
Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

The undecidability of proof search when
equality is a logical connective

Dale Miller and Alexandre Viel

the date of receipt and acceptance should be inserted later

Abstract One proof-theoretic approach to equality in quantificational logic treats
equality as a logical connective: in particular, term equality can be given both left
and right introduction rules in a sequent calculus proof system. We present a
particular example of this approach to equality in a first-order logic setting in
which there are no predicate symbols (apart from equality). After we illustrate
some interesting applications of this logic, we show that provability in this logic is
undecidable.

Keywords: equality, unification, undecidability, sequent calculus

Draft: June 18, 2021

1 Introduction

An elegant proof-theoretic treatment of equality for first-order terms was given
independently by Girard [13] and Schroeder-Heister [29] in the early 1990s. Since
then, their treatment has been extended to include the βη-equality of simply typed
λ-terms [21], and that extension has been built into the Bedwyr model checker [3]
and Abella theorem prover [2]. We shall show that adding this treatment of equality
to a weak first-order logic makes provability undecidable. This fact is surprising
since we only involve first-order terms and first-order quantification: in particular,
the structural rule of contraction is not involved in the construction of proofs.

In order to motivate the logic we consider, recall that most unification problems
in first-order logic can be considered to be simple, quantified formulas involving
only equations of the form

∃x1 . . .∃xm[t1 = t′1 ∧ · · · ∧ tn = t′n].

Proving such formulas is well known to be decidable. When designing proof search
procedures for intuitionistic logic, a more general form of unification is usually

Affiliation and address for both authors: Inria Saclay & LIX/Ecole Polytechnique, 1 rue
Honoré d’Estienne d’Orves, 91120 Palaiseau, France
Contact author: Dale Miller <dale.miller@inria.fr>

2 Dale Miller and Alexandre Viel

considered. These are represented by formulas of the form

Qx1 . . .Qxm[t1 = t′1 ∧ · · · ∧ tn = t′n],

where Qi is either ∀ or ∃. In intuitionistic and higher-order logics, Skolemization
is sometimes unsound or undesirable, so it is not generally possible to reduce all
such mixed quantifier prefixes to only existential quantifiers [23]. In any case, the
provability (in classical and intuitionistic logic) of such first-order, mixed prefix
formulas is still decidable. In this paper, we allow an equation to be replaced with,
for example, an implication between equations. If we have two unequal terms,
for example, z (zero) and (s z) (one), then the inequality t 6= t′ can be written
as t = t′ ⊃ z = (s z). As we shall show, this simple extension yields formulas
for which provability is undecidable. Thus, systems that automate proof search
involving such equality cannot expect to solve all unification problems completely
prior to making other choices in theorem proving.

2 First-order quantification and term equality

By first-order logic without equality, we mean the usual notion of logic in which
we have logical connectives, such as conjunction, disjunction, implication, negation,
true, false, and universal and existential quantifiers. We shall also assume that we
can form first-order terms (over some specific signature). Finally, atomic formulas

are built by applying, for example, an n-ary predicate symbol P to a list t1, . . . , tn
of first-order terms to get the formula P (t1, . . . , tn). Note that predicate symbols
are non-logical symbols. In sequent calculi presentations of first-order logic, there
are introduction rules for logical connectives: there are no introduction rules for
predicates. Church [5] and Turing [30] independently proved that it is undecidable
to determine if a first-order logic formula is provable.

The usual approach to adding equality to first-order logic is to first introduce
a binary predicate to denote equality and then to axiomatize that predicate with
the rules for equivalence (the axioms of reflexivity, symmetry, and transitivity) and
congruence (for every constructor1 of terms): see, for example, the textbook [9].
Sometimes, inequality is also axiomatized: see, for example, the Clark completion
approach to capturing negation-as-failure [6].

We shall take a different but popular approach to adding term equality to first-
order logic by introducing equality as a logical connective for which our sequent
proof system will have a left and right introduction rule, following Girard [13]
and Schroeder-Heister [29]. The De Morgan dual of equality, namely inequality, is
also captured in this proof-theoretic setting. Note that when equality is a logical
connective, a formula of the form t = t′ is not atomic since its top-level symbol is
not a non-logical symbol. Equality in this paper will be interpreted as strict, syn-
tactic equality. The main novelty of the approach to equality here is its treatment
of equality on open terms. Here, free variables in terms are eigenvariables within
sequent calculus proofs: such variables were used by Gentzen to connect certain
occurrences of quantified expressions with their open and immediate subformula,
as illustrated by the ∀R rule given later in this section.

1 A constructor is also called a function symbol.

The undecidability of proof search when equality is a logical connective 3

We shall assume that we have exactly one primitive type ι, and that the bound
variables in all existential and universal quantifiers have this type. Non-primitive
types are used to specify the arity of constructors: the type ι→ · · · → ι→ ι, with
n+ 1 occurrences of ι, is the type of a constructor of arity n ≥ 0. We shall take as
fixed, a signature Σ0 of first-order constructors. For example, in Section 4, Σ0 is
the set {s : ι→ ι, p : ι→ ι→ ι, k : ι→ ι→ ι→ ι}.

