
Proof Certificates for Equality Reasoning

Zakaria Chihani and Dale Miller

Inria & LIX/École polytechnique

Abstract. The kinds of inference rules and decision procedures that one
writes for proofs involving equality and rewriting are rather different from
proofs that one might write in first-order logic using, say, sequent calcu-
lus or natural deduction. For example, equational logic proofs are often
chains of replacements or applications of oriented rewriting and normal
forms: logical connectives then play minor roles. We shall illustrate here
how it is possible to check various equality-based proof systems with a
programmable proof checker (the kernel checker) for first-order logic. Our
proof checker’s design is based on the implementation of focused proof
search and on making calls to (user-supplied) clerks and experts predi-
cates that are tied to the two phases found in focused proofs. It is the
specification of these clerks and experts that provide a formal definition
of the structure of proof evidence. As we shall show, such formal defini-
tions work just as well in the equational setting as in the logic setting
where this scheme for proof checking was originally developed. Addi-
tionally, executing such a formal definition on top of a kernel provides
an actual proof checker that can also do a degree of proof reconstruc-
tion. We shall illustrate the flexibility of this approach by showing how
to formally define (and check) rewriting proofs of a variety of designs.

1 Introduction

Equality is central not only to computer science but also to other hard sciences
such as mathematics and physics. It is therefore understandable that handling
equality in theorem proving has also been at the core of an important research
effort in the field of formal logics. Term Rewriting is a generic label that des-
ignates a plethora of methods for replacing subterms with other terms that are
considered equal and is an effective tool for reasoning with equality. A rewriting
rule is a restriction of an equality in that it is used as a directed replacement rule.
A set of such rules forms a Term Rewriting System (or TRS). Much research
in the area of TRS involves proving properties about TRSs—such as confluence,
termination, completion, and the decidability of certain set of equalities. We
shall focus here, instead, on a simpler and more “infrastructure” topic: certi-
fying reasoning that takes place within a TRS, using various forms of proof,
and with checking proofs that merge equality reasoning with logical deduction,
including, for example, deduction modulo and paramodulation.



1.1 Equality and equality proofs

The question “what is equality” is often answered in different ways. Occasionally,
equality is taken as a primitive logical symbol [2,10,17]. Sometimes it is defined
using Leibniz’s (higher-order) rule: two terms are equal if they satisfy exactly
the same predicates. More commonly, equality is taken to be a non-logical bi-
nary predicate symbol that is axiomatized with rules for reflexivity, symmetry,
transitivity, and congruence (for predicates and functions). We choose this latter
approach to equality in this paper.

There are a myriad of techniques and ideas that are deployed to deal with
equality in theorem proving: these include paramodulation, superposition, nar-
rowing, ρ-calculus and E-unification, as well as practical methods to implement
them, such as generating a converging term rewriting system as a decision pro-
cedure, saturation methods, redundancy elimination, and heuristics. Given that
there are so many ways to discover and represent equality proofs, a scheme for
checking such proofs needs to be flexible.

To be more specific, our first concern will be attempting to check that a formal
proof Ξ justifies that the equality t = s follows from some equational (possibly
oriented) assumptions E . We give informal descriptions of a few possible ways
that Ξ might be structured.

1. Ξ might provide a decomposition of t = C[u] into a context C[·] and subterm
u and an instance of a equality in E , say, u = v so that s = C[v].

2. Ξ might contain a number, say n, and the claim that there is some chain of
length n or less of equational rewritings of t to s.

3. Ξ might contain a partitioning of E (into E1 and E2) and a proof Ξ ′ such
that normalizing both t and s with respect to (an oriented variant of) E1
yields normal form terms that are equal modulo E2, which is justified by Ξ ′.

It stands to reason that once the proof, say Ξ above, is found it should
survive the test of time. At least two conditions seem necessary to support such
eternal existence. Firstly, the proof should constitute a document that can be
communicated. Indeed, if a prover claims to have found a proof that it does
not actually deliver as a document because, for example, it is too large or too
expensive to produce, can we trust that prover? To what extent can one have
faith in the claim “I have a truly marvelous demonstration of this proposition
which this margin is too narrow to contain.”? Secondly, the format in which
the proof is written must allow independent checking. Indeed, if the description
of a proof can only be “understood” by the prover that produces it, can that
constitute an acceptable means of communication and of instilling trust?

1.2 Foundational proof certificates

In this paper, we employ the foundational proof certificate (FPC) framework
[7,13] for defining the semantics of proof evidence in intuitionistic and classical
first-order logics. The generality of the FPC framework makes it possible, as
we hope to show in this paper, to formally define many kinds of equality proofs



without asking designers of the equality reasoner to radically change their notion
of proof to conform to some theory-inspired, specific format. The FPC approach
also allows for varying level of details to be inserted or dropped from a proof
certificate. Thus, the size of proofs-as-documents can be reduced by leaving out
details such as some substitution instances to first-order quantification and the
results of computation (following Poincaré principle [3]).

The FPC approach also allows definitions of proof semantics to employ non-
determinism, a “resource” that is well-known for making descriptions much more
compact. For example, instead of specifying how to decompose a term t = C[u]
one might just ask for any possible decomposition.

