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Abstract
When presented with a formula to prove, most theorem
provers for classical first-order logic process that formula
following several steps, one of which is commonly called
skolemization. That process eliminates quantifier alternation
within formulas by extending the language of the underly-
ing logic with new Skolem functions and by instantiating
certain quantifiers with terms built using Skolem functions.
In this paper, we address the problem of checking (i.e., certi-
fying) proof evidence that involves Skolem terms. Our goal
is to do such certification without using the mathematical
concepts of model-theoretic semantics (i.e., preservation of
satisfiability) and choice principles (i.e., epsilon terms). In-
stead, our proof checking kernel is an implementation of
Gentzen’s sequent calculus, which directly supports quanti-
fier alternation by using eigenvariables. We shall describe
deskolemization as a mapping from client-side terms, used in
proofs generated by theorem provers, into kernel-side terms,
used within our proof checking kernel. This mapping which
associates skolemized terms to eigenvariables relies on using
outer skolemization. We also point out that the removal of
Skolem terms from a proof is influenced by the polarities
given to propositional connectives.

CCS Concepts • Theory of computation→ Proof the-
ory; Constraint and logic programming;

Keywords Skolemization; foundational proof certificates;
focusing; sequent calculus; λProlog

1 Introduction
Skolemization [? ] is a process (of which there are many vari-
ants) that removes strong quantifiers by instantiating such
quantifiers with terms of the form f (x1, . . . ,xn ) wheren ≥ 0,
x1, . . . ,xn is a list of distinct weakly quantified variables, and
f is a Skolem constant.1 Exactly which list of such variables
is used depends on which form of skolemization is employed,
but, in all cases, the resulting formula contains no strong
quantifiers. Theorem provers employ this preprocessing step

1An occurrence of a quantifier in a formula is strong if a cut-free proof that
introduces it uses an eigenvariable to instantiate it. Otherwise, it is a weak
quantifier instance. In some texts our definition of Skolemization is actually
considered to be the dual of Skolemization, usually called Herbrandization,
which keeps the strong quantifiers and replaces weak quantifiers with
Skolem functions; the results of this paper can be trivially dualized.

in part because it removes quantifier alternation: when only
weak quantifiers exist, standard first-order unification can
be used to discover how all the remaining quantifiers can be
instantiated. In particular, forward search strategies such as
the inverse method do not need to implement an expensive
eigenvariable condition.
The correctness of skolemization in first-order classical

logic is generally justified by referring to the model theory
of classical logic. The main meta-theorem for skolemization
is that if the skolemized instance of formula B is satisfiable
then the formula B is also satisfiable. Given that this theorem
is about satisfiability (and not truth), skolemization is often
employed in a refutation procedure: if one can demonstrate
that the skolemized version of ¬B is unsatisfiable (since, for
example, one can derive an empty clause from it), then ¬B
is unsatisfiable. Employing the model theory of first-order
classical logic again, we know that B is valid and, hence,
by completeness we know that B has a proof in a complete
proof system such as Gentzen’s LK sequent calculus [20].

A central issue with skolemization is how to use evidence
for the unsatisfiability of a skolemized version of ¬B to for-
mally certify that B is a theorem. We are interested in certifi-
cation in the sense of having proofs formally checked using
computerized proof-checkers. One method to achieve this
kind of certification is to first formally establish the model-
theoretic properties of satisfiability and of equi-satisfiability
of skolemization as meta-theorems in a formal reasoning
system such as Coq or Isabelle/HOL. Such a meta-theorem
would employ significant aspects of the foundations of ordi-
nary mathematics, including axioms of extensionality, infin-
ity, and choice [13]. Certifying B as a theorem would then
amount to first checking the evidence for the unsatisfiability
of the skolemized version of ¬B (for instance, by checking
that a provided refutation is syntactically correct), and then
appealing to the model-theoretic meta-theorem to conclude
that ¬B is itself unsatisfiable, and hence that B is a theorem.
A more direct and targeted certification can be achieved

in theorem provers that contain a choice operator such as
Hilbert’s ϵ-operator and its associated axioms. Such opera-
tors can be used to specify Skolem functions; for instance,
the ϵ operator of Isabelle/HOL can be used to justify skolem-
ization [6]. However, this still leaves unsolved the problem
of certifying B using proof checkers that do not have such
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built-in operators, particularly in intuitionistic proof check-
ers that cannot support such operators (without the use of
axiomatic extensions).

1.1 Direct Certification using the Sequent Calculus
In this paper we are interested in a more direct approach:
deskolemizing the evidence into a proof in a system such as
Gentzen’s LK , which is complete for classical first-order logic
without relying on choice operators or foundational axioms.
This also avoids the need for powerful proof techniques
that would be needed to establish the model-theoretic meta-
theorems. Instead, one only needs to check that a proposed
proof structure does, indeed, describe an LK proof.

There are a number of reasons for preferring this certifica-
tion approach. First, LK proofs are easy to import into a vari-
ety of other proof systems including higher-order logic and
even intuitionistic proof systems. (See, for example, [19, 34]
of proof evidence being imported into higher-order proof
systems.) But, skolemization is not sound for higher-order
logic (without choice) [26] and for intuitionistic logic, so
the imported LK proofs need to be for the original formulas
(without Skolem functions).

Second, an LK-proof lets us achieve a high degree of con-
fidence in the correctness of the system. This is not only
because of the pedigree of LK , but also because it is possible
to check LK proofs syntactically without appealing to strong
axioms such as choice. We can also envision applications
that involve interacting with, browsing, and mining formal
proof structures [23]. If the proof relies on just LK , then the
resulting interactions should be rather direct and informa-
tive. Choice principles, choice operators, equi-satisfiability,
etc. will likely make such interactions more obscure.

1.2 Relating Skolemized Proofs to LK
The skolemized form of a formula has only weak quantifiers,
so an LK proof of this formula would never introduce an
eigenvariable. This in turn means that the scopes that are de-
termined by strong quantifiers are not necessarily respected
in the LK proof of the skolemized formula. To deskolemize is
to reorganize the proof in such a way that the strong quanti-
fier scopes can be restored, and then the Skolem terms used
to replace such quantifiers can be changed to eigenvariables
in order to recover a standard LK proof.
Deskolemization has been widely studied for classical

first-order logic. In general, deskolemization techniques rely
heavily on knowledge of the way the original formula was
skolemized. For example, in [25, 26] it was shown that a
certain type of skolemization (called outer skolemization in
Section 2) can be deskolemized in expansion proofs without
increasing the size of the expansion proof. A different form
of skolemization that is often used in automated theorem
provers (called inner skolemization in Section 2) was studied

in papers such as [3] and [4] where it was shown that elimi-
nating Skolem functions can result in complex and expensive
growth of proofs.

