
Formal proof and trust

Dale Miller
Inria-Saclay & LIX, Ècole Polytechnique, France
July 16, 2019

Short abstract

While formal proofs can be a source of trust, I will argue that the very notion
of formal proof requires other sources of trust. In fact, formal proofs, as doc-
uments, are produced by machines and are checkable only by machines and,
as a result, we must trust the many concomitant components associated with
proof checking. Such components include, for example, printers and parsers of
such structured documents, the compiler and run-time systems that supports a
programming language, and some machine hardware. Thus, trusting a formal
proof relies on the correct functioning of components for which we have am-
ple evidence of their shortcomings vis-à-vis correctness. Since many approaches
to formal proofs provide such structures with well-understood syntax and se-
mantics, the need to trust particular computer systems is either ameliorated or
entirely removed by realizing that proof checking is reproducible. Just as “nul-
lius in verba” (take no one’s word for it) is a slogan of the scientific method, I
argue that this slogan makes serious demands on the design of proof checkers
and of formal proofs.

Extended abstract

In mathematics, a careful proof provides trust in a theorem. With such trust,
we take actions such as publishing a paper, starting a new research effort, or
building a physical object that we expect to work in a specific fashion. The
checking of the correctness of a proof is a central activity of any discipline that
makes use of proof, particularly, mathematical proofs. Humans (e.g., reviewers)
are often used as proof checkers and, in many ways, mathematical proofs allow
for a kind of communication between humans.

Recent decades have witnessed a rise in the use of formal proofs for various
purposes. One such use of formal proofs allows for large and complex mathe-
matical proofs (of, say, the Feit-Thompson Theorem) to be checked with a level
of detail not usually achievable by humans. Formal proofs have also been built
for mathematical theorems for which human would find it nearly impossible to
consider carefully all the necessary cases (for example, the proof of the Kepler
conjecture and of the four color theorem). Finally, it seems that only formal
proof will allow us to prove various properties of software and hardware systems.

For my purposes here, a formal proof is a document (a computer file)
that contains enough information so that a relatively simple proof checker
can construct a fully formal proof in a well-established style of proof, such as
Frege/Hilbert proofs, sequent calculus proofs, natural deduction proofs, tableaux
proofs, or resolution refutations. If such documents are structured so that all

1



the information needed to build explicit proofs are present, then proof checkers
can be simple and small programs. On the other hand, if such documents con-
tain only some information about a proof, then a proof checker will need to be
able to reconstruct the missing details: such checkers are more complex pieces
of software. In either case, however, formal proofs are documents that are pro-
duced by machines (sometimes as the result of interactions with humans) and
that are checked by machines. In general, we do not expect humans to read,
understand, and check a formal proof.

It seems that we must, therefore, trust in the correctness of proof checkers
and the computer systems on which they are implemented. Since our univer-
sal experience with computer systems is that they can be riddled with errors,
we can easily doubt proof checkers and, consequently, doubt whether or not
a given checked document is, in fact, a formal proof. This raises the familiar
and ancient conundrum “Quis custodiet ipsos custodes?” (Who will guard the
guards?). Fortunately, there is a modern approach to addressing this problem:
make it possible for anyone and everyone to monitor and audit the guards (proof
checkers, in our case). Thus, we invoke a well-known approach to trust which
comes directly from the scientific method : in particular, proof checking needs
to be reproducible in the sense that it is an activity that anyone should be able
to undertake, now and in the future. Thus, while proof checking depends on
technology it should not be dependent on any specific technology: 50 years
from now when computer hardware and programming language technologies
have radically changed, it should be possible to rebuild proof checkers on that
newer technology so that a future skeptic can recheck proofs.

Of course, to communicate a proof to, say, a skeptic 50 years from now, some
carefully defined standards for describing formulas and their proofs need to exist.
Both logical inference and formal proof have been studied extensively during
the past several decades for first-order and higher-order versions of classical and
intuitionistic logics. For example, the notion of a theorem in first-order logic can
be describe in multiple ways, including using model theory and using a variety of
proof structures. Furthermore, there are numerous papers and implementations
of the basic algorithms that underlie proof search and proof checking. It is easy
to find notions of formalized reasoning for which there is nothing ad hoc and
temporary: anyone 50 years from now will be able to understand exactly the
same notion of theorem as we understand today. That foundation provides the
basis for writing a clear, flexible, and permanent definition of the syntax and
semantics of formulas and proofs.

Some communities within the computational logic field have already been es-
tablishing such standardize certificate formats. For example, researchers build-
ing systems that determine whether or not a propositional formula is satisfiable
have designed various standardize proof certificate formats than their search
programs can output. These formats have names such as DRUP [3] and DRAT
[5] and anyone can build rather simple checkers that can check if a file in one of
these formats actually describes a proof. Other researchers working in rewriting
systems have designed the CPF proof certificate format [4] that can be used
to check whether or not a given rewrite system is terminating or confluent.

2



Broad spectrum certificates are also under development. The Dedukti system
[1] mixes functional programming style rewriting with dependently typed λ-
calculus to provide a proof certificate for the various theorem provers working
in higher-order intuitionistic logic. Foundational proof certificates [2] use logic
programming techniques to check a range of proof systems in classical and in-
tuitionistic logics by allowing for proof reconstruction during proof checking. In
both of these cases, the underlying proof checking technology is based on well-
defined and understood computational logic frameworks: our descendants will
be able to build their own proof checkers and recheck any of our proofs written
in these technology independent formats.

References

[1] A. Assaf, G. Burel, R. Cauderlier, D. Delahaye, G. Dowek, et al., Expressing
theories in the λπ-calculus modulo theory and in the Dedukti system. In
TYPES: Types for Proofs and Programs, Novi Sad, Serbia, 2016.

[2] Z. Chihani, D. Miller, and F. Renaud. A semantic framework for proof
evidence. J. of Automated Reasoning, 59:287–330, 2017.

[3] M. Heule, W. A. Hunt Jr, and N. Wetzler. Expressing symmetry breaking
in DRAT proofs. In A. P. Felty and A. Middeldorp, editors, Automated
Deduction - CADE-25, LNCS 9195, 591–606. Springer, 2015.

[4] C. Sternagel and R. Thiemann. The certification problem format. In Pro-
ceedings UITP 2014, 61–72, October 29 2014.

[5] N. Wetzler, M. J. H. Heule, and W. A. Hunt Jr. DRAT-trim: Efficient
checking and trimming using expressive clausal proofs. In C. Sinz and U.
Egly, editors, Theory and Applications of Satisfiability Testing - SAT 2014,
LNCS 8561, 422–429. Springer, 2014.

3


