Algorithmic specifications in linear logic with subexponerials

Vivek Nigam

Dale Miller

INRIA Saclay -ile-de France and LIXcole Polytechnique
Route de Saclay, 91128 PALAISEAU Cedex FRANCE

nigam at lix.polytechnique.fr, dale.miller at inria.fr

Abstract

The linear logic exponentials? are not canonical: one can
add to linear logic other such operators, £a9', which may
or may not allow contraction and weakening, and where

is from some pre-ordered set of labels. We shall call these

additional operatorsubexponentialand use them to as-
signlocationsto multisets of formulas within a linear logic
programming setting. Treating locations as subexponisntia
greatly increases the algorithmic expressiveness of logic
To illustrate this new expressiveness, we show that focuse
proof search can be precisely linked to a simple algorithmic
specification language that contains while-loops, coouliti
als, and insertion into and deletion from multisets. We also

give some general conditions for when a focused proof step
can be executed in constant time. In addition, we propose

a new logical connective that allows for the creation of new
subexponentials, thereby further augmenting the algoith
expressiveness of logic.

1. Introduction
Computation in the@roof-searctparadigm (a.k.a. logic pro-

las. Thus, the only real dynamics during proof search with
Horn clauses is that atomic goals change as we move up-
ward through a proof. As a result, all data structures and
their various relationships must be encoded as terms within
atomic formulas: that is, all the dynamics of computation
is buried withinnon-logical contextgwithin the scope of
predicates). If one uses hereditary Harrop formulas idstea
of Horn clauses, slightly richer changes are possible: in pa
ticular, ' € T'. When proof search is conducted within

glinear logic, bothl’ and A can be treated as multisets and

the logic program is free to specify arbitrary, computable
relationships betweeh andI” and between\ andA’. In
linear logic, some data structures and their relationstéps
be encoded directly in tHegical contextf proofs.

Many data structures can be encoded, of course, naturally
as sets or multisets of atomic formulas: for example, a graph
given by a set of noded and an adjacency relatiof can
be encoded as the multiset of atomic formulas

{nodex |z € N}U{adjzy| (x,y) € A},

wherenode andadj are predicates. A major obstacle to de-

gramming) can be characterized as the process of searchSCribing algorithms using linear logic programs is thai¢og

ing for a cut-free sequent proof. The expressiveness of logi
programming can be judged, in part, by examining the kind

does not provide enough test on contexts. While it is possi-
ble in linear logic to detect that the global multiset comisx

of changes that can take place within sequents during the€MPtY, it is not possible to perform this test on less than the

search for a proof. LeE be a cut-free proof of - A and

let TV + A’ be a sequent occurring B. The dynamics of
proof search in this setting can be partially judged by exam-
ining the possible differences that can occur betwiéamd

I'" and betweem\ andA'.

When proof search is conducted within intuitionistic
logic, T is usually treated as a set of formulas ahdas a
single formula. If we restrict further to Horn clauses, we
find thatl’ = I" and thatA and A’ are atomic formu-

Permission to make digital or hard copies of all or part of thork for personal or
classroom use is granted without fee provided that copeesar made or distributed
for profit or commercial advantage and that copies bear ttiseand the full citation
on the first page. To copy otherwise, to republish, to posteowess or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright© ACM [to be supplied]. .. $5.00

entire context. Given the multiset encoding of graphs above
linear logic provides a simple mechanism to detect that both
the set of nodes and the adjacency information are empty but
the logic does not provide a means to check emptiness of just
N orjustA.

The exponentials of linear logic are not canonical: it is
possible to fill the gap between the “linear” modality (“use
exactly once”) and thé modality (“use arbitrarily”) with a
pre-ordered set of exponential-like operators. Theserrege
diate modality may or may not permit weakening and con-
traction. We use the tersubexponentidgbr such modalities
since the equivalenc§ A @ B) = (?A »® ?B)—which re-
lates the exponentid| the additive®, and the multiplicative
p—fails when? does not admit contraction and weakening.

Subexponentials can be used to “locate” data and the pro-
motion rule can be used to test selected locations for empti-
ness. These subexponentials provide linear logic specifica

tions with enough checks on data to allow for arange of al- 2. Why use logic to specify algorithms?
gorithms to be emulateekactlyvia (focused) proof search.
We shall illustrate this claim by specifying a simple pro-
gramming language, calledaB, containing loop instruc-
tions, conditionals, and operations that insert into arldtde o)
from a multiset, which is powerful enough to specify algo- A natural proof theory motivation ~ There is a long tra-
rithms such aDijkstra’s algorithm for finding the short- dition of using logic and proof theory as a framework for
est distances in a positively weighted graph. We show that Poth functional programming (via proof-normalizationyan
for any BAG program there is a one-to-one correspondence 09iC programming (via proof search). While proof theory
between the set of its (partial) computations and the set of Provides a remarkably robust and deep analysis of abstrac-
(open) focused proofs of its logic interpretation. tion, substitution, and .duallty, there are se_verql computa
Since there is an exact correspondence between synthetié‘onal phenomenathat it alone does not provide mf_ormat|on
connectives in the logic and steps in the algorithmic lan- FOr examples, proof theory does not offer canonical treat-
guage, we can vary the operational semantics of the algorith ments of first-order quantification, the structure of worlds
mic language by varying certain focusing-related featofes in modal logics, focusing polarity of atomic formulas, and
the logic. In particular, by either inserting or removitejay the exponentials. Such non-canonical aspects of proof the-
operatorsinto a logic specification, we camackagemore or ~ Ory can often be exploited by the computer scientist. For ex-
feweroperationsnside a synthetic connective. For example, a@mple, first-order quantification is richly applied in a wide

reading two items from a multiset can be described as two Fange of applications with greatly varying domains of quan-
algorithmic steps or as one algorithmic step. tification. Changes in the assignment of focusing bias for

In order to turn a logic specification into an algorithm, @tomic formulas in proof search allow one to mix forward-
one must usually adopt anterpreterfor the logic and then ~ chaining and backward-chaining style proof search to suit
understand algorithmic nature of that interpreter. Topado ~ @PPlications [12]. This paper provides a partial answehnéo t
depth-first interpreters are traditionally used to desctite question: What computer science relevance can subexponen-
algorithmic content of, for example, Horn clauses as Prolog tials serve in the logical specification of computation?
programs. Other algorithmic rendering of logic clauses use A high-level and declarative specification of algorithms
bottom-up interpreters [8]. In this paper, we shallnotuse a Using logic formulas as specifications has a number of ap-
explicit interpreter for this role: instead, recent ade® pealing features. First, the operational semantics of such
proof theory will be used to organize proof search in algo- |ogic specifications can be given within a well understand
rithmically explicit but still fully declarative ways. Inao- and rich setting, such as linear logic: in such a settingrape
ticular, we describe proof systems for which possibly large tional meaning is clear and precise. In particular, cug-ffe-
sets of connectives can be treated as a single, monolithic.cused proof search is used to describe the operational seman
synthetic connective and where, in many situations, the in- tics of logic specifications. Second, if algorithm specifica
ference rules related to such synthetic connectives can beions are logic specifications, one would expect that the ric
applied in constant time. As a result, the particular natlire mechanisms available for manipulating and reasoning with
whichever interpreter one eventually uses for finding psoof |ogical formulas can then be immediately seen as being ma-
can be largely eliminated when attempting to understand thenipulations and reasoning on algorithm specificationsid; hi
algorithmic content of a logic specification. logic provides a high-level specification that is often suit