1.3 Our Approach to Deskolemization
In this paper we look at a particular class of deskolemiza-
tion approaches that amount to inferring scopes for strong
quantifiers without performing more drastic restructuring
of the proof. Briefly, they interpret a given proof evidence
involving Skolem functions as an LK proof, but distinguish
between two different actors involved with proof checking:
the client is some proof evidence producer (such as a theorem
prover) that wants to export checkable proof evidence, while
the kernel is a program that is entrusted to check proofs in a
completely trustworthy fashion, i.e., in terms of LK . Client
terms, the terms that can be used in the client’s proof evi-
dence, are allowed to mention Skolem functions, but kernel
terms use eigenvariables and forbid Skolem functions. In the
process of reconstructing an LK proof from the client’s proof
evidence, a dynamically updating client-to-kernel map is
maintained that links the Skolem functions used to instan-
tiate strong quantifiers with their corresponding eigenvari-
ables. In our specific setting, the kernel is a logic program
and eigenvariables are an abstraction mechanism used by
logic programs to hide some of the structure of terms [27].
Since it is impossible for a client to directly refer to such
abstractions, the dynamically maintained map is used by the
kernel to rewrite the LK proof being constructed on the fly.

1.4 Summary of Our Contributions
This paper makes the following contributions to the problem
of deskolemizing proof evidence.

1. We provide a modular way to deskolemize proof evi-
dence involving Skolem functions. This modularity is
achieved by extending the design of the kernel used in
the Foundational Proof Certificate (FPC) framework
for defining proof formats [12]. It builds Gentzen-style
LK sequent calculus proofs using eigenvariables. For
outer skolemization proof evidence (defined below), it
leads to LK proofs free of Skolem functions.

2. We provide a trustworthy implementation of this form
of modular deskolemization using the higher-order
logic programming language λProlog. Simple inspec-
tion of our kernel provides rather immediate confi-
dence that our proof checker only certifies formulas
that are, in fact, theorems. One must also trust (in our
case) the implementation of λProlog. However, since
we are only using the backtracking and higher-order
unification features of the logic underlying λProlog,
anyone can provide a reimplementation of these fea-
tures and of our proof checker: in this way, one does
not need to trust the particular implementations of
λProlog we have used (Teyjus [30] and Elpi [16]).
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3. For a skeptic not willing to trust a λProlog style proof
checker, we describe how it is possible to cause λProlog
to output a fully elaborated and explicit proof certifi-
cate that can be checked without the need for unifica-
tion and backtracking search. In particular, we describe
a simple functional program written in Coq that can
check such explicit proof certificates. We have also
proved that that proof checker is sound, meaning that
a successful execution of the checker will cause Coq
to accept the corresponding classical logic formula as
Coq theorem when classical logic axioms are admitted.

4. We give a precise characterization of the surprising in-
teraction of skolemization and polarities arising from
focused proofs. It turns out that positive polarities
cause problems similar to those of inner skolemiza-
tion, which is already well known to be difficult to
treat syntactically [4, 18]. In either case, the culprit
is the ability to suspend processing a connective that
would have introduced the eigenvariable (in the un-
skolemized form) and operate on a different formula
that nevertheless uses the eigenvariable bymeans of its
Skolem term, causing leakage of eigenvariables from
their scopes.

2 Formulas and Skolemization
We work with the standard language of classical first-order
logic. Terms (s, t , . . . ) will, as usual, be built from variables
(x ,y, . . . ) and function applications of the form f (t1, . . . , tn )
where f is a function symbol of fixed arity n. If the argument
list is empty (i.e., if n = 0), then we omit the parentheses
in function applications. A collection of function symbols
together with their arities is called a signature; for example,
{c/0, f /1,д/2}. We assume that the set of terms generated
from a signature is non-empty (for example, { f /1,д/2} is
not a signature) and that a symbol is given at most one arity
within a signature.

Formulas (A,B, . . . ) and literals (L) belong to the following
grammar:

A,B, . . . ::= L | A ∧ B | ⊤ | A ∨ B | ⊥ | ∀x .A | ∃x .A

L ::= p | ¬p

Here, p ranges over atomic formulas that are always of the
form a(t1, . . . , tn ) where a is a predicate symbol of fixed arity
n. As is customary, we shall assume that all formulas are in
negation normal form: that is, negations have only atomic
scope. This normal form is a mild one to assume since the
size of a formula and its negation normal form are essentially
the same. We write A⊥ for the de Morgan dual of A, given
by the pairs p/¬p, ∧/∨, ⊤/⊥ and ∃/∀. We shall also assume
that no two occurrences of a quantifier (either ∀ or ∃) bind
variables with the same name; this can always be achieved
by α-conversion.

Since we are focused on checking proofs, we shall describe
skolemization as a process for replacing universally quan-
tified formulas with Skolem terms. Formally, replacing uni-
versal quantifiers in this way is often called herbrandization
while replacing existential quantifiers usually called skolem-
ization. Since the intent of both operations is to ensure that
strong quantifiers are removed and that eigenvariables are
not used within proofs, it seems unnecessary to introduce
a second term and remain with the more commonly used
term skolemization.
We shall assume that all first-order formulas for which

we perform proof checking contain function symbols and
constants from the fixed signature Σ0. In order to account for
skolemization, we introduce another signature, Σsk , disjoint
with Σ0, whose members are called Skolem functions, and
which is such that for every arity n ≥ 0, there are a countably
infinite number of members of Σsk of that arity.

Definition 2.1 (Skolemization). The following standard def-
initions are from [31].
• An outer skolemization step is a pair of formulas in
which
– the first formula, say, B is such that it contains the
subformula ∀x .C that is not in the scope of any
universal quantifier and which is in the scope of ex-
istential quantifiers binding the variables x1, . . . ,xn
(n ≥ 0); and

– the second formula results from picking an n-arity
symbol f from Σsk that does not appear in B and
replacing that occurrence of ∀x .C in B with the in-
stance [f (x1, . . . ,xn )/x]C .

• An inner skolemization step is a pair of formulas that
is defined analogously with the only difference be-
ing that the Skolem term used to instantiate x in C is
f (y1, . . . ,ym ) where y1, . . . ,ym are the free variables
of the occurrence of ∀x .C .
• The formula E is the result of performing outer skolem-
ization on B if there is a sequence of outer skolemiza-
tion steps that carries B to E and where E does not con-
tain any strong quantifiers (i.e., universal quantifiers).
Similarly, the formula E is the result of performing
inner skolemization on B if there is a sequence of inner
skolemization steps that carries B to E and where E
does not contain any strong quantifiers. □

Note that, necessarily, m ≤ n in the two skolemization
steps in the definition; moreover, all the variables in the
list y1, . . . ,ym are contained in the list x1, . . . ,xn .

Example 2.2. The formula ∃x . (¬d (x ) ∨ ∀y.d (y)) can be
skolemized as follows.
• Outer: ∃x . (¬d (x ) ∨ d ( f (x )))
• Inner: ∃x . (¬d (x ) ∨ d ( f ))

Note that an LK proof of the outer skolemized form would
require a contraction and two witness terms, c and f (c )
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(for some constant c), just like the LK proof of the original
unskolemized formula. The inner skolemized form, on the
other hand, has a simple LK proof that provides the witness
f for x and does not require a contraction. □

The main result about skolemization is the following the-
orem. Its proof can be found in a number of textbooks and
papers: see, in particular, [2] and [33, Section 4.5].

