. ]

⊢ (Γ0)⊥ :⇓ !(G1 ............................................
...........
.......
................................. ?(D0)⊥)

[!]

⊢ (Γ0)⊥ : !(G1 ............................................
...........
........
................................ ?(D0)⊥) ⇑

[D1]

←→
D, Γ ⊢I G

Γ ⊢I D ⊃ G
⊃R

5. (false
0)⊥ = 0⊥ = ⊤ ∈ (Γ0)⊥:

⊢ (Γ0)⊥ : R1 ⇑ ⊤
[⊤]

⊢ (Γ0)⊥ : R1 ⇓ ⊤
[R ⇓]

⊢ (Γ0)⊥ : R1 ⇑
[D2]

←→ Γ, false ⊢I R
falseL
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F F q (right) F j (left)

atom C C C

false 0 0

A ∧B Aq ⊗Bq !Aj ⊗ !Bj

A ∨B Aq ⊕Bq !Aj ⊕ !Bj

A ⊃ B (!Aj −◦ Bq)⊗ 1 Aq −◦ !Bj

Figure 3: The j/q translation for LJQ′.

In each case the focus arrows of the remaining premises of the LLF proofs always point upwards (⇑),
indicating a termination of focus. The translation ensures that all formulas G1 are synchronous or atomic,
and thus ⊢ (Γ0)⊥ :⇑ G1 is provable if and only if ⊢ (Γ0)⊥ : G1 ⇑ is provable (via the reaction rule R ⇑).
Thus the inductive hypothesis applies to the remaining premises. Every right rule of LJ is initiated by a D1

decision rule and every left rule is initiated by a D2 rule.
The greatly constrained choices of inference rules in the focused proof system can be used to establish

that this mapping is bijective. 2

An important characteristic of the 0/1 translation is that the bias of atoms does not affect the structure
of proofs: bias of atoms play a greater role in translations that insert fewer !’s. We also note that this
translation procedure remains bijective even in the presence of 0. Even a proof such as

false ⊢I A false, B ⊢I C

false, A ⊃ B ⊢I C
⊃ L

has exactly one corresponding focused proof. The ! exponential forces contexts to be split in the “right
way,” preventing occurrences of multiple-conclusion sequents even when 0 is present in the context (see case
3 above). Dealing with 0 will cause some problem in other translations (see, for example, Lemma 5).

The 0/1 translation forms a starting point in establishing the completeness of other proof systems. These
systems can be seen as induced from alternative translations of intuitionistic logic. Consider, for example,
the LJQ′ proof system presented in [4]. A translation to LLF proofs for this system is given in Figure 3. The
linear implication P −◦ Q is defined as the usual P⊥

............................................
...........
........
................................ Q. All atoms must be given positive bias for this

translation. Notice that the translation for implication on the left-hand side is of the form A −◦ !B, which is
complementary to Girard’s original translation: !A −◦ B. The “⊗1” device is a way to control the structure
of focusing proofs without affecting provability. Another consequence of having only positive atoms is that
conjunction is translated using ⊗ instead of &. We shall return to LJQ′ in Section 7, in the context of a
generalized focusing framework for intuitionistic logic.

With minor changes, Girard’s original translation of intuitionistic logic in [22] induces the complement to
LJQ′ called LJT [3] (which was derived from LKT [11]). As already noted, all atoms must be given negative
bias for this translation. For a more extended treatment of LJT, see [21].

Given a translation such as that of LJQ′, one can give a completeness proof for the system using a “grand
tour” through linear logic as follows:

1. Show that a proof under the 0/1 translation can be converted into a proof under the new translation.
This usually follows from cut-elimination in linear logic.

2. Define a mapping between proofs in the new system (such as LJQ′) and LLF proofs of its translation.

3. Show soundness of the new system with respect to LJ. This is usually trivial. The “tour” is now
complete, since proofs in LJ map to proofs under the 0/1 translation.

Figure 4 further illustrates the strategy. The label l/r represents the translation for some arbitrary intu-
itionistic sequent system, which is indicated by ⊢O. The arrow on the left-hand-side depicts Proposition 2;
the top arrow depicts Step 1, the right-hand-side rule depicts Step 2, and the bottom arrow depicts Step 3.
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0/1

⊢⇑ -
l/r

⊢⇑

?

6

⊢O�⊢I

6

?

Figure 4: Grand tour through linear logic

An intuitionistic system that contains atoms of both positive and negative bias is λRCC [7]. Two special
cases of the ⊃L rule are distinguished involving E ⊃ D for positive atom E and G ⊃ A for negative atom
A. Each rule requires that the complementary atom (E on the left, A on the right) is present when applied,
thus terminating one branch of the proof. One can translate these special cases using forms E −◦ !D′ and
!G′ −◦ A, respectively, in linear logic. The strategy outlined above can then be used to not only prove its
completeness but also extend it with more aggressive focusing features.

Our interest here is not the construction of individual systems but the building of a unifying framework
for focusing in intuitionistic logic. Such a task requires a closer examination of polarity and its connection
to focusing.

4. Permeable Formulas and their Polarity

In order to construct a general focusing scheme for intuitionistic logic, the non-linear (exponential) aspects
of proofs need special attention, especially in light of the fact that the [!] rule stops a bottom-up construction
of focused application of synchronous rules (the arrow ⇓ in the conclusion flips to ⇑ in the premise).

For our purposes here, a particularly flexible way to deal with the exponentials in the translations of
intuitionistic formulas is via the notion of permeation that is used in LU [10]. In particular, there are
essentially three grades of permeation. The formula B is left-permeable if B ≡ !B, is right-permeable if
B ≡ ?B, and neutral otherwise. Within sequent calculus proofs, a formula is left-permeable if it admits
structural rules on the left and right-permeable if it admits structural rules on the right. An example of
a left-permeable formula is ∃x!A. All left-permeable formulas are synchronous and all right-permeables are
asynchronous. In the LU system, both the left and right sides of sequents contain two zones — one that
treats formulas linearly and one that permits structural rules. A left-permeable (resp., right-permeable)
formula is allowed to move between both zones on the left (right). In addition, LU introduces atoms that
are inherently left or right-permeable or neutral: one can simulate LU in “regular” linear logic by translating
left-permeable atoms A as !A and right-permeable ones as ?A.

To preserve the focusing characteristics of permeable atoms as positively or negatively biased atoms, we
use the following asymmetrical translation. The superscript −1 indicates the left-side translation and +1
indicates the right-side translation:

P−1 = !P and P+1 = P , for left-permeable atom P .
N−1 = N and N+1 = ?N , for right-permeable atom N .
B−1 = B+1 = B, for neutral atom B.

The ! rule of LLF causes a loss of focus in all circumstances: the main reason we use asymmetric translations
is that they can insert fewer occurrences of !. The translation of positive atoms above preserves permeation
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on the left while allowing for focus on the right. That is, left-permeable atoms can now be interpreted mean-
ingfully as positively biased atoms in focused proofs, and dually for right-permeable atoms. Furthermore, the
permeation of positive atoms is “one-way only:” they cannot be selected for focus again once they enter the
non-linear context. In other words, this characteristic of the focusing sequent calculus allows asynchronous
formulas to be fully decomposed, up to and including atoms.

Intuitionistic logic uses the left-permeable and neutral formulas and atoms. LU defines a translation for
intuitionistic logic so that all synchronous formulas are left-permeable.

The final element of intuitionistic polarity is that neutral atoms should be assigned negative bias in focused
proofs. Neutral atoms that are introduced into the left context (e.g. by a ⊃L rule) must immediately end
that branch of the proof in an identity rule. Otherwise, the unique stoup is lost when multiple non-permeable
atoms accumulate in the linear context.

The LU and LLF systems serve as a convenient platform for the unified characterization of polarity and
focusing in all three logics. We can now understand the terminology of “positive” and “negative” formulas
in each logic as follows:

Linear logic: Positive formulas are synchronous formulas and positively biased neutral atoms. Negative
formulas are asynchronous formulas and negatively biased neutral atoms.

Intuitionistic logic: Positive formulas are left-permeable formulas (including left-permeable atoms). Neg-
ative formulas are asynchronous neutral formulas and negatively biased neutral atoms.

Classical logic: Positive formulas are left-permeable formulas. Negative formulas are right-permeable for-
mulas.

5. The LJF Sequent Calculus

The asymmetrical translation of atoms unifies LU’s notion of polarity with the positive/negative duality
of LLF proofs. We can now use a LU-based translation of intuitionistic logic that will induce a new, focused
sequent calculus for intuitionistic logic, one that is even more sensitive to the polarity of formulas than LLF.