Sequents are written as the triple Σ : Γ ` ∆ where Σ is a set of eigenvariables

and Γ and ∆ are multisets of formulas whose free variables must be members of Σ.
We shall write Σ `̀ t : ι to denote the fact that t has type ι using the constants
in Σ0 and the variables in Σ. The rules for first-order quantifiers are

Σ `̀ t : ι Σ : [t/x]B,Γ ` ∆
Σ : ∀x.B, Γ ` ∆ ∀L

x : ι, Σ : Γ ` B,∆
Σ : Γ ` ∀x.B,∆ ∀R

x : ι, Σ : B,Γ ` ∆
Σ : ∃x.B, Γ ` ∆ ∃L

Σ `̀ t : ι Σ : Γ ` [t/x]B,∆

Σ : Γ ` ∃x.B(x),∆
∃R

In the ∀R and ∃L rules, the eigenvariable x is assumed to not be in Σ and, as a
consequence, it is not free in the concluding sequent. We shall assume that the
names of quantifiers can be α-converted as needed and that substitution, denoted
as [t/x]B, is capture-avoiding. As a result, we will generally assume that the name
of a universally bound variable is the same as the name of the eigenvariable that
instantiates it in the ∀R and ∃L rules.

The introduction rules for first-order equality are the following.

Σ : Γ, t = t′ ` ∆
eqL†

θΣ : θΓ ` θ∆
Σ : Γ, t = t′ ` ∆

eqL‡
Σ : Γ ` t = t,∆

eqR

The eqL rule is rewritten as two rules: the proviso † requires that t and t′ are not
unifiable and the proviso ‡ requires that t and t′ are unifiable with the most general
unifier θ. The signature denoted by θΣ is the one that results from removing from Σ

all those variables that are in the domain of θ and adding all those variables that
are free in some term in the range of θ. Note that when the proviso ‡ holds, the
premise of eqL will have one fewer occurrences of logical connectives but it may
have more complex term structures.

It is easy to prove that equality is, for example, an equivalence relation by using
these inference rules. For example, by remembering that the standard sequent
calculus rule for introducing ⊃ on the right is given as

Σ : Γ,B ` C
Σ : Γ ` B ⊃ C

⊃R,

we can prove the transitivity of equality as follows.

x : ι, w : ι : · ` x = x
eqR

x : ι, w : ι : x = w ` x = w
eqL, replace w with x

x : ι, y : ι, w : ι : x = y, y = w ` x = w
eqL, replace y with x

x : ι, y : ι, w : ι : · ` x = y ⊃ y = w ⊃ x = w
⊃R ×2

· : · ` ∀x∀y∀w.(x = y ⊃ y = w ⊃ x = w)
∀r × 3

Besides being an equivalence relation, equality is also a congruence. This prop-
erty of our equality is easily established for all constructors. For example, let Σ0

4 Dale Miller and Alexandre Viel

contain the constructors z : ι and s : ι → ι (encoding zero and successor). The
following proof

x : ι : · ` x = x
eqR

x : ι, y : ι : (s x) = (s y) ` x = y
eqL, replace y with x

x : ι, y : ι : · ` (s x) = (s y) ⊃ x = y
⊃R

· : · ` ∀x.∀y.(s x) = (s y) ⊃ x = y
∀R

proves that successor is injective. We can also directly proved that zero is not a
successor.

x : ι : (s x) = z ` ⊥
eqL

x : ι : · ` (s x) = z ⊃ ⊥
⊃R

· : · ` ∀x.(s x) = z ⊃ ⊥
∀R

Note that the above application of the eqL rule is justified by the fact that the
terms z and (s x) do not unify. Thus, the failure of unification leads to a successful
proof. (Here, we can replace the symbol ⊥ for false with, say, z = (s z).) As a
consequence of these observations, this proof system proves all of Peano’s axioms
except for the one regarding induction.

For another example, abbreviate the terms z, (s z), (s (s z)), (s (s (s z))), etc
by 0, 1, 2, 3, etc. Let the sets A = {0,1} and B = {0,1,2} be encoded as

{x |x = 0 ∨ x = 1} and {x |x = 0 ∨ x = 1 ∨ x = 2}.

By assuming the usual left and right introduction rules for ∨, namely,

Σ : Γ,B ` E Σ : Γ,C ` E
Σ : Γ,B ∨ C ` E ∨L and

Σ : Γ ` Bi

Σ : Γ ` B1 ∨B2
∨R (i = 1, 2),

we can prove that A is a subset of B: that is, ∀x. x ∈ A⊃ x ∈ B.