Similarly, instead of describing exactly which instance of which equality one
might use, a proof might just ask for any equality that matches. Such trade-
offs between proof size and proof checking are easily accommodated by proof
checkers that are built using backtracking search and unification.

Our framework for defining proof evidence is based on looking closely at the
provability of Horn clauses (which are used to encode the rules for congruence,
symmetry, transitivity, and to list redexes) and to allow the explicit controlling
of choice points in such proofs via simple programs called experts. We are able to
modularly specify all the informally mentioned proof evidence above (as well as
many more) simply by varying the definitions of experts and by using different
indexing schemes. The design of our proof checker makes it simple to show that
a proof checker is sound no matter how experts are defined.

2 Formalizing equality

We repeat here several common definitions. Function symbols have fixed arity
and a (first-order) term is built from function symbols and variables. We will
use the letters x, y, z for the variables and f, g, h . . . for functions. If a function
symbol has arity 0 then we may also call them constants and write them also as
a, b, c . . .. Predicates also have fixed arity: for now, we shall need only one binary
predicate to specify equality, the infix symbol ==.

The most basic property we shall capture about equality reasoning is the one
step rewrite predicate: given a set of rewriting rules, relate t to s when t can
be written as C[r] (where the context C[·] has exactly one hole) and s can be
written as C[u] and the rewriting rules allow r to be rewritten to u. We shall not
provide a more formal definition of this predicate now: we provide that definition
later in Section 4 when it is given as an example of a proof certificate.

Based on the one step rewrite predicate, many other relations on terms can
be defined. Additional assumptions stating that == is reflexive, symmetric, and
transitive may also be needed. In fact, all specifications that we shall need for
computing equality-related relationships can be reduced to Horn clauses speci-
fications. Thus, we now turn our attention to describing an interpreter for Horn
clauses that will act as the kernel of our checker.



3 The kernel proof checker

We shall use λProlog [14] code to present specifications instead of writing more
traditional inference rules: we use this programming language to convey—in a
succinct and readable fashion—the logical formulas that make up the specifica-
tions we need. Non-logical aspects of λProlog are not relevant here.

Since we encode the basic rules of equational reasoning using Horn clauses,
we introduce the following constants used for encoding Horn clauses.

kind bool , i type.

type ==> bool -> bool -> bool.

type == i -> i -> bool.

infix == 5. % equaltiy

infixr ==> 6. % implication

type atomic , clause bool -> o.

atomic (T == S).

clause ((X == Y) ==> (Y == X)).

The type bool (declared by the kind keyword) is used to denote the type of
object-level formulas while the type o notes meta-level (λProlog) formulas. The
type i is used for encoding the terms involved in equality reasoning. Here, the
atomic predicate declares which (object-level) formulas are atomic while the
clause is used to enumerate a collection of Horn clauses (one such clauses are
illustrated here). Following the usual conventions of Prolog-like languages, a to-
ken with an initial capital letter denotes a variable universally quantified around
the entire Horn clause. Given that we use Horn clauses at both the meta-logic
and object-logic, we should point out that we could explicitly write universal
quantification in one of the following two forms (based on the clause above):

pi X\ pi Y\ (clause ((X == Y) ==> (Y == X))).

clause (all Y\ all S\ ((X == Y) ==> (Y == X))).

That is, we can explicitly write the meta-level universal quantifier pi X\ or we
could introduce a new constructor (all of type (i -> bool) -> bool) for the
object-logic quantification. Given the logical weakness of Horn clauses and our
focus here on first-order term equality, this potentially important distinction
about quantification is not important here. Thus, we prefer meta-level quantifi-
cation surrounding Horn clauses since these can be left implicit.

Figure 1 provides a simple specification of Horn clause provability. The sim-
plicity of this specification is rather transparent: the goal formula (interp A)

is provable if and only if the (object-level) atomic formula A is provable from
the (object-level) Horn clauses contained in the clause specification. While this
simple soundness theorem holds for the specification in Figure 1, there is a large
amount of non-determinism in such a specification: in particular, the choice of
which clause to use for backchaining (the choice of D in the clause for interp).
Such an interpreter for Horn clauses can be made into a proof checker/recon-
struction device if we are able to provide means for resolving—completely or



type interp bool -> o.

type bc bool -> bool -> o.

interp A :- atomic A, clause D, bc D A.

bc A A.

bc (G ==> D) A :- bc D A, interp G.

Fig. 1. A simple, unguided interpreter for Horn clause provability

kind cert , index type. % Two new types

type interp cert -> bool -> o.

type bc cert -> bool -> bool -> o.

type clause index -> bool -> o.

type decideE cert -> cert -> index -> o.

type impE cert -> cert -> cert -> o.

interp Cert A :- atomic A,

decideE Cert Cert ’ Idx , clause Idx D, bc Cert ’ D A.

bc Cert A A.

bc Cert (G ==> D) A :- impE Cert L R, bc L D A, interp R G.