After motivating our particular interest in specifying al- able for the specification of algorithms. For example, non-
gorithms using proof search in linear logic in the next sec- deterministic, algorithmic specifications suchpésk any el-
tion, we introduce subexponentials in Section 3 and their ement from a sedre easily modeled with a precisely match-
(focused) proof system in Section 4 and then, in Section 5, ing non-deterministic construction in logic. Of coursegtife
we illustrate its algorithmic content with a simple example is specifying a deterministic algorithm, then that algumit
In Section 6, we introduce some further machinery, such aswould need to replace the set by, say, a list and select the firs
definitionsand new connectives that are able to create new element of the list—all these steps can be mirrored in logic
subexponentials, and show how to specify arithmetic op- specifications as well.
erations and how to use subexponentials to locate data. In
Section 7 we present theaB algorithmic specification lan- 3L : :

: o . . Linear Logic and Subexponentials
guage, whose operational semantics is captured precigely b
the focused proof system. Sections 8 and 9 present some ex¥Vhile we assume that the reader is familiar with the basics of
ample algorithm specifications along with some comments linear logic, we recall here a bit of terminology concerning
about proof search complexity. Finally, in Section 10 we de- its syntax and proof theory.iterals are either atomic for-

scribe some related work and in Section 11 we finish with mulas or their negations. The connectiggands and their
some concluding remarks. units 1 and L aremultiplicative the connectivesy and &

and their unit$) and T areadditiveconnectivesy and3 are

Why should one care about describing algorithms with logic
specifications that claim to be equivalent to them in some
sense?

(first-order) quantifiers; anidand? are the exponentials. We
shall assume that all formulas areriegation normal form
meaning that all negations have atomic scope.

The exponentials in linear logic are not canonical: if one
considers, say, a pair of blue exponentidfs,and!”, and
a pair of red exponential§’ and!”, then?"4 and ?"A
(and!"A and!” 4) are not provably equivalent. Danes
al. proposed [5] a linear logic system with non-canonical
bangs and question marks: we introduce the teutmexpo-
nentialsto denote these. Aubexponential signatuie a tu-
ple (I,=<,W.,C) whereI is a set of indexes (naming the
subexponentials)g is a pre-order o, andW andC are
both subsets of. The set9/V andC contain those indexes
for which the corresponding subexponential allows weaken-
ing and contraction, respectively. Both these sets aredlos
under the order relation: in particular,/if< &k and one of
these sets contairsit also containg.

Given a subexponential signatute= (I, <, W, C), the
logic SELLy; is linear logic with the rules for the exponen-
tials replaced by the rules for the subexponentials. In par-
ticular, the dereliction, contraction, and weakening sidee
given as follows: hergy € C andz € W.

O, A YO, 70, A
70 A YO, A

FA
F27C A

w

The promotion rule, a particular focus of this paper, is give
by the following inference rule:

E2¥cy, ..., 7™C,, C a

E2¥Cy,..., 700,170

wherea < z; forall i = 1,...,n. Notice that ifz £ y then
the promotion rule can be applied to the sequent

F2CY, . 700, P Dy, Y Dy Y C

only if n = 0: the premise of that promotion rule would then
be+ 7 Dy,...,?"D,,,C. The promaotion rule can then be
seen as a kind of “guard” that allows a certain proof-search
reduction only when the collectiof(1, ..., C,} “located”
at z is empty. Dano®t al. also showed thaSELL admits
cut-elimination and that the initial rule can be restricted
atomic formulas [5].

In the scope of the current paper, we shall make two ad-

the pre-ordered setf, <) has a maximal element, written
~, Which is unbounded.

SELL is not a new logic: it is simply linear logic in
which the exponentials are allowed to have weaker behavior
(that is, allow fewer proofs). Other ways to exploit the non-
canonical nature of linear logic’'s exponential are expdore
in, for example, light and elementary linear logics [10].

4. Focused proofs with Subexponentials

In [1], Andreoli presented &cused proof systerfor lin-

ear logic: similar focused proof systems have subsequently
been introduced for classical and intuitionistic logicg(sr
example, [12]). Such proof systems provide a normal form
for cut-free proofs where introduction rules are organired
such a way that the “micro-rules” of sequent calculus that
introduce individual logical connectives are combinea int
“macro-rules” that can be seen as introduction rules for syn
thetic connectives. The back-chaining proof search step of
logic programming can be seen as interpreting logic pro-
gramming clauses as such synthetic connectives.

Before we introduce the focused system ®FELL, we
classify aspositivethe formulas whose main connective is
either®, ®, 3, the subexponential bang, the uhiand pos-
itive literals. All other formulas are classified aggative
Figure 1 contains the focused proof systefLLFthat is a
rather straightforward generalization of Andreoli’s dnigj
system. There are two kinds of arrows in this proof system.
Sequents with th¢ belong to thepositivephase and intro-
duce the logical connective of the “focused” formula (the
one to the right of the arrow): building proofs of such se-
guents maybe require non-invertible proof steps to be taken
Sequents with the belong to thenegativephase and de-
compose the formulas on their right in such a way that only
invertible inference rules are applied. The rul&s}], [D,],
and|!'] rules provide the only inference rules that mix these
two kinds of sequents: as such, these rules mark the bound-
ary between the macro rules, that is, between negative and
positive phases. Synthetic connectives can be seen as being
introduced by such macro rules.