· ; · ` 0 = 0

· ; · ` 0 = 0 ∨ 0 = 1 ∨ 0 = 2

x : ι ; x = 0 ` x = 0 ∨ x = 1 ∨ x = 2

· ; · ` 1 = 1

· ; · ` 1 = 0 ∨ 1 = 1 ∨ 1 = 2

x : ι ; x = 1 ` x = 0 ∨ x = 1 ∨ x = 2

x : ι ; x = 0 ∨ x = 1 ` x = 0 ∨ x = 1 ∨ x = 2

· ; · ` ∀x.(x = 0 ∨ x = 1) ⊃ (x = 0 ∨ x = 1 ∨ x = 2)

Here, the doubled horizontal line indicates that more than one inference rule is
applied. We leave it as an exercise to the reader to prove the negation of the
converse of this formula, namely, ∃x.(x ∈ B∧ (x ∈ A ⊃ ⊥)). If one also adds to this
logic a fixed point operator and the inference rules for unfolding such fixed points,
it is possible to capture arbitrary Horn clause specifications as well as several
model checking style queries [3,15].

This approach to the treatment of quantification and term equality has been
shown to satisfy cut-elimination in classical, intuitionistic, and linear logic set-
tings [13,29]. Given that unification is used to introduce equations, this approach
to term equality has been extended to terms containing bindings by replacing
first-order unification with higher-order unification [8,21,25]. The logic and proof
search underlying the Abella theorem prover [2] and the Bedwyr model checker [3]
incorporate these particular extensions.

The undecidability of proof search when equality is a logical connective 5

Σ : B ` C
Σ : · ` B ⊃ C

⊃R
Σ : · ` B Σ : · ` C

Σ : · ` B ∧ C
∧R

x : ι, Σ : · ` B
Σ : · ` ∀x.B ∀R

Σ `̀ t : ι Σ : · ` [t/x]B

Σ : · ` ∃x.B(x)
∃R

Σ : t = t′ ` E
eqL†

θΣ : · ` θE
Σ : t = t′ ` E

eqL‡
Σ : · ` t = t

eqR

The provisos † and ‡ are the same as presented in Section 2. In the ∀R rule, we assume that
the bound variable x is not a member of Σ.

Fig. 1 The intuitionistic proof system I

In Gentzen’s original sequent systems LK and LJ [11], eigenvariables were
essentially scoped constants in the sense that in a cut-free proof, once an eigen-
variable is introduced into a proof (reading inference rules from conclusion to
premises), that eigenvariable did not vary. Eigenvariables were substituted for
only during cut-elimination. While those systems of Gentzen did not involve uni-
fication in the proof system, proof search algorithms, such as those described for
logic programming [22,27], involve mixing unification and introduction rules. In
particular, unification is used to determine the terms to use for instantiating the
quantifiers in the ∀L and ∃r rules. The treatment of the left-introduction rule for
equality changes those basic principles: unification is now part of the description of
an inference rule and eigenvariables can vary over the course of building a cut-free
proof.

As we have mentioned previously, this approach to equality stands in contrast
to other approaches where equality is a non-logical predicate that is axiomatized
as an equivalence relation and a congruence. One point of comparison is that in
the setting used here, we have an immediate specification of both equality and
inequality: however, incorporating additional equality rules need to be done sepa-
rately (as is done for the rules of λ-conversion in [21]). In contrast, when equality
is a non-logical predicate given an explicit axiomatization, inequality needs to be
addressed separately while additional equations (such as commutativity) can be
accommodated as just additional axioms.

3 A subset of the logic

From the perspective of searching for sequent calculus proofs, the source of un-
decidability in first-order logic usually comes from the contraction rule. For ex-
ample, in intuitionistic logic, a universally quantified assumption might need to
be instantiated multiple times. In classical logic, Herbrand’s theorem tells us that
an existentially quantified formula might need to be instantiated multiple times
to form a tautologous disjunction. In general, there is no a priori bound on the
number of instances of some formulas that might be needed to complete a proof.

It might seem surprising then that provability in the logic we study in this
paper is also undecidable even though our proof system is linear in the sense of
linear logic [12] (i.e., there are no contraction and weakening rules). The goal of
this paper is to prove this result.

6 Dale Miller and Alexandre Viel

In order to strengthen our undecidability result, we consider only formulas
defined by the following recursive definition.

Φ ::= Φ ∧ Φ | ∃x.Φ | ∀x.Φ | Ψ
Ψ ::= t1 = t′1 ⊃ · · · ⊃ tn = t′n ⊃ t0 = t′0 (n ≥ 0)

The proof system I for these logical formulas is given in Figure 1. When we
say that the formula Φ is provable, we mean that the sequent · : · ` Φ has a proof:
that is, we consider proving Φ with no initial collection of eigenvariables and with
no formulas on the left. We state here several facts about the I proof system.

1. If a sequent has a formula on the left of the sequent arrow, that formula must
be an equation, and the formula on the right must be a Ψ -formula. Also, this
sequent must be the conclusion of one of the eqL rules. Right introduction rules
can only be applied to sequents with an empty left-hand side.

2. When reading proofs from conclusion to premises, the only rule that is non-
deterministic is the ∃R since the choice of t is unconstrained. In general, there
can be an infinite number of terms t such that Σ `̀ t : ι (depending on Σ0).