Fig. 2. The guided interpreter for Horn clause provability

partially—this choice of clause for backchaining. To this end, we present a modi-
fication of this interpreter in Figure 2. The type index provides a naming mech-
anism for (object-level) Horn clauses and the clause predicate is changed to
associate an index to a Horn clause. We also introduce the cert type: a term of
this type contains information that will guide the interpreter to a proof. In order
to interpret the information in such a certificate term, we add two “experts”. The
decideE expert examines the certificate and extract a continuation certificate
and an index: that index is then used by the clause predicate to select a Horn
clause for backchaining. The impE expert splits a certificate into two certificates,
one is used during the backchaining phase and one is used by the resulting call to
interp. We shall soon provide a number of examples of how one might specify
the inhabitants of index and cert and specify the definitions of decideE and
impE. Note that no matter how these experts are defined, this extended inter-
preter is sound since the existence of a proof using the specification in Figure 2
guarantees the existence of a proof using the specification in Figure 1.

Our notion of a proof certificate for equality is then a series of type decla-
rations that describe the inhabitants of the types index and cert and a series
of (meta-level) Horn clauses that provides clause associations between indexes
and (object-level) Horn clauses as well as the specifications of the two expert
predicates decideE and impE.

4 Specifying one-step and multi-step rewriting

We shall now present our first definition of a proof certificate. The clauses in
Figure 3, provide an association between indexes and (first-order) Horn clauses.



type ar1 (i -> i) -> int -> index.

type ar2 (i -> i -> i) -> int -> index.

type ar3 (i -> i -> i -> i) -> int -> index.

clause (ar1 F 1) ((X == X’) ==> ((F X ) == (F X’ ))).

clause (ar2 F 1) ((X == X’) ==> ((F X Y ) == (F X’ Y ))).

clause (ar2 F 2) ((X == X’) ==> ((F Y X ) == (F Y X’ ))).

clause (ar3 F 1) ((X == X’) ==> ((F X Y Z) == (F X’ Y Z))).

clause (ar3 F 2) ((X == X’) ==> ((F Y X Z) == (F Y X’ Z))).

clause (ar3 F 3) ((X == X’) ==> ((F Y Z X) == (F Y Z X’))).

Fig. 3. Some indexed Horn clauses for encoding one-step rewriting

type oneStep list (int -> index) -> index -> cert.

type done cert.

decideE (oneStep List Rew) (oneStep List Rew) (F N) :-

memb F List.

decideE (oneStep List Rew) (oneStep List Rew) Rew.

impE (oneStep List Rew) done (oneStep List Rew).

Fig. 4. The proof certificate definition for onestep rewriting.

Notice that indexes can be structured terms. For example, if plus has type
i -> i -> i (ie, a constructor of two arguments) then the index (ar2 plus 1)

is associated to Horn clause (X == X’) ==> ((plus X Y) == (plus X’ Y)).

Thus, the indexes (ar2 plus 1) and (ar2 plus 2) name the inference rules

x = x′

(x+ y) = (x′ + y)
and

x = x′

(y + x) = (y + x′)
, respectively.

Figure 3 contains such indexes for constructors of arity 1, 2, and 3. If higher
arities are needed, then the corresponding clauses are easily added. Since the
universally quantified variable F above has an arrow type, the specification in
that figure is an example of higher-order Horn clauses: none-the-less, the asso-
ciated object-level Horn clause is always a first-order Horn clause.

Figure 4 contains the formal definition of what we mean by one-step rewrit-
ing: this definition is achieved by introducing two kinds of cert constructors
(here, oneStep and done) and by defining the expert predicates for these con-
structors. Note that neither expert provides any cases for done: thus, the only
inference rule that can be applied when this constructor appears is the initial
rule (corresponding to the first clause for the backchaining predicate bc). Fig-
ure 5 illustrates how this certificate proof can be used: in that figure, some term
constructions are introduced (for plus, times, zero, and successor). The index
zeros is introduced and several rewriting rules are given that index. The term

(oneStep [ar1 succ, ar2 plus, ar2 times] zeros)

describes a certificate for doing one-step rewriting for the listed constructors
modulo the rewrite rules listed at index zeros. In particular, the term

(times zero (plus (succ zero) zero))



type zero i.

type succ i -> i.

type plus , times i -> i -> i.

type zeros index.

type onestep i -> i -> o.

clause zeros ((plus zero N) == N).

clause zeros ((plus N zero) == N).

clause zeros ((times zero N) == zero).

onestep T S :-

interp (oneStep [ar1 succ , ar2 plus , ar2 times] zeros)

(T == S).

Fig. 5. An illustration of using the onestep certificate.

is related by one-step rewriting to (times zero (succ zero)) and zero.
One could choose to be more explicit in the way one-step rewriting is specified

by giving an explicit path to where a rewrite rule is applied. Using the following
definition for expert predicates

type path list index -> index -> cert.

decideE (path [] Rew) done Rew.

decideE (path [Index|List] Rew) (path List Rew) Index.

impE (path List Rew) done (path List Rew).

it is easy to specify the exact location for a rewrite to take place using a list of
indexes. For example, the query

interp (path [(ar2 times 2), (ar2 plus 1)] zeros)

((times (plus zero zero)

(plus (plus (succ zero) zero) zero)) == S).

sets S to (times (plus zero zero) (plus (succ zero) zero)).
By introducing and using the assumption that equality is transitive, it is a

simple matter to write a multi-step rewriting certificate. In particular, the speci-
fication in Figure 6 defines multi-step rewriting as either one-step rewriting (the
first clause for decideE) or as more than one step, in which case the transitiv-
ity assumption (given index transI) is involved. During the deployment of the
transitivity assumption, two new equational subgoals are produced: the impE

expert describes that one of those subgoals should be a one-step rewriting while
the other should be a multistep rewriting.

