
Algorithmic specifications in linear logic with subexponentials

Vivek Nigam Dale Miller

INRIA Saclay -Île-de France and LIX/́Ecole Polytechnique
Route de Saclay, 91128 PALAISEAU Cedex FRANCE

nigam at lix.polytechnique.fr, dale.miller at inria.fr

Abstract
The linear logic exponentials!, ? are not canonical: one can
add to linear logic other such operators, say!l, ?l, which may
or may not allow contraction and weakening, and wherel
is from some pre-ordered set of labels. We shall call these
additional operatorssubexponentialsand use them to as-
sign locationsto multisets of formulas within a linear logic
programming setting. Treating locations as subexponentials
greatly increases the algorithmic expressiveness of logic.
To illustrate this new expressiveness, we show that focused
proof search can be precisely linked to a simple algorithmic
specification language that contains while-loops, condition-
als, and insertion into and deletion from multisets. We also
give some general conditions for when a focused proof step
can be executed in constant time. In addition, we propose
a new logical connective that allows for the creation of new
subexponentials, thereby further augmenting the algorithmic
expressiveness of logic.

1. Introduction
Computation in theproof-searchparadigm (a.k.a. logic pro-
gramming) can be characterized as the process of search-
ing for a cut-free sequent proof. The expressiveness of logic
programming can be judged, in part, by examining the kind
of changes that can take place within sequents during the
search for a proof. LetΞ be a cut-free proof ofΓ ⊢ ∆ and
let Γ′ ⊢ ∆′ be a sequent occurring inΞ. The dynamics of
proof search in this setting can be partially judged by exam-
ining the possible differences that can occur betweenΓ and
Γ′ and between∆ and∆′.

When proof search is conducted within intuitionistic
logic, Γ is usually treated as a set of formulas and∆ as a
single formula. If we restrict further to Horn clauses, we
find that Γ = Γ′ and that∆ and ∆′ are atomic formu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00

las. Thus, the only real dynamics during proof search with
Horn clauses is that atomic goals change as we move up-
ward through a proof. As a result, all data structures and
their various relationships must be encoded as terms within
atomic formulas: that is, all the dynamics of computation
is buried withinnon-logical contexts(within the scope of
predicates). If one uses hereditary Harrop formulas instead
of Horn clauses, slightly richer changes are possible: in par-
ticular, Γ ⊆ Γ′. When proof search is conducted within
linear logic, bothΓ and∆ can be treated as multisets and
the logic program is free to specify arbitrary, computable
relationships betweenΓ andΓ′ and between∆ and∆′. In
linear logic, some data structures and their relationshipscan
be encoded directly in thelogical contextsof proofs.

Many data structures can be encoded, of course, naturally
as sets or multisets of atomic formulas: for example, a graph
given by a set of nodesN and an adjacency relationA can
be encoded as the multiset of atomic formulas

{node x | x ∈ N} ∪ {adj x y | 〈x, y〉 ∈ A},

wherenode andadj are predicates. A major obstacle to de-
scribing algorithms using linear logic programs is that logic
does not provide enough test on contexts. While it is possi-
ble in linear logic to detect that the global multiset context is
empty, it is not possible to perform this test on less than the
entire context. Given the multiset encoding of graphs above,
linear logic provides a simple mechanism to detect that both
the set of nodes and the adjacency information are empty but
the logic does not provide a means to check emptiness of just
N or justA.

The exponentials of linear logic are not canonical: it is
possible to fill the gap between the “linear” modality (“use
exactly once”) and the? modality (“use arbitrarily”) with a
pre-ordered set of exponential-like operators. These interme-
diate modality may or may not permit weakening and con-
traction. We use the termsubexponentialfor such modalities
since the equivalence?(A ⊕ B) ≡ (?A O ?B)—which re-
lates the exponential?, the additive⊕, and the multiplicative
O—fails when? does not admit contraction and weakening.

Subexponentials can be used to “locate” data and the pro-
motion rule can be used to test selected locations for empti-
ness. These subexponentials provide linear logic specifica-

tions with enough checks on data to allow for a range of al-
gorithms to be emulatedexactlyvia (focused) proof search.
We shall illustrate this claim by specifying a simple pro-
gramming language, called BAG, containing loop instruc-
tions, conditionals, and operations that insert into and delete
from a multiset, which is powerful enough to specify algo-
rithms such asDijkstra’s algorithm for finding the short-
est distances in a positively weighted graph. We show that
for any BAG program there is a one-to-one correspondence
between the set of its (partial) computations and the set of
(open) focused proofs of its logic interpretation.

Since there is an exact correspondence between synthetic
connectives in the logic and steps in the algorithmic lan-
guage, we can vary the operational semantics of the algorith-
mic language by varying certain focusing-related featuresof
the logic. In particular, by either inserting or removingdelay
operatorsinto a logic specification, we canpackagemore or
feweroperationsinside a synthetic connective. For example,
reading two items from a multiset can be described as two
algorithmic steps or as one algorithmic step.

In order to turn a logic specification into an algorithm,
one must usually adopt aninterpreterfor the logic and then
understand algorithmic nature of that interpreter. Top-down,
depth-first interpreters are traditionally used to describe the
algorithmic content of, for example, Horn clauses as Prolog
programs. Other algorithmic rendering of logic clauses use
bottom-up interpreters [8]. In this paper, we shall not use any
explicit interpreter for this role: instead, recent advances in
proof theory will be used to organize proof search in algo-
rithmically explicit but still fully declarative ways. In par-
ticular, we describe proof systems for which possibly large
sets of connectives can be treated as a single, monolithic,
synthetic connective and where, in many situations, the in-
ference rules related to such synthetic connectives can be
applied in constant time. As a result, the particular natureof
whichever interpreter one eventually uses for finding proofs
can be largely eliminated when attempting to understand the
algorithmic content of a logic specification.

After motivating our particular interest in specifying al-
gorithms using proof search in linear logic in the next sec-
tion, we introduce subexponentials in Section 3 and their
(focused) proof system in Section 4 and then, in Section 5,
we illustrate its algorithmic content with a simple example.
In Section 6, we introduce some further machinery, such as
definitionsand new connectives that are able to create new
subexponentials, and show how to specify arithmetic op-
erations and how to use subexponentials to locate data. In
Section 7 we present the BAG algorithmic specification lan-
guage, whose operational semantics is captured precisely by
the focused proof system. Sections 8 and 9 present some ex-
ample algorithm specifications along with some comments
about proof search complexity. Finally, in Section 10 we de-
scribe some related work and in Section 11 we finish with
some concluding remarks.

2. Why use logic to specify algorithms?
Why should one care about describing algorithms with logic
specifications that claim to be equivalent to them in some
sense?

A natural proof theory motivation There is a long tra-
dition of using logic and proof theory as a framework for
both functional programming (via proof-normalization) and
logic programming (via proof search). While proof theory
provides a remarkably robust and deep analysis of abstrac-
tion, substitution, and duality, there are several computa-
tional phenomena that it alone does not provide information.
For examples, proof theory does not offer canonical treat-
ments of first-order quantification, the structure of worlds
in modal logics, focusing polarity of atomic formulas, and
the exponentials. Such non-canonical aspects of proof the-
ory can often be exploited by the computer scientist. For ex-
ample, first-order quantification is richly applied in a wide
range of applications with greatly varying domains of quan-
tification. Changes in the assignment of focusing bias for
atomic formulas in proof search allow one to mix forward-
chaining and backward-chaining style proof search to suit
applications [12]. This paper provides a partial answer to the
question: What computer science relevance can subexponen-
tials serve in the logical specification of computation?