3. If the signature Σ0 contains enough constructors to build a (closed) term, say, t,
then the logical constant for true can be defined to be t = t (in linear logic,
this yields the multiplicative true). If there are at least two different Σ0-terms
t and t′ then the logical false formula can be defined to be t = t′ (in linear
logic, this yields the additive false).

4. Let LJ= be Gentzen’s LJ proof system in which the rules eqR and eqL from
Figure 1 have been added. A Φ-formula is provable in LJ= if and only if it is
provable in this proof system.

5. Let LL= be version of a two-sided proof system for linear logic LL in which
the rules eqR and eqL from Figure 1 have been added. Since I does not contain
the structural rules of weakening or contraction (as defined by Gentzen [11]),
it follows that provability in LJ= and LL= coincides for Φ-formulas.

All of these facts follow directly from the following observation: If we interpret
the logical symbols ⊃ and ∧ as the linear logic connectives (and &, respectively,
then a Φ-formula is provable in linear logic if and only if it is provable in this proof
system. This result follows immediately from the completeness of the focused proof
system for µMALL given in [1] since µMALL contains both multiplicative additive
linear logic and the equality used here.

If one eliminates the presence of implications in Φ-formulas, then we are left
with essentially the same formulas that have been used in [23] to develop an ap-
proach to unification under a mixed prefix. As in that paper, we shall explicitly deal
with quantifier alternation and will not attempt to simplify it using Skolemization.

4 Encoding some arithmetic

For the rest of this paper, we shall fix the set of sorts S to be {ι} and the signature
Σ0 to be

{s : ι→ ι, p : ι→ ι→ ι, k : ι→ ι→ ι→ ι}.

We shall use the constructor s as the successor function when representing natural
numbers. Note, however, that we do not admit a constructor for zero in this

The undecidability of proof search when equality is a logical connective 7

signature. In fact, it is the case that there are no Σ0-terms of type ι, a fact that
plays an important role in our examples and main result. The constructor p will
be used in Section 5 for building lists of terms, while the constructor k will be
used to build lists of pairs of terms in Section 6.

Consider attempting a proof of a sequent of the form · : · ` ∀a∀b∃X.B(a, b,X).
An attempt to prove this sequent results in an attempt to prove

a : ι, b : ι : · ` B(a, b, t),

where t is a term built from the variables {a : ι, b : ι} and the constructors in Σ0.
If the only member of Σ0 used in constructing t is the successor function s then t

is either of the form (sna) or (snb), where n ≥ 0 is the number of iterations of the
successor constructor. A term of the first kind is called the a-nat for n and a term
of the second kind is called the b-nat for n.

The following proposition allows us to use provability to constrain the instan-
tiation of an existential quantifier to being either an a-nat or a b-nat.

Proposition 1 The formula

∀a∃X∀b∃Y.[(a = b ⊃ X = Y) ∧ (a = (s b) ⊃ X = (s Y))] (1)

has many proofs and these can be put into a one-to-one correspondence with the natural

numbers. In particular, if n ≥ 0 then there is a proof of this formula in which X is

instantiated with the a-nat for n and Y is instantiated with the b-nat for n. Conversely,

if this formula has a proof then the instantiations for X and Y in that proof are the

a-nat and b-nat, respectively, for some n ≥ 0.

While the proof of this proposition is straightforward, we provide some of its
details. Let n ≥ 0. It is straightforward to show that

[a = b ⊃ (sna) = (snb)] ∧ [a = (s b) ⊃ (sna) = (sn+1b)]

has a (unique) proof. Conversely, assume that (1) has a proof and let T and R be the
instantiations for X and Y , respectively. Note that the only difference between T

and R is the occurrences of the eigenvariables a and b within them: they share all
occurrences of the other constructors. Let θ be the substitution that replaces a
with (s b). The term R must contain an occurrence of b since otherwise Tθ and Rθ

would be equal, contradicting the provability of the second conjunct in (1). We
now argue that the constructors p and k are not present in either T or R. Assume,
on the contrary, that T (and, hence, R) has an occurrence of p and let l ≥ 0 be the
distance that occurrence has to the root of T (and in R). However, that distance
remains l in Tθ but is l + 1 in (s (Rθ)), which means that these two terms are
not equal, a contradiction. By a similar argument, the constructor k cannot occur
in T and R. Hence, the only constructor these terms can contain is s. Thus, T is
an a-nat, R is a b-nat, and they both encode the same natural number.

The following proposition shows how it is possible to capture the addition of
natural numbers via provability. The proof of this proposition is immediate and
not given.

Proposition 2 Let n1, n2, and n3 be natural numbers and let N1 be the a-nat for n1,

N2 be the b-nat for n2, and N3 be the a-nat for n3. Then, n1 + n2 = n3 holds if and

only if ∀a∀b.[b = N1 ⊃ N2 = N3] is provable.

It is possible to characterize the multiplication of natural numbers as well, but,
as we shall see, that is significantly more difficult.