Theorem 2.3. Let B be a first-order formula over the signa-
ture Σ0 and let E be either an inner or outer skolemization of
B. If E is satisfiable then so is B. □

Proofs involving inner skolemization have always been
more problematic, and no purely syntactical treatment exists
for them. Therefore, in the following sections we will only
be treating outer skolemizations, and return to the topic of
inner skolemization in Section 7.

3 Focused Sequent Calculus
We argued in Section 1.1 that our view of certification was
founded on building explicit sequent calculus proofs. This
certification process can be viewed as a kind of protocol
between two agents. One agent is the client, who has con-
structed some evidence such as a resolution refutation or an
expansion proof. The other agent is the proof-checker, which
we also call the kernel, which is a trusted implementation of
a particular proof system such as the LK sequent calculus.
The client needs to convince the kernel of the veracity of its
evidence, so it will have to guide the kernel towards building
a complete sequent proof. Note that there is no need to store
the proof that the kernel builds – it is enough that the kernel
performs it.

Given this description of the certification process, it is im-
mediately apparent that employing the original LK sequent
calculus of Gentzen is problematic. The main issue is the
amount of information the client must provide to guide the
construction of an LK proof. Nearly every sequent can be the
conclusion of a structural rule (weakening and contraction),
a cut rule, and a (possibly large) number of introduction
rules for all the formulas in the sequent. And, once the client
instructs the kernel to attempt one such inference rule, its
corresponding premises will then need to be guided in a
similar way.
Fortunately, not every choice in building a proof is the

same. Some choices are important because they introduce
fresh information—such as witness terms—into the proof and
because making the wrong choice can cause a failed proof
attempt. Other choices are unimportant: for instance, the
choice of the name of an eigenvariable or the order in which
conjunctive branches are proved cannot possibly break a
proof attempt. A careful study of such choices in the proof
leads us to polarities and focusing, two recent advances in
the proof theory of the sequent calculus (and several related
formalisms). First developed for sequent calculi for linear

Asynchronous rules
Σ⊢Γ ⇑A,Θ Σ⊢Γ ⇑ B,Θ

Σ⊢Γ ⇑A ∧− B,Θ Σ⊢Γ ⇑ ⊤
−

,Θ

Σ⊢Γ ⇑A,B,Θ

Σ⊢Γ ⇑A ∨− B,Θ

Σ⊢Γ ⇑ Θ

Σ⊢Γ ⇑ ⊥
−

,Θ

Σ,y ⊢Γ ⇑ [y/x]A,Θ
Σ⊢Γ ⇑ ∀x .A,Θ

y < Σ

Synchronous rules
Σ⊢Γ ⇓A Σ⊢Γ ⇓ B

Σ⊢Γ ⇓A ∧+++ B Σ⊢Γ ⇓ ⊤
+++

Σ⊢Γ ⇓A

Σ⊢Γ ⇓A ∨+++ B

Σ⊢Γ ⇓ B

Σ⊢Γ ⇓A ∨+++ B

Σ⊢ (wf t ) Σ⊢Γ ⇓ [t/x]A
Σ⊢Γ ⇓ ∃x .A

Identity rules

Σ⊢Γ,¬p ⇓ p
init

Σ⊢Γ ⇑A Σ⊢Γ ⇑A⊥

Σ⊢Γ ⇑ ·
cut

Structural rules
Σ⊢Γ,R ⇑ Θ

Σ⊢Γ ⇑ R,Θ
store

Σ⊢Γ, P ⇓ P

Σ⊢Γ, P ⇑ ·
decide

Σ⊢Γ ⇑ N

Σ⊢Γ ⇓ N
release

In the store rule, R is a positive formula or a literal

Figure 1. Rules of LKF . Γ is a multiset of positive formulas
or literals, and Θ is a list of formulas.

logic [1, 21] and then extended to a wide variety logics and
proof systems, focusing can be seen as a way of organiz-
ing proofs in such a way that choice points are minimized.
Moreover, judicious use of polarities allows a general proof
system to mimic a wide spectrum of other proof systems.
Thus, focused proofs form the basis of the foundational proof
certificate framework, where the kernel is based on a focused
variant of LK known as LKF [12, 24].

Formulas in LKF are like those of LK , but the formulas are
divided into two polarities, positive (P ,Q, . . . ) and negative
(N ,M, . . . ), that we explain further below. The notion of
duals is extended from the unpolarized case with the pairs
∧
+++/∨− , ⊤+++/⊥− , ∨+++/∧− , and ⊥+++/⊤− .

A,B, . . . ::= P | N (formulas)
P ,Q, . . . ::= p | A ∧+ B | ⊤+ | A ∨+ B | ⊥+ | ∃x .A

(positive formulas)
N ,M, . . . ::= ¬p | A ∧− B | ⊤− | A ∨− B | ⊥− | ∀x .A

(negative formulas)

For the propositional connectives, the polarity amounts to
an annotation on the connective (written with a superposed
+ or −); quantifiers and literals, on the other hand, have
a unique polarity. The polarized versions of the proposi-
tional connectives are equivalent: A ∧+++ B and A ∧− B are not
only equi-provable, but each implies the other (this is a con-
sequence of Theorem ??). However, positive and negative
formulas have very different proofs, both in size and in shape.
Intuitively, the introduction rules for negative formulas

are invertible: that is, these rules have the property that their
collection of premises are equivalent to their conclusions.
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Thus, the order in which these rules are applied is irrelevant
and does not need to be communicated by the client; we say
that the kernel works asynchronously. For instance, the rules
for ∧− and ∨− are the following (modulo minor differences):

⊢A,∆ ⊢B,∆

⊢A ∧− B,∆

⊢A,B,∆

⊢A ∨− B,∆

A positive (non-atomic) formula, on the other hand, has in-
ference rules that are not necessarily invertible, meaning that
its introduction rule may involve a choice and its premise(s)
may not be equivalent to its conclusion. Applying such a
rule involves an essential choice that must be communicated
by the client, so we say that the kernel works synchronously.
For ∨+++ , for instance, the synchronous rules are:

⊢A,∆

⊢A ∨+++ B,∆

⊢B,∆

⊢A ∨+++ B,∆

These rules encode an essential choice between the two
operandsA and B. The two polarized variants of ∨ can equiv-
alently be seen as encoding two separate kinds of choice:
internal (i.e., made by the kernel) and external (communi-
cated to the kernel).

Following a technique pioneered by Andreoli [1], we sep-
arate the two kinds of inference rules by using the following
two kinds of sequents:

Σ⊢Γ ⇓A synchronous with A under focus
Σ⊢Γ ⇑ Θ asynchronous sequent

The context Γ, called the store, is a multiset of positive formu-
las or literals, and Θ, called the asynchronous zone, is a list
of formulas. Σ is the signature, which not only contains the
arities of the function symbols as before but also includes
the set of eigenvariables that can be free in the terms to the
right of ⊢ . We say that a term t is well-formed in Σ, written
Σ⊢ (wf t ) to mean that all the function symbols in t are used
with the correct arities defined in Σ, and that all the free
variables of t are contained in the set of eigenvariables in Σ.