We first make another adjustment on the LU translation of intuitionistic conjunction. Instead of using
& or ⊗ depending on the polarities of the subformulas, we introduce two versions of the intuitionistic
conjunction: ∧+ and ∧− (Danos et. al. used similar connectives [12]). These connectives are equivalent in
intuitionistic logic in terms of provability but differ in their impact on the structure of focused proofs.1 The
use of two conjunctions means that the top-level structure of a formula completely determines its polarity.
Using two conjunctives provides some flexibility in capturing different approaches to focusing. For example,
Chaudhuri [6, Section 6.4] provides a treatment of conjunction that interprets occurrences of conjunctions
in an asynchronous phase as asynchronous and in a synchronous phase as synchronous: such a treatment
can be captured by mapping ∧ explicitly to either ∧− or ∧+ depending the structure of the formula in which
they occur.

Polarity in intuitionistic logic is defined as follows.

Definition 3. Atoms in LJF are arbitrarily divided between those that are positive and those that are
negative. Positive formulas are of the following forms: positive atoms, true, false, A ∧+ B, A ∨B and ∃xA.
Negative formulas are among negative atoms, A ∧− B, A ⊃ B and ∀xA.

Notice that the classification of atoms as positive and negative is done on possibly open atomic formulas
since eigenvariables of the proof may appear free in them. In the most general approach to assigning bias
to atoms, it might well be the case that an atom and a substitution instance of an atom can be of different

1The reader may notice that there can also be two versions of true. It is possible to use the linear constant ⊤ to represent
true, but this is unnecessary since false ⊃ false can be used instead. Insisting on dual versions of all constants is more suitable
for classical logic (see Section 8).
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P+1 = P , P−1 = !P for positive atom P
N+1 = N−1 = N for negative atom N
true+1 = true−1 = 1 false+1 = false−1 = 0

(P ∧+ Q)−1 = P−1 ⊗Q−1 (A ∧+ B)+1 = A+1 ⊗B+1

(P ∧+ N)−1 = P−1 ⊗ !N−1

(N ∧+ P )−1 = !N−1 ⊗ P−1 (A ∧− B)−1 = A−1 & B−1

(N ∧+ M)−1 = !N−1 ⊗ !M−1 (A ∧− B)+1 = A+1 & B+1

(P ∨Q)−1 = P−1 ⊕Q−1 (A ∨B)+1 = A+1 ⊕B+1

(P ∨N)−1 = P−1 ⊕ !N−1

(N ∨ P )−1 = !N−1 ⊕Q−1

(N ∨M)−1 = !N−1 ⊕ !M−1

(P ⊃ B)+1 = P−1 −◦B+1 (A ⊃ B)−1 = A+1 −◦B−1

(N ⊃ B)+1 = !N−1 −◦B+1

(∃xP )−1 = ∃xP−1 (∃xA)+1 = ∃xA+1

(∃xN)−1 = ∃x!N−1

(∀xA)−1 = ∀xA−1 (∀xA)+1 = ∀xA+1

Figure 5: The −1/ +1 translation of intuitionistic logic (−1 for left, +1 for right). Here, P , Q represent positive formulas; N ,
M represent negative formulas; and A, B represent arbitrary formulas.

polarities. It would seem that the stability of bias assignment under (first-order) substitution is a natural
expectation but it is not a requirement for the description of focused proofs. We shall assume such stability,
however, in the proof of cut-elimination in the next section. For more about possible approaches to assigning
bias to atomic formulas, see [25, 26].

Our full translation of intuitionistic logic extends the−1/+1 translation of atoms. It remains asymmetrical
and eliminates nearly all occurrences of ! on the right-hand side. The translation is shown in Figure 5. All
positive formulas are translated into left-permeable formulas on the left-hand side. The positive formulas of
intuitionistic logic (and classical logic) can be given linear treatments on the left.

The +1/−1 translation induces the LJF sequent calculus displayed in Figure 6. Sequents in LJF can be
interpreted as follows:

1. The sequent [Γ], Θ −→ R is an unfocused sequent. Here, Γ and Θ are both multisets and Γ contains only
negative formulas and positive atoms. The symbol R denotes either the formula R or the “bracketed”
formula [R]. End sequents of LJF proofs usually have the form [], Θ −→ R.

2. The sequent [Γ] −→ [R] is a special case of the previous sequent in which Θ is empty (and, hence, not
written) and R is of the form [R]. Such sequents denote the end of the asynchronous phase: proof
search continues with the selection of a focus.

3. The sequent [Γ]
A
−→ [R] represents left-focusing on the formula A. Provability of this sequent is related

to the provability of Γ, A ⊢I R.
4. The sequent [Γ] −A→ represents right-focusing on the formula A. Provability of this sequent is related

to provability of the sequent Γ ⊢I A.

Intuitionistic focused proofs are more structured than LLF proofs since the polarities of intuitionistic logic
observe stronger invariances. While the non-linear context of LLF sequents can contain both synchronous
and asynchronous formulas, the translation of an intuitionistic sequent into a LLF sequent is such that
positive formulas, which are asynchronous on the left, are placed in the linear context (because P−1 is
always equivalent to !P−1 for positive P ).
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Decision and Reaction Rules

[N, Γ]
N
−→ [R]

[N, Γ] −→ [R]
Lf

[Γ] −P→

[Γ] −→ [P ]
Rf

[Γ], P −→ [R]

[Γ]
P
−→ [R]

Rl
[Γ] −→ N

[Γ] −N→
Rr

[C, Γ], Θ −→ R

[Γ], Θ, C −→ R
[]l

[Γ], Θ −→ [D]

[Γ], Θ −→ D
[]r

Initial Rules

[P, Γ] −P→
Ir, atomic P

[Γ]
N
−→ [N ]

Il, atomic N

Introduction Rules

[Γ], Θ, false −→ R
falseL

[Γ], Θ −→ R

[Γ], Θ, true −→ R
trueL

[Γ] −true→
trueR

[Γ]
Ai−→ [R]

[Γ]
A1∧

−A2−→ [R]
∧−L [Γ], Θ −→ A [Γ], Θ −→ B

[Γ], Θ −→ A ∧− B
∧−R

[Γ], Θ, A, B −→ R

[Γ], Θ, A ∧+ B −→ R
∧+L

[Γ] −A→ [Γ] −B→

[Γ] −A ∧+B→
∧+R

[Γ], Θ, A −→ R [Γ], Θ, B −→ R

[Γ], Θ, A ∨B −→ R
∨L

[Γ] −Ai
→

[Γ] −A1∨A2
→
∨R

[Γ] −A→ [Γ]
B
−→ [R]

[Γ]
A⊃B
−→ [R]

⊃ L [Γ], Θ, A −→ B

[Γ], Θ −→ A ⊃ B
⊃ R

[Γ], Θ, A −→ R

[Γ], Θ, ∃yA −→ R
∃L

[Γ] −A[t/x]→

[Γ] −∃xA→
∃R

[Γ]
A[t/x]
−→ [R]

[Γ]
∀xA
−→ [R]

∀L [Γ], Θ −→ A

[Γ], Θ −→ ∀yA
∀R

Figure 6: The Intuitionistic Sequent Calculus LJF. Here, P is positive, N is negative, C is a negative formula or positive atom,
and D a positive formula or negative atom. Other formulas are arbitrary. Also, y is not free in Γ, Θ, or R.
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Like LLF, a key characteristic of LJF is the assignment of polarity to atoms. To illustrate the effect of
these assignments on the structure of focused proofs, consider the sequent a, a ⊃ b, b ⊃ c ⊢ c where a, b and
c are atoms. This sequent can be proved either by forward chaining through the clause a ⊃ b, or backward
chaining through the clause b ⊃ c. Assume that atoms a and b are assigned positive polarity and that c is
assigned negative polarity. This assignment effectively adopts the forward chaining strategy, reflected in the
following LJF proof segment (here, Γ is the multiset {a, a ⊃ b, b ⊃ c}):

[Γ] −a→
Ir

[b, Γ] −b→
Ir

[b, Γ]
c
−→ [c]

Il

[b, Γ]
b⊃c
−→ [c]

⊃L

[b, Γ] −→ [c]
Lf

[Γ], b −→ [c]
[]l

[Γ]
b
−→ [c]

Rl

[Γ]
a⊃b
−→ [c]

⊃L

The polarities of a and c do not fundamentally affect the structure of the proof in this example, while
assigning negative polarity to atom b restricts the proof to use the backward chaining strategy:

[Γ] −a→
Ir

[Γ]
b
−→ [b]

Il

[Γ]
a⊃b
−→ [b]

⊃L

[Γ] −→ [b]
Lf

[Γ] −→ b
[]r

[Γ] −b→
Rr

[Γ]
c
−→ [c]

Il

[Γ]
b⊃c
−→ [c]

⊃L

The availability of both ∧− and ∧+ offers important design choices for proof search strategies. For
example, a focused proof search of the sequent

[a, a ⊃ b, b ⊃ c, c ⊃ d, c ⊃ e] −→ d ∧− e,

requires the right-side asynchronous ∧− to be decomposed immediately into d and e. Thus, the derivation
of c from the first three formulas in the context cannot be shared between these subgoals. Using d ∧+ e
will delay the decomposition of the goal until it is selected for focus at another time, making a forward
chaining strategy possible (and, hence, c can be added to the left-context before processing the conjunctive
right-hand-side). On the other hand, using asynchronous formulas on the right-hand side is consistent with
the uniform proof model of logic programming interpreters [2].