8 Dale Miller and Alexandre Viel

5 Constraining instantiations

The order in which variables are quantified within a formula provides some restric-
tions on the terms used in substitutions within a proof. For example, the quantifier
prefix in Proposition 1, namely, ∀a∃X∀b∃Y forbids the substitution instance for X
to contain the eigenvariable b. It is possible to specify much more general restric-
tions on substitutions than those that arise from quantification. For example, we
might find a need to restrict the terms that instantiate Y in proofs so that they
do not contain occurrences of a.

As an exercise, consider proving a formula of the form ∀x∀y∃X.B(x, y,X) in
which we wish to have a proof if and only if the substitution term for X contains
only the constructor k and the eigenvariable y (or, equivalently, such terms do
not contain s, p, and the eigenvariable x). One approach to formalizing this is the
following. Let z1, . . . , z5, ?, and � be seven variables of type ι and consider the
following four sets of equations.

E1 = {z1 = x, z2 = (k ? ? ?)} Ê1 = E1 ∪ {z3 = ?, z4 = �, z5 = �}
E2 = {z1 = ?, z2 = ?} Ê2 = E2 ∪ {z3 = ?, z4 = �, z5 = (p ? �)}

Let us denote by
1
= and

2
= the equality between terms that use the equations in E1

and in E2, respectively. Consider the following sequence of alternating equations.

(k (k x x x) x x)
1
= (k (k z1 z1 z1) z1 z1)

2
= (k (k ? ? ?) ? ?)

1
= (k z2 ? ?)

2
= (k ? ? ?)

2
= z2

1
= ?

Thus, the properly constrained term (k (k x x x) x x) rewrites in this alternating
fashion to the variable ?. It is not difficult to see that any term rewrites in this
way to ? if and only if that term satisfies our desired restriction.

Extending this example further, we now use the pairing constructor p in order
to collect these various terms into the following list structures.

L1 = (p (k (k x x x) x x) (p (k (k ? ? ?) ? ?) (p (k ? ? ?) z5)))
L2 = (p (k (k z1 z1 z1) z1 z1) (p (k z2 ? ?) (p z2 z4)))

It is now easy to check that L1 and L2 are equal using the equations in Ê1 and
that L1 and (p (k (k x x x) x x) L2) are equal using the equations in Ê2.

We can now fully provide the formula that describes B(x, y,X) requested above.
In particular, the formula

∀z1∀z2∀z3∀z4∀z5∀ ? ∀ � ∃L1∃L2[
(z1 = x ⊃ z2 = (k ? ? ?) ⊃ z3 = ? ⊃ z4 = � ⊃ z5 = � ⊃ L1 = L2) ∧
(z1 = ? ⊃ z2 = ? ⊃ z3 = ? ⊃ z4 = � ⊃ z5 = (p ? �) ⊃ L1 = (p X L2))]

is provable if and only if X satisfies the constraint that permits only occurrences
of the constructor k and the variable x. Notice that the existential quantification
on L1 and L2 essentially encodes the entire rewriting computation of the term
instantiating X into the ? variable.

In the next section, where we will encode the multiplication of natural numbers,
we shall need a similar restriction on terms.

The undecidability of proof search when equality is a logical connective 9

6 Encoding multiplication

In the previous section, we described a rewriting-style approach to showing that a
substitution satisfies a certain constraint or not. Since the logic we are using does
not allow for any iteration or recursion, the only way to capture computations
that might take many steps (depending on input values) is to have the entire trace
of a computation be encoded into a substitution term and then to use a formula
to do a check of its correctness as a computational trace. We can characterize
multiplication in a similar fashion by encoding traces that capture the interaction
of addition.

For example, the list of pairs [〈6, 3〉, 〈4, 2〉, 〈2, 1〉, 〈0, 0〉] is evidence that 6 is
the result of multiplying 2 times 3: here, when moving to the left, the second
component of a pair is incremented by one while the first component is incremented
by two. To encode such traces, we use the k constructor as follows: in the above
example, if W encodes [〈4, 2〉, 〈2, 1〉, 〈0, 0〉] then(

k
(
s (s (s (s (s (s v1)))))

) (
s (s (s v2))

)
W

)
encodes the full list of pairs. Here, v1 and v2 are some appropriately chosen eigen-
variables.

In order to check that such a list of pairs correctly captures the trace of the
computation of a multiplication operation, we can use a second trace and two con-
junctive implications that allows us to check these two traces under two different
substitutions. In particular, consider the following two terms.

Z = (k (s (s (s (s w3)))) (s (s w4)) (k (s (s w3)) (s w4) (k w3 w4 w6)))
Z′ = (k (s (s (s (s w1)))) (s (s w2)) (k (s (s w1)) (s w2) (k w1 w2 w5)))

Note that these terms are the same modulo the renaming of free variables, and
they both encode the list of pairs [〈4, 2〉, 〈2, 1〉, 〈0, 0〉]. Now consider the following
two sets of equations where • is a new variable.