Similarly as in the usual presentation of linear logic, ther
is a pair of contexts to the left of and | of sequents,
written here asC : TI'. The second contexi;, collects
the the formulas whose main connective is not a question-

ditional assumptions about the collection of subexponen- mark, behaving as the bounded context in linear logic. But
tials that we consider. First, we shall always assume thatdifferently from linear logic, where the first context is a
C = W: that is, a subexponential either admits weakening multiset of formulas whose main connective is a question-

and contraction (these will be thenboundedsubexponen-
tials) or admits neither weakening nor contraction (theitle w
be theboundedsubexponentials). Notice that the unbounded
subexponentials are the only ones that should be caited
ponentialssince for them it is possible to prove the equiv-
alence betweel(A & B) and?A » ?B. Subexponentials
that admit either weakening or contraction, but not both, do

mark, we generalizéC to be anindexed contextwhich is

a mapping from the index sdt (for some given and fixed
subexponential signature) to a finite multiset of formuias,
order to accommodate for more than one subexponential in
SELLF Inthe original setting, the index set contains just
and K[| contains the set of unbounded formulas. Given a
subexponentials signatuie,= (I, <, W, C), we specify the

not play a role in this paper. Second, we shall assume thatfollowing operations over these contexts:

o K <, [l]:{’;m if i <1

if i A1
ponential index.
* K[S] = U{Kli] | i € S}
whereS C [is a subset of subexponential indexes.
. KlElu{A} ifi=1
* (KA = { KJi] otherwise
whereA is a formula.

where: € I is a subex-

e LetS C I be a set of subexponential indexes, and let

x € {=, C, C} be abinary connective. Thék'; xKs) |s

is true if and only ifvi € S.(KCq[i] x Kad]).
”&®&M_{Km] ificcnw

The following soundness and completenessS&LLF
can be proved, for example, using techniques from [1, 19].

PrROPOSITIONI. LetY = (I, <, W, C) be a subexponential
signature, such tha¥y = C. ThenSELLF; is sound and
complete with respect t8ELLy,.

5. Example: a minimal element of a multiset

Before we make some simple extensionsSBLLF, we
illustrate with a small example the increase of expres-
sivity obtained by using subexponentials. Consider the
nonempty multiset of natural numbefs:,,...,m,}. Let
({oo, Ik}, {k = o0, X oo}, {c}, {cc}) be a subexponential
signature wheréandk are not<-comparable. Also, assume
that all atoms are assigned with negative polarity andClet
be the indexed context whekg{~] is the set

{F2Fyli(2)" @iyt ® (r <y) @ Vi),
Jz[l(x)t @ " min(z)] },

Klk] = 0, andK[l] = {I(my),...,{(my,)}. This context
contains exactly two positive formulas and, hence, theze ar
only two formulas on which to focus. We now derive in
detail these two synthetic connectives.

Focusing on the first formula requires building the fol-
lowing derivation bottom-up:

FIC: - 4 l(ma) ™ @ U(my)" @ (mi < my) @ ?'1(my)

FIC: -4 3aTyll(z) " @ U(y) " @ (z < y) @ ()]
FEC:

2 xd]
[Doc]

Continuing this phase of the proof requires finding four
indexed contexts such thal, ® Ko ® K3 @ K4[l] = K[l]
for all [and such that the following four sequeitsiC; :

. U l(mi)l, = ICQ Lo l} l(mj)L, F IC3 Lo U m; S mj,
and- Ky : - | ?Il(mi) are provable. The first two sequents
are provable if and only ifC;[l] = {l(m;)} and K]l]
{l(m;)}*. The third sequent is provablesif;, is less than or

1Remember that atoms, suchlgs), are assigned with negative polarity
and hence](m)= is assigned with positive polarity. Moreover, only the
initial rule can introduce a focused literal with positivelarity.

equal tom; and/Cs[l] = {}. This means that, is the same
ask exceptthatC4[l] is the multisefC[l] less the two distinct
elementd(m;) andi(m;) (hencen > 1). The remainder of
this proof phase is necessarily of the form:

FIC4+ll(ml)ﬂ
Ky A 2 (myg)
F Ry U ?M(my)

In other words, the synthetic connective arising from fo-
cusing on the first formula in the logic specification pro-
vides a proof of the sequeht K : - { - from the premise
F K- 1 - exactly whenC[[] contains at least 2 elements
andK’ is the same ak except thatl’[/] results fromK[(] by
deleting one atom holding an integer greater than or equal to
another integer in that multiset.

If we focus on the second formula, the resulting “macro”
rule is built from the follows “micro” rules.

F Ko s min(m)
F Ko i - min(m)

i

[RY]

(B

k]

Ky b I(m)* F Ky - U min(m)]
K- m)t @ 1 min(m) g
:- z[l(z)*t @ * min(x
FE: - 3afi(@)” © 1 min(z)] D]

I

Here, K1 ® Ko = K andK4[l] = {i(m)}. Also, K2[l] is
empty, a fact guaranteed by the promotion rule and the fact
that! andk are not<-comparable. Thus, the corresponding
synthetic connective provides a proof of the sequeit :

- from the premise- K’ : min(m) 1 only whenKJl]
contains exactly one elemefit:) and K’ is the result of
setting the multiseX’’[!] to the empty multiset.

The logic specification above clearly computes the mini-
mal member of a multiset in a structured fashion: if the num-
ber of elements in the multiset (in locatidyis one, then the
minimum is found; and if the number of elements is more
than one, then one element is discarded that does not af-
fect the minimum. These two steps are describe by focusing
on different clauses. Notice that a proof using these ckuse
does not involve any backtrack from the point of synthetic
connectives, while internal to the synthetic connective on
might envision possible backtracking search (for example,
to findm,; andm; such thatn, < m;).

6. DeployingSELLF

In order to better illustrate some algorithm specifications
SELLF, we introduce the following machinery. First, we add
the ability todefineatomic formulas and introduce rules for
unfolding such definitions during proof search. Such defi-
nitions then allow us to specifgrithmetic operationsWe
then explain how we can represeata structuresn SELLF,
using subexponentials focatedata structures. Finally, we
propose a new connective to linear logic that can be used to
create new locations during proof search.

o FK:THLA FKALB FK:ML FK:THL,ADB
Hc;rﬂL,TH FK: TN L,A&B [&] FIC:FﬂL,J_[] Hc:FﬂL,A@BM
FX:T L, A{c/x} '—IC-HA:F’[TL[?l]
FK:THLVzA FK:THL?7"A "
KT | A, FKi:TJA FKo.:AlB _ B
R Tl Aed ¥ Frek Taldep (@) providedky =Ko enw
. B FIC:T | A{t/z}
FE Tl [1], providedKC[I \ W] = 0 KTl A El
CK:utA [], providedK[{z |l Ax Az ¢ W} =
i 1 1
KT U4, [], providedA, € (I' UK[I]) and(I' U K[I \ W]) C {A;}
FK+ P:T|P . FK:TyP .
KL P T [Dy], providedl € CN'W mwl]’ providedl ¢ CN'W
FK:TUP KT AN KT, S L
Ferreg 2 Fergy B Fergrs N

Figure 1. The focused linear logic syste®ELLF. Here, A, is a
a negative polarity literal; an®/ is a negative formula.