It is easy to define a bounded multistep rewriting relation: see Figure 7. To
illustrate using this certificate definition, consider the following rewriting system
given by Toyama in [20] as a counterexample to a conjecture about the union of
two terminating TRS being also terminating.

clause toyama ((h n m X) == (h X X X)).

clause toyama ((g X Y) == X).

clause toyama ((g X Y) == Y).



type multiStep list (int -> index) -> index -> cert.

type multiStep ’ list (int -> index) -> index -> cert.

type transI index.

clause transI ((R == S) ==> ((T == R) ==> (T == S))).

decideE (multiStep List Rew) Cont Index :-

decideE (oneStep List Rew) Cont Index.

decideE (multiStep List Rew) (multiStep List Rew) transI.

impE (multiStep List Rew)

(multiStep ’ List Rew) (oneStep List Rew).

impE (multiStep ’ List Rew) done (multiStep List Rew).

Fig. 6. The proof certificate definition for multistep rewriting.

type bndStep int -> list (int -> index) -> index -> cert.

type bndStep ’ int -> list (int -> index) -> index -> cert.

decideE (bndStep N List Rew) Cont Index :- N > 0,

decideE (oneStep List Rew) Cont Index.

decideE (bndStep N List Rew) (bndStep N’ List Rew) transI :-

N > 1, N’ is N - 1.

impE (bndStep N List Rew)

(bndStep ’ N List Rew) (oneStep List Rew).

impE (bndStep ’ N List Rew) done (bndStep N List Rew).

Fig. 7. The proof certificate definition for bounded multistep rewriting.

The following query will search and quickly find the chain of three rules that
demonstrates that this system is cyclic.

T = (h (g n m) (g n m) (g n m)),

interp (bndStep 3 [ar3 h, ar2 g] toyama) (T == T).

Many other forms of certificates are possible to design. For example, when a
rewrite system is strongly normalizing and confluent, then it is easy to specify
the decision procedure for equations between two terms by first normalizing both
terms and then checking them for equality. These various and small examples
illustrate that if a particular equational prover outputs a high-level notion of
proof (ie, there is some rewriting sequent of length n, etc) then it is possible to
formally define such an inference rule is such a way that it can be checked. Note
also that all these various high-level rules can co-exist and a proof that is being
checked can use any number of them within the same proof document.

In the next section we shall show that the full notion of foundational proof
certificates for first-order logic can modularly incorporate the kinds of equational
logic certificates we have presented here.

5 Merging rewriting with logic

The story behind the definition of proof evidence we have given so far can be
summarized as follows.



1. Identify a subset of logic we wish to capture (here, first-order Horn clauses)
and find a suitably structured proof procedure that is complete for it (the
proof system described in Figure 1).

2. Instrument this structured proof system with additional control devices (here
the expert predicates and the terms of type cert and index). The resulting
augmented proof system (here, Figure 2) is easily seen as sound and trust-
worthy, no matter how the expert predicates are implemented (ie, these need
not be trustworthy).

3. To account for a range of actual proof evidence, we then introduce whatever
term structures we wish for types cert and index and then specify the
decideE and impE expert predicates over those terms (see Figures 4, 6, and
7).

This design makes it possible to have trustworthy proof checkers (point 2) for
which a range of proof evidence can be defined using high-level specifications
(point 3).

While the restriction to Horn clauses seems sufficient for handling a large
assortment of proof structures surrounding equality reasoning, one eventually
wants to work with more complete logics, such as first-order classical and in-
tuitionistic logics with or without equality. We present in the next section two
focused proof systems, one each for intuitionistic and classical logic. These proof
systems will allow for a flexible generalization of the structure of logic program-
ming search (particularly, the notion of backchaining) so that it works for full
logic. Given these focused proof systems, we are able to take our summary above
and lift it directly to much richer settings. In particular, focused proof systems
provide structure to proofs required by point 1. The two phases of proof con-
struction that are at the center of focused proof systems make it natural to
instrument inference rules with two kinds of predicates—the expert predicates
that we have already seen and clerk predicates, thus addressing point 2. As de-
scribed in point 3, the resulting expert and clerk predicates permit a wide range
of proof structures for first-order logic to be formally defined: in [6,7] we used this
framework to define several proof systems, ranging from resolution refutations,
natural deduction, expansion trees, etc. Such definitions can then be executed
using a logic programming language such as λProlog.

6 Focused sequent calculi

The sequent calculus of Gentzen is a proof system in which inference rules deal
with sequents (collections of formulas) instead of formulas. The inference rules
can be put into three groups: identity rules (namely, initial and cut), structural
rules (namely, weakening and contraction), and introduction rules (namely, rules
that introduce connectives into either the left or the right context of a sequent).
The main results of Gentzen’s earliest investigations into the sequent calculus
was that all forms of the identity rules can be eliminated except for initial rules
involving atomic formulas.