E3 = {w1 = a, w2 = b, w3 = a, w4 = b, w5 = •, w6 = •}
E4 = {w1 = a, w2 = b, w3 = X1, w4 = (s b), w5 = •, w6 = (k a b •)}

Using the equations in E3, it is immediate that Z and Z′ are equal. If we use the
equations in E4 instead, then Z is equal to (k X3 Y2 Z

′). The fact that these two
qualified equalities hold establishes that Z is a correct trace of a multiplication
calculation.

Given this discussion, consider the provability of the formula in Figure 2. Proofs
of this formula capture multiplication if and only if we can also guarantee the
following additional restrictions.

1. The substitutions for ∃X1∃X2∃X3 are a-nat n1, n2, n3.
2. The substitution for ∃Y2 is the b-nat for n2.
3. The substitution for Z does not contain the eigenvariables w1 and w2 and the

substitution for Z′ does not contain the eigenvariables w3 and w4.

If these additional constraints hold, then we can conclude that n1 × n2 = n3.
Proposition 1 can be used to produce formulas that solve the first and second of
these restrictions. In fact, Figure 3 contains exactly such a formula. We now use

10 Dale Miller and Alexandre Viel

∀a∃X1∃X2∃X3∀b∃Y2∀w1∀w2∀w3∀w4∀w5∀w6∀ • ∃Z∃Z′[
(w1 = a ⊃ w2 = b ⊃ w3 = a ⊃ w4 = b ⊃ w5 = • ⊃ w6 = • ⊃ Z = Z′) ∧
(w1 = a ⊃ w2 = b ⊃ w3 = X1 ⊃ w4 = (s b) ⊃ w5 = • ⊃ w6 = (k a b •) ⊃

Z = (k X3 Y2 Z′))]

Fig. 2 Partial specification of multiplication

∃Y1.[(a = b ⊃ X1 = Y1) ∧ (a = (s b) ⊃ X1 = (s Y1))] ∧
[(a = b ⊃ X2 = Y2) ∧ (a = (s b) ⊃ X2 = (s Y2))] ∧

∃Y3.[(a = b ⊃ X3 = Y3) ∧ (a = (s b) ⊃ X3 = (s Y3))]

Fig. 3 Specify that X1, X2, X3 denote a-nat and that Y1, Y2, Y3 are the corresponding b-nat.

∀u1∀u2∀u3∀u4∀u5∀u6∀u7∀u8∀u9∀u10∀u11∀u12∀ ? ∀ � ∃J1∃J2∃K1∃K2[

(
∧
Ê5 ⊃ J1 = J2) ∧ (

∧
Ê6 ⊃ J1 = (p Z J2)) ∧

(
∧
Ê7 ⊃ K1 = K2) ∧ (

∧
Ê8 ⊃ K1 = (p Z′ K2))]

Fig. 4 Specify restrictions on Z and Z′

the encoding technique illustrated in Section 5 to find a formula that solves the
third restriction.

From the quantification prefix in front of ∃Z∃Z′, the substitution instances
of these variables can have the eigenvariables a, b, w1, w2, w3, w4, w5, w6, • and the
constructors s and k. However, we need to insist that the term instantiating Z

does not contain occurrences of w1 and w2 and the term instantiating Z′ does
not contain w3 and w4. The technique described in Section 5 allows us to build a
formula that can specify such constraints on the instantiations of Z and Z′. We
first define the following set of equations.

E5 = {u1 = a, u2 = b, u3 = w1, u4 = w2, u5 = w3, u6 = w4, u7 = •, u8 = (k ???),
u9 = (s ?)}

E6 = {u1 = ?, u2 = ?, u3 = w1, u4 = w2, u5 = ?, u6 = ?, u7 = ?, u8 = ?,

u9 = ?}
E7 = {u1 = a, u2 = b, u3 = w1, u4 = w2, u5 = w3, u6 = w4, u7 = •, u8 = (k ???),

u9 = (s ?)}
E8 = {u1 = ?, u2 = ?, u3 = ?, u4 = ?, u5 = w3, u6 = w4, u7 = ?, u8 = ?,

u9 = ?}
Ê5 = E5 ∪ { u10 = ?, u11 = �, u12 = �}
Ê6 = E6 ∪ { u10 = ?, u11 = �, u12 = (p ? �)}
Ê7 = E7 ∪ { u10 = ?, u11 = �, u12 = �}
Ê8 = E8 ∪ { u10 = ?, u11 = �, u12 = (p ? �)}

The last four of these sets of equations are used in Figure 4: in that figure, we use
the notion

∧
E ⊃ t = t′ to denote the implication that has every equation in E

as a hypothetical assumption to t = t′: the order in which these assumptions are
listed is not important. Multiplication of natural numbers is characterized by the
following proposition.

The undecidability of proof search when equality is a logical connective 11

Proposition 3 Consider the formula Φ that results from inserting the formulas in

Figure 3 and Figure 4 immediately inside the scope of ∃Z∃Z′ in the formula in Figure 2.