6.1 Adding Definitions

A definitionis a finite set ofclauseswhich are written as

VZ[p T 2 BJ: herep is a predicate and every free variable
of B (thebodyof the clause) is contained in the ligt The

A . . . -
symbol= is not a logical connective but is used to indicate a
definitional clause. We consider that every defined preéicat
occurs at the head of exactly one clause. The following two
“unfolding” rules are added t6ELLF.

FK:T | Bo FK:T 1 L,Bo

———— [def ——————— [def

Hc;rupt[ew FK T4 L pl [def]
The proviso for both of these rules i¥Z[pZ = B is

a definition clause and is the substitution that maps the
variablest to the termg, respectively. Thus, in either phase

positive literal;S is a positive formula or a literal?’ is a not

Here, zero is denoted by the constaanhd successor by the
constructors. The other arithmetic comparisons are speci-
fied in a similar way.

If v denotes one of these relations, then the formuta
is positive and provable instances of it are composed of
exactly one positive phase and without the consumption of
any formulas from the context. More formally, i is an
indexed contextthen I : T" | mV¥n is provable if and only
if m andn are integers that stand in the relation intended
by v andT U K[\ W] is empty. We writev to be the
comparison that is the complement to the one denoted by
vieg,s<tiss>t.

We assume that basic integer addition and multiplication
are also available as purely positive synthetic connestive
In particular, expressions such as< y + w are replaced

of focusing, if a defined atom is encountered, it is simply by Ju.plus y w u ® x < u, whereplus y w u denotes the

replaced by its definition and the proof search phase does not.|ation between andw and their sumu and is specified by
change. The proof theory of inference rules such as these is[he following definition:

well studied (see, for example, [2, 16]).

6.2

Several of the examples and algorithms we consider in this
paper will need integers and some basic arithmetic opera-6.3 Representing Data Structures
tors on them. These all can be accommodated easily within
SELLFin a purely “positive” setting. In particular, the arith-
metic comparisons for integers, <, =, #, >, >, are avail-
able as binary predicates withBELL Fby using definitions.

For example, the definition fof is

(x=2®y=w)® I’
[(s2')=2® (su) =u® plus 2’ yu'].

plus x yu

Including arithmetic

As we described in Section 1, most of the dynamics of logic
programming within classical and intuitionistic logic acs
within atomic formulas: thus, data structures are usually
encoded as term structures so that they can appear within
the scope of predicate constants. For example, a set of pairs
{{x1,y1),...,{xn,yn)} can be encoded as the tefn; :
yp=nil)s- - (@, myy cnil):cnil), where: and nil are the non-

x <y 2 T =zP
'y’ [(s ')

@ (xy) =y <yl

empty and empty set constructors.$ELLF, it is possible

to encode many data structures using multisets of formulas 2 Ui - K,C . & U
instead of terms. For example, the same set of pairs can be X F K, m3;.C :
represented as

is a subexponential signature.

Yk K,C[Sl/ll, .o ,Sn/ln]
?lrel(xl, Y1)y -y ?lrel(mn, Yn) Y HEKUE.C

if Zl[sl/lly---asn/ln] Q %

in which thesubexponential provides a “location” for this Figure 2. The introduction rules fom and w. Here, the
data structure. Furthermore, the collection of formulas/ab subexponential signatures = (I, 2,W,C) and %, =

encodes aetif [€ C N W or amultisetif [¢ (CUW). (I, =<1, W,,C;) are such thaf; = {l,,...,1,} is a set of
In the rest of this paper, we constrain indexed contexts new indexes, the relatiod;C I x I is a pre-order, and the
as follows: for any subexponentiale I, the multisetiC[l] sets)V; andC; are subsets of = I; U I.

contains only atomic formulas and these are built with a
predicate whose name is the samé. asnking the predicate

name of atomic formulas to their locations in this way is LU {loc} F K,C
a convenience for the examples we shall consider. We also

[m;] providedloc is a new location

assume that all atoms used to encode dataatoms inC[{] Lr K, mloc.C
will be assumed to have negative polarity. L+ K,C[s/loc §/1€c\]

. ’) [;] provideds € £
6.4 Complements of locations LK, yloc.C

Since we will soon turn our attention to algorithm specifi-
cations inSELLF, we shall make two further restrictions in
how we deploySELLF.

First, we shall assume that all locatiorls,except the . .) .
special unbounded maximal locatien are bounded (that ~ introduce new locationsn) and be instantiated by old lo-
isW = C = {x}) and] = . Thus, data structures can Cations ©). Itis a simple matter to see that cut-elimination

be stored in different locations and no two locations will be Nolds forSELL™ and that focusing proof systems are com-
considered sublocations. plete when we assigh a negative polarity and a positive

Figure 3. The introduction rules fom; andy,;. HereL is a
set of locations.

Second, as the example above illustrated, testing that aPolarity.
given locationl is empty required the promotion rule with a
locationk such that A . To ensure that we have the ability
to perform all such tests, we shall define ttmmplemento The second extension is an specialization SELL™,
the subexponential signatufé~} U I, <, {=}, {}) to be called SELL™, that instead of considering general subex-
the signaturé{ec} U TU I, <, {oc}, {cc}) Wherel is a copy ponential signatures, assumes only a Setontaining all
of I containing elements of the forinvhenevel € I. The the bounded locations available to store data, and the exis-
order relation= is extended with all pairgg L such that tence of their complementlocations, as discussed Subsecti

andk are distinct members df. Thus, in the complemented 6.4 It contains the connectives andU;, whose introduc-
signature] can be seen as a sublocation of all locations in ~ tion rules are given in Figure 3. The introduction rule fior
different froml. The promotion rule with the subexponential Ccreates a new location and its complement location, and the

!i succeeds only if the indexed context is empty at location introduction rngforLUJlAlnstantlates all occurrences @ of
t loc by s and ofloc by s.

THEOREM 2. The cut-elimination theorem holds f8ELL™.

[: all other locations need not be considered. We shall no
“store” data in complemented locations: that AS|{] will o .
always be empty. P V] 7. Specifying Algorithms

There is a high-degree of “algorithmic context” in the de-

scription of synthetic connectives withiBELL, especially

Up to now, all locations are fixed throughout a proof. One once we made a few restrictions to that logic. In order to
can imagine simple extensions to linear logic that allow the make the scope of such algorithmic specifications more ev-

creation of new locations within proofs. We show here two ident, we present a small specification language that can

6.5 Creation of new locations

possible extensions. The first extension is the Icgfic L™ be used to describe sorsimgle-threadedlgorithms: while
which allows more arbitrary changes of the subexponential multi-threadedalgorithmic specifications are possible in lin-
signature. It extendSELL with two new connectives) and ear logic (see, for example, [17]), we focus here on more

W: the proof rules for these connectives are given in Figure 2. traditional and determinant algorithmic specifications.