The full list of inference rules for LKF is in Figure 1. A
proof in LKF can be seen as an alternation of two kinds of
phases, reading the rules from conclusion to premises. The
synchronous phase starts with a sequent of the form Σ⊢Γ ⇑ ·
as conclusion; a positive formula is chosen for focus using the
decide rule and within the entire phase the focused formula
is required to be the formula introduced. The client needs to
communicate all the choices and witness terms made dur-
ing the synchronous phase to the kernel. The synchronous
phase ends with the init rule when the focused formula is
an atom (and the client may need to tell the kernel which
is the dual literal), or may transition to the asynchronous
phase with the release rule that is applicable when the focus
is a negative formula. Note that in the init rule if the dual
of the focused formula is not in the context then the proof
attempt is considered a proof attempt failure since there is no
other inference rule available to prove a focus on a positive
literal; if this happens, the kernel may try to backtrack over

other essential choices in the same or an earlier synchronous
phase of search. In the asynchronous phase a rule is applied
to the leftmost formula in the asynchronous zone; if it is a
positive formula or a literal, it is stored, and in every other
case an asynchronous rule is used to decompose this formula.
Finally, when the asynchronous zone is empty, i.e., when
we are back to a sequent of the form Σ⊢Γ ⇑ ·, then the cycle
begins anew.
Let B be an unpolarized formula and let B̂ be a polarized

formula that results from placing either a + or − superscript
on every connective and constant where allowed. We shall
also assume that atomic formulas are polarized arbitrarily:
they could be all negative, all positive, or some mixture of
these two, and the occurrences of ¬ are adjusted accordingly.
The following theorem is proved in [24].

Theorem 3.1 (Soundness and Completeness). Let B be a
formula of first-order classical logic. If B is a theorem, then
· ⊢ · ⇑ B̂ is derivable for every polarized version B̂ of B. Further-
more, if · ⊢ · ⇑ B̂ is provable for some polarized version B̂ of B,
then B is a theorem. □

4 Augmented LKF and Foundational Proof
Certificates

In this section wewill describe howwe use the LKF system to
build a protocol for mediating the communications between
a client, who already has some proof evidence in hand, and
the kernel, (a.k.a. the proof checker). This protocol is the
basis for the foundational proof certificates framework [12].
The key idea is to augment the LKF proof system as follows.
• A proof certificate is threaded through every sequent
and inference rule: these certificates are term struc-
tures that contain the client’s proof evidence.
• Additional premises are added to the LKF inference
rules: these premises manipulate and extract informa-
tion from proof certificates.

There are two kinds of additional premises added to inference
rules. The first kind, the clerks, are added to asynchronous
rules: clerks perform routine maintenance of proof certifi-
cate information. The second kind, the experts, are added to
synchronous rules and they are responsible for attempting
to find important information within the proof certificate
to guide the possible choices of the kernel. For instance
an expert may inform the kernel which of the two rules
to use for ∨+++ -introduction or which witness term to use for
∃-introduction.
The augmented version of LKF , called LKFa , uses the

following kinds of sequents.
Ξ; Σ⊢Γ ⇓A synchronous with A under focus
Ξ; Σ⊢Γ ⇑ Θ asynchronous

Here, Ξ stands for a proof certificate, which is explained in
more detail below; note, however, that certificates do not
affect the meaning of a sequent, and hence are a passive and
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Asynchronous rules
Ξ1; Σ⊢Γ ⇑A,Θ Ξ2; Σ⊢Γ ⇑ B,Θ ∧c (Ξ0,Ξ1,Ξ2)

Ξ0; Σ⊢Γ ⇑A ∧− B,Θ

Ξ0; Σ⊢Γ ⇑ ⊤
−

,Θ

Ξ1; Σ⊢Γ ⇑A,B,Θ ∨c (Ξ0,Ξ1)

Ξ0; Σ⊢Γ ⇑A ∨− B,Θ
Ξ1; Σ⊢Γ ⇑ Θ ⊥c (Ξ0,Ξ1)

Ξ0; Σ⊢Γ ⇑ ⊥
−

,Θ

Ξ1; Σ, (copy t y) ⊢Γ ⇑ [y/x]A,Θ ∀c (Ξ0,Ξ1, t )

Ξ0; Σ⊢Γ ⇑ ∀x .A,Θ
y < Σ

Synchronous rules
Ξ1; Σ⊢Γ ⇓A Ξ2; Σ⊢Γ ⇓ B ∧e (Ξ0,Ξ1,Ξ2)

Ξ0; Σ⊢Γ ⇓A ∧+++ B
⊤e (Ξ0)

Ξ0; Σ⊢Γ ⇓ ⊤
+++

Ξ1; Σ⊢Γ ⇓Ai ∨e (Ξ0,Ξ1, i )

Ξ0; Σ⊢Γ ⇓A1 ∨
+++ A2

i ∈ {1, 2}

Σ⊢ (copy t s ) Ξ1; Σ⊢Γ ⇓ [s/x]A ∃e (Ξ0,Ξ1, t )

Ξ0; Σ⊢Γ ⇓ ∃x .A
Identity rules

inite (Ξ0, l )

Ξ0; Σ⊢Γ, l :¬p ⇓ p
init

Ξ1; Σ⊢Γ ⇑A Ξ2; Σ⊢Γ ⇑A⊥ cute (Ξ0,Ξ1,Ξ2,A)

Ξ0; Σ⊢Γ ⇑ ·
cut

Structural rules
Ξ1; Σ⊢Γ, l :P ⇓ P decidee (Ξ0,Ξ1, l )

Ξ0; Σ⊢Γ, l :P ⇑ ·
decide

Ξ1; Σ⊢Γ ⇑ N releasee (Ξ0,Ξ1)

Ξ0; Σ⊢Γ ⇓ N
release

Ξ1; Σ⊢Γ, l :R ⇑ Θ storec (Ξ0,Ξ1, l )

Ξ0; Σ⊢Γ ⇑ R,Θ
store

In the store rule, R is a positive formula or a literal

Figure 2. Rules of LKFa , an augmented version of LKF . Γ is
a multiset of pairs of the form l :R where l is an index and R
is a positive formula or literal, and Θ is a list of formulas.

abstract participant from a logical perspective. Their sole
purpose will be in guiding the construction of LKFa proofs.
Both of the structures Σ and Γ are generalized in LKFa over
what they were in LKF . In particular, Σ is now more than
a signature: it is a set of pairings of the form (copy t y)
where t is a client-side term (containing, for example, Skolem
functions) that is associated to the eigenvariable y (that is,
a kernel-side term). In a similar fashion, the context Γ is
extended to be a set of pairs of the form l :R where l is an index
and R is a positive formula or a literal. The exact structure of
indexes and client terms are not specified by the kernel but
are a detail provided by the definition of a proof certificate
format. The context Θ is as before in LKF .

