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Interests in the Sequent Calculus

For mathematical logic:
• Gentzen’s proof of consistency of first order logics and Peano

Arithmetic. Ordinal analysis.

For logic more generally:
• One of several frameworks for describing proofs in many logics.

For computer science:
• A framework for computational logic, especially those involving

classical logic.
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Many roles of logic in computation

Computation-as-model: Computations happens, i.e., states
change, communications occur, etc. Logic is used to make
statements about computation. E.g., Hoare triples, modal logics.

Computation-as-deduction: Elements of logic are used to model
elements of computation directly.

Proof normalization. Programs are proofs and computation is
proof normalization (λ-conversion, cut-elimination). A
foundations for functional programming. Curry-Howard
Isomorphism.

Proof search. Programs are theories and computation is the
search for sequent proofs. A foundations for logic programming,
model checking, and theorem proving.
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We focus on two logics

There are great many “logics” used in practice and in research.

Implemented computational logic systems demand selecting one of
two logics: Classical Logic and Intuitionistic Logic.

These two choices covers a large percentage of existing
computational systems based on logic.

Although Linear Logic lies behind these two logics, we will speak
about this logic only indirectly.

Given our focus on proofs, the choice of

propositional vs first-order vs higher-order

logic is not a concern here: HO logic can directly support both all
three.

Dale Miller Sequent Calculus: overview and recent developments (Part 1)



We focus on two logics

There are great many “logics” used in practice and in research.

Implemented computational logic systems demand selecting one of
two logics: Classical Logic and Intuitionistic Logic.

These two choices covers a large percentage of existing
computational systems based on logic.

Although Linear Logic lies behind these two logics, we will speak
about this logic only indirectly.

Given our focus on proofs, the choice of

propositional vs first-order vs higher-order

logic is not a concern here: HO logic can directly support both all
three.

Dale Miller Sequent Calculus: overview and recent developments (Part 1)



Logics with recursive definitions

We will eventually add recursive definitions to classical logic (using
a fixed point connective). We identify three different activities viz
a viz the use of fixed points.

• computation (a la logic programming): “There a exists a path
in an unfolding.”

• model checking: “For all paths, there exist a path.”

• theorem prover: Use rules for induction and co-induction
instead of just unfold.

Sequent calculus provides a common framework for mixing

• computation and deduction, and

• model checking and theorem proving.
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Terms and formulas

Formally, we use Church’s Simple Theory of Types [1940] to
encode terms and formulas.

Informally, terms and formulas are first-order with occasional and
natural uses of higher-order abstractions via λ-abstraction.

Equality via α-conversion useful for comparing formulas.

Equality via β-conversion useful for specifying substitution.
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Sequents

Sequents are triples Σ: Γ − ∆ where

Σ, the signature of the sequent, is a set of (eigen) variables
(with scope over the sequent);

Γ, the left-hand-side, is a multiset of formulas; and

∆, the right-hand-side, is a multiset of formulas.

NB: Gentzen used lists instead of multisets.
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Inference rules: two structural rules

There are two sets of these: contraction, weakening.

Σ: Γ,B,B − ∆

Σ: Γ,B − ∆
cL

Σ: Γ − ∆,B,B

Σ: Γ − ∆,B
cR

Σ: Γ − ∆

Σ: Γ,B − ∆
wL

Σ: Γ − ∆

Σ: Γ − ∆,B
wR

NB: Gentzen’s use of lists of formulas required him to also have an
exchange rule.
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Inference rules: two identity rules

There are exactly two: initial, cut.

Σ: B − B
init

Σ: Γ1 − ∆1,B Σ: B, Γ2 − ∆2

Σ: Γ1, Γ2 − ∆1,∆2
cut

Notice the repeated use of the variable B in these rules.

In general: all instances of both of these rules can be eliminated
except for init when B is atomic.
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Inference rules: introduction rules (some examples)

Σ: Γ,Bi − ∆

Σ: Γ,B1 ∧ B2 − ∆
∧L

Σ: Γ − ∆,B Σ: Γ − ∆,C

Σ: Γ − ∆,B ∧ C
∧R

Σ: Γ,B − ∆ Σ: Γ,C − ∆

Σ: Γ,B ∨ C − ∆
∨L

Σ: Γ − ∆,Bi

Σ: Γ − ∆,B1 ∨ B2
∨R

Σ: Γ1 − ∆1,B Σ: Γ2,C − ∆2

Σ: Γ1, Γ2,B ⊃ C − ∆1,∆2
⊃L

Σ: Γ,B − ∆,C

Σ: Γ − ∆,B ⊃ C
⊃R

Σ −− t : τ Σ: Γ,B[t/x ] − ∆

Σ: Γ, ∀τx B − ∆
∀L

Σ, y : τ : Γ − ∆,B[y/x ]

Σ: Γ − ∆, ∀τx B
∀R

Σ, y : τ : Γ,B[y/x ] − ∆

Σ: Γ, ∃τx B − ∆
∃L

Σ −− t : τ Σ: Γ − ∆,B[t/x ]

Σ: Γ − ∆, ∃τx B
∃R
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Additive vs multiplicative inference rules

Inference rules with two or more premises are classified as follows:

Additive: side formulas are the same in premises and conclusion.