We write the union of two signatures to be their point-wise ~ The following grammar introduces a high-level syntax
union and the inclusion of two signatures to be their point- for a small specification language we calh® We shall
wise inclusion. These connectives act as binding that cantake as given a subexponential signatdrgrestricted as

described in Section 6.4). The set of consta@ités also [instruction is similar to GCL'sf constructs, and thehile
fixed and contains the natural numbers plus other tokensandloop instructions are similar to GCL'®op constructs.

that we may need, such &sue, red, etc. We allow for two Our wish here is not to describe a new specification
kinds of variables: members ofir € V denote variables language but to highlight the algorithmic aspects already
over the first-order domaift, while members of’ € K present within focused proof search$ELL. To this end,

denote variables over programs (continuations). To tatdi we show how the intended operational semantics of the
the construction of specifications inaB, we introduce a BAG language can be specified by mapping it directly into
new kind of variableL. € L for locations and introduce a SELL formulas. In particular, we will illustrate that the non-
set of constantsame € N for module names. The other determinism that exists in an algorithmic description with

syntactic classes can be defined as follow. say, BAG, matches exactly the non-determinisn8&LLFs
at the level of synthetic connectives. There is still mora-no
t n=ceC|var tup = (t1,...,ty) (n >0) determinism one can imagine within proof searclSELLF,
pat u=tup | Avar.pat but those are containesithin the construction macro-level
cond, ::=t; ¥ty cond) ::= is_.empty locy, inference rules. Later in Section 9, we shall show that in
cond ::=cond, | cond, many cases, the construction of macro-level rules can, in
prog ::=loadtup loc prog | unload; loc pat bprog fact, be done in constant time.
| while cond,, (A\K.prog) prog Being able to specify when a synthetic connective ends
| loop; locy, kprog prog | new loc AL.prog is critical for our claims about how focused proof search
| if cond prog | prog || prog | K | end and algorithms in the BG language relate. The twaelay
bprog ::= prog | Avar.bprog operatorsé— () andd*(-) can be used to replace a formula
kprog ::= AK.prog | Avar.kprog with a provably equivalent formula of a given polarity. In
Iprog ::=\K.prog | AL.Iprog | Avar.Iprog particular,0~ (C') is negative no matter what polarity is:
mod ::=name X Iprog. it can be defined a§' »» L. Similarly, §*(C) is positive no
matter what polarity”' is: it can be defined a6 ® 1.
Conditions (tests) are of two kindond, are arithmetic The definitionD in Figure 4 specifies a “proof theoretic”

tests (see Section 6.2) amdnd, will be used to test if a semantics of the B language. (For readability, we have
given location is empty. The syntactic varialdie;, ranges suppressed writing the outermost universal quantifiers on
over all bounded locations (here, all locations other thgn these clauses.) The alternation of polarities, the useef th
In theunload; (respectivelyloop;) instruction, we will also subexponentia'li, and the placement of delays in this defi-
insist thatpat and bprog (respectively kprog) both have o are particularly important to notice. For examples t
exactly: variables bindings. Moreover, when a module is meaning of thdoad command is given using a negative for-
used in a program, execution proceeds by computing the pro-p a5 as its body: this command proceeds without needing
gram resulting from performing the necessary beta reduc- 5y coordination with anything in the context, as illusteat

tions. Keeping with the single-threadedness aGBmod- the following derivation:
ules contain one and only one abstracted continuation vari-
able. EI 4+ 1(E) - A 01 (prog) .

The eight kinds of program types inAB are described

) 1 +
briefly as follow. (1) (load tup loc prog) inserts the tu- FK - 7)), 6" (prog)

ple tup in the locationloc and then continues witprog. I ?11@ % 01 (prog)
(2) (unload; loc pat bprog) picks an element;t tn) [def 1]
L . Iowe o m/s K : -1 load () prog
from the Ipcatlonloc_such that it matches with the term
patt!-.-t'forsomet’ € {t;, ..., t,} andthen executesthe pecayse of the positive delay (), it must be the case

program(bprog 1_51 - t). (3) (while cond, (AK.prog) prog) that the negative phase ends by perfornjiRg]. Thus, this
repeatedly applie3 K. prog until the condition is not true; gpecification foload corresponds to the intended operation
then prog is executed. (4)loop; loc, pat bprog) repeat- of loadingexactly onauple in a location.

edly executegunload; loc, Az, ... Azi.(z1,. .., 2i) bprog), All other instructions (except foend andnew) are de-
where allx; < V, until the locationloc is empty. Intuitively, fined by positive formulas. In these cases, choices must be
this loop is used to process all members of a location. (5) made and backtracking might be necessary inside a positive

(new loc AL.prog) creates a new locatialvc and then ex- phase. For example, if one is focused ontile instruction
ecutes the prograrf\L.prog)loc. (6) (if cond prog) exe- then that focus continues on a formula of the form
cutesprog if the conditioncond holds. (7)(prog, | prog,) is

an alternativeinstruction, where the computation proceeds U [(t1¥t2) @ 6= (C)] @ [(t1Vt2) @ 6 (D))

to eitherprog; or progs. Lastly, (8)end ends the computa-
tion thread. Notice that this language is similar to Dije&r At the “micro-rule level,” proof search must pick between
Guarded Command Language (GCL) [6]: in particular, the the two branches of the and then determine which branch

218 78 6+ (prog)

I(pat vy ---v;)*t ® [0~ (bprog vy - - - v;)]

[(t1¥t2) @ 6~ ((AK.prog) (while (¢1¥t2) kprog prog))] & [(ﬁlthg) ® 6~ (prog)]
[I(v1,...,v;)*" ® 6~ ((kprog v - - - v;) (loop; 1 kprog prog))] & !"(prog)

prog, © prog,

load () I prog

unload; I pat bprog

while (¢ ¥t3) (AK.prog) prog
loop; I kprog prog

progy [prog,

e e e 1 1 e e e e

if (is_empty I) prog !!(prog)

if (t1V¥t2) prog t1¥ts ® §~ (prog)
new loc AL.prog m; AL.prog

end L

Figure 4. The definition clauses for specifying the execution efzBorograms.

succeeds: at this level, some search may be required to comas shown below:

pute the proper macro-step, but in the end, proof search will

continue with either} C or with D (the occurrences of prog; [| progs 2 0~ (prog,) @ 0~ (prog,).