There are several important things to observe about the
LKFa calculus shown in Figure 2. First, predicates with sub-
script e are experts and those with subscript c are clerks.
We drop the explicit reference to the polarity of clerks and
experts since these can be inferred easily: e.g., we write ∧c
instead of ∧−c since clerks are defined only for negative con-
nectives. Second, the first argument to the expert or clerk is
always the proof certificate of the conclusion, and can be in-
terpreted as an input. The other proof certificate arguments
can be interpreted as outputs yielding the continuation proof
certificates for the premises (if any). Additional arguments
may be indexes (in the case of inite , decidee , and storec ), a
client-side name to associate with an eigenvariable (in the
case of ∀c ), rule selectors (in the case of ∨e ), witness terms
(in the case of ∃e ), or formulas (in the case of cute ).

Specifications and implementations of previous versions
of proof checkers for the Foundational Proof Certificate
framework [7, 11, 12] did not address the fact that client-side
terms might be different than kernel-side terms. Substitution
terms are not always part of some particular presentation
of proof evidence, since unification during proof checking
can reconstruct such substitutions, so the difference between
client-side and kernel-side terms does not always need to be
addressed in proof checkers. As we have seen, however, there
can be significant differences between these two classes of
terms.We now describe how to extend the previous approach
of FPC-based checkers to account for that difference.
The predicate (copy · ·) in the LKFa proof system can

be formally defined using copy-clauses, a standard technique
used to encode both term-level equality and substitutions in
logic programming [28]. The copy-clauses based on the signa-
ture {a/0, f /1,д/2} have the following λProlog specification.
(We do not assume any advance knowledge of λProlog: for
more information about that language, see [29].)

copy a a.

copy (f X) (f U) :- copy X U.

copy (g X Y) (g U V) :- copy X U, copy Y V.

It is easy to show that if t and s are two closed terms over the
signature {a/0, f /1,д/2}, then (copy t s) is provable from
these clauses if and only if t = s . Obviously, any arbitrary
first-order signature can be translated into such a set of copy-
clauses: in particular, if Σ is such a first-order signature then
we write C (Σ) to denote the set of copy-clauses determined
by that signature.
The inference rules in Figure 2 can be implemented di-

rectly in λProlog, as has been described in several other
papers [7, 11, 12]. Although such implementations can be
small, we present here only a few clauses. First, two simple
clauses for the two disjunctions:

async Cert ((A or- B)::R) :- orC Cert Cert ',

async Cert ' (A::B::R).

sync Cert (A or+ B) :- orE Cert Cert ' C,

((C = left , sync Cert ' A);

(C = right , sync Cert ' B)).
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Here, the sequents Ξ; Σ⊢Γ ⇑ Θ and Ξ; Σ⊢Γ ⇓A are repre-
sented by the atomic formulas (async Cert Theta) and
(sync Cert A), respectively: the encoding of Σ and Γ are
captured by features found in the (intuitionistic) logic un-
derlying λProlog. Thus, the two clauses above implement
the intended meaning of the focused introduction rules for
∨
− and ∨+++ , respectively.
The introduction rules for the quantifiers employ the copy-

clauses to translate client-side terms to kernel-side terms.
In particular, consider the following two λProlog clauses
specifying the introduction of the quantifiers.

async Cert ((all B)::R) :- allCx Cert Cert ' T,

pi w\ copy T w => async Cert ' ((B w)::R).

sync Cert (some B) :- someE Cert Cert ' T,

copy T S, sync Cert ' (B S).

The universal quantification of λProlog (pi w\) implements
the eigenvariable feature needed for the LKFa proof system
and the implication => is used to extend the program clauses
for copywith a new atomic clause (copy T w), which is only
usable within the scope of pi w\. In this way, the Σ context in
Figure 2 is implemented via λProlog’s intuitionistic context.
The copy-clauses can now be used uniformly to perform

deskolemization in the following sense. Assume that both
the kernel and client agree on the signature Σ0 and that the
copy-clauses C (Σ0) derived from that signature are added to
the kernel specification. During proof checking, new atomic
copy-formulas are added to the Σ context whenever a strong
quantifier is encountered (via the first clause displayed above).
Whenever the client computes (via the existential expert
someE) a client-side term T, it is then translated to the kernel-
side formula S by the query copy T S.

Example 4.1. Assume that the base signature for both the
client and the kernel is Σ = {a/0, f /1,д/2}. Also assume that
the client is using h/1 as a Skolem function and that the
kernel has introduced two eigenvariables x and y and that Γ
contains exactly the two associations (copy (h a) x) and
(copy (h (f a)) y). The λProlog query

C (Σ), Γ ⊢ (copy (g (h (f a)) (f (h a))) X)

for some logic variable Xwill have a unique solution, namely,
the one that binds X to (g y (f x)). It is this step that
performs deskolemization. Note, however, that we do not
necessarily assume that deskolemization is determinate. In
particular, if the Γ context contained the atoms (copy (h
a) x) and (copy (h a) y), then there are two solutions to
the query (copy (g (h a) (f a)) X), namely, binding X
to either (g x (f a)) or (g y (f a)). □

Nondeterminism in deskolemization is not a soundness
problem in the context of the kernel we have described here:
instead, this nondeterminism may cause the kernel to back-
track and to examinemore than one deskolemization in order
to finish proof checking.

Observe that given an LKFa sequent, we can easily obtain a
corresponding LKF sequent by removing the proof certificate,
replacing every instance of (copy t x ) in the signature with
(wf x ), and dropping the indexes on the formulas in the store.
Call this its underlying sequent. The following property is
proved by a simple structural induction on LKFa proofs.

Theorem 4.2 (Soundness of LKFa ). If an LKFa sequent is
derivable, then its underlying sequent is derivable in LKF and
the unpolarized version of that sequent is provable in LK. □

It is important to note that LKFa is sound by construction:
no specification for the clerks and experts provided by the
client can lead the kernel to prove a non-theorem. Such a
strong soundness property is a critical feature of a proof
checking kernel.
What is formally called an FPC is a collection of type

declarations describing the constructors for certificates and
indexes and a collection of clauses specifying the clerk and
expert relations. Once these collections are added to the
λProlog specification of the inference rules in Figure 2, one
has a proof checker that will check one particular format of
proof certificates. Many such formats have been so defined
using FPCs: these include resolution refutations, sequent
calculus proofs, expansion trees, Frege proofs, and rewriting
proofs [9, 10, 12]. The notion of formulas and terms within
the kernel may both be different from those notions used by
the client. Polarization then becomes a mapping from client-
side to kernel-side formulas. Likewise, deskolemization is a
mapping from client-side to kernel-side terms.
We can state a kind of completeness theorem for how

skolemized proof evidence can be used as proof evidence
for the original unskolemized theorems. Assume that B is
a closed formula and let C be the result of applying outer
skolemization to B. Also assume that we are given an FPC, P,
that polarizes all occurrences of propositional connectives
negatively and that defines proof checking for skolemized
proof evidence with a skolemized theorem. Thus, we can
assume that this FPC does not need to define the experts
∧e , ∨e , and ⊤e (since the positive propositional connectives
do not appear) as well as the clerk ∀c (since a skolemized
formula has no strong quantifiers). Finally, let P ′ be the FPC
that results from adding to P the following clause.

allCx Cert Cert T.