In order to use the sequent calculus as the basis of automated deduction,
much more structure within proofs needs to be established. Given that some in-
ference rules are invertible, one obvious way to organize proofs is into two phases:
in one phase, all invertible rules are applied successively (reading proofs from the
bottom-up) until no more invertible rule can be applied. The second phase would
then need to involve making choices that could lead to a proof or to a failure to
prove. The main feature about focusing proof systems is that this second phase
is structured as follows: one starts by deciding on a single formula on which to
focus: when under focus, a formula is then subjected to a number of (possibly)
non-invertible introduction rules all of which may involve choices. One continues
this focused phase until either the initial rule can be applied or a formula with
a top-level invertible connective appears: in the latter case, the invertible phase
begins again. Such a two phase proof system is apparent in the proof-theoretic
analysis of logic programming given in [15] in which the backchaining phase
corresponds to a focused phase and goal-reduction corresponds roughly to the
invertible phase. Andreoli gave a comprehensive, focused proof system to full
linear logic in [1]. Similar focusing proof systems are available for intuitionistic
and classical logics: in what follows, we make use of the LJF and LKF proof
systems given in [12].

Both the invertible phase and the focused phase are series of introduction
rules. There are several inference rules that are neither introduction rules nor
identity rules (initial and cut) in focused proof systems: in keeping with the
naming we used before for Gentzen’s (non-focused) systems, we shall call such
rules the structural rules. There are three kinds of structural rules: decide, store,
and release. The decide rule is responsible for choosing the formula on which
to focus (similar to selecting a formula on which to backchain). If, during the
invertible phase, we encounter a formula for which an invertible rule cannot be
applied, that formula is set aside to be addressed in another phase: the store
rule is responsible for classifying (and indexing) such a formula. Finally, when
the focused phase encounters a formula that can be treated invertibly, then the
release rule is responsible for switching from the focused to the invertible phase.

A final and key ingredient shared by both the LJF and LKF proof systems
is polarization: all formulas will be classified either as positive or negative. If a
formula is atomic, the assignment of a polarity is given arbitrarily (but globally)
and is part of the flexibility of the LJF and LKF proof systems: all atoms can be
negative, or all can be positive, or they can be mixed. If a formula is non-atomic,
the assignment of polarity is negative if the right introduction rule for its top-
level logical connective is invertible, otherwise that formula is positive (note that
the polarity of a non-atomic formula depends only on its top-level connective).
It is also the case that the polarity of some connectives are ambiguous: in partic-
ular, conjunction in intuitionistic logic and both conjunction and disjunction in
classical logic. This ambiguity is clear for, say, classical disjunction since there
are two perfectly acceptable right introduction rules for it, namely,

` Γ,B1, B2

` Γ,B1 ∨B2
and

` Γ,Bi

` Γ,B1 ∨B2
i ∈ {1, 2}



where the first is invertible and the second is not. Since we are interested in
having many kinds of proof systems represented, we shall not pick from just
one of these (inter-admissible) pairs. Instead, we shall allow ambiguous logical
connectives to be polarized : in particular, in a focused proof system, the first
introduction rule will introduce ∨− and the second ∨+. Of course, these two
variants of polarized (ambiguous) connectives are logically equivalent. Polariza-
tion choices for atoms and ambiguous logical connectives do not affect provability
but can have an enormous impact on the structure of focused proofs.

Polarities also make it possible to replace negative statements such as “apply
invertible rules until no more can be applied” by positive rules such as “apply
invertible rules until only positive formulas remain”.

The focused proof systems (displayed in Appendix A) are augmented versions
of the corresponding LJF and LKF proof systems. This augmentation involves
the following additions.1 First, every sequent is prefixed with a term of type
cert using the syntactic variable Ξ. Second, the store clerk computes an index
for every formula it stores and the decide rule selects formulas using indexes
(and not by formulas directly). Third, all inference rules are given an additional
premise: in the invertible phase, that premise involves a clerk predicate and in
the non-invertible phase, that premise involves an expert predicate. The clerk
predicates perform simple computations and do not need to examine the struc-
ture of certificate terms. On the other hand, the expert predicates generally
examine that term in order to pull out of them information meant to guide the
proof: substitution terms, indexes for stored formulas, or cut-formulas. Notice
that if a predicate name ends with a capital C, then that predicate is a clerk; if a
predicate name ends with a capital E, then that predicate is an expert. Finally,
store predicates are clerks while the predicates associated to the decide, release,
and initial rules are experts.

Figure 8 (in Appendix A) presents the augment version of a fragment of the
LJF proof system. For our limited purposes here, we only consider the fragment
of LJF containing implication ⊃ and universal quantification ∀. Additionally, we
assume that all atomic formulas are given a negative bias. Formulas of a negative
polarity have invertible rules on the right and non invertible rules on the left.
Appendix A) also contains Figure 9 which presents the augment version of most
of the LKF proof system. Since this sequent system is one-sided, it is possible to
list a full set of logical connectives while remaining compact (compared to the
LJF proof system).