The formula Φ has an I proof in which the instantiations of X1, X2, X3 are a-nat terms

encoding n1, n2, n3 if and only if n1 × n2 = n3.

7 Undecidability of provability

We now prove that provability in our logic is recursively undecidable. We do this
by reducing Hilbert’s Tenth Problem (regarding finding solutions to Diophantine
equations), which is known to be undecidable, to the problem of provability. For
some background to Hilbert’s Tenth Problem, see Matiyasevich’s book [20] or his
survey article [19].

We use the fact that Diophantine equations can be restricted to have one of
three forms: x = 1, x + y = w, and x × y = w, where x, y, w are variables that
range over non-negative integers. Thus, we need to show how to reduce a list of
such equations into a single formula that is provable if and only if there is an
assignment of natural numbers to variables such that all equations are true.

Assume that X1, . . . , Xn is the list of variables in such a list of equations. We
start the construction of our associated formula by writing the quantifier prefix
∀a∃X1 · · · ∃Xn∀b∃Y1 · · · ∃Yn. Within the scope of these quantifiers, we would then
write the conjunction

n∧
i=1

[(a = b ⊃ Xi = Yi) ∧ (a = (s b) ⊃ Xi = (s Yi))].

From Proposition 1, these formulas force the instantiations for Xi and Yi (for all
i = 1, . . . , n) to be a-nat and b-nat terms, respectively, encoding the same natural
number.

Every equation of the form Xi = 1 translates to the additional conjunction
Xi = (s a). Every equation of the form Xi + Xj = Xk translates to the formula
(taken from Proposition 2) [b = Xi ⊃ Yi = Xk]. Finally, every equation of the form
Xi × Xj = Xk translates to the formula described in Proposition 3, except that
X1, X2, X3 are replaced by Xi, Xj , Xk, respectively.

Once we have collected all of these conjunctions and attached the quantifier
prefix, the resulting formula is provable if and only if the Diophantine equations
it encodes has a solution. Thus, provability is not decidable.

8 Related work

Goldfarb [14] has used an encoding of Hilbert’s Tenth Problem to proved that
second-order unification is undecidable, although the details of his encoding and
the one given here are different. The first author [23] used a similar reduction to
prove that it is undecidable to determine if the so-called flexible-flexible unification
problems in Huet’s pre-unification algorithm [16] have closed solutions.

A different interaction between unification and proof theory arises when one
addresses the question of whether or not a given classical logic formula has a proof
of a given length or size. Such problems can often be reduced to various kinds of

12 Dale Miller and Alexandre Viel

second-order unification problems [7,17] and, as a result, some of these problems
are also known to be undecidable given the undecidability of second-order unifica-
tion [14]. Still other interaction between unification and proof theory arises when
implementing theorem provers in first-order classical logic. For example, when si-

multaneous rigid E-unification (introduced in [10]) replaces first-order unification in
theorem provers based on Herbrand’s theorem, a number of undecidability results
are known and collected in [32].

Instead of using Skolemization to simplify quantifier alternation, it is possible
to use a dual operation, called raising [23], that allows universal quantifiers to
move in over existential quantifiers. Raising results in the use of higher-order
quantification. We have chosen to remain in first-order logic in this paper. The
unpublished report [31], on which this paper is based, provides a similar proof of
undecidability while using higher-order quantification.

There has, of course, been much work already done with solving inequalities
within, say, a logic programming setting, under the topics “disunification” and
“term-complementation”: see, for example, the papers by Barbuti et. al. [4] and
Maher [18]. These papers encode equality using a non-logical predicate symbol
that is axiomatized using Horn clause theories that are dependent on the signa-
ture of constants over which unification and disunification are carried out. This
approach has also been used in the setting of higher-order logic by Momigliano
and Pfenning [26].

While proof search in our setting here is undecidable, it might well be the
case that in many applications and theoretical settings, only a restricted subset of
unification is needed. Consider the case of higher-order unification [16]: while such
unification is undecidable, it also appears that the unification problems generated
by a wide range of applications (such as found in Isabelle [28] and λProlog [24])
are, in fact, computationally simple. Eventually, it was recognized that a much
smaller subset of higher-order unification, now called higher-order pattern unifica-
tion, was decidable and frequently occurred in practice [22]. Our experience with
Bedwyr and Abella, which implement aspects of proof search in the I proof sys-
tem, indicates that unification is not a source of computational difficulties. In those
systems, recursion is available, and, as a result, there are more direct methods for
encoding operations on natural numbers. When working with the Bedwyr system,
the unification subsystem generally reduces to proving Φ-formulas, and those re-
sulting formulas are usually simple to solve. This simplicity probably arises since
inference in that model checking system is dominated by additive synthetic infer-

ence rules, which are formally defined in [15]. In such synthetic inference rules,
existential substitutions (for example, for Y in Proposition 1) cannot be tested in
two different implications via different instantiations to the same eigenvariable. If
we limit ourselves to these additive synthetic inference rules, the formulas used to
relate a-nat and b-nat terms and to encode multiplication would not be allowed,
and proof search in I would simplify greatly.