This specification of allCx indicates that some term—un-
specified at this point—will name the eigenvariable used to
encode the universal right-introduction rule: the association
between that term T and eigenvariable, say w, is made by the
λProlog assumption (copy T w) (as described above). Given
that these various assumptions hold, then we can prove the
following: if it is checkable that the certificate Ξ satisfies
the FPC P as a proof of C then the certificate Ξ satisfies the
FPC P ′ as a proof of B. Thus, if the client satisfies two major
requirements on proof evidence—namely, that propositional
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connectives are polarized negatively and that skolemization
is the outer variety—then the same skolemized proof evi-
dence used with a skolemized formula can immediately be
seen as proof evidence of the unskolemized theorem.

5 Experiments with an Implementation
We have implemented the proof checking kernel described
in this paper and have conducted several experiments with
it. The full code can be found at the following Github repos-
itory: [? ]. It has been trivial to incorporate previous FPCs
(those that assumed that client-side and kernel-side terms
coincide) to execute on this extended proof checker. One
immediate experiment consists of transforming LK proofs
of skolemized end-sequents to LK (via LKFa ) proofs of the
original (unskolemized) formulas. (Here, we are assuming
that the right introduction rules for disjunction and conjunc-
tion are the invertible rules since these match directly their
negatively biased versions.) The repository contains two ad-
ditional and more significant examples. One involves simple
reasoning using geometric formulas: in that setting, Skolem
terms are used in a rather natural and familiar fashion. In the
rest of this section, we describe the other example provided
since it is more involved and universal in its scope.

Expansion trees [26] are a proof formalism that generalizes
the notion of Herbrand disjunctions to formulas with arbi-
trary quantifiers (and to formulas with higher-order quantifi-
cation). There are also two variations of expansion trees: one
using select variables to instantiate strong quantifiers and
one using Skolem terms to instantiate strong quantifiers. We
have implemented three procedures for checking different
kinds of proof evidence based on this formalism: one for
expansion trees with select variables, one replacing select
variables with Skolem terms, and one for expansion trees of
skolemized formulas (thus, containing neither Skolem terms
nor select variables).
Expansion trees such as those we will now describe are

used, in fact, in the deskolemization procedure of [4], imple-
mented in the GAPT system [17].

5.1 Expansion Trees with Select Variables
As we described in Section 2, we assume that formulas are
in negation normal form.

Definition 5.1 (Expansion trees).

• A literal or logical constant is an expansion tree for
itself.
• If Q1 and Q2 are expansion trees of A1 and A2, then
(eOr Q1Q2) and (eAnd Q1Q2) are expansion trees for
A1 ∨A2 and A1 ∧A2 respectively
• Ifu is a variable (called a select variable) andQ is an ex-
pansion tree of [u/x]A, then (eAll u Q ) is an expansion
tree for ∀x .A.

kind et type.

type eTrue , eFalse et.

type eLit et.

type eAnd , eOr et -> et -> et.

type eAll i -> et -> et.

type eSome list (pair i et) -> et.

Figure 3. The datatype for expansion trees. The kind decla-
ration introduces a primitive type et and the type declara-
tions introduces constructors for this primitive type.

kind address type.

type root address.

type lf, rg, dn address -> address.

type idx address -> index.

typeabbrev context list (pair address et).

type astate context -> context -> cert.

type dstate context -> context -> cert.

type sstate context -> pair address et -> cert.

Figure 4. Certificate constructors for expansion trees. The
primitive types index and cert are declared as part of the
kernel. The type address is introduced for this particular
FPC.

orC (astate Left ((pr Add (eOr E1 E2))::Qs))

(astate Left ((pr (lf Add) E1)::

(pr (rg Add) E2)::Qs)).

andC (astate Left ((pr Add (eAnd E1 E2))::Qs))

(astate Left ((pr (lf Add) E1)::Qs))

(astate Left ((pr (rg Add) E2)::Qs)).

someE (sstate Left

(pr Add (eSome ((pr Term ET)::nil)))

(dstate Left ((pr (dn Add) ET)::nil)) Term.

allCx (eAll Term Cert) Cert Term.

Figure 5. Some of the clerks and experts for expansion trees.
All of these λProlog clauses are simply atomic formulas that
perform some pattern matching and simple transformations
on certificates.

• If t1, . . . , tn is a list of expansion terms and if Qi is an
expansion tree for [ti/x]A (for i ∈ 1..n), then

(eSome [(t1,Q1), . . . , (tn ,Qn )])

is an expansion tree for ∃x .A. □

Expansion terms can certainly contain select variables.
The formal, stand-alone definition of expansion trees re-
quires additional correctness conditions to be assumed (that
a certain propositional formula derived from the expansion
tree is a tautology and that a certain relationship on select
variables is acyclic) but these conditions are not needed here
since they will be replaced by the proof checking kernel itself.
Select variables within expansion trees are rather similar to
Skolem terms: select variables can be seen as nothing but
another mechanism for naming eigenvariables, in the spirit
of client vs. kernel terms.

The datatype for expansion trees can be formalized by the
λProlog signature in Figure 3 and the more general notion
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of certificate based on expansion trees is given in Figure 4.
There, proof certificates (terms of type cert) are built from
three constructors: astate is consumed during the asyn-
chronous phase and records two contexts representing some
information about the storage zone Γ and the asynchronous
zone Θ; sstate is consumed during the synchronous phase
and records the storage and the formula under focus; and
dstate is used to break focusing on adjacent existential in-
troductions. Formulas are paired in the certificate with the
expansion trees to which they are associated. Addresses are
essentially paths through the proposed theorem: they are
used to uniquely describe subformulas. For example, such
addresses are used to link stored formulas (note that indexes
contain addresses) with expansion trees sorted within cer-
tificate terms.

Themain clerks and experts are specified in Figure 5. Since
connectives are polarized negatively, most of the work is car-
ried out by clerks that simply consume expansion trees and
reorganize internal components of certificates. When proof
checking encounters a strong quantifier, the expansion-tree-
cum-certificate contains the select variable associated to it:
we then use the allCx to instruct the kernel to create a new
eigenvariable and associate the client’s select variable as a
name for that eigenvariable. When proof checking meets an
existential node, together with the list of terms by which
the existential should be instantiated, we can simply com-
municate one of the client’s expansion terms to the kernel
which then proceed to translate it to a kernel term. Note that,
in the code, we make the assumption that only one term is
present in the list: this is because contraction is handled by
the expert for the decide rule (not shown here).
Note that the mechanism we have described as desko-

lemization is exactly the same mechanism that can replace
variable names (select variables) with eigenvariables. Note
also that if the expansion tree that is being checked uses a
select variable more than once to name different eigenvari-
ables, the checker will need to deal with nondeterminism
in sorting out which assignment of select variable to eigen-
variable leads to a proper proof. Similar to the comment in
Example 4.1, such non-unique naming is not a soundness
problem: it can, however, raise the cost and complexity of
proof checking.