One way to view the polarization of formulas and the phases of focused
proofs is that they together represent synthetic inference rules or macro scale
rules (built from the micro rules provided by the sequent calculus). The expert
predicates are used to select just particular non-invertible rules among possibly
many and the clerks are used to describe how proofs are transformed when mov-
ing through the invertible synthetic rules. Once we can glimpse these synthetic
rules, we must then work in the rather narrow setting of introducing different
constructors for cert for each synthetic rule and then defining the meaning of

1 If you are viewing this document in color, this augmentation is in blue.



the clerk and/or expert predicates for those constructors. We are also able to
define indexes that allow flexible means of finding and retrieving formulas stored
earlier. Apart from these avenues (constructors for cert, indexes, clerks, and ex-
perts), no other avenues for interacting with the kernel are possible. We illustrate
these synthetic connectives in the next section as they apply to using λ-terms
as proof structures.

7 λΠ-modulo

We will now consider simply typed λ-terms as proof evidence and discuss how
to define them as certificates of their (propositional) type. To make this ex-
ample manageable, we limit ourselves to terms that are in βη-long normal.
Terms (as certificates) shall be encoded use de Bruijn notations: for exam-
ple λx.λy.λz.λt.((x y) z) t is written λλλλ.((3 2) 1) 0. Furthermore, we adopt the
spine notation, where a variable is applied to a list of terms: thus our example
becomes λλλλ.3 [2, 1, 0].

We write s � A to mean that the term s provides evidence that the formula
A is a theorem. If λ...λ.t � A0 ⊃ ... ⊃ An ⊃ D (with n+ 1 λ’s), then the kernel,
starting in an invertible phase, stores each of the Ai’s: the natural choice of index
associated to each of these stores is a level count that later allows one to compute
a corresponding de Bruijn numeral (a “current level count” must be maintained
in cert term and modified by suitable clerk predicates). The definition of the
index under which the formula is stored must conserve some relation with the
corresponding de Bruijn index. The removal of all outermost bound variables is
one, invertible synthetic connective. Once all the Ai formulas are stored, the term
acting as a certificate is either a variable I or an application (I [ti, ..tm]) (here, I
is a de Bruijn number). Now the kernel switches to a focus phase by deciding on
the formula associated with the variable I, say B1 ⊃ · · · ⊃ Bm ⊃ D (where D,
the target type, is primitive). The index of this formula is C−I−1, where C is the
current value of the level counter (which is maintained in the actual certificate
term). The operation of backchaining on the formula B1 ⊃ · · · ⊃ Bm ⊃ D
corresponds to just one synthetic connective.

The dependently typed λΠ-calculus, which extends the simply typed λ-
calculus with types that may depend on terms [11], occupies one of the corners of
the Lambda Cube [4]. When extended with rewrite rules, one gets λΠ-calculus
modulo in which all pure (functional) type systems can be embedded [8]. The
Dedukti proof checking system is based on this encoding [5]. Interpreting a λΠ-
calculus modulo term as evidence that its type (now a first-order formula) is a
theorem requires extending the definition given for simply typed λ-calculus with
a treatment of rewriting (which we presented earlier) and universal quantifica-
tion. From the perspective of viewing proofs as collections of synthetic rules,
the invertible synthetic rule from the simply typed λ-calculus is extended to
deal with ∀-quantification while the non-invertible synthetic rule from the sim-
ply typed must also handle ∀-quantification as well as a generalized form of the
initial rule where a rewriting subproof must be invoked.



Finally, one can drop the requirement that typed λ-terms are in βη-long
normal form: the resulting synthetic connectives will then need to involve non-
atomic initial rules and cut rules.

8 Paramodulation and resolution

Robinson & Wos [16] introduced paramodulation as a generalization of resolution
in order to include equality and to isolate the inference apparatus dealing with
equality from the one not involving equality. Paramodulation is well suited for
various problem domains in group and ring theory despite it being one of the
earliest methods of reasoning for such problems.

The paramodulation inference rule. Given clauses A and α′ = β′ ∨ B, having
no variable in common and such that A contains a term δ with δ and α′ having
most general common instance α identical to α′[si/ui] and δ[tj/wj ], infer the
clause, called paramodulant, A′ ∨ B[si/ui] where A′ is obtained by replacing in
A a single occurrence of α (resulting from an occurrence of δ) by β′[si/ui]. For
example, from f(x, g(x)) = e ∨ q(x) and p(y, f(g(y), z), z) ∨ w(z) one can infer
p(y, e, g(g(y))) ∨ q(g(y)) ∨ w(g(g(y))) by paramodulating with f(x, g(x)) as α′

and f(g(y), z) as δ.
In a previous paper [7] we presented an FPC for resolution that can be

extended to hyperresolution and first-order resolution with no significant dif-
ference. We now present a slight modification of that FPC to accommodate
paramodulation, which in turn can be extended to check hyperparamodulation.