0~ (-) forces the flip of| to 1}): here, the choice is completely

determined by the guards and this is reflected also with the Because of the extra negative delay operators, the positive

“macro-level” inference rules. phase must stop before applying the first instruction of the
Notice that there are no delays written into the definition selected program. In this case, while the number of success-

of the || operator since we wish that the choice provided by ful computation runs of a program does not change, the num-

that operator is merged with choices in the instructions it ber of computation runs that fail might increase.

accumulates. For example, the instructions On the other hand, increasing the size of synthetic con-
_ - nectives, by removing delay operators, increases the aimoun
(if (z <y) progy) | (if (is_empty) prog,) of operationpackagedn a synthetic connective, increasing,

hence, the size of its corresponding transition step. These
choices can also have deep consequences to the behavior of
B i the system. Consider for example, a new definition for the

((z <y)® 0~ (prog,)) ® !"prog,. unload instruction that does not contain a negative delay
operator. In this case, one captures the intended semantics
with the emptiness check of locatidn As described in wh_ere all conse_cutivenload comman_d_s are performed ?n

i ;) a single step. Since the non-determinism involved in pick-
Section 4, the rule fo’ terminates th¢} focus. ing the right tuples to unload is contained in the execution

The correspondence between focused inference rules anq)f a single transition step, the number of computation runs

glgothmm stepg IS precise. in particular, all partladxpiis. that succeed does not change, but the number of computation
involving synthetic connectives match exactly the aldworit runs that fail might decrease

mic steps that are possible.Thus,_ algorithmic steps thdit le Notice that since thainload and load operations are

to failures are matched exactly with partial proofs_ that-can yafineq using dual connectives and', respectively), they
notlbe extended to complete proofs..As the pehaworof an_al'cannot be part of the same synthetic connective. Such a
gorlthm.cqrres.pondsto the set of all Its pos sible compamati o qyriction on a synthetic connective (and on the assatiate
runs, this implies that the focused derivations obtainedhfr algorithmic step) is sensible since the order in which one

Figure 4 capture exactly the t_)ehavio_r O*‘Bpmgrams- performs these operations can lead to different results.
We now take the opportunity provided by this typeialf

adequacyo illustrate that by controlling the size of synthetic

connectives, via the use of delays, we are able to capture dif 8. Examples

ferent intended semantics fomB and change the behavior The moduleextractMin, that extracts the minimum element
of its programs. Consider the alternative operational $ema from a multiset, is depicted in Figure 5. (For readabilite t
tics for alternatiorj], where a step would correspond to only A-abstractions associated witinload and new statements
picking one of the non-deterministic choices and not execut are elided, and we denote programs of the fotniB C)
ing the first command of the chosen program. We can cap-as (4; B C').) This module takes three locations, I,
ture such intended semantics by reducing the size of akkerna and min, and a continuation programrog. The module
tion’s synthetic connective with the use of negative delays moves the minimum element of the multiset, located;jn

are equated, via the definition mechanism, to the formula

This synthetic connective combines internally the test y

to the locationmin, and moves its remaining elements to the n,, together with its distance in the locati@iist. Next, it

locationl,. invokes the modulgetEdges which loads in the auxiliary
locationedges all nodes adjacent ta,, with the associated

extractMin = Al Al, AminAprog. cost of the edge. The program proceeds by looping among
unload; J; (n, v) these edges and updating the distances of all nodes adjacent

load (n, v) min to n,,, in ver’, accordingly. Finally, thelijkstra module is

loopy I; Any Avy Alcont called again but this giving as input the auxiliary location

unload, min (nm, Vm) ver’, as the remaining nodes are now located there.
if (vin < vyp)
load (1, vin) min (load (ny, v) I, Icont) 9. Complexity Analysis

I if (vim > vy)

load (n;, v;) min (load (1, vi) 1, leont) In many situations, it is possible to computemnstant time

if a synthetic connective can be used to help prove a given
sequent. In particular, it is easy to show that it takes con-
stant time to build a focusing phase with the body of the
load, while, andif clauses, since arithmetic operations and
comparisons are assumed to be evaluated in constant time.
Checking that the body of an alternative can be decomposed
requires a search over all alternatives, which is bound by th
size of the program, again a constant. The more interesting
case involves determining if the body of anload clause

can be used since this clause involves pattern matching. In
order to do pattern matching in constant time, we shall re-
strict tuples to be at most to arity 2. In that case, we repitese
the contents of such binary locations by using three linked
hash-tables: one for when the pattern matching is on the first
element; another hash-table when the pattern matching is on
the second element; and finally the third hash-table is used
when the pattern matching is on both elements. Hence, pat-
tern matching is reduced to simple hash-table look-ups. No-
tice that one could do, in a similar fashion, constant time
pattern matching even if tuples had arity greater than two:
however that would come with a high cost in space.

Many algorithms, such as those described in Section 8,
do not need to backtrack since all of their computation runs
yield the same output. In the case of Dijkstra’s algorithm,
all of its computation runs end and has the same final out-
put: namely, the multiset containing the shortest distance
For these algorithms, we can use an interpreter that picks
among several possible synthetic connectives and does not
backtrack. Since decomposing a synthetic connective can
take constant time, we can infer the complexity of an al-
gorithm by counting the number of decide rules (the num-
ber of synthetic connectives) in a derivation that witnesse
a complete computation run of an algorithm. For example,

prog

Figure 5. Extracting the minimum element

The BAG programpgp in Figure 6 checks if a grapld;,
is bipartite. It takes as input three locations, for which al
exceptver, are empty. Initially, all nodes argray and later
their color can change tblue or red. We use the location
ver to store the nodes that are gray and the locatigno
store the nodes’ color information. First, we create two-aux
iliary locations pr and edges. The first loop performs the
initialization of the nodes’ colors. Then, the second loop
starts to traverse a new component of the graph, by pick-
ing any node fromver, assigning it the coloblue, and in-
serting it in the auxiliary locatiopr. The inner loop, that
traverses through a component of the graph, starts by pick-
ing any nodes, in pr. It then, invokes the modulg:t Edges
that loads the edges connectedstin the locationedges.
This module can be seen as a series of alternativdsiof
structions, that checks the input node and loads accosdingl
the edges in a specified location. The third loop traverses
through these edges. There are two alternatives, eitiger
blue or it is red. If it is blue, it checks if all adjacent nodes,
adj, are assigned the correct colaed), or assigns it the
correct color and insert it in the locatigm, or alternatively
if adj is blue then the answeno is loaded in locatiorans
and program finishes by proceedingtmg. A similar pro-
cedure is performed whenis red. If all nodes inver are
consumed then the graph is bipartite and the angwers
loaded in the locatioans.