5.2 Skolem Expansion Trees
Skolem expansion trees [26] are essentially the same as ex-
pansion trees except that select variables are replaced by
Skolem terms. It turns out that the FPC (given in Figures 3, 4,
and 5) for regular expansion trees works without change in
the setting where select variables are replaced by Skolem
constants. In a sense, Skolem terms act as names in the same
way as select variables acted as names of eigenvariables. Crit-
ical to the perspective that Skolem terms and select variables
act as names is the fact that the copy clauses used within
the kernel are never extended to copy a select variable or

a Skolem function themselves. In particular, it is important
that copy clauses do not treat Skolem functions in the same
way as function symbols in the basic signature Σ0.

5.3 Expansion Trees of Skolemized Formulas
We now turn our attention to the setting where the client
has an expansion tree relative to a skolemized formula but
we would like to use it as proof evidence of the original,
unskolemized formula. In this case, since there are no strong
quantifiers left in the skolemized formula, the expansion tree
will not contain any select variables (nor any Skolem terms).
Accordingly, we modify the allCx clerk to be the clause we
introduced at the end of Section 4.

allCx Cert Cert T.

Thus, when the checker finds a strong quantifier it will sim-
ply associate to the newly created eigenvariable a logic vari-
able (here, T) as the name for it. This variable will ultimately
be instantiated to be an actual Skolem term (through the
interaction of proof checking and unification).

6 Towards a Coq-Based Proof Checker
The mechanism outlined so far uses an implementation of
the FPC framework in λProlog. By default, the checker so
described performs an LK proof with on-the-fly replacement
of Skolem terms by eigenvariables, but this LK proof is not
itself recorded. However, it is easy to instrument the checker
to record the proof; indeed, it does not even require any
modification to the kernel or the FPCs. Instead, we embed
the checker inside a pairing checker that not only consumes
the original proof evidence but also produces a fully explicit
proof certificate that closely mirrors the LKFa derivation,
called a max cert. Crucially, this pairing technique requires
no modifications whatsoever in the implementation of the
LKFa kernel; it is handled entirely by the experts and clerks.
The details of this technique can be found in [7].

Such a fully explicit proof can, in principle, be checked by
simple, deterministic, and even certified proof checkers. We
have started to implement just such a checker in Coq. This
checker is given as input an LKF formula and a max cert,
which records all choices and witness terms in the LKF proof
in a higher-order tree-like data structure. To check this proof
we simply need to implement an interpreter for LKF proofs
that proceeds by structural recursion on the certificate. The
interpreter is defined as a recursive fixed point that computes
either True or False, depending on whether the certificate
is accepted or not. To check the proof in Coq we merely need
to apply this fixed point computation to the representation
of the input proof and see that the normal form is True.

The implementation of this recursive checker amounts to
about 130 lines of definition text, and a small but varying
amount of additional definitions to encode the signature. This
checker implementation would ideally be equipped with a
formal meta-theorem that asserts that if the check succeeds
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than there is an interpretation of the LKF end-sequent as
a (classically) true Prop of Coq. We have completed this
certification for the propositional subset of LKF and are in
the process of extending it to the significantly more involved
case involving quantifiers that wewill now describe. The Coq
code can be found in the coq/ subdirectory of the repository
mentioned at the beginning of Sec. 5.
The main reason the quantifiers are complicated is the

issue of exporting the max cert LKF proof in terms of eigen-
variables from our version of LKFa in Sec. 4. As should be
clear from the asynchronous rule for ∀ in Fig. 2, the continu-
ation certificate Ξ1 in the premise is not abstracted over the
eigenvariable y; rather, it contains many occurrences of the
Skolem term t which may be copied toy. However, the mech-
anism for copying uses full backtracking search in λProlog
in terms of the copy predicate, which is not exportable to a
deterministic checker as the one we would define in Coq.

Thus we need to be able to transform the certificate in the
λProlog level to make the abstraction over the eigenvariable
explicit in the structure of the certificate. This requires a
variant of the LKFa kernel with a ∀ rule that looks as follows:

∀c (Ξ0,Ξ1, t ) Σ, (copy t y) ⊢ (copy Ξ1 (Ξ2 y))
(Ξ2 y); Σ, (copy y y) ⊢Γ ⇑ [y/x]A,Θ

Ξ0; Σ⊢Γ ⇑ ∀x .A,Θ
y < Σ

The second premise here shows how to transform a certifi-
cate Ξ1 with occurrences of a Skolem term t into a certificate
Ξ2 abstracted over an eigenvariable, which is proved by a
derivation in the same extended (copy · ·) context in which
the original rule was applied. The third premise then contin-
ues with the eigenvariable version of the certificate under a
trivial assumption about copying the eigenvariable to itself.

There are a few non-trivial ramifications of this transition
from copying not only terms, which have a fixed structure
(even though they have some parametric elements such as
the signature of constants and predicate symbols), but also
certificates, which do not have a fixed structure. Indeed, dif-
ferent forms of proof evidence are intended to have different
implementations of proof certificates that are not necessarily
known to the author of the LKFa-based kernel. In practice,
therefore, we avoid the anti-modular nature of this additional
obligation by defining copy for certificate formats that are
standard and well known. This suggests a two step process:
first, we transform arbitrary proof certificates with Skolem
terms into max certs with Skolem terms using the pairing
technique of [7], which uses an unmodified LKFa kernel and
has a target certificate format that is common across all uses
of the FPC checker. Then, we use a modified LKFa kernel
with the variant of the ∀ rule above to transform it into a
max cert with eigenvariables, which would then be exported
to the ultimate verifier written in Coq.
The adventurous Coqnoscenti might wonder whether it

would be possible to repeat the λProlog-based certificate
extraction outlined in Secs. 4 and 5 directly in Coq with a

suitable library of Ltacs. We believe that this would be rather
complicated because the logic programming strength of Ltacs
is about that of ordinary Prolog, i.e., reasoning with Horn
clauses. We are aware of current work on integrating the
ELPI implementation of λProlog [16] into the Coq system in
order to supply Coq with a powerful new extension language
based on λProlog [35]. The entire framework proposed in
this paper could perhaps be ported to Coq/ELPI, but that
remains for future work.

7 Additional Observations
As we observed at the end of Section 4, the proof checking
kernel described in this paper can handle outer skolemization
well (at least in the case where the propositional connec-
tives are polarized negatively). Unfortunately, pure outer
skolemization can often insert Skolem functions with more
arguments than are strictly necessary. Often automated the-
orem provers benefit from having Skolem functions with
lower arity [31]. Thus, a natural question to ask is whether
or not various methods used in practice for obtaining fewer
arguments to Skolem functions can be certified.