A (paramodulation) clause is a closed formula that is the universal closure
of a disjunction of literals (the empty disjunction is false). When we polarize,
we use the negative versions of these connectives and give negative polarity to
atomic formulas. One of the advantages of paramodulation is that equalities are
not required to be in unit clauses. The equality predicate is simply considered
an atomic formula. We assume that a certificate for paramodulation contains
the following items: a list of all clauses C1, . . . , Cp (p ≥ 0); the number n ≥
0 which selects the last clause that is part of the original problem (i.e., this
certificate is claiming that ¬C1 ∨ · · · ∨ ¬Cn is provable and that Cn+1, . . . , Cp

are intermediate clauses used to derive the empty one); and a list of tuples
〈i, j, k, d〉 where each such tuple claims that Ck is a binary paramodulation of
Ci and Cj that authorizes at most one rewrite up to a depth d.

The definition of (binary) resolution checking given in [7], including the use
of bounded search, the use of cut, and the indexing mechanism still apply to
paramodulation checking. Checking of equalities simply sits on-top of the reso-
lution checker. We analyze the shape of the proofs of which this output can be
an evidence, knowing that the most common paramodulation outputs give in
detail the exact subterm to rewrite and the rule to apply. The FPC setting can
also accommodate that level of details.

It is a simple matter to be convinced by the following: if clause C0 can be
obtained by paramodulating clauses C1 and C2, then the formula ¬C1∨¬C2∨C0



is provable without the need to contract on either C1, C2 or C0. Furthermore,
there is only a one step rewrite necessary.

Thus checking a sequence of k paramodulation steps amounts to checking k
such formulas. This is done through a backbone of cut rules

` ¬Ci,¬Cj ⇑ Cn+1 ` ¬C1 · · · ¬Cn,¬Cn+1 ⇑ ·
` ¬C1 · · · ¬Cn ⇑ ·

where the left premise checks one paramodulation step and the right premise is
the conclusion of another cut. This repeats until there are no more paramodu-
lation steps to undertake, at which point the sequent contains the true symbol
(being the negation of the empty clause) and the proof ends.

9 Related work and conclusions

The most closely related project to foundational proof certificates is the Dedukti
proof checker [5], a system that is based on the λΠ-calculus modulo [8] and aims
at capturing all intuitionistic proofs (in the Lambda Cube [4]). While Dedukti
separates (functional programming-style) computation from deduction, it does
not support directly classical logic nor the possibility of doing proof reconstruc-
tion. In [9], deduction modulo was also used to motivate the linkage of rewriting
and the calculus of inductive construction (and the linkage of Coq and the ELAN
equational systems).

The “recording completion” approach to certificates in equational reasoning
found in [18] also builds certificates for proofs of equalities that can be checked
by trust checkers, such as CeTA [19]. While this work has resulted in actual tools,
this project is more limited since it deals only with reductions (if Knuth-Bendix
completion succeeds) and not more general forms of equality reasoning and its
integration with logic.

In conclusion, we have illustrated that the foundational proof certificate ap-
proach to defining proof evidence can be used to define several different kinds
of equational proof structures and that proofs involving equational reasoning
and logic can be merged modularly. Active research is being done to extend the
foundational proof certificate approach to one including induction. Once that
proof theoretic groundwork is laid, we should then be able to extend this work
to address topics of checking certificates for completion and termination.

Acknowledgment. The ERC Advanced Grant ProofCert funded this work. We
thank Ali Assaf and Quentin Heath for their comments on this paper.



References

1. J.-M. Andreoli. Logic programming with focusing proofs in linear logic. J. of Logic
and Computation, 2(3):297–347, 1992.

2. P. B. Andrews. General models, descriptions, and choice in type theory. Journal
of Symbolic Logic, 37(2):385–394, 1972.

3. H. Barendregt and E. Barendsen. Autarkic computations in formal proofs. J. of
Automated Reasoning, 28(3):321–336, 2002.

4. H. P. Barendregt. Introduction to generalized type systems. Journal of Functional
Programming, 1(2):125–154, Apr. 1991.

5. M. Boespflug, Q. Carbonneaux, and O. Hermant. The λΠ-calculus modulo as a
universal proof language. PxTP2012, pp. 28–43, 2012.

6. Z. Chihani, D. Miller, and F. Renaud. Checking foundational proof certificates for
first-order logic (extended abstract). PxTP2012, EPiC Series 14, pp. 58–66, 2013.

7. Z. Chihani, D. Miller, and F. Renaud. Foundational proof certificates in first-order
logic. In CADE 24, LNAI 7898, pp. 162–177, 2013.

8. D. Cousineau and G. Dowek. Embedding pure type systems in the lambda-pi-
calculus modulo. In S. R. D. Rocca, editor, TLCA 2007, LNCS 4583, pp. 102–117.

9. E. Deplagne, C. Kirchner, H. Kirchner, and Q. H. Nguyen. Proof search and proof
check for equational and inductive theorems. In CADE-19, pp. 297–316. Springer,
2003.

10. J.-Y. Girard. A fixpoint theorem in linear logic. An email posting to the mailing
list linear@cs.stanford.edu, Feb. 1992.

11. R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal
of the ACM, 40(1):143–184, 1993.

12. C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

13. D. Miller. A proposal for broad spectrum proof certificates. In CPP: First Intern.
Conference on Certified Programs and Proofs, LNCS 7086, pp. 54–69, 2011.