To prove the correctness of LJF we follow the “grand tour” strategy. First we show that a proof under
the 0/1 translation can be transformed to a proof under the +1/−1 translation. Let ⊢LL represent sequents
in the unfocused linear logic sequent calculus.

Proposition 4. Let Γ, R consist of a multiset of intuitionistic formulas. Let Γ−12 consist of all positive
formulas in Γ−1 and Γ−11 contain all negative formulas in Γ−1. If !Γ0 ⊢LL R1 is provable then !Γ−11 , Γ−12 ⊢LL

R+1 is also provable.

Proof For every positive intuitionistic formula P , the linear logic formula P−1 is left permeable (in
particular, P−1 is provability equivalent to !P−1). We now argue that for every intuitionistic formula F , we
have F 1 ⊢LL F+1 and !F−1 ⊢LL !F 0. The proof is by mutual induction on the size of formulas. We show the
following representative cases.

12



1. !(P ∨N)−1 ⊢LL !(P ∨N)0:

P−1 ⊢LL !P−1 !P−1 ⊢LL !P 0

P−1 ⊢LL !P 0 Cut

P−1 ⊢LL !P 0 ⊕ !N0 ⊕R
!N−1 ⊢LL !N0

!N−1 ⊢LL !P 0 ⊕ !N0 ⊕R

P−1 ⊕ !N−1 ⊢LL !P 0 ⊕ !N0
⊕L

!(P−1 ⊕ !N−1) ⊢LL !P 0 ⊕ !N0 !L

!(P−1 ⊕ !N−1) ⊢LL!(!P 0 ⊕ !N0)
!R

Here P is positive and N negative, and the proof must appeal to the permeability of P−1. The
remaining premises follow from inductive hypotheses.

2. !(A ⊃ B)−1 ⊢LL !(A ⊃ B)0: we prove this case in two stages, joined by a cut:

A+1 ⊢LL A+1 B−1 ⊢LL B−1

A+1 −◦B−1, A+1 ⊢LL B−1
−◦L

!(A+1 −◦B−1), A+1 ⊢LL B−1
!L

!(A+1 −◦B−1), !A+1 ⊢LL B−1
!L

!(A+1 −◦B−1), !A+1 ⊢LL !B−1
!R

!(A+1 −◦B−1) ⊢LL!A+1−◦!B−1
−◦R

!(A+1 −◦B−1) ⊢LL !(!A+1 −◦ !B−1)
!R

!B−1 ⊢LL !B0

A1 ⊢LL A+1

!A1 ⊢LL A+1 !L

!A1 ⊢LL !A+1 !R

!A+1 −◦ !B−1, !A1 ⊢LL !B0 −◦L

!A+1 −◦ !B−1 ⊢LL !A1−◦!B0 −◦R

!(!A+1−◦!B−1) ⊢LL !A1 −◦ !B0 !L

!(!A+1−◦!B−1) ⊢LL !(!A1 −◦ !B0)
!R

!(A+1 −◦B−1) ⊢LL !(!A1 −◦ !B0)
Cut

The premises are either trivially provable or follow from inductive hypotheses.

Other cases are similar. The proposition holds by cut-elimination in the linear sequent calculus. 2

The next step in the completeness proof constructs a mapping between LJF proofs and LLF proofs of its
image in linear logic. The possible presence of 0 causes some additional difficulty and slightly compromises
the perfect bijection between proofs.

Lemma 5. If there is no proof of !Γ−1 ⊢LL 0 and if !Γ−1 ⊢LL ∆+1 then ∆ contains exactly one formula.

Proof Proceed by contradiction. Assume there is such a proof with a non-singleton right-hand side and
consider such a proof of minimal height. By inspecting the premises of each possible inference figure for the
final rule of the proof, we see that in each case at least one premise will also have a non-singleton right-hand
side, which contradicts the shortest-height assumption. 2

Lemma 6. If there is a proof of ⊢ (Γ−1)⊥ : R+1 ⇓ A+1 then there is also a proof of ⊢ (Γ−1)⊥ :⇓ A+1.

Proof If ⊢ (Γ−1)⊥ : R+1 ⇓ A+1 is provable then, depending on whether or not A+1 is asynchronous,
either ⊢ (Γ−1)⊥ : R+1 ⇑ A+1 or ⊢ (Γ−1)⊥ : R+1, A+1 ⇑ is also provable, which by Lemma 5 means that
⊢ (Γ−1)⊥ :⇑ 0 is provable. It can be ruled out that ⊢ (Γ−1)⊥ : R+1 ⇓ A′ is the conclusion of an initial
rule for any subformula A′ of A+1 because the translation excludes the possibility that R+1 = (A′)⊥. Thus
the focusing stage of ⊢ (Γ−1)⊥ : R+1 ⇓ A′ will end in a R ⇓ reaction, which means that the subproofs of
⊢ (Γ−1)⊥ : R+1 ⇓ A+1 are of the form

...
⊢ (Θ−1)⊥ : R+1, ∆ ⇑ A′

⊢ (Θ−1)⊥ : R+1, ∆ ⇓ A′
R⇓

or

...
⊢ (Θ−1)⊥ : ∆ ⇑ A′

⊢ (Θ−1)⊥∆ ⇓ A′
R⇓

By a simple observation on LLF inference rules, (Θ−1)⊥ is a superset of (Γ−1)⊥ and thus ⊢ (Θ−1)⊥ :⇑ 0
(!Θ ⊢LL 0) is also provable. Then by cut elimination and the completeness of LLF, ⊢ (Θ−1)⊥ :⇑ ∆, A′ and

13



therefore (since all elements of ∆ are synchronous or atomic) ⊢ (Θ−1)⊥ : ∆ ⇑ A′ are provable. Thus every
subproof of ⊢ (Γ−1)⊥ : R+1 ⇓ A+1 can be replaced with a subproof with R+1 removed, and hence we have a
proof of ⊢ (Γ−1)⊥ :⇓ A+1.2 2

These lemmas allow us to show that focused proofs with non-intuitionistic sequents can still be matched
with sequents of the appropriate restricted format needed for intuitionistic logic (see case 4 of Proposition
7).

In formulating the correspondence between LJF proofs and LLF proofs we also diverge slightly from LLF
in using multisets for both the boxed and unboxed contexts, whereas LLF uses a list for the linear context.
This relaxation allows any asynchronous formula on the left or right to be decomposed first. Ignoring the
order of this list is justified by the permutabilities between asynchronous inference rules and is proved easily
using the inversion lemma of [1].

Proposition 7. Let (Γ−1)⊥ be the multiset {(D−1)⊥ | D ∈ Γ}. There is a proof of ⊢ (Γ−1)⊥ :⇑ R+1 if and
only if there is a proof of Γ ⊢I R. Furthermore, if Γ is consistent (that is, if there is no proof of Γ ⊢I false)
then the correspondence between proofs is bijective modulo the order of asynchronous decomposition.

Proof We show representative cases of the mapping.