A high-level and declarative specification of algorithms
Using logic formulas as specifications has a number of ap-
pealing features. First, the operational semantics of such
logic specifications can be given within a well understand
and rich setting, such as linear logic: in such a setting, opera-
tional meaning is clear and precise. In particular, cut-free, fo-
cused proof search is used to describe the operational seman-
tics of logic specifications. Second, if algorithm specifica-
tions are logic specifications, one would expect that the rich
mechanisms available for manipulating and reasoning with
logical formulas can then be immediately seen as being ma-
nipulations and reasoning on algorithm specifications. Third,
logic provides a high-level specification that is often suit-
able for the specification of algorithms. For example, non-
deterministic, algorithmic specifications such aspick any el-
ement from a setare easily modeled with a precisely match-
ing non-deterministic construction in logic. Of course, ifone
is specifying a deterministic algorithm, then that algorithm
would need to replace the set by, say, a list and select the first
element of the list—all these steps can be mirrored in logic
specifications as well.

3. Linear Logic and Subexponentials
While we assume that the reader is familiar with the basics of
linear logic, we recall here a bit of terminology concerning
its syntax and proof theory.Literals are either atomic for-
mulas or their negations. The connectives⊗ andO and their
units 1 and⊥ aremultiplicative; the connectives⊕ and&
and their units0 and⊤ areadditiveconnectives;∀ and∃ are

(first-order) quantifiers; and! and? are the exponentials. We
shall assume that all formulas are innegation normal form,
meaning that all negations have atomic scope.

The exponentials in linear logic are not canonical: if one
considers, say, a pair of blue exponentials,?b and !b, and
a pair of red exponentials,?r and !r , then ?rA and ?bA
(and !rA and !bA) are not provably equivalent. Danoset
al. proposed [5] a linear logic system with non-canonical
bangs and question marks: we introduce the termsubexpo-
nentialsto denote these. Asubexponential signatureis a tu-
ple 〈I,�,W , C〉 whereI is a set of indexes (naming the
subexponentials),� is a pre-order onI, andW andC are
both subsets ofI. The setsW andC contain those indexes
for which the corresponding subexponential allows weaken-
ing and contraction, respectively. Both these sets are closed
under the order relation: in particular, ifl � k and one of
these sets containsl, it also containsk.

Given a subexponential signatureΣ = 〈I,�,W , C〉, the
logic SELLΣ is linear logic with the rules for the exponen-
tials replaced by the rules for the subexponentials. In par-
ticular, the dereliction, contraction, and weakening rules are
given as follows: here,y ∈ C andz ∈ W .

⊢ C, ∆

⊢ ?xC, ∆
D

⊢ ?yC, ?yC, ∆

⊢ ?yC, ∆
C

⊢ ∆
⊢ ?zC, ∆

W

The promotion rule, a particular focus of this paper, is given
by the following inference rule:

⊢ ?x1 C1, . . . , ?
xnCn, C

⊢ ?x1 C1, . . . , ?
xnCn, !aC

!a

wherea � xi for all i = 1, . . . , n. Notice that ifx 6� y then
the promotion rule can be applied to the sequent

⊢ ?xC1, . . . , ?
xCn, ?yD1, . . . , ?

yDm, !yC

only if n = 0: the premise of that promotion rule would then
be⊢ ?yD1, . . . , ?

yDm, C. The promotion rule can then be
seen as a kind of “guard” that allows a certain proof-search
reduction only when the collection{C1, . . . , Cn} “located”
at x is empty. Danoset al. also showed thatSELL admits
cut-elimination and that the initial rule can be restrictedto
atomic formulas [5].

In the scope of the current paper, we shall make two ad-
ditional assumptions about the collection of subexponen-
tials that we consider. First, we shall always assume that
C = W : that is, a subexponential either admits weakening
and contraction (these will be theunboundedsubexponen-
tials) or admits neither weakening nor contraction (these will
be theboundedsubexponentials). Notice that the unbounded
subexponentials are the only ones that should be calledex-
ponentialssince for them it is possible to prove the equiv-
alence between?(A ⊕ B) and?A O ?B. Subexponentials
that admit either weakening or contraction, but not both, do
not play a role in this paper. Second, we shall assume that

the pre-ordered set〈I,�〉 has a maximal element, written
∞, which is unbounded.

SELL is not a new logic: it is simply linear logic in
which the exponentials are allowed to have weaker behavior
(that is, allow fewer proofs). Other ways to exploit the non-
canonical nature of linear logic’s exponential are explored
in, for example, light and elementary linear logics [10].

4. Focused proofs with Subexponentials
In [1], Andreoli presented afocused proof systemfor lin-
ear logic: similar focused proof systems have subsequently
been introduced for classical and intuitionistic logic (see, for
example, [12]). Such proof systems provide a normal form
for cut-free proofs where introduction rules are organizedin
such a way that the “micro-rules” of sequent calculus that
introduce individual logical connectives are combined into
“macro-rules” that can be seen as introduction rules for syn-
thetic connectives. The back-chaining proof search step of
logic programming can be seen as interpreting logic pro-
gramming clauses as such synthetic connectives.

Before we introduce the focused system forSELL, we
classify aspositivethe formulas whose main connective is
either⊗,⊕, ∃, the subexponential bang, the unit1 and pos-
itive literals. All other formulas are classified asnegative.
Figure 1 contains the focused proof systemSELLF that is a
rather straightforward generalization of Andreoli’s original
system. There are two kinds of arrows in this proof system.
Sequents with the⇓ belong to thepositivephase and intro-
duce the logical connective of the “focused” formula (the
one to the right of the arrow): building proofs of such se-
quents maybe require non-invertible proof steps to be taken.
Sequents with the⇑ belong to thenegativephase and de-
compose the formulas on their right in such a way that only
invertible inference rules are applied. The rules[R⇓], [Dl],
and[!l] rules provide the only inference rules that mix these
two kinds of sequents: as such, these rules mark the bound-
ary between the macro rules, that is, between negative and
positive phases. Synthetic connectives can be seen as being
introduced by such macro rules.

Similarly as in the usual presentation of linear logic, there
is a pair of contexts to the left of⇑ and ⇓ of sequents,
written here asK : Γ. The second context,Γ, collects
the the formulas whose main connective is not a question-
mark, behaving as the bounded context in linear logic. But
differently from linear logic, where the first context is a
multiset of formulas whose main connective is a question-
mark, we generalizeK to be anindexed context, which is
a mapping from the index setI (for some given and fixed
subexponential signature) to a finite multiset of formulas,in
order to accommodate for more than one subexponential in
SELLF. In the original setting, the index set contains just∞

andK[∞] contains the set of unbounded formulas. Given a
subexponentials signature,Σ = 〈I,�,W , C〉, we specify the
following operations over these contexts:

• K ≤i [l] =

{
K[l] if i � l
∅ if i � l

wherei ∈ I is a subex-

ponential index.

• K[S] =
⋃
{K[i] | i ∈ S}

whereS ⊆ I is a subset of subexponential indexes.