7.1 Miniscoping and the Cut Rule
An important transformation technique on quantified formu-
las isminiscoping, which pushes quantifiers inwards as much
as possible in order to minimize the scope of quantifiers. The
miniscoped form of a formula is its normal form with respect
to the rewrite system given by the following rules.

∀x . (A ∧ B) −−→ (∀x .A) ∧ (∀x . B)

∃x . (A ∨ B) −−→ (∃x .A) ∨ (∃x . B)

Qx . (A⋆C ) −−→ (Qx .A) ⋆C

Qx . (C ⋆A) −−→ C ⋆ (Qx .A)

Qx .C −−→ C

where Q ∈ {∀,∃}, ⋆ ∈ {∧,∨}, and x is not free in C . Minis-
coping only involves changing the scopes of quantifiers, and
does not otherwise change the logical structure of formulas:
clearly the original and miniscoped formulas are logically
equivalent. In particular, if B̃ is the miniscoped version of B,
then checkable certificates of the sequent ⊢ B̃⊥,B are easy to
build. using a method for building proof certificates for term
rewriting proof systems found in [10].
If we now skolemize B̃ and obtain proof evidence that is

certifiable using themechanisms described in this paper, then
we have actually managed to get a (hybrid) proof certificate
for the original formula B: simply use the cut inference rule
in LKF and LKFa to build a proof of ⊢B from the proofs of
⊢ B̃⊥,B and ⊢ B̃. Note that we allow cut rules to be present
within proof certificates and that “Skolem-elimination” does
not imply “cut-elimination”. If we were only interested in
cut-free deskolemized proofs, then there can be a dramatic
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increase in the size of a cut-free proof for ⊢B given a cut-free
proof of ⊢ B̃ [5].
Optimization techniques for skolemization are often so-

phisticated: see, for example, [22] for a technique using BDDs
that reduces dependencies on weak variables when perform-
ing skolemization. Any such optimization technique is com-
patible with our deskolemization procedure by means of
cuts, just as with miniscoping, assuming an entailment be-
tween the optimized formulas and the original theorem can
be proved and certified.

7.2 Skolemization and Polarities
When stating the conditions for the applicability of our
deskolemization procedure at the end of Section 4, we have
asked that the client use exclusively negative connectives,
with the existential as the only positive connective. We can
initially motivate this requirement with a consideration on
the operational behavior of the procedure: positive connec-
tives have the property that they force the proof checker to
end a sequence of asynchronous rules, and possibly move
the focus to a different subformula. A skolemized proof evi-
dence could at this point use names for any eigenvariable.
However, it might well be the case that the eigenvariable that
corresponds to such a name has still not been instantiated,
because it was to be created by an universal quantifier placed
after the positive connective that caused the focus shift.

As a short example, consider the formula

((∀x . ¬p (x )) ∧ ¬q) ∨ ∃x . (p (x ) ∨ q).

Suppose we have proof evidence in the form of an LK proof
for its skolemization (¬p (c ) ∧¬q) ∨∃x . (p (x ) ∨q), with c a
fresh Skolem constant. This means that we could be handed
one of the following two proofs:

⊢¬p (c ),p (c ),q
init

⊢¬q,p (c ),q
init

⊢¬p (c ) ∧ ¬q,p (c ) ∨ q
∧,∨

⊢ (¬p (c ) ∧ ¬q) ∨ ∃x . (p (x ) ∨ q)
∨,∃(c )

⊢¬p (c ),p (c ),q
init

⊢¬p (c ),∃x . (p (x ) ∨ q)
∃(c ),∨

⊢¬q,p (c ),q
init

⊢¬q,∃x . (p (x ) ∨ q)
∃(c ),∨

⊢ (¬p (c ) ∧ ¬q) ∨ ∃x . (p (x ) ∨ q)
∨,∧

Let’s try to check the first proof against the unskolemized
formula. The certificate will instruct the kernel to first apply
the disjunction, and then instantiate the existential using the
term c . The kernel will try to translate the client term c to
a kernel term; however c is not in the signature, and there
is no copy-clause generated by instantiating eigenvariables.
Thus the check will fail! Indeed, this proof certificate also
violates the precondition: if we polarize the skolemized for-
mula negatively and try to check the LK proof against it, we
can see that the kernel after applying the disjunction must
proceed eagerly on the negative connectives and apply the
negative conjunction. When instructed not to do so by the
certificate, the check will fail. We can see that the negative

polarization forces the proof to consume all the scope, and
introduce all the needed eigenvariables, before proceeding
with the existentials.

The choice of the example is not by chance: indeed, it
comes directly from the example given in [4] for a class of
formulas whose skolemizations can have proofs exponen-
tially shorter than the originals. In order to be able to treat
such cases, one would have to describe a potentially exponen-
tial deskolemization procedure; our wish is to maintain such
a procedure to a lower complexity, hence our restriction to
the case of negative connectives. Since we know that positive
and negative connectives are equiprovable, it is then in gen-
eral possible to accommodate more general proof evidences
by making use of cuts.

7.3 The Topic of Inner Skolemization
Inner skolemization (see Definition 2.1) was introduced and
proved sound by Andrews in [2]. His soundness proof funda-
mentally involved a model theoretic justification. As a result,
we know of no systematic and proof theoretic means to
certify proof evidence that results from using inner skolem-
ization. However it is well known that deskolemization of
inner skolemization is problematic [18]. The problem of in-
ner skolemization turns out to be related to that of positive
polarities: in either case, since we are able to suspend process-
ing of the formula that would have yielded the eigenvariable
in the corresponding unskolemized case, we get a “leakage”
of variables (via their Skolem terms) from their scopes.

8 Related and Future Work
Summarizing, we have proposed an extension to the frame-
work of Foundational Proof Certificates, that allows us to
modularly extend definitions for various kinds of proof ev-
idence in order to be able to check skolemized proofs. We
have described the implementation of the improved kernel,
and discussed some implemented examples.
There have been several different approaches to desko-

lemization in the past. Ours stands in contrast to approach
of Reger and Suda [32] where certificates are allowed to
involve inference rules that preserve satisfiability instead of
provability; this was proposed there to treat, for example,
skolemization. We shall not consider such extensions to the
sequent calculus.
The problems discussed in Section 7 are well known in

the literature. The example we used is a simplified form of
the proof with exponential deskolemization from [4]; the
deskolemization procedure described in that work for such
cases is based on expansion trees, a formalism that is closely
related to LKF proofs with negative connectives (see [8]).
Färber and Kaliszyk [18] provide a deskolemization method
that is related to our approach, and face similar problems.
Their procedure also suffers from the problem with posi-
tively polarized connectives, although this is not described.
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De Nivelle [15] performs deskolemization by introducing
new predicate symbols that simulate Skolem functions. In
contrast, we have tried to certify proofs by staying inside the
original signature. The same author in [14] introduces reduc-
tions from various optimized skolemizations to a standard
one in the spirit of our discussion at the beginning of Sec-
tion 7; however that standard is inner skolemization, which
is then certified by introducing a choice operator.
In the future we plan to study the interaction between

positive polarities and skolemization and to extend this work
to the higher-order setting starting from [26].
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