Σ: Γ,B − ∆ Σ: Γ,C − ∆

Σ: Γ,B ∨ C − ∆
∨L

Multiplicative: side formulas in premises accumulate.

Σ: Γ1 − ∆1,B Σ: Γ2,C − ∆2

Σ: Γ1, Γ2,B ⊃ C − ∆1,∆2
⊃L

These versions are inter-admissible in the presence of contraction
and weakening. In linear logic, these adjectives applied to
connectives as well.
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Permutations of inference rules

Σ: Γ, p, r − s,∆ Σ: Γ, q, r − s,∆

Σ: Γ, p ∨ q, r − s,∆
∨L

Σ: Γ, p ∨ q − r ⊃ s,∆
⊃R

Σ: Γ, p, r − s,∆

Σ: Γ, p − r ⊃ s,∆
⊃R

Σ: Γ, q, r − s,∆

Σ: Γ, q − r ⊃ s,∆
⊃R

Σ: Γ, p ∨ q − r ⊃ s,∆
∨L
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Permutations of inference rules (continued)

Σ: Γ1, r − ∆1, p Σ: Γ2, q − ∆2, s

Σ: Γ1, Γ2, p ⊃ q, r − ∆1,∆2, s
⊃L

Σ: Γ1, Γ2, p ⊃ q − ∆1,∆2, r ⊃ s
⊃R

To switch the order of these two inference rules requires
introduction some weakenings and a contraction.

Σ: Γ1, r − ∆1, p

Σ: Γ1, r − ∆1, p, s
wR

Σ: Γ1 − ∆1, p, r ⊃ s
⊃R

Σ: Γ2, q − ∆2, s

Σ: Γ2, q, r − ∆2, s
wL

Σ: Γ2, q − ∆2, r ⊃ s
⊃R

Σ: Γ1, Γ2, p ⊃ q − ∆1,∆2, r ⊃ s, r ⊃ s
⊃L

Σ: Γ1, Γ2, p ⊃ q − ∆1,∆2, r ⊃ s
cR
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Provability defined

A C-proof (classical proof ) is any proof using these inference rules.

An I-proof (intuitionistic proof ) is a C-proof in which the
right-hand side of all sequents contain either 0 or 1 formula.

Let Σ be a given first-order signature over S , let ∆ be a finite set
of Σ-formulas, and let B be a Σ-formula.

Write Σ; ∆ `C B and Σ; ∆ `I B if the sequent Σ: ∆ − B has,
respectively, a C-proof or an I-proof.
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Some Exercises

Provide a C-proof only if there is no I-proof.

1 [p ∧ (p ⊃ q) ∧ ((p ∧ q) ⊃ r)] ⊃ r

2 (p ⊃ q) ⊃ (¬q ⊃ ¬p)

3 (¬q ⊃ ¬p) ⊃ (p ⊃ q)

4 p ∨ (p ⊃ q)

5 ((r a ∧ r b) ⊃ q) ⊃ ∃x(r x ⊃ q)

6 ((p ⊃ q) ⊃ p) ⊃ p (Pierce’s formula)

7 ∃y∀x (r x ⊃ r y)

8 ∀x∀y (s x y) ⊃ ∀z (s z z)

N.B. Negation is defined: ¬B = (B ⊃ f ).
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Cut elimination: permuting a cut up

Ξ1

Σ: Γ1 − A1,∆1

Ξ2

Σ: Γ1 − A2,∆1

Σ: Γ1 − A1 ∧ A2,∆1
∧R

Ξ3

Σ: Γ2,Ai − ∆2

Σ: Γ2,A1 ∧ A2 − ∆2
∧L

Σ: Γ1, Γ2 − ∆1,∆2
cut

Here, i ∈ {1, 2}. Change this fragment to

Ξi

Σ: Γ1 − Ai ,∆1

Ξ3

Σ: Γ2,Ai − ∆2

Σ: Γ1, Γ2 − ∆1,∆2
cut

The cut rule is on a smaller formula.
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Cut elimination: permuting a cut up