• (K +l A)[i] =

{
K[i] ∪ {A} if i = l
K[i] otherwise

whereA is a formula.

• Let S ⊆ I be a set of subexponential indexes, and let
⋆ ∈ {=,⊂,⊆} be a binary connective. Then(K1⋆K2) |S
is true if and only if∀i ∈ S.(K1[i] ⋆ K2[i]).

• (K1 ⊗K2)[i] =

{
K1[i] ∪ K2[i] if i /∈ C
K1[i] if i ∈ C ∩W

The following soundness and completeness ofSELLF
can be proved, for example, using techniques from [1, 19].

PROPOSITION1. LetΣ = 〈I,�,W , C〉 be a subexponential
signature, such thatW = C. ThenSELLFΣ is sound and
complete with respect toSELLΣ.

5. Example: a minimal element of a multiset
Before we make some simple extensions toSELLF, we
illustrate with a small example the increase of expres-
sivity obtained by using subexponentials. Consider the
nonempty multiset of natural numbers{m1, . . . , mn}. Let
〈{∞, l, k}, {k � ∞, l � ∞}, {∞}, {∞}〉 be a subexponential
signature wherel andk are not�-comparable. Also, assume
that all atoms are assigned with negative polarity and letK
be the indexed context whereK[∞] is the set

{ ∃x∃y[l(x)⊥ ⊗ l(y)⊥ ⊗ (x ≤ y) ⊗ ?ll(x)],

∃x[l(x)⊥ ⊗ !k min(x)] },

K[k] = ∅, andK[l] = {l(m1), . . . , l(mn)}. This context
contains exactly two positive formulas and, hence, there are
only two formulas on which to focus. We now derive in
detail these two synthetic connectives.

Focusing on the first formula requires building the fol-
lowing derivation bottom-up:

⊢ K : · ⇓ l(mi)
⊥ ⊗ l(mj)

⊥ ⊗ (mi ≤ mj) ⊗ ?ll(mi)

⊢ K : · ⇓ ∃x∃y[l(x)⊥ ⊗ l(y)⊥ ⊗ (x ≤ y) ⊗ ?ll(x)]
[2 × ∃]

⊢ K : · ⇑
[D∞]

Continuing this phase of the proof requires finding four
indexed contexts such thatK1 ⊗ K2 ⊗ K3 ⊗ K4[l] = K[l]
for all l and such that the following four sequents⊢ K1 :
· ⇓ l(mi)

⊥, ⊢ K2 : · ⇓ l(mj)
⊥, ⊢ K3 : · ⇓ mi ≤ mj ,

and⊢ K4 : · ⇓ ?ll(mi) are provable. The first two sequents
are provable if and only ifK1[l] = {l(mi)} andK2[l] =
{l(mj)}1. The third sequent is provable ifmi is less than or

1 Remember that atoms, such asl(m), are assigned with negative polarity
and hence,l(m)⊥ is assigned with positive polarity. Moreover, only the
initial rule can introduce a focused literal with positive polarity.

equal tomj andK3[l] = {}. This means thatK4 is the same
asK except thatK4[l] is the multisetK[l] less the two distinct
elementsl(mi) andl(mj) (hence,n > 1). The remainder of
this proof phase is necessarily of the form:

⊢ K4 +l l(mi) : · ⇑ ·

⊢ K4 : · ⇑ ?ll(mi)
[?l]

⊢ K4 : · ⇓ ?ll(mi)
[R⇓]

In other words, the synthetic connective arising from fo-
cusing on the first formula in the logic specification pro-
vides a proof of the sequent⊢ K : · ⇑ · from the premise
⊢ K′ : · ⇑ · exactly whenK[l] contains at least 2 elements
andK′ is the same asK except thatK′[l] results fromK[l] by
deleting one atom holding an integer greater than or equal to
another integer in that multiset.

If we focus on the second formula, the resulting “macro”
rule is built from the follows “micro” rules.

⊢ K1 : · ⇓ l(m)⊥
[I]

⊢ K2 : min(m) ⇑

⊢ K2 : · ⇑ min(m)
[R⇑]

⊢ K2 : · ⇓ !k min(m)
[!k]

⊢ K : · ⇓ l(m)⊥ ⊗ !k min(m)
[⊗]

⊢ K : · ⇓ ∃x[l(x)⊥ ⊗ !k min(x)]
[∃]

⊢ K : · ⇑ ·
[D∞]

Here,K1 ⊗ K2 = K andK1[l] = {l(m)}. Also, K2[l] is
empty, a fact guaranteed by the promotion rule and the fact
that l andk are not�-comparable. Thus, the corresponding
synthetic connective provides a proof of the sequent⊢ K :
· ⇑ from the premise⊢ K′ : min(m) ⇑ only whenK[l]
contains exactly one element(m) andK′ is the result of
setting the multisetK′[l] to the empty multiset.

The logic specification above clearly computes the mini-
mal member of a multiset in a structured fashion: if the num-
ber of elements in the multiset (in locationl) is one, then the
minimum is found; and if the number of elements is more
than one, then one element is discarded that does not af-
fect the minimum. These two steps are describe by focusing
on different clauses. Notice that a proof using these clauses
does not involve any backtrack from the point of synthetic
connectives, while internal to the synthetic connective one
might envision possible backtracking search (for example,
to findmi andmj such thatmi ≤ mj).

6. DeployingSELLF
In order to better illustrate some algorithm specificationsin
SELLF, we introduce the following machinery. First, we add
the ability todefineatomic formulas and introduce rules for
unfolding such definitions during proof search. Such defi-
nitions then allow us to specifyarithmetic operations. We
then explain how we can representdata structuresin SELLF,
using subexponentials tolocatedata structures. Finally, we
propose a new connective to linear logic that can be used to
create new locations during proof search.

⊢ K : Γ ⇑ L,⊤
[⊤]

⊢ K : Γ ⇑ L, A ⊢ K :⇑ L, B

⊢ K : Γ ⇑ L, A & B
[&]

⊢ K : Γ ⇑ L

⊢ K : Γ ⇑ L,⊥
[⊥]

⊢ K : Γ ⇑ L, A, B

⊢ K : Γ ⇑ L, A O B
[O]

⊢ K : Γ ⇑ L, A{c/x}

⊢ K : Γ ⇑ L, ∀xA
[∀]

⊢ K +l A : Γ ⇑ L

⊢ K : Γ ⇑ L, ?lA
[?l]

⊢ K : Γ ⇓ Ai

⊢ K : Γ ⇓ A1 ⊕ A2

[⊕i]
⊢ K1 : Γ ⇓ A ⊢ K2 : ∆ ⇓ B

⊢ K1 ⊗K2 : Γ, ∆ ⇓ A ⊗ B
[⊗], provided(K1 = K2) |C∩W

⊢ K : · ⇓ 1
[1], providedK[I \W] = ∅

⊢ K : Γ ⇓ A{t/x}

⊢ K : Γ ⇓ ∃xA
[∃]

⊢ K ≤l : · ⇑ A

⊢ K : · ⇓ !l A
[!l], providedK[{x | l 6� x ∧ x /∈ W}] = ∅

⊢ K : Γ ⇓ Ap

[I], providedA⊥
p ∈ (Γ ∪ K[I]) and(Γ ∪K[I \W]) ⊆ {A⊥

p }

⊢ K +l P : Γ ⇓ P

⊢ K +l P : Γ ⇑ ·
[Dl], providedl ∈ C ∩W

⊢ K : Γ ⇓ P

⊢ K +l P : Γ ⇑ ·
[Dl], providedl /∈ C ∩W

⊢ K : Γ ⇓ P

⊢ K : Γ, P ⇑ ·
[D1]

⊢ K : Γ ⇑ N

⊢ K : Γ ⇓ N
[R⇓]

⊢ K : Γ, S ⇑ L

⊢ K : Γ ⇑ L, S
[R⇑]

Figure 1. The focused linear logic systemSELLF. Here,Ap is a positive literal;S is a positive formula or a literal;P is a not
a negative polarity literal; andN is a negative formula.