1. ((A ∧+ B)−1)⊥ = (A−1 ⊗B−1)⊥ = (A−1)⊥
............................................
...........
.......
................................. (B−1)⊥:

[Γ], Θ, A, B −→ R

[Γ], Θ, A ∧+ B −→ R
∧+L

←→

⊢ (Γ−1)⊥ :⇑ R+1, (Θ−1)⊥, (A−1)⊥, (B−1)⊥

⊢ (Γ−1)⊥ :⇑ R+1, (Θ−1)⊥, (A−1)⊥
............................................
...........
........
................................ (B−1)⊥

[
............................................
...........
........
................................ ]

2. (A ∧− B)+1 = A+1 & B+1:

[Γ] −→ A [Γ] −→ B

[Γ] −→ A ∧− B
∧−R ←→

⊢ (Γ−1)⊥ :⇑ A+1 ⊢ (Γ−1)⊥ :⇑ B+1

⊢ (Γ−1)⊥ :⇑ A+1 & B+1
[&]

3. (A1 ∨A2)
+1 = A+1

1 ⊕A+1
2 :

[Γ] −Ai
→

[Γ] −A1∨A2
→
∨R ←→

⊢ (Γ−1)⊥ :⇓ A+1
i

⊢ (Γ−1)⊥ :⇓ A+1
1 ⊕A+1

2

[⊕]

4. ((A ⊃ B)−1)⊥ = (A+1 −◦B−1)⊥ = A+1 ⊗ (B−1)⊥:

[Γ] −A→ [Γ]
B
−→ [R]

[Γ]
A⊃B
−→ [R]

⊃ L ←→
⊢ (Γ−1)⊥ :⇓ A+1 ⊢ (Γ−1)⊥ : R+1 ⇓ (B−1)⊥

⊢ (Γ−1)⊥ : R+1 ⇓ A+1 ⊗ (B−1)⊥
[⊗]

The validity of this mapping is justified by Lemmas 5 and 6. That is, if there is a proof where the ⊗
rule splits the context differently due to the presence of 0, then there is also a proof where it is split
as above.

5. The decision and reaction rules of LJF also emulated those of LLF except for the following case, which
corresponds to the ? rule:

[C, Γ], Θ −→ R

[Γ], Θ, C −→ R
[]l ←→

⊢ (Γ−1)⊥, (C−1)⊥ :⇑ R+1, (Θ−1)⊥

⊢ (Γ−1)⊥ :⇑ R+1, (Θ−1)⊥, ?(C−1)⊥
[?]

The []l rule includes the permeation of positive atoms into the boxed context, where they are then
locked in place. Such positive atoms have the form (!P )⊥ =?P⊥ in the LLF proof. The reaction rules
allow us to keep the focused sequent calculus compact, in contrast to LU and LC. Without these rules
there would be, for example, four cases of the ∧+L rule: one for each combination of polarities.

2This proof could be made simpler if a cut rule can be given for LLF that leaves the conclusion focused. We shall develop
such a set of cut rules for LJF in Section 6.
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2

Theorem 8. LJF is sound and complete with respect to intuitionistic logic.

Proof All that remains is to show the soundness of LJF with respect to LJ. One can simply observe that,
if the special notations of LJF sequents are removed, then the resulting inferences are valid in intuitionistic
logic. Combined with Propositions 2, 4 and 7, the grand tour through linear logic is complete. 2

6. Cut Elimination in LJF

One can argue that a consequence of the completeness of focusing proofs is that logical connectives
should not be viewed as single, logical constant but rather as larger groupings of connectives, all of the same
polarity. When one starts an introduction phase in a synchronous phase, one does not stop or interleave
any other proof search phase: thus, that entire phase acts as a single connective. If one takes this shift in
considering the “size” of logical connective, one should probably next study how cut-elimination works with
these larger connectives. Exactly this kind of analysis of cut-elimination in a focused proof system was done
in [27] for a particular presentation of linear logic. In this section, we prove cut-elimination for LJF in the
more conventional sense by showing how the cut rule permutes over individual inference rules. In such a
setting, we shall need a number of different cut-rules which will help account for how a cut moves through
the small steps within the different phases of a focused proof. A presentation of a “big-step” cut elimination
procedure for LJF is left for future work.

Given the different forms of sequents, there can be many cut rule for LJF. We propose the following
seven such rules. Recall that P denotes a positive formula while C denotes a negative formula or positive
atom,

[Γ], Θ −→ P [Γ′], Θ′, P −→ R

[ΓΓ′], ΘΘ′ −→ R
Cut+

[Γ], Θ −→ C [C, Γ′], Θ′ −→ R

[ΓΓ′], ΘΘ′ −→ R
Cut−

[Γ] −A→ [Γ′], Θ′, A −→ R

[ΓΓ′], Θ′ −→ R
⇓ Cut+

[Γ], Θ −→ B [Γ′]
B
−→ [R]

[ΓΓ′], Θ −→ [R]
⇓ Cut−

[Γ]
B
−→ [P ] [Γ′], P −→ [R]

[ΓΓ′]
B
−→ [R]

Cut←1
[Γ] −→ G [G, Γ′]

B
−→ [R]

[ΓΓ′]
B
−→ [R]

Cut←2

[Γ] −C→ [C, Γ′] −R→

[ΓΓ′] −R→
Cut→

The last three cut rules retain focus in the conclusion. Similar cut-rules are shown to be admissible in LJQ′

[4] and are used to study term-reduction systems. The rules ⇓Cut+ and ⇓Cut− include the “key cases”:
cases where the cut formula is principal in both premises.

Note the restrictions on the forms of Cut→ and Cut←1 . These rules preserve focus in the conclusion.
Consider the following variations on the Cut→ and Cut←1 rules:

[A, A ⊃ C] −→ C [C] −C→

[A, A ⊃ C] −C→

[Γ]
N
−→ [N ] [N, M ] −→ [M ]

[M, Γ]
N
−→ [M ]

Here, C is a positive atom and N and M are distinct negative atoms. Neither rule is admissible as their
conclusions are not provable. In the Cut→ rule, both premises must be focused,3 and in the Cut←1 rule, the
cut formula must be positive.

3a similar restriction also appears in [4].
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There are, however, a number of variations that are admissible. For example:

[Γ], Θ −→ [P ] [Γ′], Θ′, P −→ R

[ΓΓ′], ΘΘ′ −→ R

This rule easily reduces to the Cut+ rule by applying the []r rule to the left premise. To avoid involving
even more variations of the cut rule during cut-elimination, the height measurement of the subproofs of cuts
can be modified to discount certain reaction rules such as []r in this situation.

For cut-elimination involving quantifiers, a first-order substitution lemma is required:

Lemma 9. If [Γ], Θ −→ R is provable in LJF then there is also a proof of [Γ[t/x]], Θ[t/x] −→ R[t/x].

The proof of this lemma offers no difficulty if we assume that the assignment of polarity to atomic formulas
is stable under substitution (see Section 5). Such an assignment is possible if, for example, the polarity
of an atomic formula is based on its predicate head. The completeness of focusing holds, however, even
when first-order substitution can change the polarities of literals. If we allow this flexibility, the lemma still
holds by completeness, but currently there is not a more direct procedure to describe how a proof can be
transformed in general when a negative atom becomes positive.

Theorem 10. The rules Cut+, Cut−, ⇓Cut+, ⇓Cut−, Cut→, Cut←1 and Cut←2 are admissible in LJF .

Proof By constructing a mutually-recursive cut-elimination procedure. The inductive measure is the usual
lexicographical ordering on the degree of the cut formula and the (adjusted) heights of the subproofs of the
cut. We show two of the “key” cases; that is, cases where both cut formulas are principal and where the
synchronous cut formula is under focus:

[Γ] −A→ [Γ] −B→

[Γ] −A∧+B→
∧+R

[Γ′], Θ′, A, B −→ R

[Γ′], Θ′, A ∧+ B −→ R
∧+L

[ΓΓ′], Θ′ −→ R
⇓ Cut+

is replaced by

[ΓΓ′] −B→

[Γ] −A→ [Γ′], Θ′, A, B −→ R

[ΓΓ′], Θ′, B −→ R
⇓ Cut+

[ΓΓ′], Θ′ −→ R
⇓ Cut+

For a left-focusing example:

[Γ], Θ, A −→ B

[Γ], Θ −→ A ⊃ B
⊃R

[Γ′] −A→ [Γ′]
B
−→ [R]

[Γ′]
A⊃B
−→ [R]

⊃L

[ΓΓ′], Θ −→ [R]
⇓ Cut−

is replaced by
[Γ′] −A→ [Γ], Θ, A −→ B

[ΓΓ′], Θ −→ B
⇓ Cut+

[Γ′]
B
−→ [R]

[ΓΓ′Γ′], Θ −→ [R]
⇓ Cut−

Since the boxed context of LJF never decreases from conclusion to premise, a simple induction on cut-free
LJF proofs shows that if the above inference can be made cut free then there is also a proof with the
conclusion [ΓΓ′], Θ −→ [R]. One can, in fact, treat the boxed contexts as sets.

