
Logic and Logic Programming:

a personal account

Dale Miller

INRIA and LIX/Ecole Polytechnique, France

22 November 2005. Prepared for the
Newsletter of the Association for Logic Programming.

1 Introduction

I was asked to provide a personal perspective on some aspects of the development
of logic programming. Since 2006 is the 20 year anniversary of my first paper
on logic programming, I will use this invitation to reflect on those two decades
and to list some lessons I have learned and some future directions for research.

In 1983, I tried to make the jump from being a student in Mathematics to
a junior professor in Computer Science. I guessed that a good way to proceed
was to apply what I had learned about logic and theorem proving as a graduate
student to the topic of logic programming. Now 20 years later, I am still working
at relating logic and computation, but now I commonly apply lessons that I have
learned from computing to understanding logical principles.

2 λProlog

It might be hard to believe now, but automated deduction in higher-order logic
was not a popular topic in the mid-1980’s. At that time, there was just the odd
paper about resolution, unification, Herbrand’s theorem, etc, for higher-order
logics, and, of course, there were few computer systems that implemented a
higher-order logic. Basing logic programming on higher-order logic was a bit of
a stretch.

The functional programming community was, however, making great strides
then with all things higher-order: functions as first-class values, closures/thunks,
higher-order types, polymorphism, etc. Since my PhD had been on higher-order
logic, an obvious question for me was: could Prolog follow this modern trend
and admit higher-orders and other forms of abstractions?

In 1985 and 1986, G. Nadathur and I started writing about and building
prototype implementations for what we called λProlog: an extension of Pro-
log that contained polymorphic typing, higher-order quantification, and higher-
order unification. By 1989, the language grew to its current size when it became
based on hereditary Harrop formulas, thereby giving λProlog a logically sup-
ported notion of modular programming and abstract data-types.

While λProlog provides a clean, logical foundation for higher-order program-
ming that interacts cleanly with its version of modular programming, it was an-
other aspect of λProlog that caught the attention of its earliest users. λProlog

1



was the first programming language to contain a simple and declarative treat-
ment of expressions containing bound variables. Church in 1940 had described
a higher-order logic that completely internalized bindings into terms, and equal-
ity, and deduction. Since λProlog was described as a subset of Church’s logic,
this treatment of binding comes for free. F. Pfenning and C. Elliott in 1988
gave this new style of syntactic representation the name “higher-order abstract
syntax”: to me, this new approach to computing on syntax is the most novel
aspect of λProlog.

3 Sequent calculus

λProlog rests on higher-order intuitionistic logic, which was, at that time, a new
logical foundations for logic programming. Such a shift in logical foundations
was hard to sell 20 years ago. There was the fear then that if one leaves the well
understood and familiar world of first-order classical logic for some other logic,
then what was to stop the onslaught of “adjective pilings”? That is, if we admit
that the center of the world might not be first-order classical logic, then how do
we respond when someone claims that the world should revolve around “higher-
order hyper-abductive modal fuzzy logic over finite constraints”. This certainly
sounded frightening to me as well, so I started to look for some discipline that
could guide us.

In the mid-1980’s, there was no general framework for understanding the role
of logical constants and connectives in logic programming: instead, there was
exactly one example in the literature, namely, first-order Horn clauses. Around
this time, J. Jaffar, J.-L. Lassez, and others were developing the more general
notion of constraints, but that work kept the centrality of Horn clauses while
extending the way that first-order terms were constrained.

One could, of course, employ unrestricted logical formulas as logic programs
and use a general purpose theorem prover for an interpreter. Such a design,
however, misses the important point that searching for a proof in a logic pro-
gramming language is a simple and structured activity. In particular, search is
goal-directed and the role of the logic program is to prove atomic goal formulas
by translating them, via backchaining, to other goal formulas. For example,
SLD-resolution provides exactly that structure to proof search for Horn clauses.
Unfortunately, resolution does not extend easily to other logics and its structure
is not simple and transparent, in the sense that the resolution rule involves an
interplay of quantification, conjunction, disjunction, negation, and equality, all
at once.