6.1 Adding Definitions

A definition is a finite set ofclauseswhich are written as

∀x̄[p x̄
∆
= B]: herep is a predicate and every free variable

of B (thebodyof the clause) is contained in the listx̄. The

symbol
∆
= is not a logical connective but is used to indicate a

definitional clause. We consider that every defined predicate
occurs at the head of exactly one clause. The following two
“unfolding” rules are added toSELLF.

⊢ K : Γ ⇓ Bθ

⊢ K : Γ ⇓ p t̄
[def ⇓]

⊢ K : Γ ⇑ L, Bθ

⊢ K : Γ ⇑ L, p t̄
[def ⇑]

The proviso for both of these rules is:∀x̄[p x̄
∆
= B] is

a definition clause andθ is the substitution that maps the
variables̄x to the terms̄t, respectively. Thus, in either phase
of focusing, if a defined atom is encountered, it is simply
replaced by its definition and the proof search phase does not
change. The proof theory of inference rules such as these is
well studied (see, for example, [2, 16]).

6.2 Including arithmetic

Several of the examples and algorithms we consider in this
paper will need integers and some basic arithmetic opera-
tors on them. These all can be accommodated easily within
SELLF in a purely “positive” setting. In particular, the arith-
metic comparisons for integers,≤, <, =, 6=, >,≥, are avail-
able as binary predicates withinSELLFby using definitions.
For example, the definition for≤ is

x ≤ y
∆
= x = z⊕

∃x′∃y′.[(s x′) = x ⊗ (x y′) = y ⊗ x′ ≤ y′].

Here, zero is denoted by the constantzand successor by the
constructors. The other arithmetic comparisons are speci-
fied in a similar way.

If H denotes one of these relations, then the formulamHn
is positive and provable instances of it are composed of
exactly one positive phase and without the consumption of
any formulas from the context. More formally, ifK is an
indexed context then⊢ K : Γ ⇓ mHn is provable if and only
if m andn are integers that stand in the relation intended
by H and Γ ∪ K[I \ W] is empty. We writeH̃ to be the
comparison that is the complement to the one denoted by
H: e.g., s ≤̃ t is s > t.

We assume that basic integer addition and multiplication
are also available as purely positive synthetic connectives.
In particular, expressions such asx ≤ y + w are replaced
by ∃u.plus y w u ⊗ x ≤ u, whereplus y w u denotes the
relation betweeny andw and their sumu and is specified by
the following definition:

plus x y u
∆
= (x = z ⊗ y = w) ⊕ ∃x′∃u′.

[(s x′) = x ⊗ (s u′) = u ⊗ plus x′ y u′].

6.3 Representing Data Structures

As we described in Section 1, most of the dynamics of logic
programming within classical and intuitionistic logic occurs
within atomic formulas: thus, data structures are usually
encoded as term structures so that they can appear within
the scope of predicate constants. For example, a set of pairs
{〈x1, y1〉, . . . , 〈xn, yn〉} can be encoded as the term((x1 ::
y1::nil)::· · ·::(xn ::yn::nil)::nil), where:: and nil are the non-

empty and empty set constructors. InSELLF, it is possible
to encode many data structures using multisets of formulas
instead of terms. For example, the same set of pairs can be
represented as

?lrel(x1, y1), . . . , ?
lrel(xn, yn)

in which thesubexponentiall provides a “location” for this
data structure. Furthermore, the collection of formulas above
encodes asetif l ∈ C ∩W or amultisetif l /∈ (C ∪W).

In the rest of this paper, we constrain indexed contexts
as follows: for any subexponentiall ∈ I, the multisetK[l]
contains only atomic formulas and these are built with a
predicate whose name is the same asl. Linking the predicate
name of atomic formulas to their locations in this way is
a convenience for the examples we shall consider. We also
assume that all atoms used to encode data,i.e., atoms inK[l]
will be assumed to have negative polarity.

6.4 Complements of locations

Since we will soon turn our attention to algorithm specifi-
cations inSELLF, we shall make two further restrictions in
how we deploySELLF.

First, we shall assume that all locations,l, except the
special unbounded maximal location∞, are bounded (that
is W = C = {∞}) and l � ∞. Thus, data structures can
be stored in different locations and no two locations will be
considered sublocations.

Second, as the example above illustrated, testing that a
given locationl is empty required the promotion rule with a
locationk such thatk 6� l. To ensure that we have the ability
to perform all such tests, we shall define thecomplementto
the subexponential signature〈{∞} ∪ I,�, {∞}, {∞}〉 to be
the signature〈{∞} ∪ I ∪ Î , �̂, {∞}, {∞}〉 whereÎ is a copy
of I containing elements of the form̂l wheneverl ∈ I. The
order relation� is extended with all pairŝl �̂ k such thatl
andk are distinct members ofI. Thus, in the complemented
signature,̂l can be seen as a sublocation of all locations inI
different froml. The promotion rule with the subexponential
!l̂ succeeds only if the indexed context is empty at location
l: all other locations need not be considered. We shall not
“store” data in complemented locations: that is,K[l̂] will
always be empty.

6.5 Creation of new locations

Up to now, all locations are fixed throughout a proof. One
can imagine simple extensions to linear logic that allow the
creation of new locations within proofs. We show here two
possible extensions. The first extension is the logicSELL⋓

which allows more arbitrary changes of the subexponential
signature. It extendsSELL with two new connectives,⋓ and
⋒: the proof rules for these connectives are given in Figure 2.
We write the union of two signatures to be their point-wise
union and the inclusion of two signatures to be their point-
wise inclusion. These connectives act as binding that can

Σ ∪ Σl ⊢ K, C

Σ ⊢ K, ⋓Σl.C
if Σ ∪ Σl is a subexponential signature.

Σ ⊢ K, C[s1/l1, . . . , sn/ln]

Σ ⊢ K, ⋒Σl.C
if Σl[s1/l1, . . . , sn/ln] ⊆ Σ

Figure 2. The introduction rules for⋓ and ⋒. Here, the
subexponential signaturesΣ = 〈I,�,W , C〉 and Σl =
〈Il,�l,Wl, Cl〉 are such thatIl = {l1, . . . , ln} is a set of
new indexes, the relation�l⊆ Ī × Ī is a pre-order, and the
setsWl andCl are subsets of̄I = Il ∪ I.