In each key case, the cut is replaced by zero or more cuts with cut formulas of lower degree.
Except for the greater number of cases, the details of the rest of the cut-elimination procedure do not differ

significantly from other cut-elimination procedures. In the non-key cases, the introduction of the principal
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formula is simply permuted beneath the cut. This process continues until a formula must be selected for
focus (i.e., the cut must now be permuted above a Rf or Lf rule):

[Γ] −→ [P ]

[Γ] −→ P
[]r

[Γ′], P −→ [R]

[ΓΓ′] −→ [R]
Cut+

or

[Γ] −→ C [C, Γ′] −→ [R]

[ΓΓ′] −→ [R]
Cut−

At least one of the premises must be the conclusion of a Rf or Lf rule. If the formula selected for focus is
not the cut formula, then it is replaced by a cut with a focused conclusion (Cut←1 or Cut←2 ). For example,
if the upper-left premise of the Cut+ above is the conclusion of a Lf rule, then the cut is replaced by

[Γ]
N
−→ [P ] [Γ′], P −→ [R]

[ΓΓ′]
N
−→ [R]

Cut←1

[ΓΓ′] −→ [R]
Lf

Selecting the cut formula for focus will lead to a key cut (⇓Cut− or ⇓Cut+). The case involving the Lf
rule is of particular interest because it embeds a contraction:

[Γ] −→ C

[C, Γ′]
C
−→ [R]

[C, Γ′] −→ [R]
Lf

[ΓΓ′] −→ [R]
Cut−

This case is replaced by the following:

[Γ] −→ C

[Γ] −→ C [C, Γ′]
C
−→ [R]

[ΓΓ′]
C
−→ [R]

Cut←2

[ΓΓΓ′] −→ [R]
⇓Cut−

Traditionally, cut-elimination with explicit contraction has required some form of Gentzen’s mix rule [28]
(also known as the multicut rule). The structure of focused proofs allows us to reduce the cuts more directly.
Of the two replacement cuts, the upper Cut←2 has a lower height measure than the original cut and the lower
cut is a key-case cut, which, as noted, can be reduced to other cuts with cut formulas of smaller degree. In
contrast to the focused case, consider cut-elimination in an unfocused sequent calculus where we can replace

Γ ⊢ C

C, C, Γ′ ⊢ R

C, Γ′ ⊢ R
Contract

ΓΓ′ ⊢ R
Cut

with the two cuts Γ ⊢ C

Γ ⊢ C C, C, Γ′ ⊢ R

C, ΓΓ′ ⊢ R
Cut.

ΓΓΓ′ ⊢ R
Cut

The upper cut also has a lower height measure, but there is nothing we can say about the second cut.
To summarize the mutually recursive cut-elimination procedure, the “principal” cuts (Cut− and Cut+)

eventually transition to either focused cuts (Cut←1 and Cut←2 ) or key cuts (⇓Cut− and ⇓Cut+). The key cuts
are reduced to other key cuts of smaller degree until either none exists or the focused cut formula becomes
asynchronous, which will cause a reversion back to a principal cut (via a reaction rule). The focused cuts are
also permuted above introduction rules (on the focused formula) until a polarity switch reverts them back
to principal cuts. The Cut→ rule is also used in the reduction of the two other focused cuts.

See the report [21] for the full details of the cut-elimination proof. 2

7. Embedding Intuitionistic Systems in LJF

The LJF proof system can be used to “host” other focusing proof system for intuitionistic logic. For
example, Figure 7 contains the purely negative fragment of LJF and only allows focusing on the left: this
restriction describes only uniform proofs [2] for intuitionistic logic and is essentially equivalent to LJT [3].
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N, Γ
N
−→ [R]

N, Γ −→ [R]
Lf

Γ −→ [M ]

Γ −→M
[]r atomic M Γ

N
−→ [N ]

Il

, atomic N

Γ
Ni−→ [R]

Γ
N1∧N2−→ [R]

∧L− Γ −→ N Γ −→M
Γ −→ N ∧M ∧R−

Γ
N [t/x]
−→ [R]

Γ
∀xN
−→ [R]

∀L

Γ −→ N
Γ −→ ∀yN

∀R

Γ −→ N Γ
M
−→ [R]

Γ
N⊃M
−→ [R]

⊃ L N, Γ −→M

Γ −→ N ⊃M
⊃ R

Figure 7: The Negative Fragment of LJF

Various other proof systems can be embedded into LJF by mapping intuitionistic formulas to intuitionistic
formulas in such a way that focusing features in LJF are stopped by the insertion of delay operators. In
particular, if we define ∂−(B) = true ⊃ B and ∂+(B) = true ∧+ B, then B, ∂−(B), and ∂+(B) are all
logically equivalent but ∂−(B) is always negative and ∂+(B) is always positive.

The following translation uses these devices to embed LJQ′ [4] in LJF. The translation needs to stop
asynchronous decomposition on both the left and right-hand side. It also needs to stop left-side focusing.
However, the only left-synchronous formulas in LJQ′ are of the form A ⊃ B, thus it suffices to stop focusing
on B. The translation uses l and r labels to indicate left and right-side translations.

• atom B: Bl = Br = B

• falsel = ∂−(false) , falser = false

• (A ∧B)l = ∂−(Al ∧+ Bl), (A ∧B)r = Ar ∧+ Br

• (A ∨B)l = ∂−(Al ∨Bl), (A ∨B)r = Ar ∨Br

• (A ⊃ B)l = Ar ⊃ ∂+(Bl), (A ⊃ B)r = ∂+(Al ⊃ Br)

Since all formulas Al are negative and all Ar are positive, we can embed the LJQ′ sequent Γ ⇒ G as
[Γl] −→ [Gr]. LJQ′ focusing sequents Γ → G naturally becomes [Γl] −Gr→. The correspondence between
LJQ′ rules and LJF derivations is sampled below:

1.

Γ→ R
Γ⇒ R

Der −→
[Γl] −Rr→

[Γl] −→ [Rr]
Rf

2. (A ∧B)r = Ar ∧+ Br:

Γ→ A Γ→ B
Γ→ A ∧B

R∧′ −→
[Γl] −Ar→ [Γl] −Br→

[Γl] −Ar∧+Br→
∧+R

3. (A ⊃ B)r = ∂+(Al ⊃ Br) = true ∧+ (Al ⊃ Br):

A, Γ⇒ B

Γ→ A ⊃ B
R ⊃′ −→

[Γl] −true→
t

[Γl, Al] −→ Br

[Γl], Al −→ Br
[]l

[Γl] −→ Al ⊃ Br
⊃R

[Γl] −Al⊃Br→
Rr

[Γl] −∂+(Al⊃Br)→
∧+R
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4. All left rules begin with Lf ([D2]) and (A ⊃ B)l = Ar ⊃ ∂+(Bl) = Ar ⊃ (true ∧+ Bl):

Γ→ A Γ, B ⇒ R

Γ, A ⊃ B ⇒ R
L ⊃′

becomes

[Γl, Ar ⊃ ∂+(Bl)] −Ar→

[Γl, (A ⊃ B)l, Bl] −→ [Rr]

[Γl, Ar ⊃ ∂+(Bl), Bl], true −→ [Rr]
trueL

[Γl, Ar ⊃ ∂+(Bl)], true, Bl −→ [Rr]
[]l

[Γl, Ar ⊃ ∂+(Bl)], true ∧+ Bl −→ [Rr]
∧+L

[Γl, Ar ⊃ ∂+(Bl)]
true∧+Bl

−→ [Rr]
Rl

[Γl, Ar ⊃ ∂+(Bl)]
Ar
⊃∂+(Bl)
−→ [Rr]

⊃L

[Γl, Ar ⊃ ∂+(Bl)] −→ [Rr]
Lf

The correctness of the embedding is also proved by the above construction.

Proposition 11. The system LJQ′ can be embedded inside LJF in the following sense:

1. Γ⇒ G is provable in LJQ′ if and only if [Γl] −→ [Gr ] is provable in LJF.

2. Γ→ G is provable in LJQ′ if and only if [Γl] −Gr→ if provable in LJF

A similar embedding can be designed to embed LJT, which must stop focusing on the right hand side.
Forgoing other details4, the mapping for the always-interesting ⊃ L rule is be

Γ⇒ A Γ
B
−→ [R]

Γ
A⊃B
−→ [R]

⊃L −→

[Γl, (A ⊃ B)l] −→ Ar

[Γl, (A ⊃ B)l], true −→ Ar trueL

[Γl, (A ⊃ B)l] −→ true ⊃ Ar
⊃R

[Γl, (A ⊃ B)l] −∂−(Ar)→
Rr

[Γl, (A ⊃ B)l]
Bl

−→ [Rr]

[Γl, (A ⊃ B)l]
∂−(Ar)⊃Bl

−→ [Rr]

⊃L

Naturally, it is possible to embed arbitrary LJ proofs as LJF proofs. The embedding is given in Table 2.
The labels l/r are reused for convenience. This embedding echos the 0/1 translation of ⊢I proofs into linear
logic.