The discipline that we finally settled on was to develop a theory for proof

search using Gentzen’s sequent calculus. We introduced the technical notion of
uniform proof and defined a logic to be an abstract logic programming language

if uniform proofs are complete. This definition provided a formalization of
goal-directed search, in the sense that logical connectives in the goal were to be
considered first; logic programs were considered only after a goal was reduced to
an atomic formula. Such atomic goals where then established using a sequent

2



calculus generalization of backchaining. The definitions of uniform proof and
backchaining have been employed to classify some new logics as appropriate or
inappropriate for logic programming.

Switching from viewing computation with logic programs as the search for
a resolution refutation to the search for a sequent calculus proof is not only
natural and pedagogic, it also frees logic programming from certain artifacts
of first-order classical logic. Gone is the reliance on conjunctive normal forms,
Skolemization, minimal models, and SLD-resolution. Instead, logic program-
ming benefits from the more universal notions of cut-elimination, explicit struc-
tural rules, eigenvariables, and permutability of inference rules.

4 Linear Logic

In 1987, J.-Y. Girard introduced linear logic. For many of us working in com-
putational logic, linear logic opened up broad new avenues for specifying com-
putations.

Since linear logic has a particularly elegant sequent calculus proof system,
it took little time for several people to propose ways to exploit linear logic
to make logic programming more expressive. J.-M. Andreoli and R. Pareschi
developed a linear logic programming language, LO, that provided an account
of concurrency and synchronization. J. Hodas and I took a different approach
and designed Lolli, which extended λProlog with the addition of the linear
implication. Probably a half dozen other subsets of linear logic programming
languages appeared in the first years of the 1990’s and many of these made use
of uniform proofs to help justify their designs.

Given that LO and Lolli were based on two different subsets of linear logic,
I formed their union, named it Forum (this was 1993), and tried to prove that
uniform proofs were complete for it. While trying to do this proof, I remem-
bered that in his 1990 PhD thesis, Andreoli had discovered a normal form for
proof search in linear logic. He had found that proof search in linear logic could
be conducted in two phases: one decomposes certain connectives invertibly (the
asynchronous phase) and the other decomposes the remaining connectives in
a constrained and focused fashion (the synchronous phase). Together, these
two phases describe focused proofs. As it turned out, a focused proof naturally
corresponds to a uniform proof: the asynchronous decomposition phase corre-
sponds to goal-reduction and the synchronous decomposition phase corresponds
to backchaining. Since focused proofs are complete for linear logic, all of linear
logic (as well as Forum) can be viewed as an abstract logic programming lan-

guage. This fact also meant that the search for new linear logic programming
languages stopped quickly.

Linear logic is a modular refinement of both classical and intuitionistic log-
ics. Modularity means, for example, that if a Lolli program is mostly a λProlog
program except that it occasionally uses the linear implication, then the op-
erational behavior of that program can be seen as being mostly intuitionistic
except for occasional linear behaviors. Only when genuinely linear features are

3



used do the novel operational aspects of linear logic get involved. Thus linear
logic provides a single framework for describing logic programs based on Horn
clauses, hereditary Harrop formulas, LO, Lolli, and Forum.

5 Reasoning about logic programs

Having found that the search for more expressive linear logic programming lan-
guages was finished, my attention turned from design to a more basic question:
Why should anyone care about new logic programming languages? When try-
ing to motivate λProlog and linear logic programming languages, we did, of
course, present lots of examples of tasks that we could program elegantly and
more declaratively than in weaker logics. While elegance and declarativeness
might be ends in themselves for a theoretician, they are not, of course, the
full story for judging the value of a programming language. One thing that
seemed clear when using a high-level, declarative programming language is that
the correctness of programs should be easier to validate than if those programs
were written in a more low-level and less declarative language. This suggests
a research project: once you have written a program in a logic program lan-
guage, how do you know that it is correct? How can you formally prove that
the program, as an artifact, has such-and-such properties? Do the new logical
primitives of rich logic programming languages help in showing correctness?