The second example is the Dijkstra’s algorithm that finds
the shortest distance in a positévely weighted grahhvhich
is specified by the progran®?., depicted in Figure 7. It o .
con![oains two)r:mdulzs,q[he main mpodule initia?izes the lo- Ny derivation obtained fronpy, col ver ans end) where
cation ver by assigning the distance to all nodes to infin- ver contains the nodes of the graph_ and all other locations
ity, except the source node;c, whose distance is zero, and are empty, contain®(|N| + | Z]) decide rulgs, whergV|
then calls the second modulBjkstra. This module starts and|E| are the numberof nodes and edges in a graph. Nodes
with two alternatives: ifver is empty, then the program ends are uscle_ld at moks]t three tl|m§s ;fngd _ed(ge;re usbejd at most four
with the shortest distances locateddist; or, it invokes the times. Hence, the complexity 61, , Is (IN]+[E]).
extractMin module, described before, to extract fromr
the nodepn,,, that has the minimum distance, which will be 10. Related Work
located in the auxiliary locatiomin. The remaining nodes Various proposals for describing algorithms via rewriting
are transferred to the auxiliary locatiomr’. Then it adds multisets have been developed in the past. Probably one the

bipartite = Acol\ver AansAprog. /lcol - location with the colors of the nodes;
[/Iver — location with the graph’s unvisited vertices;
/lans — output location with the answees or no.
new pr; new edges /[create auxiliary locations.
loop; ver AnAlcont /Iset node colors tgray.
load (n) ver; load (n, gray) col Icont
loop; ver An\lcont1 /Ipick a vertexn, from a new component of the graph.
unload, col (n, gray) /In must begray.
load (n, blue) col; load (n) pr /Isetn’s color asblue, and store it inpr.
loop; pr AsAlcont2 /lunload a vertexs, that is in the same component.
getEdges s edges /Nloads the edges connectedstim the locationedges.
loops edges AsAadj\cont3 /Nloop over the neighbors of
unload, col (s, blue); load (s, blue) col /lif the color of s is blue.
unloady col {adj, red) /land if the neighbor of is red
load (adj, red) col Icont3 /Iproceed.
[| unloady col (adj, blue) /lif the neighbor ofs is blue.
load (no) ans prog /Igraph not bipartite.
[unloady col {adj, gray) /lif the neighbor of is gray,
unload, ver (adj)) /lthen it has not been yet visited, hence
load (adj, red) col (load (adj) pr lcont3) /lassign it with the colored.
[| unloady col (s, red) /Isimilar to the first alternative.
Icont2
Icont1
load (yes) ans prog /lall nodes visited, hence the graph is bipartite.

Figure 6. Bipartite graph checkin@gp

earliest such proposals is the Gamma programming languageirates a set of forward chaining rules with all possible con-
[3] although the even older specification language of Petri sequences of a set of formulas, then failure to prove some
nets is also closely related to multiset rewriting. The land atomic goal with respect to that saturation does not lead to
coordination model [9] also makes use of primitive opera- backtracking. If some forward chaining is used but satura-
tions similar to those used in the manipulation of multisets tion is not done, then the failure to prove an atomic for-
The close relationship between multiset-based compuatatio mula might be due to its not being provable or to not hav-
and linear logic has been known and exploited for many ing accumulated this particular consequence yet: in tlee lat
years within early linear logic programming languages such case, one would need to backtrack and attempt to add more
as LinLog [1], Lolli/Forum [17], MSR [4], and Lollimon consequences. Saturation has been used in both the Gamma
[13]. and the Lollimon setting as such a mechanism for dispelling
It is often difficult to directly relate theearchfor proofs backtracking. We have not pursued this approach here since
(say, in a logic programming setting) to performing com- we know of no proof theoretic treatment of subsumption.
putations in a step-by-step, algorithmic sense. Probdialy t McAllester & Ganzinger [15, 8, 7] developed a style of
largest single problem in making this connection is the need algorithm specification, called “logical algorithms,” thveas
to do backtracking during the search for proofs. Such back- inspired by bottom-up, logic programming specifications. |
tracking might be acceptable if it can contained within “in- order to account for more algorithms, they moved beyond
ternal” and invisible processing steps, but it is unacdagpta logic in order to incorporate the deletion of atomic fornaula
if such backtracking is done between “visible” steps, such and the assignment of priorities to inference rule appbcat
inputting and outputting. In this paper, we tried to grouppo Their framework was able to specify algorithms that effi-
sible backtracking points that are to be internal into @ngl ciently solved problems from domains such as graph theory
macro-level inference steps: other non-deterministi¢eeso (e.g, bipartite checking and the shortest distance problem),
are then left to the algorithm developer to organize appropr efficient data structureg(g, the Union/Find algorithm), and
ately. polymorphic type inference [14]. Simmons & Pfenning [20]
Another approach to the treatment of backtracking is revisited this style of logic specification and used linegid¢
more global. One can describe computation as a kind of for- inspired proof search to provide a sound foundation for the
ward chaining, generative model of computation. If one sat- deletion of atomic facts.

dijkstra = Aver A\\dist\prog.
new ver’; new min; Nnew edges
if (is_empty ver) prog
[| extractMin ver ver’ min
unloady min (npy,, ¢;); load (ny,, ¢n) dist
getEdges n,, edges
loop, edges AadjAdAlcont
unload; dist (adj, c)
load (adj, ¢) dist Icont
[unload; ver’ (adj, c)
if (¢ <d+ ¢) (load (adj, ¢) ver’ Icont)
lif (c > d+ ¢y,) (load (adj, d + cy,) ver’ Icont)
dijkstra ver’ dist prog

/lproceed.

main = AnodesAdistAsrc\prog.

/[create auxiliary locations
/ffinish if there are no more nodes to traverse
/lotherwise, call thextractMin module.
/lunload the minimum node,,.
/lget the edges connectedrg.
/lupdate the distances of,’s neighborsadj.
/leither, the shortest distancedd;j is already computed.

/lotherwise, check if there is a shorter pattatt).

/[call thedijkstra module.

/Inodes — location with the graph’s nodes;

/ldist — location with the shortest distances.
/lsrc — name of the source node.

new ver
loop; nodes AnAlcont
if (n # src) (load (n, co) ver Icont)

/[create auxiliary location

if (n = src) (load (s, 0) ver Icont)
dijkstra ver dist prog

/[call thedijkstra module.

/Iset the distance of all nodesdo, except the source node.

Figure 7. Dijkstra’s algorithmP¥,.

Commonto both the approaches by McAllester & Ganzin- create new locations. Then, we describe how to use subex-
ger and Simmons & Pfenning is the use of a bottom-up, ponentials to locate data, and propose a programming lan-

generative interpreter that relies on saturation to cdtte

guage, called BG, containing loops, conditionals, and oper-

scope of backtracking. By a careful and, at times, complex ations that insert and delete elements from subexpongntial

analysis of that particular interpreter, it is possible t@g

antee efficient implementations for the specified logic pro-

grams.