F F l (left) F r (right)

atom C C C

false ∂−(false) false

true ∂−(true) true

A ∧B ∂+(Al) ∧− ∂+(Bl) ∂+(Ar ∧− Br)

A ∨B ∂−(Al ∨Bl) ∂−(Ar) ∨ ∂−(Br)

A ⊃ B ∂−(Ar) ⊃ ∂+(Bl) ∂+(Al ⊃ Br)

∃xA ∂−(∃xAl) ∃x∂−(Ar)

∀xA ∀x∂+(Al) ∂+(∀xAr)

Table 2: Embedding of LJ proofs as LJF proofs

4Several versions of LJT exist in literature, including versions that include full sets of connectives [5].
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Proposition 12. Γ ⊢I G is provable in LJ if and only if [Γl] −→ [Gr] is provable in LJF.

Proof All forms Al are negative or atomic and all forms Ar are positive or atomic. A mapping between
proofs can be constructed which implicitly provides an induction on the height of proofs.

• embedding of ∧R:
[Γ] −→ [Ar]

[Γ] −→ Ar []r
[Γ] −→ [Br]

[Γ] −→ Br []r

[Γ] −→ Ar ∧− Br ∧−R

[Γ] −Ar∧−Br→
Rr

[Γ] −true→
trueR

[Γ] −(Ar∧−Br)∧+true→
∧+R

[Γ] −→ [∂+(Ar ∧− Br)]
Rf

• embedding of ⊃L:

[Γl, (A ⊃ B)l] −→ Ar

[Γl, (A ⊃ B)l], true −→ Ar trueL

[Γl, (A ⊃ B)l] −→ true ⊃ Ar
⊃R

[Γl, (A ⊃ B)l] −∂−(Ar)→
Rr

[Γl, (A ⊃ B)l, Bl] −→ [Rr]

[Γl, ∂−(Ar) ⊃ ∂+(Bl)], Bl −→ [Rr]
[]l

[Γl, ∂−(Ar) ⊃ ∂+(Bl)], true, Bl −→ [Rr]
trueL

[Γl, ∂−(Ar) ⊃ ∂+(Bl)], true ∧+ Bl −→ [Rr]
∧+L

[Γl, ∂−(Ar) ⊃ ∂+(Bl)]
true∧+Bl

−→ [Rr]

Rl

[Γl, (A ⊃ B)l]
∂−(Ar)⊃∂+(Bl)

−→ [Rr]

⊃L

[Γl, (A ⊃ B)l)] −→ [Rr]
Lf

This embedding is indeed a combination of that of LJQ′ and LJT.

Other cases are similar. 2

Conjunction can also be embedded with ∧+. In that case, we would have (A ∧B)l = ∂−(Al ∧+ Bl) and
(A ∧B)r = ∂−(Ar) ∧+ ∂−(Br).

The above proposition, along with cut elimination, also forms the basis of a completeness proof for LJF
independently of its translation to linear logic.

The system λRCC presents interesting choices. In particular, it may not always be the best choice to focus
maximally. Forward chaining may generate a new formula or “clause” that may need to be used multiple
times. In a ⊃L rule on formulas E ⊃ D where E is a positive atom, one may not wish to decompose the
formula D immediately. This is accomplished in the linear translation with a !. It can also be accomplished
by using formulas E ⊃ ∂+(D) in case D is negative, and E ⊃ ∂+(∂−(D)) in case D is positive. Note that
unlike the l/r translations for LJQ and LJ, these simple devices do not hereditarily alter the structure of D.

It is possible to view focusing proof systems as describing new sets of “big connectives”, which are
collections of either all asynchronous or all synchronous “small connectives” (i.e., true, false, ∧+, ∨, ∃, ∧−,
⊃, and ∀). The embedding of various proof system into LJF using the delays ∂+(·) and ∂−(·) can be seen
as describing how the big connectives of LJF can be systematically broken into the smaller connectives
described by the other focusing proof systems.

8. Embedding Classical Logic in LJF

We can use LJF to formulate a focused sequent calculus for classical logic that reveals the latter’s
constructive content in the style of LC. While it is possible to derive such a system again using linear
logic, classical logic can also be embedded within intuitionistic logic using the well-known double-negation
translations of Gödel [29], Gentzen, and Kolmogorov [30]. The translation of Kolmogorov liberally places
double negations (∼∼) in formulas in a manner similar to the liberal use of ! in the 0/1 translation of
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intuitionistic to linear logic. The explicit use of double-negation has the effect of throttling focused proofs,
similar to the role of !. The “negative” translations of Gödel and Gentzen use fewer double negations. In
fact, negation is only used in translating the positives. A formula ∀x∀yA will still have the form ∀x∀yA′

after translation. However, ∃x∃yA will have the form ∼ ∀x ∼∼ ∀y ∼A′. The Gödel-Gentzen translation
can only give us the asynchronous half of focusing but not the crucial synchronous half. Girard’s polarized
version of the double negation translation for LC approaches the problem of capturing duality in a more
subtle way. The proof system LC is not, in fact, a focusing proof system. The focusing proof system for
classical logic, LKF that we present below is essentially a focused version of LC. The system LKF differs
also from LC in the minor sense that it uses polarized versions of all the propositional connectives (compared
to the polarization of only ∧ in LJF).

We first separate classical from intuitionistic polarity since these are different notions (see Section 4).

Definition 13. Atoms are arbitrarily classified as either positive or negative. The literal ¬A has the opposite
polarity of the atom A. Positive formulas are among positive literals, T , F , A ∧+ B, A ∨+ B, A ⊃+ B and
∃xA. Negative formulas are among negative literals, ¬T , ¬F , A ∧− B, A∨− B, A ⊃− B and ∀xA. Negation
¬A is defined by the de Morgan dualities for ¬A/A, ∧+/∨−, ∧−/∨+ and ∀/∃. Negative implication A ⊃− B
is defined as ¬A ∨− B and A ⊃+ B is defined as ¬A ∨+ B. We often assume that formulas are in negation
normal form; that is, formulas that do not contain implications and where negations have atomic scope.

The constants T , F , ¬T and ¬F are best described, respectively, as 1, 0, ⊥ and ⊤ in linear logic. Just
as we have dual versions of each connective, we also have dual versions of each identity. But this is not
linear logic as the formulas are polarized in the extreme. The distinction between the positive and negative
versions of each connective affects only the structure of proofs and not provability.

A≈ B≈ (A ∧+ B)≈ (A ∧− B)≈ (A ∨+ B)≈ (A ∨− B)≈ (¬A)≈

A B A ∧+ B ∼(∼A∨ ∼B) A ∨B ∼(∼A∧+ ∼B) ∼A

A ∼B A∧+ ∼B ∼(∼A ∨B) A∨ ∼B ∼(∼A ∧+ B) ·

∼A B ∼A ∧+ B ∼(A∨ ∼B) ∼A ∨B ∼(A∧+ ∼B) A

∼A ∼B ∼A∧+ ∼B ∼(A ∨B) ∼A∨ ∼B ∼(A ∧+ B) ·

A≈ B≈ (A ⊃+ B)≈ (A ⊃− B)≈ (∀xA)≈ (∃xA)≈

A B ∼A ∨B ∼(A∧+ ∼B) ∼(∃x ∼A) ∃xA

A ∼B ∼A∨ ∼B ∼(A ∧+ B) · ·

∼A B A ∨B ∼(∼A∧+ ∼B) ∼(∃xA) ∃x ∼A

∼A ∼B A∨ ∼B ∼(∼A ∧+ B) · ·

Table 3: Polarized embedding of classical logic. The (·)≈ translation on compound formulas is given above (there, A, B represent
formulas not preceded by ∼). The logical constants are translated as T ≈ = true, F≈ = false, (¬T )≈ =∼true, (¬F)≈ =∼ false.
A positive (classical) atom P is translated via P≈ = P and a negative (classical) atom N via N≈ =∼N : in both cases, when
atoms P and N are considered as intuitionistic atoms, they are assigned positive polarity.

Let ∼A represent the intuitionistic formula A ⊃ φ where φ is some unspecified positive atom. The “≈”
embedding of classical logic is found in Table 3. Note that the classical ∧− is not defined in terms of the
intuitionistic ∧−. The embeddings are selected to enforce the dualities ∧−/∨+ and ∧+/∨−. Variations on this
embedding are also possible. The cases all follow the pattern P or ∼P where P is a positive intuitionistic
formula: negative intuitionistic atoms are not used in the embedding.