Formal reasoning about Horn clause programs has been studied by several re-
searchers. In this setting, inductive theorem proving using conventional provers
can establish many properties. On the other hand, it seemed quite difficult to
use conventional provers to reason about intuitionistic or linear logic programs
that employed higher-order abstract syntax. Several attempts at doing so gen-
erally provided particular solutions involving heavy encodings and unnatural
proofs. Many people who were attracted to higher-order abstract syntax for its
naturalness of expressing computation were disappointed that reasoning with
that style of syntactic representation was unsatisfactory in conventional provers.
It seemed to me that formalized reasoning of logic programs required some new
designs for logic and theorem proving.

Since 1995, I’ve been working with several colleagues to develop a new logic
in which one can reason directly on logic programs in order to infer properties
that they might satisfy. To date, our conclusions can be summarized by saying
roughly that if we keep object-level and meta-level logics clearly separated, con-
sider (meta-level) logic programs as denoting their “if-and-only-if” completion,
provide for induction and co-induction proof rules, and introduce the ∇ (nabla)
quantifier for the treatment of generic judgments (for handling higher-order ab-
stract syntax), then we can start getting rather nice proofs of formal properties
of logic programs. The resulting logic, developed over several years by R. Mc-
Dowell, A. Tiu, and myself, is called LINC, and is the centerpiece of an INRIA
project called Parsifal. Within this project, we are attempting to automate
various subsets of LINC in order to help infer properties of logic programs and
the tasks that they specify.

4



6 Some lessons I learned

I repeat here a few lessons that I have learned about doing research in compu-
tational logic.

Examples are central. The most important thing that one should do before
seriously proposing a new logic or a new programming language designs is to
collect examples, a lot of examples. Examples give one confidence that a design
might be worth all the work involved in proving theorems (and having read-
ers understand the proofs) and in building implementations. I can, of course,
support this claim with the following two examples.

The intuitionistic foundations of λProlog allows programs to grow monoton-
ically during computation. This feature of λProlog provided both elegant exam-
ples and troubling counter-examples in four different application areas. While
λProlog can model a database in which new facts can be added, it could not
model naturally a database where facts could be changed or deleted. A theorem
prover in λProlog can elegantly encode hypothetical reasoning by allowing the
addition of new hypotheses as new logic programming clauses. Unfortunately,
once an assumption is used it could not be deleted, and our elegant theorem
provers always go into cycles repeatedly reusing the same assumption. λProlog
could model object-oriented programming by encapsulating methods and state,
but that state could not be changed: a switch could not be moved from on to
off but could only be made to have both the on and off values. Finally, in pars-
ing relative clauses, gap threading could be modeled directly using hypothetical
reasoning except that there was no way to enforce the restriction that the hy-
pothetical gap was actually used. These counter-examples, however, proved
valuable since they became examples of just the kind of thing you could expect
to solve using linear logic. In fact, the Lolli language managed to maintain the
good aspects of the above examples while fixing the counter-examples.

The π-calculus has proved an invaluable example for me since I first heard R.
Milner speak about it in 1991. This small, expressive calculus has many features
that are challenging from the logic programming point-of-view. I initially tried
to map the operational semantics of the π-calculus directly into linear logic:
parts of the language seemed to be represented well but many other aspects of
the full language could not be addressed in my initial approach. It was easy
to show that the π-calculus’s operational semantics could be written directly
and elegantly as a λProlog program, but λProlog proved inadequate for doing
the most basic reasoning about the π-calculus, namely, computing bisimulation.
R. McDowell, C. Palamidessi, and I managed to use proof search to capture
bisimulation but only for weaker languages (say, CCS) than the π-calculus.
Finally, Tiu and I developed the ∇ quantifier and with that we could finally
capture bisimulation for the full π-calculus. The π-calculus was a high quality
example: it productively guided my research in logic programming for a number
of years and its universal character also helped to ensure that our eventual
solutions for it would also lead to successes in many other computation systems.

5



Prototype implementations help in finding and understanding exam-

ples. Given that examples are so important, prototype implementations are
key for developing large and significant examples. Fortunately, there are now a
number of high-level programming languages that make it possible to develop
prototypes that are not much more complicated than a high-level definition of a
system one might consider publishing. My own prototypes are usually written
in the Teyjus implementation of λProlog or in some variant of ML.