L ∪ {loc} ⊢ K, C

L ⊢ K, ⋓lloc.C
[⋓l] providedloc is a new location

L ⊢ K, C[s/loc, ŝ/l̂oc]

L ⊢ K, ⋒lloc.C
[⋒l] provideds ∈ L

Figure 3. The introduction rules for⋓l and⋒l. HereL is a
set of locations.

introduce new locations (⋓) and be instantiated by old lo-
cations (⋒). It is a simple matter to see that cut-elimination
holds forSELL⋓ and that focusing proof systems are com-
plete when we assign⋓ a negative polarity and⋒ a positive
polarity.

THEOREM 2. The cut-elimination theorem holds forSELL⋓.

The second extension is an specialization ofSELL⋓,
called SELL⋓l , that instead of considering general subex-
ponential signatures, assumes only a setL, containing all
the bounded locations available to store data, and the exis-
tence of their complement locations, as discussed Subsection
6.4. It contains the connectives⋓l and⋒l, whose introduc-
tion rules are given in Figure 3. The introduction rule for⋓l

creates a new location and its complement location, and the
introduction rule for⋒l instantiates all occurrences inC of
loc by s and ofl̂oc by ŝ.

7. Specifying Algorithms
There is a high-degree of “algorithmic context” in the de-
scription of synthetic connectives withinSELL, especially
once we made a few restrictions to that logic. In order to
make the scope of such algorithmic specifications more ev-
ident, we present a small specification language that can
be used to describe somesingle-threadedalgorithms: while
multi-threadedalgorithmic specifications are possible in lin-
ear logic (see, for example, [17]), we focus here on more
traditional and determinant algorithmic specifications.

The following grammar introduces a high-level syntax
for a small specification language we call BAG. We shall
take as given a subexponential signatureΣ (restricted as

described in Section 6.4). The set of constantsC is also
fixed and contains the natural numbers plus other tokens
that we may need, such asblue, red, etc. We allow for two
kinds of variables: members ofvar ∈ V denote variables
over the first-order domainC, while members ofK ∈ K
denote variables over programs (continuations). To facilitate
the construction of specifications in BAG, we introduce a
new kind of variableL ∈ L for locations and introduce a
set of constantsname ∈ N for module names. The other
syntactic classes can be defined as follow.

t ::= c ∈ C | var tup ::= 〈t1, . . . , tn〉 (n ≥ 0)
pat ::= tup | λvar.pat

conda ::= t1Ht2 condl ::= is empty locb

cond ::= conda | condl

prog ::= loadtup loc prog | unloadi loc pat bprog

| while conda (λK.prog) prog

| loopi locb kprog prog | new loc λL.prog

| if cond prog | prog 8 prog | K | end
bprog ::= prog | λvar.bprog

kprog ::= λK.prog | λvar.kprog

lprog ::= λK.prog | λL.lprog | λvar.lprog

mod ::= name × lprog.

Conditions (tests) are of two kind:conda are arithmetic
tests (see Section 6.2) andcondl will be used to test if a
given location is empty. The syntactic variablelocb ranges
over all bounded locations (here, all locations other than∞).
In theunloadi (respectively,loopi) instruction, we will also
insist thatpat andbprog (respectively,kprog) both have
exactly i variables bindings. Moreover, when a module is
used in a program, execution proceeds by computing the pro-
gram resulting from performing the necessary beta reduc-
tions. Keeping with the single-threadedness of BAG, mod-
ules contain one and only one abstracted continuation vari-
able.

The eight kinds of program types in BAG are described
briefly as follow. (1)(load tup loc prog) inserts the tu-
ple tup in the locationloc and then continues withprog.
(2) (unloadi loc pat bprog) picks an element,〈t1 , . . . , tn〉,
from the locationloc such that it matches with the term
pat t1 · · · ti for sometj ∈ {t1 , . . . , tn} and then executes the
program(bprog t1 · · · ti). (3)(while conda (λK.prog) prog)
repeatedly appliesλK.prog until the condition is not true;
then prog is executed. (4)(loopi locb pat bprog) repeat-
edly executes(unloadi locb λx1 . . . λxi.〈x1, . . . , xi〉 bprog),
where allxj ∈ V , until the locationloc is empty. Intuitively,
this loop is used to process all members of a location. (5)
(new loc λL.prog) creates a new locationloc and then ex-
ecutes the program(λL.prog)loc. (6) (if cond prog) exe-
cutesprog if the conditioncond holds. (7)(prog18prog2) is
an alternativeinstruction, where the computation proceeds
to eitherprog1 or prog2. Lastly, (8)end ends the computa-
tion thread. Notice that this language is similar to Dijkstra’s
Guarded Command Language (GCL) [6]: in particular, the

8 instruction is similar to GCL’sif constructs, and thewhile
andloop instructions are similar to GCL’sloop constructs.

Our wish here is not to describe a new specification
language but to highlight the algorithmic aspects already
present within focused proof search inSELL. To this end,
we show how the intended operational semantics of the
BAG language can be specified by mapping it directly into
SELL formulas. In particular, we will illustrate that the non-
determinism that exists in an algorithmic description with,
say, BAG, matches exactly the non-determinism inSELLF’s
at the level of synthetic connectives. There is still more non-
determinism one can imagine within proof search inSELLF,
but those are containedwithin the construction macro-level
inference rules. Later in Section 9, we shall show that in
many cases, the construction of macro-level rules can, in
fact, be done in constant time.

Being able to specify when a synthetic connective ends
is critical for our claims about how focused proof search
and algorithms in the BAG language relate. The twodelay
operatorsδ−(·) andδ+(·) can be used to replace a formula
with a provably equivalent formula of a given polarity. In
particular,δ−(C) is negative no matter what polarityC is:
it can be defined asC O ⊥. Similarly, δ+(C) is positive no
matter what polarityC is: it can be defined asC ⊗ 1.

The definitionD in Figure 4 specifies a “proof theoretic”
semantics of the BAG language. (For readability, we have
suppressed writing the outermost universal quantifiers on
these clauses.) The alternation of polarities, the use of the
subexponential!l̂, and the placement of delays in this defi-
nition are particularly important to notice. For example, the
meaning of theload command is given using a negative for-
mulas as its body: this command proceeds without needing
any coordination with anything in the context, as illustrates
the following derivation:

⊢ K +l l(t̄) : · ⇑ δ+(prog)

⊢ K : · ⇑ ?ll(t̄), δ+(prog)
[?l]

⊢ K : · ⇑ ?l l(t̄) O δ+(prog)
[O]

⊢ K : · ⇑ load 〈~t〉 prog
[def ⇑]

Because of the positive delayδ+(·), it must be the case
that the negative phase ends by performing[R⇑]. Thus, this
specification forload corresponds to the intended operation
of loadingexactly onetuple in a location.