14. D. Miller and G. Nadathur. Programming with Higher-Order Logic. Cambridge
University Press, June 2012.

15. D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a founda-
tion for logic programming. Annals of Pure and Applied Logic, 51:125–157, 1991.

16. G. Robinson and L. Wos. Paramodulation and theorem-proving in first-order the-
ories with equality. In Automation of Reasoning, pp. 298–313. Springer, 1983.

17. P. Schroeder-Heister. Rules of definitional reflection. In LICS 1993, pp. 222–232.
IEEE Computer Society Press.

18. T. Sternagel, S. Winkler, and H. Zankl. Recording completion for certificates in
equational reasoning. In CPP 2015, pp. 41–47.

19. R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In
TPHOLs 2009: Theorem Proving in Higher Order Logics, LNCS 5674, pp. 452–468.

20. Y. Toyama. Counterexamples to termination for the direct sum of term rewriting
systems. Information Processing Letters, 25(3):141 – 143, 1987.



A Two focused proof systems

For the reader wanting to know details of the (part of the) LJF and LKF proof
systems that we need in this paper, we list them here as Figures 8 and 9. Full
details about these proof systems can be found in [12].

Invertible rules (left introduction rules)

Ξ ′ : Γ ⇑A ` B ⇑ arrC(Ξ,Ξ ′)

Ξ : Γ ⇑ ` A ⊃ B ⇑
(Ξ ′y) : Γ ⇑ ` [y/x]B ⇑ allC(Ξ,Ξ ′)

Ξ : Γ ⇑ ` ∀x.B ⇑

Focused rules (right introduction rules)

Ξ ′ : Γ ` A ⇓ Ξ ′′: Γ ⇓ B ` R arrE(Ξ,Ξ ′, Ξ ′′)

Ξ : Γ ⇓ A ⊃ B ` R
Ξ ′: Γ ⇓ [t/x]B ` R allE(Ξ,Ξ ′, t)

Ξ : Γ ⇓ ∀x.B ` R

Structural rules and initial

〈l,N〉 ∈ Γ Ξ ′ : Γ ⇓ N ` R decideL(Ξ,Ξ ′, l)

Ξ : Γ ⇑ ` ⇑R Dl

Na atomic initL(Ξ)

Ξ : Γ ⇓ Na ` Na
Il

Ξ ′ : Γ ⇑ ` N ⇑ releaseR(Ξ,Ξ ′)

Ξ : Γ ` N ⇓ Rr

Ξ ′ : 〈l,C〉, Γ ⇑Θ ` R storeL(Ξ,Ξ ′, l)

Ξ : Γ ⇑ C,Θ ` R Sl

Ξ ′ : Γ ⇑ ` ⇑Na storeR(Ξ,Ξ ′)

Ξ : Γ ⇑ ` Na ⇑
Sr

Fig. 8. These rules are part of LJF. Here, N is a negative formula, C is a negative
formula or positive atom, and Na is a negative atom. The cut rule is not displayed.



Invertible Rules

Ξ ′ ` Θ ⇑A,Γ Ξ ′′ ` Θ ⇑B,Γ andC(Ξ,Ξ ′, Ξ ′′)

Ξ ` Θ ⇑A ∧− B,Γ

Ξ ′ ` Θ ⇑A,B, Γ orC(Ξ,Ξ ′)

Ξ ` Θ ⇑A ∨− B,Γ
(Ξ ′y) ` Θ ⇑ [y/x]B,Γ allC(Ξ,Ξ ′)

Ξ ` Θ ⇑ ∀x.B, Γ †

Focused Rules

Ξ ′ ` Θ ⇓B1 Ξ ′′ ` Θ ⇓B2 andE(Ξ,Ξ ′, Ξ ′′)

Ξ ` Θ ⇓B1 ∧+ B2

Ξ ′ ` Θ ⇓Bi orE(Ξ,Ξ ′, i)

Ξ ` Θ ⇓B1 ∨+ B2

Ξ ′ ` Θ ⇓ [t/x]B someE(Ξ,Ξ ′, t)

Ξ ` Θ ⇓ ∃x.B
Identity rules

Ξ ′ ` Θ ⇑B Ξ ′′ ` Θ ⇑ ¬B cutE(Ξ,Ξ ′, Ξ ′′, B)

Ξ ` Θ ⇑ · cut
〈l,¬Pa〉 ∈ Θ initE(Ξ, l)

Ξ ` Θ ⇓ Pa
init

Structural rules

Ξ ′ ` Θ ⇑N releaseE(Ξ,Ξ ′)

Ξ ` Θ ⇓N release
Ξ ′ ` Θ, 〈l,C〉 ⇑ Γ storeC(Ξ,Ξ ′, l)

Ξ ` Θ ⇑ C, Γ store

Ξ ′ ` Θ ⇓ P 〈l,P 〉 ∈ Θ decideE(Ξ,Ξ ′, l)

Ξ ` Θ ⇑ · decide

Fig. 9. The augmented LKF proof system LKFa. The proviso † requires that y is
not free in Ξ,Θ, Γ,B. Notice also in that same rule that Ξ ′ is an abstraction over
certificates. The symbol Pa denotes a positive atomic formula.


	Proof Certificates for Equality Reasoning