9 Conclusions

We have considered a small logic involving only first-order quantification, con-
junction, and hypothetical judgments involving term equality. Such formulas are
naturally seen as generalizations to the kind of unification problems seen in systems

The undecidability of proof search when equality is a logical connective 13

performing automated proof search in intuitionistic logic. Although this appears to
be a mild extension to classical, first-order unification, we show that the problem
of proving such formulas is undecidable.

References

1. D. Baelde. Least and greatest fixed points in linear logic. ACM Trans. on Computational
Logic, 13(1):2:1–2:44, Apr. 2012.

2. D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and Y. Wang. Abella:
A system for reasoning about relational specifications. Journal of Formalized Reasoning,
7(2):1–89, 2014.

3. D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu. The Bedwyr system for model
checking over syntactic expressions. In F. Pfenning, editor, 21th Conf. on Automated
Deduction (CADE), number 4603 in LNAI, pages 391–397, New York, 2007. Springer.

4. R. Barbuti, P. Mancarella, D. Pedreschi, and F. Turini. Intensional negation of logic
programs: Examples and implementation techniques. In Proc. of the TAPSOFT ’87,
number 250 in LNCS, pages 96–110. Springer, 1987.

5. A. Church. An unsolvable problem of elementary number theory. American Journal of
Mathematics, 58:354–363, 1936.

6. K. L. Clark. Negation as failure. In J. Gallaire and J. Minker, editors, Logic and Data
Bases, pages 293–322. Plenum Press, New York, 1978.

7. W. M. Farmer. The Kreisel length-of-proof problem. Ann. Math. Artif. Intell, 6(1-3):27–
55, 1992.

8. A. Gacek, D. Miller, and G. Nadathur. Nominal abstraction. Information and Computa-
tion, 209(1):48–73, 2011.

9. J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem Proving.
Harper & Row, 1986.

10. J. H. Gallier, S. Raatz, and W. Snyder. Theorem proving using rigid E-unification: Equa-
tional matings. In 2nd Symp. on Logic in Computer Science, pages 338–346, Washington,
D.C., USA, June 1987. IEEE Computer Society Press.

11. G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam, 1935. Translation
of articles that appeared in 1934-35. Collected papers appeared in 1969.

12. J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.
13. J.-Y. Girard. A fixpoint theorem in linear logic. An email posting archived at

https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html to the lin-
ear@cs.stanford.edu mailing list, Feb. 1992.

14. W. Goldfarb. The undecidability of the second-order unification problem. Theoretical
Computer Science, 13:225–230, 1981.

15. Q. Heath and D. Miller. A proof theory for model checking. J. of Automated Reasoning,
63(4):857–885, 2019.

16. G. P. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science,
1:27–57, 1975.

17. J. Kraj́ıcek and P. Pudlák. The number of proof lines and the size of proofs in first order
logic. Arch. Math. Log, 27(1):69–84, 1988.

18. M. J. Maher. Complete axiomatizations of the algebras of finite rational and infinite trees.
In 3nd Symp. on Logic in Computer Science, pages 348–357, 1988.

19. Y. Matiyasevich. Hilbert’s tenth problem and paradigms of computation. In S. B. Cooper,
B. Löwe, and L. Torenvliet, editors, CiE: Computing in Europe, number 3526 in LNCS,
pages 310–321. Springer, 2005.

20. Y. V. Matiyasevich. Hilbert’s Tenth Problem. MIT Press, Cambridge, Massachusetts,
1993.

21. R. McDowell and D. Miller. Cut-elimination for a logic with definitions and induction.
Theoretical Computer Science, 232:91–119, 2000.

22. D. Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. J. of Logic and Computation, 1(4):497–536, 1991.

23. D. Miller. Unification under a mixed prefix. Journal of Symbolic Computation, 14(4):321–
358, 1992.

14 Dale Miller and Alexandre Viel

24. D. Miller and G. Nadathur. Programming with Higher-Order Logic. Cambridge University
Press, June 2012.

25. D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. on Computa-
tional Logic, 6(4):749–783, Oct. 2005.

26. A. Momigliano and F. Pfenning. Higher-order pattern complement and strict λ-calculus.
ACM Trans. on Computational Logic, 4(4):493–529, Oct. 2003.

27. G. Nadathur. A proof procedure for the logic of hereditary Harrop formulas. Journal of
Automated Reasoning, 11(1):115–145, Aug. 1993.

28. L. C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in Science & Business
Media. Springer, 1994.

29. P. Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, 8th Symp. on
Logic in Computer Science, pages 222–232. IEEE Computer Society Press, IEEE, June
1993.

30. A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42:230–265, 1936.

31. A. Viel and D. Miller. Proof search when equality is a logical connective. Unpublished
draft presented to the International Workshop on Proof-Search in Type Theories, July
2010.

32. A. Voronkov. Simultaneous rigid E-unification and other decision problems related to the
Herbrand theorem. Theor. Comput. Sci, 224(1-2):319–352, 1999.