All other instructions (except forend andnew) are de-
fined by positive formulas. In these cases, choices must be
made and backtracking might be necessary inside a positive
phase. For example, if one is focused on awhile instruction
then that focus continues on a formula of the form

⇓ [(t1Ht2) ⊗ δ−(C)] ⊕ [(t1H̃t2) ⊗ δ−(D)]

At the “micro-rule level,” proof search must pick between
the two branches of the⊕ and then determine which branch

load 〈t̄〉 l prog
∆
= ?l l(t̄) O δ+(prog)

unloadi l pat bprog
∆
= l(pat v1 · · · vi)

⊥ ⊗ [δ−(bprog v1 · · · vi)]

while (t1Ht2) (λK.prog) prog
∆
= [(t1Ht2) ⊗ δ−((λK.prog) (while (t1Ht2) kprog prog))] ⊕ [(t1H̃t2) ⊗ δ−(prog)]

loopi l kprog prog
∆
= [l(v1, . . . , vi)

⊥ ⊗ δ−((kprog v1 · · · vi) (loopi l kprog prog))] ⊕ !l̂(prog)

prog1 8 prog2

∆
= prog1 ⊕ prog2

if (is empty l) prog
∆
= !l̂(prog)

if (t1Ht2) prog
∆
= t1Ht2 ⊗ δ−(prog)

new loc λL.prog
∆
= ⋓l λL.prog

end ∆
= ⊥

Figure 4. The definition clauses for specifying the execution of BAG programs.

succeeds: at this level, some search may be required to com-
pute the proper macro-step, but in the end, proof search will
continue with either⇑ C or with ⇑ D (the occurrences of
δ−(·) forces the flip of⇓ to⇑): here, the choice is completely
determined by the guards and this is reflected also with the
“macro-level” inference rules.

Notice that there are no delays written into the definition
of the8 operator since we wish that the choice provided by
that operator is merged with choices in the instructions it
accumulates. For example, the instructions

(if (x ≤ y) prog1) 8 (if (is empty l) prog2)

are equated, via the definition mechanism, to the formula

((x ≤ y) ⊗ δ−(prog1)) ⊕ !l̂prog2.

This synthetic connective combines internally the testx ≤ y
with the emptiness check of locationl. As described in
Section 4, the rule for!l̂ terminates the⇓ focus.

The correspondence between focused inference rules and
algorithmic steps is precise: in particular, all partial proofs
involving synthetic connectives match exactly the algorith-
mic steps that are possible. Thus, algorithmic steps that lead
to failures are matched exactly with partial proofs that can-
not be extended to complete proofs. As the behavior of an al-
gorithm corresponds to the set of all its possible computation
runs, this implies that the focused derivations obtained from
Figure 4 capture exactly the behavior of BAG programs.

We now take the opportunity provided by this type offull
adequacyto illustrate that by controlling the size of synthetic
connectives, via the use of delays, we are able to capture dif-
ferent intended semantics for BAG and change the behavior
of its programs. Consider the alternative operational seman-
tics for alternation8, where a step would correspond to only
picking one of the non-deterministic choices and not execut-
ing the first command of the chosen program. We can cap-
ture such intended semantics by reducing the size of alterna-
tion’s synthetic connective with the use of negative delays,

as shown below:

prog1 8 prog2

∆
= δ−(prog1) ⊕ δ−(prog2).

Because of the extra negative delay operators, the positive
phase must stop before applying the first instruction of the
selected program. In this case, while the number of success-
ful computation runs of a program does not change, the num-
ber of computation runs that fail might increase.

On the other hand, increasing the size of synthetic con-
nectives, by removing delay operators, increases the amount
of operationspackagedin a synthetic connective, increasing,
hence, the size of its corresponding transition step. These
choices can also have deep consequences to the behavior of
the system. Consider for example, a new definition for the
unload instruction that does not contain a negative delay
operator. In this case, one captures the intended semantics
where all consecutiveunload commands are performed in
a single step. Since the non-determinism involved in pick-
ing the right tuples to unload is contained in the execution
of a single transition step, the number of computation runs
that succeed does not change, but the number of computation
runs that fail might decrease.

Notice that since theunload and load operations are
defined using dual connectives (⊗ andO, respectively), they
cannot be part of the same synthetic connective. Such a
restriction on a synthetic connective (and on the associated
algorithmic step) is sensible since the order in which one
performs these operations can lead to different results.

8. Examples
The moduleextractMin, that extracts the minimum element
from a multiset, is depicted in Figure 5. (For readability, the
λ-abstractions associated withunload andnew statements
are elided, and we denote programs of the formA (B C)
as (A; B C).) This module takes three locations,li, lo ,
and min, and a continuation programprog. The module
moves the minimum element of the multiset, located inli ,

to the locationmin, and moves its remaining elements to the
locationlo .

extractMin = λliλloλminλprog.
unload2 li 〈n, v〉

load 〈n, v〉 min

loop2 li λn1λv1λlcont

unload2 min 〈nm, vm〉
if (vm ≤ v1)

load 〈nm, vm〉 min (load 〈n1 , v1〉 lo lcont)
8 if (vm > v1)

load 〈n1 , v1〉 min (load 〈nm, vm〉 lo lcont)
prog

Figure 5. Extracting the minimum element

The BAG programPG
bp in Figure 6 checks if a graph,G,

is bipartite. It takes as input three locations, for which all,
exceptver, are empty. Initially, all nodes aregray and later
their color can change toblue or red. We use the location
ver to store the nodes that are gray and the locationcol to
store the nodes’ color information. First, we create two aux-
iliary locationspr and edges. The first loop performs the
initialization of the nodes’ colors. Then, the second loop
starts to traverse a new component of the graph, by pick-
ing any node fromver, assigning it the colorblue, and in-
serting it in the auxiliary locationpr. The inner loop, that
traverses through a component of the graph, starts by pick-
ing any node,s, in pr. It then, invokes the modulegetEdges

that loads the edges connected tos in the locationedges.
This module can be seen as a series of alternatives ofif in-
structions, that checks the input node and loads accordingly
the edges in a specified location. The third loop traverses
through these edges. There are two alternatives, eithers is
blue or it is red. If it is blue, it checks if all adjacent nodes,
adj, are assigned the correct color (red), or assigns it the
correct color and insert it in the locationpr, or alternatively
if adj is blue then the answerno is loaded in locationans

and program finishes by proceeding toprog. A similar pro-
cedure is performed whens is red. If all nodes inver are
consumed then the graph is bipartite and the answeryes is
loaded in the locationans.

The second example is the Dijkstra’s algorithm that finds
the shortest distance in a positively weighted graph,G, which
is specified by the program,PG

dj, depicted in Figure 7. It
contains two modules, the main module initializes the lo-
cation ver by assigning the distance to all nodes to infin-
ity, except the source node,src, whose distance is zero, and
then calls the second moduledijkstra. This module starts
with two alternatives: ifver is empty, then the program ends
with the shortest distances located indist; or, it invokes the
extractMin module, described before, to extract fromver

the node,nm, that has the minimum distance, which will be
located in the auxiliary locationmin. The remaining nodes
are transferred to the auxiliary locationver ′. Then it adds

nm together with its distance in the locationdist. Next, it
invokes the modulegetEdges which loads in the auxiliary
locationedges all nodes adjacent tonm with the associated
cost of the edge. The program proceeds by looping among
these edges and updating the distances of all nodes adjacent
to nm, in ver ′, accordingly. Finally, thedijkstra module is
called again but this giving as input the auxiliary location
ver ′, as the remaining nodes are now located there.