Finally, we give a proof theoretic semantics fox®in such
a way that there is a one-to-one correspondence between the
set of (partial) computation runs of an intended semantics

There are two essential differences between our work andand the set of (open) focused derivations. We also discuss

that on “logical algorithms.” First, we have remained egl§ir
within logic (in our case, linear logics with subexponelsiia

that, by using different focusing annotations to change the
size of synthetic connectives, we can capture different in-

and have focused on not only soundness but also completetended operational semantics. At the end, we illustrate the
ness. In fact, we have asked for more: we have insisted thatpower of SELL by encoding some complicated algorithms,

the focused proofs that are built within that logic are in-one

such as Dijkstra’s shortest path algorithm and an algorithm

to-one correspondence with the steps of a simple algorithmi for checking if a graph is bipartite.
specification language. Second, we have not introduced the Clearly, one can use subexponentials to capture more

notion of an interpreter that directs search: in the “lobéda
gorithm” papers, an algorithm’s description is split betwe
the logic specificatioandthe interpreter. In this paper, there
is no interpreter and the only structure given to proof dearc
is that derived directly from the focused proof system.

11. Conclusions

computational behaviors. We have not yet used locations
that contain sublocations. One could imagine a more com-
plicated use of the subexponential pre-order where some lo-
cations are inside other locations. In this case, the test fo
emptiness of a super-location would succeed only if allof it
sublocations are also empty.

Here, we restricted our attention to single-threaded algo-
rithms. One might consider specifying more general algo-

In this paper, we show that a wide range of algorithms can rithms such as concurrent algorithms. One could, for exam-
be specified in the linear logic system with subexponen- ple. extendSELLF to allow multifocusing[19], that is, to

tials calledSELL. In order to better illustrate the algorith-
mic power of SELL, we propose some very simple exten-
sions, such aglefinitionsand new connectives that allow to

allow focusing on, not only one formula, but on set of formu-

las. A transition step of a concurrent algorithm would then
correspond to a multifocused phase.

Throughout this paper, we assumed a global polarity as-
signment where all atoms are assigned negative polarity.
However, it has been shown that, although different pglarit
assignments do not affect provability, they can affect con-
siderably the shape of the focused proofs obtained. In [12],
Liang & Miller show that if more flexible polarity assign- pages 451-465. Springer, 2007. Extended version to appear
ments are used, one can mix forward and backward-chaining in TCS.
behaviors. This observation was used in [11, 18], to spec- [13] Pablo Lopez, Frank Pfenning, Jeff Polakow, and Kevin
ify the computational behaviors of constraint systems d@nd o Watkins. Monadic concurrent linear logic programming. In
tabled deduction. One could investigate what differenesyp Pedro Barahona and Amy P. Felty, editd?sceedings of the

of algorithm specifications can be captured by using differ- 7thd'gtemt?‘“°”?' DACI|VI St',GplLDAN Confe_reniggg Principles
: . . and Practice of Declarative Programming Mages
ent polarity assignments 8ELLF. 35-46. ACM, 2005,

[14] D. McAllester. A logical algorithm for ML type infererc In
R. Nieuwenhuis, editoiRewriting Techniques and Applica-
tions, 14th International Conference, RTA;-88lume 2706
of LNCS pages 436—451, Valencia, Spain, 2003. Springer.

[15] David A. McAllester. On the complexity analysis of stat

Testing concurrent systems: An interpretation of intunitsic
logic. INFSTTCS 2005: Foundations of Software Technology
and Theoretical Computer Scienamlume 3821 ofLNCS
Hyderabad, India, 2005. Springer.

[12] Chuck Liang and Dale Miller. Focusing and polarizatian
intuitionistic logic. In J. Duparc and T. A. Henzinger, exl,
CSL 2007: Computer Science Logiolume 4646 oLNCS

References

[1] Jean-Marc Andreoli. Logic programming with focusing
proofs in linear logicJ. of Logic and Computatiqr2(3):297—
347,1992.

[2] David Baelde and Dale Miller. Least and greatest fixech{mi
in linear logic. In N. Dershowitz and A. Voronkov, editors,
International Conference on Logic for Programming and
Automated Reasoning (LPARPlume 4790 oL NCS pages
92-106, 2007.

[3] Jean-Pierre Banatre and Daniel Le Métayer. Gammalaad t
chemical reaction model: ten years after. Goordination
programming: mechanisms, models and semanfieges
3-41. World Scientific Publishing, IC Press, 1996.

[4] lliano Cervesato. Typed MSR: Syntax and examples. In
MMMACNS: International Workshop on Methods, Models
and Architectures for Network Securityolume 2052 of
LNCS pages 159-177. Springer, 2001.

[5] Vincent Danos, Jean-Baptiste Joinet, and Harold Sichell
The structure of exponentials: Uncovering the dynamics of
linear logic proofs. In Georg Gottlob, Alexander Leitschda
Daniele Mundici, editorsKurt Godel Colloquiumvolume
713 of LNCS pages 159-171. Springer, 1993.

[6] Edsger W. Dijkstra.A Discipline of ProgrammingPrentice-
Hall, 1976.

[7] H. Ganzinger and D. McAllester. Logical algorithms. In
Proc. ICLP 2002 volume 2401 ofLNCS pages 209-223.
Springer-Verlag, 2002.

[8] Harald Ganzinger and David A. McAllester. A new meta-
complexity theorem for bottom-up logic programs. In
Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, edijtor
Automated Reasoning, First International Joint Confegenc
(IJCAR) volume 2083 of_ecture Notes in Computer Science
pages 514-528. Springer, 2001.

[9] David Gelenter. Generative communication in LindsCM
Transactions on Programming Languages and Systems
7(1):80-112, 1986.

[10] Jean-Yves Girard. Light linear logiclnformation and
Computation 143, 1998.

[11] Radha Jagadeesan, Gopalan Nadathur, and Vijay Sdraswa

analysesJ. ACM 49(4):512-537, 2002.

[16] Raymond McDowell and Dale Miller. Cut-elimination far
logic with definitions and inductionTheoretical Computer
Science232:91-119, 2000.

[17] Dale Miller. Forum: A multiple-conclusion specificati
logic. Theoretical Computer Scienc&65(1):201-232,
September 1996.

[18] Dale Miller and Vivek Nigam. Incorporating tables into
proofs. In J. Duparc and T. A. Henzinger, editd2§L 2007:
Computer Science Logigolume 4646 oL NCS pages 466—
480. Springer, 2007.

[19] Dale Miller and Alexis Saurin. From proofs to focused
proofs: a modular proof of focalization in linear logic. In
J. Duparc and T. A. Henzinger, edito@SL 2007: Computer
Science Logicvolume 4646 ofLNCS pages 405-419.
Springer, 2007.

[20] Robert J. Simmons and Frank Pfenning. Linear logical
algorithms. In Luca Aceto, lvan Damgard, Leslie Ann Gold-
berg, Magnus M. Halldorsson, Anna Ingolfsdottir, agdi
Walukiewicz, editors|CALP 2008: 35th International Col-
loguium Automata, Languages and Programming, Reykjavik,
Iceland volume 5126 ofLNCS pages 336—347. Springer,
July 2008.