The ≈ embedding induces the LKF sequent calculus in Figure 8 from the image of LJF proofs, analogous
to how LJF was derived from LLF. LKF sequents of the form ⊢ [Θ], Γ are unfocused while those of the form
7→ [Θ], A focus on the stoup formula A.

Translating an LKF endsequent ⊢ [], Γ into LJF involves the following steps:

1. Divide Γ into the form ∆′, Ψ′, where ∆′ contains all positive formulas of Γ and Ψ′ contains all negative
formulas of Γ.
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Decision, Reaction, Initial

⊢ [Θ, C], Γ

⊢ [Θ], Γ, C
[]

7→ [P, Θ], P

⊢ [P, Θ]
Focus

⊢ [Θ], N

7→ [Θ], N
Release

7→ [¬P, Θ], P
Id (literal P )

Asynchronous Connectives

⊢ [Θ], Γ,¬F
absurd

⊢ [Θ], Γ

⊢ [Θ], Γ,¬T
trivial

⊢ [Θ], Γ, A ⊢ [Θ], Γ, B

⊢ [Θ], Γ, A ∧− B
∧−

⊢ [Θ], Γ, A, B

⊢ [Θ], Γ, A ∨− B
∨−

⊢ [Θ], Γ, B,¬A

⊢ [Θ], Γ, A ⊃− B
⊃−

⊢ [Θ], Γ, A

⊢ [Θ], Γ, ∀xA
∀

Synchronous Connectives

7→ [Θ], T
T

7→ [Θ], A 7→ [Θ], B

7→ [Θ], A ∧+ B
∧+

7→ [Θ], Ai

7→ [Θ], A1 ∨
+ A2

∨+

7→ [Θ], A[t/x]

7→ [Θ], ∃xA
∃

7→ [Θ],¬A

7→ [Θ], A ⊃+ B
⊃+

7→ [Θ], B

7→ [Θ], A ⊃+ B
⊃+

Figure 8: The Classical Sequent Calculus LKF. Here, P is positive, N is negative, C is a positive formula or a negative literal,
Θ consists of positive formulas and negative literals, and x is not free in Θ, Γ. Endsequents have the form ⊢ [],Γ.

2. Translate ∆′ and Ψ′ into ∆′≈ and Ψ′≈. We have that ∆′≈ = {P1, . . . , Pj} for positive intuitionistic
formulas P1 . . . Pj and that Ψ′≈ = {∼Q1, . . . ,∼Qk} for positive intuitionistic formulas Q1 . . .Qk.

3. Form the LJF sequent [∆], Ψ −→ [φ], where ∆ = {∼P1, . . . ∼Pj} and Ψ = {Q1, . . . Qk}.

Proposition 14. Let ∆, ∆′, Ψ and Ψ′ be as defined above.

1. ⊢ [∆′], Ψ′ is provable if and only if [∆], Ψ −→ [φ] is provable.
2. 7→ [∆′], P is provable if and only if [∆] −P≈→ is provable.

Proof We prove this proposition by providing the following mapping between LKF proofs and LJF proofs.
Some representative cases of this mapping are presented.

1. an example of an asynchronous rule:

[∆], Ψ, A, B −→ [φ]

[∆], Ψ, A ∧+ B −→ [φ]
∧+L ←→

⊢ [Θ], Γ, A, B

⊢ [Θ], Γ, A ∨− B
∨−

2. an example of a synchronous rule:

[∆] −Ai
→

[∆] −A1∨A2
→
∨R ←→

7→ [Θ], Ai

7→ [Θ], A1 ∨
+ A2

∨+

3. a reaction rule, which terminates the focus:

[∆], P −→ [φ]

[∆], P −→ φ
[]r

[∆] −→ P ⊃ φ
⊃R

[∆] −∼P→
Rr

←→
⊢ [Θ], N

7→ [Θ], N
Release

where N is classically negative and P is intuitionistically positive.
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2

The correctness of LKF with respect to LK can be proved by reduction to the correctness of the Gödel-
Gentzen translation, which is (equivalent to) the following:

g(A) = ∼∼A for atom A
g(¬A) = ∼g(A)
g(A ∧B) = g(A) ∧ g(B)
g(A ∨B) = ∼(∼g(A)∧ ∼g(B))
g(∀xA) = ∀x(g(A))
g(∃xA) = ∼∀x ∼g(A)

Implication is a derived connective and is not considered here. This translation has the property that if
⊢C F is provable then ⊢I g(F ) is provable, where ⊢C represents classical provability.

The following notations are used to relate classical formulas with LKF formulas and with LJF formulas
(the latter being annotated formulas).

Definition 15. Let F • be some annotation of the classical formula F in which all occurrences of ∧ are
replaced by ∧− or ∧+, all occurrences of ∨ are replaced by ∨− or ∨+, all occurrences of false are replaced
by F or ¬T , and all occurrences of true are replaced by ¬F or T . (Such replacement does not need to be
uniform but can differ for differ occurrences.) Given an intuitionistic LJF formula G, let G◦ represent G
with all occurrences of ∧− and ∧+ replaced by ∧.

Also, we assign all classical atoms positive polarity. Negative atoms are not strictly needed because of
classical negation. The following lemma relates our translation with the Gödel-Gentzen one.

Lemma 16. For all classical formulas F :

1. g(F ) ⊢I F •≈◦ if F • is negative.

2. g(F ) ⊢I∼∼ F •≈◦ if F • is positive.

Here, F •≈◦ is an unannotated intuitionistic formula that results from decorating F using •, then translating
using ≈ to an LJF formula, and then erasing the +/− decoration on ∧ using ◦.
Proof By induction on F . Each entry of the ≈ translation table needs to be verified separately. We
provide two representative cases.

1. For an example of case 1, consider F = A ∧ B such that A• is positive and B• is negative. Let
F • = (A• ∧− B•). We have that F •≈◦ =∼ (∼A◦ ∨ B◦) where A•≈ = A and B•≈ =∼B. Observe the
following derivation:

g(A) ⊢I∼∼A◦

g(A) ∧ g(B) ⊢I∼∼A◦
∧L

∼∼A◦,∼A◦ ⊢I φ

g(A) ∧ g(B),∼A◦ ⊢ φ
Cut

g(B) ⊢I∼B◦

g(A) ∧ g(B) ⊢I∼B◦
∧L

∼B◦, B◦ ⊢I φ

g(A) ∧ g(B), B◦ ⊢I φ
Cut

g(A) ∧ g(B), (∼A◦ ∨B◦) ⊢I φ
∨L

g(A) ∧ g(B) ⊢I∼(∼A◦ ∨B◦)
⊃R

The premises of the derivation follow from inductive hypotheses: case 2 for the left premise and case
1 for the right premise. Note that if ∧+ was used instead of ∧− in the • decoration, the translation
would match up more directly with the Gödel-Gentzen translation.

2. For an example of case 2, consider F = ∃xA where A• is positive and A•≈ = A, so F •≈◦ = ∃xA◦.
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g(F ) =∼∀x ∼g(A). We have

. . . g(A) ⊢I∼∼A◦

. . . g(A) ⊢I ∃x ∼∼A◦
∃R

. . . φ ⊢I φ

. . . g(A),∼∃x ∼∼A◦ ⊢I φ
⊃L

. . . ∼∃x ∼∼A◦ ⊢I∼g(A)
⊃R

. . . ∼∃x ∼∼A◦ ⊢I ∀x ∼g(A)
∀R

. . . φ ⊢I φ

∼∀x ∼g(A),∼∃x ∼∼A◦ ⊢I φ
⊃L

∼∀x ∼g(A) ⊢I∼∼∃x ∼∼A◦
⊃R

∼∼∃x ∼∼A◦ ⊢I∼∼∼∼∃xA◦

∼∀x ∼g(A) ⊢I∼∼∼∼∃xA◦ ∼∼∼∼∃xA◦ ⊢I∼∼∃xA◦
Cut

∼∀x ∼g(A) ⊢I∼∼∃xA◦
Cut

It is easily shown that ∃x ∼∼B ⊢I∼∼∃xB is provable. The remaining premise follows from inductive
hypothesis (case 2).

The other cases follow these patterns. 2

Theorem 17. LKF is sound and complete with respect to classical logic.

Proof Completeness is proved by the correctness of the Gödel-Gentzen translation, lemma 16, proposition
14 and the completeness of LJF. The soundness is trivial. 2

We have constructed this embedding of classical logic as a further demonstration of the abilities of
LJF as a hosting framework. The embedding also revealed interesting relationships between classical and
intuitionistic polarity. It is also possible to derive LKF from linear logic: one needs to define each connective
to be either wholly positive or negative. For example, the translation of (A∨−B)p is Ap ............................................