9. Complexity Analysis
In many situations, it is possible to compute inconstant time
if a synthetic connective can be used to help prove a given
sequent. In particular, it is easy to show that it takes con-
stant time to build a focusing phase with the body of the
load, while, andif clauses, since arithmetic operations and
comparisons are assumed to be evaluated in constant time.
Checking that the body of an alternative can be decomposed
requires a search over all alternatives, which is bound by the
size of the program, again a constant. The more interesting
case involves determining if the body of anunload clause
can be used since this clause involves pattern matching. In
order to do pattern matching in constant time, we shall re-
strict tuples to be at most to arity 2. In that case, we represent
the contents of such binary locations by using three linked
hash-tables: one for when the pattern matching is on the first
element; another hash-table when the pattern matching is on
the second element; and finally the third hash-table is used
when the pattern matching is on both elements. Hence, pat-
tern matching is reduced to simple hash-table look-ups. No-
tice that one could do, in a similar fashion, constant time
pattern matching even if tuples had arity greater than two:
however that would come with a high cost in space.

Many algorithms, such as those described in Section 8,
do not need to backtrack since all of their computation runs
yield the same output. In the case of Dijkstra’s algorithm,
all of its computation runs end and has the same final out-
put: namely, the multiset containing the shortest distances.
For these algorithms, we can use an interpreter that picks
among several possible synthetic connectives and does not
backtrack. Since decomposing a synthetic connective can
take constant time, we can infer the complexity of an al-
gorithm by counting the number of decide rules (the num-
ber of synthetic connectives) in a derivation that witnesses
a complete computation run of an algorithm. For example,
any derivation obtained from(PG

bpcol ver ans end) where
ver contains the nodes of the graph and all other locations
are empty, containsO(|N | + |E|) decide rules, where|N |
and|E| are the number of nodes and edges in a graph. Nodes
are used at most three times and edge are used at most four
times. Hence, the complexity ofPG

bp isO(|N | + |E|).

10. Related Work
Various proposals for describing algorithms via rewriting
multisets have been developed in the past. Probably one the

bipartite = λcolλverλansλprog. //col - location with the colors of the nodes;
//ver – location with the graph’s unvisited vertices;
//ans – output location with the answeryes or no.

newpr; new edges //create auxiliary locations.
loop1 ver λnλlcont //set node colors togray.

load 〈n〉 ver; load 〈n, gray〉 col lcont

loop1 ver λnλlcont1 //pick a vertex,n, from a new component of the graph.
unload0 col 〈n, gray〉 //n must begray.

load 〈n, blue〉 col; load 〈n〉 pr //setn’s color asblue, and store it inpr.
loop1 pr λsλlcont2 //unload a vertex,s, that is in the same component.

getEdges s edges //loads the edges connected tos in the locationedges.
loop2 edges λsλadjλlcont3 //loop over the neighbors ofs.

unload0 col 〈s, blue〉; load 〈s, blue〉 col //if the color ofs is blue.
unload0 col 〈adj, red〉 //and if the neighbor ofs is red

load 〈adj, red〉 col lcont3 //proceed.
8 unload0 col 〈adj, blue〉 //if the neighbor ofs is blue.

load 〈no〉 ans prog //graph not bipartite.
8 unload0 col 〈adj, gray〉 //if the neighbor ofs is gray,

unload0 ver 〈adj〉〉 //then it has not been yet visited, hence
load 〈adj, red〉 col (load 〈adj〉 pr lcont3) //assign it with the colorred.

8 unload0 col 〈s, red〉 //similar to the first alternative.
lcont2

lcont1

load 〈yes〉 ans prog //all nodes visited, hence the graph is bipartite.

Figure 6. Bipartite graph checkingPG
bp

earliest such proposals is the Gamma programming language
[3] although the even older specification language of Petri
nets is also closely related to multiset rewriting. The Linda
coordination model [9] also makes use of primitive opera-
tions similar to those used in the manipulation of multisets.
The close relationship between multiset-based computation
and linear logic has been known and exploited for many
years within early linear logic programming languages such
as LinLog [1], Lolli/Forum [17], MSR [4], and Lollimon
[13].

It is often difficult to directly relate thesearchfor proofs
(say, in a logic programming setting) to performing com-
putations in a step-by-step, algorithmic sense. Probably the
largest single problem in making this connection is the need
to do backtracking during the search for proofs. Such back-
tracking might be acceptable if it can contained within “in-
ternal” and invisible processing steps, but it is unacceptable
if such backtracking is done between “visible” steps, such
inputting and outputting. In this paper, we tried to group pos-
sible backtracking points that are to be internal into single,
macro-level inference steps: other non-deterministic choices
are then left to the algorithm developer to organize appropri-
ately.

Another approach to the treatment of backtracking is
more global. One can describe computation as a kind of for-
ward chaining, generative model of computation. If one sat-

urates a set of forward chaining rules with all possible con-
sequences of a set of formulas, then failure to prove some
atomic goal with respect to that saturation does not lead to
backtracking. If some forward chaining is used but satura-
tion is not done, then the failure to prove an atomic for-
mula might be due to its not being provable or to not hav-
ing accumulated this particular consequence yet: in the later
case, one would need to backtrack and attempt to add more
consequences. Saturation has been used in both the Gamma
and the Lollimon setting as such a mechanism for dispelling
backtracking. We have not pursued this approach here since
we know of no proof theoretic treatment of subsumption.

McAllester & Ganzinger [15, 8, 7] developed a style of
algorithm specification, called “logical algorithms,” that was
inspired by bottom-up, logic programming specifications. In
order to account for more algorithms, they moved beyond
logic in order to incorporate the deletion of atomic formulas
and the assignment of priorities to inference rule application.
Their framework was able to specify algorithms that effi-
ciently solved problems from domains such as graph theory
(e.g., bipartite checking and the shortest distance problem),
efficient data structures (e.g., the Union/Find algorithm), and
polymorphic type inference [14]. Simmons & Pfenning [20]
revisited this style of logic specification and used linear logic
inspired proof search to provide a sound foundation for the
deletion of atomic facts.

dijkstra = λverλλdistλprog.
newver ′; newmin; newedges //create auxiliary locations
if (is empty ver) prog //finish if there are no more nodes to traverse
8 extractMin ver ver ′ min //otherwise, call theextractMin module.
unload2 min 〈nm, cm〉; load 〈nm, cm〉 dist //unload the minimum node,nm.

getEdges nm edges //get the edges connected tonm.
loop2 edges λadjλdλlcont //update the distances ofnm’s neighbors,adj.

unload1 dist 〈adj, c〉 //either, the shortest distance toadj is already computed.
load 〈adj, c〉 dist lcont //proceed.

8 unload1 ver ′ 〈adj, c〉 //otherwise, check if there is a shorter path toadj.
if (c ≤ d + cm) (load 〈adj, c〉 ver ′ lcont)
8 if (c > d + cm) (load 〈adj, d + cm〉 ver ′ lcont)

dijkstra ver ′ dist prog //call thedijkstra module.

main = λnodesλdistλsrcλprog. //nodes – location with the graph’s nodes;
//dist – location with the shortest distances.
//src – name of the source node.

newver //create auxiliary location
loop1 nodes λnλlcont //set the distance of all nodes to∞, except the source node.

if (n 6= src) (load 〈n,∞〉 ver lcont)
8
if (n = src) (load 〈s, 0〉 ver lcont)

dijkstra ver dist prog //call thedijkstra module.

Figure 7. Dijkstra’s algorithmPG
dj.

Common to both the approaches by McAllester & Ganzin-
ger and Simmons & Pfenning is the use of a bottom-up,
generative interpreter that relies on saturation to control the
scope of backtracking. By a careful and, at times, complex
analysis of that particular interpreter, it is possible to guar-
antee efficient implementations for the specified logic pro-
grams.