Proof theory is an alternative to model theory for justifying logic pro-

gramming. Clearly one needs to provide some structure to a language design
if we are to call it a logic programming language. For a long time, that structure
had come from model theory. In recent years, practitioners of Tarskian-style se-
mantics and of category theory have developed sufficient semantic muscle to
be able to build models that are sound and complete for almost any syntactic
system. It would seem that one cannot simply refer to soundness and complete-
ness results as the justification of a good design. As should be clear from my
discussions above, proof theory can take a central role in helping to justify logic
design. The demands on describing a logic within proof theory (for example,
proving a cut-elimination theorem) seems to force deep connections between
logic and its computational nature.

Elegance is not an option. Although it is quoted often, G. H. Hardy’s words
(from A Mathematician’s Apology) are worth repeating here: “Beauty is the first
test: there is no permanent place in the world for ugly mathematics.” Work
on logic programming should focus on staying declarative and being elegant:
there is no permanent place for a hacked design. Of course, the hack might get
something to work today, but it is important to find, understand, and exploit
more universal lessons. Logic is a challenging framework for computation: much
can be gained by rising to that challenge and trying to see the logical princi-
ples that can guide the development of computation systems and our ability to
understand them.

7 Future directions

I find the topic of logic and computation healthy and exciting. Another 20 years
of following where this topic takes me would be a pleasure. Below are a few
directions I currently think are interesting future directions.

Model checking as deduction. There should be some nice consequences of
identifying model checking with deduction. To the extent that this is possible,
logic programming should provide avenues for not only implementing model
checking but also extending it to more and more syntactic domains. Broader
questions of logic should also help in reasoning about the correctness of model
abstraction. Some of the performance engineering that goes into model checkers
might also impact logic program implementations.

6



Better implementations of linear logic programming. It would be nice
to see improvements to the implementations of linear logic programming lan-
guages. Proof search in full linear logic is quite complicated and a few researchers
are looking at this problem. There might well be subsets of the full problem for
which modular and low cost implementations could be built and possibly added
to existing logic programming implementations.

Support for operational semantics. People who design and reason about
specification languages and programming languages commonly employ high-
level and declarative specification languages. For example, lexical analysis is
described using finite automata and language syntax is described using gram-
mars. The logic programming community has long been able to provide good
quality implementations of both of these specification languages. The static
semantics (such as typing) and dynamic semantics (such as evaluation) of pro-
gramming languages are also described declaratively using inference rules in the
style of structured operational semantics. The logic programming community
can easily step into this domain of semantic specification and provide novel
symbolic systems for executing, compiling, type checking, debugging, etc, other
programming languages. Much recent work on operational semantics empha-
sizes program correctness and that is a topic to which implementors of logic

should be able to contribute significantly.

A neutral approach to proof and refutation. Assume that I have a Horn
clause program that doesn’t contain any loops. If I ask for a proof of the
(closed) goal formula G, then Prolog will terminate and report either “yes” or
“no”. The “yes” answer means that it has found a proof of G while the answer
“no” usually means that no proof of G is found. If we employ the “if-and-
only-if” completion of a logic program, however, the “no” response implies that
there is a proof of ¬G (from the completed program) and the full, finite failing
search is, in fact, the proof of that negation. Thus, Prolog did one computation
and depending on how that computation ended, it found a proof of G or of
¬G. This description of Prolog is a challenge to the proof search setting that
I have described above. One can argue that Prolog was, in fact, neutral to
whether or not it was doing proof or refutation, only deciding at the end of the
computation. Proof search, as we currently understand it, is not neutral in this
way: we are required to pick a formula or its negation prior to starting proof
search. An interesting question is whether or not this “neutral approach to
proof and refutation” can be applied to larger fragments of logic. Game theory
might provide the appropriate generalization: for example, a winning strategy
might provide a proof of G while a winning counter-strategy might provide a
proof of ¬G.

7