...........
........
................................ Bp if Ap and Bp

are both negative; is Ap ............................................
...........
........
................................ ?Bp if only Ap is negative; is ?Ap ............................................

...........
........
................................ Bp if only Bp is negative; and is ?Ap ............................................

...........
........
................................ ?Bp,

if Ap and Bp are both positive. This translation is called the “polaro” translation in [12], where it was
used to formulate LKη

p , the first focused proof system for classical logic. Like the ≈ translation, the polaro
translation is a derivative of the LC/LU analysis of polarity. With the same special treatment of positive
and negative atoms, LKF is derivable from LLF using essentially the polaro translation in the same manner
that LJF is derived.

LKη
p was extended to LKη,ρ

pol in [13]. These systems were formulated independently of Andreoli’s results.
The authors of [12] opted not to present LKη

p as a sequent calculus because they feared that it will have the
cumbersome size of LU. Such cumbersomeness can, in fact, be avoided by adopting LLF-style reaction rules.

Given our goals, the choice in adopting Andreoli’s system is justified in that LKF and LJF have the form
of compact sequent calculi ready for further application and implementation. More significantly perhaps,
LKη

p and LKη,ρ
pol define focusing for classical logic by mapping to polarized forms of linear logic (LLP and

LLpol). LLF is defined for full classical linear logic. LKF can be embedded within LLF in the same way that
LC is embedded within LU. Both LLF are LJF are well suited for hosting other systems.

We have shown how LKF is derivable from LJF, which is in turn derivable from LLF. There is also an
unmistakable relationship between LKF and MALL, the fragment of linear logic without ! and ? (but we may
consider MALL with the quantifiers). In particular, one can consider making the following modifications to
LKF.

1. change the Focus rule to eliminate the embedded contraction:

7→ [Θ], P

⊢ [P, Θ]
Focus

2. eliminate the context from the identity and T rules:

7→ [¬P ], P
Id, (literal P )

7→ [], T
T
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3. split the context in the ∧+ rule:
7→ [Θ1], A 7→ [Θ2], B

7→ [Θ1Θ2], A ∧
+ B

∧+

The resulting system is isomorphic to LLF restricted to MALL. Every MALL proof is trivially a classical
proof. One might argue that we could have arrived at LKF through a much simpler route, but such modifi-
cations alone do not provide completeness results. We have come nearly full circle in our analysis of focused
sequent calculi: begining with full linear logic and ending with MALL, a focused version of which can be
seen as a restriction to LKF. The MALL fragment of LLF and LKF share the simplest structure among
the focused sequent calculi we have considered. They are not affected by the asymmetry of intuitionistic
logic nor do they exhibit the peculiar behavior of unrestricted uses of ! and ? with respect to synchrony and
asynchrony.

The possible variations of the cut rule in LKF are organized into three principal forms:

⊢ [Θ], Γ, C ⊢ [Θ′], Γ′,¬C

⊢ [ΘΘ′], ΓΓ′
Cutp, prime cut

7→ [Θ], B ⊢ [Θ′], Γ′,¬B

⊢ [ΘΘ′], Γ′
Cutk, key cut

7→ [Θ, P ], B ⊢ [Θ′],¬P

7→ [ΘΘ′], B
Cutf , focused cut

The key cut includes the “key cases” of cut elimination and the focused cut retains focus in the conclusion.
In the focused cut, P cannot be a negative literal.

Theorem 18. The rules Cutp, Cutk and Cutf are admissible for LKF.

Proof A mutually-recursive cut-elimination procedure can be given for LKF that is similar to that for
LJF, except there are fewer cases since there are fewer cut rules to consider.

The structure of the procedure is to first permute the cut above asynchronous decomposition rules until
a key case is reached; i.e., when the cut formula is principal (main) in both premises. For the Cutp rule, this
means we will eventually reach the situation

⊢ [Θ], C ⊢ [Θ′],¬C

⊢ [ΘΘ′]
Cutp

Exactly one of C and ¬C is positive and only the positive formula can be selected for focus. Assume without
loss of generality that C is positive, the other case being symmetrical. We then have:

7→ [Θ, C], P

⊢ [Θ, C]
Focus

⊢ [Θ], C
[]

⊢ [Θ′],¬C

⊢ [ΘΘ′]
Cutp

Two cases are possible:

1. P ∈ Θ and P 6= C. In this case the cut is transformed into a focused cut at a lower height measure:

7→ [Θ, C], P ⊢ [Θ′],¬C

7→ [ΘΘ′], P
Cutf

⊢ [ΘΘ′]
Focus

25



2. P = C. This case is reduced as follows:

7→ [Θ, C], C ⊢ [Θ′],¬C

7→ [ΘΘ′], C
Cutf

⊢ [Θ′],¬C

⊢ [ΘΘ′Θ′]
Cutk

Just as with LJF cut-elimination, the lower Cutk is one of the key cases, which is reducible to other cuts
with cut formulas of smaller degree. Genzten’s mix rule is not required. Also as in LJF, contraction
inside the boxed context is implicitly admissible.

As an example of the key case, the inference rules

7→ [Θ], A 7→ [Θ], B

7→ [Θ], A ∧+ B
∧+

⊢ [Θ′], Γ′,¬A,¬B

⊢ [Θ′], Γ′,¬A ∨− ¬B
∨−

⊢ [ΘΘ′], Γ′
Cutk

become the inference rules

7→ [Θ], B

7→ [Θ], A ⊢ [Θ′], Γ′,¬A,¬B

⊢ [ΘΘ′], Γ′,¬B
Cutk

⊢ [ΘΘΘ′], Γ′
Cutk.

To illustrate the rewriting of a focused cut, consider the case where the focus formula is negative: here, a
reaction rule transforms the cut into a prime cut. Otherwise, the positive formula under focus is principal.
Consider the situation that the focus formula is a literal B:

7→ [Θ, P ], B
Id

⊢ [Θ′],¬P

7→ [ΘΘ′], B
Cutf

It cannot be the case that B = ¬P because both B and P are positive. Thus B ∈ Θ and the conclusion also
follows by identity. If B is not a literal, the cut is permuted to its premises. For example, the inference rules

7→ [Θ, P ], A

7→ [Θ, P ], A ∨+ B
∨+

⊢ [Θ′],¬P

7→ [ΘΘ′], A ∨+ B
Cutf

become
7→ [Θ, P ], A ⊢ [Θ′],¬P

7→ [ΘΘ′], A
Cutf

7→ [ΘΘ′], A ∨+ B
∨+

A more detailed proof can be found in the report [21]. 2

Focusing can eliminate much of the non-determinism in cut-elimination. In fact, the only significant point
of non-determinism that remains in our procedure is in prime cuts where neither cut formula is principal in
the subproofs, and where the asynchronous context in both premises is non-empty. In this case it is possible
to permute the cut above either premise first. For example:

⊢ [Θ], Γ, A, C ⊢ [Θ], Γ, B, C

⊢ [Θ], Γ, A ∧− B, C
∧−

⊢ [Θ′], Γ′, E, F,¬C

⊢ [Θ′], Γ′, E ∨− F,¬C
∨−

[ΘΘ′], ΓΓ′, A ∧− B, E ∨− F
Cutp

The cut can first be permuted above either asynchronous rule. In such cases, we can adopt some convention
to eliminate the non-determinism. One possibility is to permute upwards the premise with the positive cut
formula.
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9. Conclusion and Future Work

We have studied focused proof construction in intuitionistic logic. The key to this endeavor is the
definition of polarity for intuitionistic logic. The LJF proof system captures focusing using this notion of
polarity. We illustrate how systems such as LJ, LJT, LJQ, and λRCC can be captured within LJF by
assigning polarity to atoms and by adding to intuitionistic logic formulas annotations on conjunctions and
delaying operators. We also use LJF to derive and justify the LKF focusing proof system for classical logic.

It remains to examine the impact of these focusing calculi on typed λ-calculi, logic programming, and
theorem proving. Given the connections observed between LJT/LJQ and call-by-name/value, the LJF system
could provide a framework for λ-term evaluations that combine the eager and lazy evaluation strategies. In
the area of theorem proving, there is a number of completeness theorems for various restrictions to resolution:
it would be interesting to see if any of these are captured by an appropriate mapping into LKF. In the area
of logic programming, the connections between polarity and forward and backward chaining has been noted
not only in this paper but also in numerous published paper. Miller and Nigam [25] have used the LJF

proof system to provide a declarative means for insisting that if a fact is proved (and “tabled”) then it is
not reproved. Clearly, there should be many other opportunities for applying focusing proof systems.
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