There are two essential differences between our work and
that on “logical algorithms.” First, we have remained entirely
within logic (in our case, linear logics with subexponentials)
and have focused on not only soundness but also complete-
ness. In fact, we have asked for more: we have insisted that
the focused proofs that are built within that logic are in one-
to-one correspondence with the steps of a simple algorithmic
specification language. Second, we have not introduced the
notion of an interpreter that directs search: in the “logical al-
gorithm” papers, an algorithm’s description is split between
the logic specificationandthe interpreter. In this paper, there
is no interpreter and the only structure given to proof search
is that derived directly from the focused proof system.

11. Conclusions
In this paper, we show that a wide range of algorithms can
be specified in the linear logic system with subexponen-
tials calledSELL. In order to better illustrate the algorith-
mic power ofSELL, we propose some very simple exten-
sions, such as,definitionsand new connectives that allow to

create new locations. Then, we describe how to use subex-
ponentials to locate data, and propose a programming lan-
guage, called BAG, containing loops, conditionals, and oper-
ations that insert and delete elements from subexponentials.
Finally, we give a proof theoretic semantics for BAG in such
a way that there is a one-to-one correspondence between the
set of (partial) computation runs of an intended semantics
and the set of (open) focused derivations. We also discuss
that, by using different focusing annotations to change the
size of synthetic connectives, we can capture different in-
tended operational semantics. At the end, we illustrate the
power ofSELL by encoding some complicated algorithms,
such as Dijkstra’s shortest path algorithm and an algorithm
for checking if a graph is bipartite.

Clearly, one can use subexponentials to capture more
computational behaviors. We have not yet used locations
that contain sublocations. One could imagine a more com-
plicated use of the subexponential pre-order where some lo-
cations are inside other locations. In this case, the test for
emptiness of a super-location would succeed only if all of its
sublocations are also empty.

Here, we restricted our attention to single-threaded algo-
rithms. One might consider specifying more general algo-
rithms such as concurrent algorithms. One could, for exam-
ple, extendSELLF to allow multifocusing[19], that is, to
allow focusing on, not only one formula, but on set of formu-

las. A transition step of a concurrent algorithm would then
correspond to a multifocused phase.

Throughout this paper, we assumed a global polarity as-
signment where all atoms are assigned negative polarity.
However, it has been shown that, although different polarity
assignments do not affect provability, they can affect con-
siderably the shape of the focused proofs obtained. In [12],
Liang & Miller show that if more flexible polarity assign-
ments are used, one can mix forward and backward-chaining
behaviors. This observation was used in [11, 18], to spec-
ify the computational behaviors of constraint systems and of
tabled deduction. One could investigate what different types
of algorithm specifications can be captured by using differ-
ent polarity assignments inSELLF.

References
[1] Jean-Marc Andreoli. Logic programming with focusing

proofs in linear logic.J. of Logic and Computation, 2(3):297–
347, 1992.

[2] David Baelde and Dale Miller. Least and greatest fixed points
in linear logic. In N. Dershowitz and A. Voronkov, editors,
International Conference on Logic for Programming and
Automated Reasoning (LPAR), volume 4790 ofLNCS, pages
92–106, 2007.

[3] Jean-Pierre Banâtre and Daniel Le Métayer. Gamma and the
chemical reaction model: ten years after. InCoordination
programming: mechanisms, models and semantics, pages
3–41. World Scientific Publishing, IC Press, 1996.

[4] Iliano Cervesato. Typed MSR: Syntax and examples. In
MMMACNS: International Workshop on Methods, Models
and Architectures for Network Security, volume 2052 of
LNCS, pages 159–177. Springer, 2001.

[5] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx.
The structure of exponentials: Uncovering the dynamics of
linear logic proofs. In Georg Gottlob, Alexander Leitsch, and
Daniele Mundici, editors,Kurt Gödel Colloquium, volume
713 ofLNCS, pages 159–171. Springer, 1993.

[6] Edsger W. Dijkstra.A Discipline of Programming. Prentice-
Hall, 1976.

[7] H. Ganzinger and D. McAllester. Logical algorithms. In
Proc. ICLP 2002, volume 2401 ofLNCS, pages 209–223.
Springer-Verlag, 2002.

[8] Harald Ganzinger and David A. McAllester. A new meta-
complexity theorem for bottom-up logic programs. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors,
Automated Reasoning, First International Joint Conference
(IJCAR), volume 2083 ofLecture Notes in Computer Science,
pages 514–528. Springer, 2001.

[9] David Gelenter. Generative communication in Linda.ACM
Transactions on Programming Languages and Systems,
7(1):80–112, 1986.

[10] Jean-Yves Girard. Light linear logic.Information and
Computation, 143, 1998.

[11] Radha Jagadeesan, Gopalan Nadathur, and Vijay Saraswat.

Testing concurrent systems: An interpretation of intuitionistic
logic. In FSTTCS 2005: Foundations of Software Technology
and Theoretical Computer Science, volume 3821 ofLNCS,
Hyderabad, India, 2005. Springer.

[12] Chuck Liang and Dale Miller. Focusing and polarizationin
intuitionistic logic. In J. Duparc and T. A. Henzinger, editors,
CSL 2007: Computer Science Logic, volume 4646 ofLNCS,
pages 451–465. Springer, 2007. Extended version to appear
in TCS.

[13] Pablo López, Frank Pfenning, Jeff Polakow, and Kevin
Watkins. Monadic concurrent linear logic programming. In
Pedro Barahona and Amy P. Felty, editors,Proceedings of the
7th International ACM SIGPLAN Conference on Principles
and Practice of Declarative Programming (PPDP), pages
35–46. ACM, 2005.

[14] D. McAllester. A logical algorithm for ML type inference. In
R. Nieuwenhuis, editor,Rewriting Techniques and Applica-
tions, 14th International Conference, RTA-03, volume 2706
of LNCS, pages 436–451, Valencia, Spain, 2003. Springer.

[15] David A. McAllester. On the complexity analysis of static
analyses.J. ACM, 49(4):512–537, 2002.

[16] Raymond McDowell and Dale Miller. Cut-elimination fora
logic with definitions and induction.Theoretical Computer
Science, 232:91–119, 2000.

[17] Dale Miller. Forum: A multiple-conclusion specification
logic. Theoretical Computer Science, 165(1):201–232,
September 1996.

[18] Dale Miller and Vivek Nigam. Incorporating tables into
proofs. In J. Duparc and T. A. Henzinger, editors,CSL 2007:
Computer Science Logic, volume 4646 ofLNCS, pages 466–
480. Springer, 2007.

[19] Dale Miller and Alexis Saurin. From proofs to focused
proofs: a modular proof of focalization in linear logic. In
J. Duparc and T. A. Henzinger, editors,CSL 2007: Computer
Science Logic, volume 4646 ofLNCS, pages 405–419.
Springer, 2007.

[20] Robert J. Simmons and Frank Pfenning. Linear logical
algorithms. In Luca Aceto, Ivan Damgård, Leslie Ann Gold-
berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz, editors,ICALP 2008: 35th International Col-
loquium Automata, Languages and Programming, Reykjavik,
Iceland, volume 5126 ofLNCS, pages 336–347. Springer,
July 2008.