Ξ1

Σ: Γ1,A1 − A2,∆1

Σ: Γ1 − A1 ⊃ A2,∆1
⊃R

Ξ2

Σ: Γ2 − A1,∆2

Ξ3

Σ: Γ3,A2 − ∆3

Σ: Γ2, Γ3,A1 ⊃ A2 − ∆2,∆3
⊃L

Σ: Γ1, Γ2, Γ3 − ∆1,∆2,∆3
cut

This part of the proof can be changed locally to

Ξ2

Σ: Γ2 − A1,∆2

Ξ1

Σ: Γ1,A1 − A2,∆1

Σ: Γ1, Γ2 − ∆1,∆2,A2
cut Ξ3

Σ: Γ3,A2 − ∆3

Σ: Γ1, Γ2, Γ3 − ∆1,∆2,∆3
cut

Although there are now two cut rules, they are on smaller formulas.
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Cut elimination: permuting a cut away

Ξ
Σ: Γ1 − ∆,B Σ: Γ2,B − B

init

Σ: Γ1, Γ2 − ∆,B
cut

Rewrite this proof to the following.

Ξ
Σ: Γ1 − ∆1,B

Σ: Γ1, Γ2 − ∆1,B
wL

We have removed one occurrence of the cut rule.
N.B. wL is not an official rule: one must show that it is admissible.

Dale Miller Sequent Calculus: overview and recent developments (Part 1)



Cut elimination

Theorem. If a sequent has a C-proof (respectively, I-proof) then
it has a cut-free C-proof (respectively, I-proof).

This theorem was stated and proved by Gentzen 1935.

Gentzen invented the sequent calculus so that he could formulate
one proof of this Hauptsatz for both classical and intuitionistic
logic.

Structural rules were key to describing the difference between these
two logics.

Think to all the other ways you know for describing the difference
between them (excluded middle, constructive vs non-constructive,
Kripke semantics, etc).
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Consequences of cut elimination

Theorem. Logic is consistency: It is impossible for there to be a
proof of B and ¬B.

Proof. Assume that − B and B − have proofs. By cut, − has a
proof. Thus, it also has a cut-free proof, but this is impossible.

Theorem. A cut-free proof system of a sequent is composed only
of subformula of formulas in the root sequent.

Proof. Simple inspection of all rules other than cut. (Assuming
first-order quantification here.)

Should I eliminate cuts in general?

NO! Cut-free proofs of
interesting mathematical statement often do not exists in nature.

If you are using cut-free proofs, you are probably modeling
computation or model checking.
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Addressing various choices doing proof search

Issue 1: The cut-rule can always be chosen.
Solution: Search for only cut-free proofs.

Issue 2: The structural rules of weakening and contraction can be
applied (almost) anytime.
Solution: Build these rules into the other rules.

Issue 3: What term to use in the ∃R and ∀L rules?
Solution: Use logic variables and unification (standard theorem
proving technology).

Issue 4: Of the thousands of non-atomic formulas in a sequent,
which should be selected for introduction?
Solution: Good question. We concentrate on this issue next using

focused proof systems. .
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Some “focusing” behavior

Given the inference figure (a variant of ⊃L), where A is atomic.

Γ −→ G
Ξ

Γ,D −→ A

Γ −→ A
, provided G ⊃ D ∈ Γ

can we restrict what is the last inference rule in Ξ?
In intuitionistic logic, we can insist that Ξ ends with either

an introduction rule for D (if D is not atomic) or

an initial rule with A = D (if D is atomic).
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Backchaining as focusing behavior

Let D be the formula (for atomic A′)

∀x̄1(G1 ⊃ ∀x̄2(G2 ⊃ · · · ∀x̄n(Gn ⊃ A′) . . .))

and consider the sequent Σ: Γ,D − A, for atomic A.

We can insist that if one applies a left introduction rule on D, the
it cascades into a series of ∀L, ⊃L, and initial rule.

That is, there is a substitution θ such that A = A′θ and
Σ: Γ − Giθ are provable (i = 1, . . . , n).

This cascade of introduction rules will be called a “focus”.
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Backward and Forward Chaining

Γ −→ a Γ, b −→ G

Γ, a ⊃ b −→ G
a, b are atoms, focus on a ⊃ b

Negative atoms: The right branch is trivial; ı.e., b = G .
Continue with Γ −→ a (backward chaining).
Positive atoms: The left branch is trivial; ı.e., Γ = Γ′, a. Continue
with Γ′, a, b −→ G (forward chaining).

Let G be fib(n, f ) and let Γ contain fib(0, 0), fib(1, 1), and

∀n∀f ∀f ′[fib(n, f ) ⊃ fib(n + 1, f ′) ⊃ fib(n + 2, f + f ′)].

The nth Fibonacci number is F iff Γ ` G .
If fib(·, ·) is negative then the unique proof is exponential in n.
If fib(·, ·) is positive then the shortest proof is linear in n.
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