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Abstract

Property-based testing (PBT) is a technique for validating code against an executable specifi-
cation by automatically generating test-data. We present a proof-theoretical reconstruction of
this style of testing for relational specifications and employ the Foundational Proof Certificate
framework to describe test generators. We do this by encoding certain kinds of “proof outlines”
as proof certificates that can be used to describe various common generation strategies in the
PBT literature, ranging from random to exhaustive, including their combination. We also ad-
dress the shrinking of counterexamples as a first step toward their explanation. Once generation
is accomplished, the testing phase is a standard logic programming search. After illustrating our
techniques on simple, first-order (algebraic) data structures, we first lift it to data structures
containing bindings using λ-tree syntax. The λProlog programming language is can perform
both the generation and checking of tests using this approach to syntax. We then further extend
PBT to specifications in a fragment of linear logic.

KEYWORDS: property based testing; relational specifications; metatheory of programming lan-
guages; λ-tree syntax; linear logic

1 Introduction

Property-based testing (PBT) is a technique for validating code that successfully combines

two well-trodden ideas: automatic test data generation trying to refute executable spec-

ifications. Pioneered by QuickCheck for functional programming (Claessen and Hughes

2000), PBT tools are now available for most programming languages and are having a

growing impact in industry (Hughes 2007). Moreover, this idea has spread to several proof

assistants (Blanchette et al. 2011; Paraskevopoulou et al. 2015) to complement (interac-

tive) theorem proving with a preliminary phase of conjecture testing. The synergy of PBT

with proof assistants is so accomplished that PBT is now a part of the Software Foun-

dations’s curriculum (https://softwarefoundations.cis.upenn.edu/qc-current).

In our opinion, this tumultuous rate of growth is characterized by a lack of common

(logical) foundation. For one, PBT comes in different flavors as far as data generation is

https://softwarefoundations.cis.upenn.edu/qc-current
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concerned: while random generation is the most common one, other tools employ exhaus-

tive generation (Runciman et al. 2008; Cheney and Momigliano 2017) or a combination

thereof (Dureg̊ard et al. 2012). At the same time, one could say that PBT is rediscovering

logic and, in particular, logic programming: to begin with, QuickCheck’s DSL is based

on Horn clause logic; LazySmallCheck (Runciman et al. 2008) has adopted narrowing to

permit less redundant testing over partial rather than ground terms; a recent version of

PLT-Redex (Felleisen et al. 2009) contains a re-implementation of constraint logic pro-

gramming in order to better generate well-typed λ-terms (Fetscher et al. 2015). Finally,

PBT in Isabelle/HOL features the notion of smart test generators (Bulwahn 2012), and

this is achieved by turning the functional code into logic programs and inferring through

mode analysis their data-flow behavior. We refer to the Related Work (Section 8) for

more examples of this phenomenon.

This paper considers the general setting of applying PBT techniques to logic specifi-

cations. In doing so, we also insist on the need to involve two levels of logic.

1. The specification-level logic is the logic of entailment between a logic program and a

goal. In this paper, logic programs can be Horn clauses, hereditary Harrop formulas,

or a linear logic extension of the latter. The entailment use at the specification level

is classical, intuitionistic, or linear.

2. The reasoning-level logic is the logic where statements about the specification level

entailment are made. For example, in this logic, one might try to argue that a certain

specification-level entailment does not hold. This level of logic can also be called

arithmetic since it involves least fixed points. In particular, our use of arithmetic

fits within the IΣ1 fragment of Peano arithmetic, which is known of coincide with

Heyting arithmetic (Friedman 1978). As a result, we can consider our uses of the

reasoning-level logic to be either classical or intuitionistic.

We shall use proof-theoretic techniques to deal with both of these logic levels. In

particular, instead of attempting some kind of amalgamation of these two levels, we

will encode into the reasoning logic inductively defined predicates that faithfully capture

specification-level terms, formulas, and provability. One of the strengths of using proof

theory (in particular, the sequent calculus) is that it allows for an elegant treatment of

syntactic structures with bindings (such as quantified formulas) at both logic levels. As

a result, our approach to PBT lifts from the conventional suite of examples to meta-

programming examples without significant complications.

Property-based testing requires a flexible way to specify what tests should be gener-

ated. This flexibility arises here from our use of foundational proof certificates (FPC) (Chi-

hani et al. 2017). Arising from proof-theoretic considerations, FPCs can describe proofs

with varying degrees of detail: in this paper, we use FPCs to describe proofs in the speci-

fication logic. For example, an FPC can specify that a proof has a certain height, size, or

satisfies a specific outline (Blanco and Miller 2015). It can also specify that all instantia-

tions for quantifiers have a specific properties. By employing standard logic programming

techniques (e.g., unification and backtracking search), the very process of checking that a

(specification-level) sequent has a proof that satisfies an FPC is a process that generates

such proofs, or more in general, results in an attempt to fill in the missing details. In this

way, a proof certificate goes through a proof reconstruction to yield a fully elaborated

proof that a trusted proof-checking kernel can accept. As we shall see, small localized
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changes in the specification of relevant FPCs allow us to account for both exhaustive and

random generation. We can also use FPCs to perform shrinking : this is an indispensable

ingredient in the random generation approach, whereby counterexamples are minimized

to be more easily understandable by the user.

Throughout this paper, we use λProlog (Miller and Nadathur 2012) to specify and

prototype all aspects of our PBT project. One role for λProlog is as an example of

computing within the Specification Logic. However, since the kinds of queries that PBT

requires of our Reasoning Logic are relatively weak, it is possible to use λProlog to

implement a prover for the needed properties at the reasoning level. The typing system

of λProlog will help clarify when we are using it at these two different levels: in particular,

logic program clauses are used as specifications within a reasoning level prover are given

the type sl instead of the usual type o of λProlog clauses.

If we are only concerned with PBT for logic specifications written using first-order

Horn clauses (as is the case for Sections 4 and 5), then the λProlog specifications can

be replaced with Prolog specifications without much change. However, this interchange-

ability between λProlog and Prolog disappears when we turn our attention to applying

PBT to meta-programming or, equivalently, meta-theory model-checking (Cheney and

Momigliano 2017). Although PBT has been used extensively with meta-theory specifi-

cations, there are many difficulties (Klein et al. 2012), mainly dealing with the binding

structures one finds within the syntax of many programming language constructs. In

that setting, λProlog’s support of λ-tree syntax (not found in Prolog) allows us to be

competitive with specialized tools, such as αCheck (Cheney and Momigliano 2017).

This paper is organized as follows. In the next two sections, we describe the two levels

of logic—the specification level and the reasoning level—whose importance we wish to

underline when applying PBT to logic programs. Section 4 gives a gentle introduction to

FPCs and their use for data generation. Section 5 shows how FPCs can be used to specify

many flavors of PBT flexibly. In Section 6 we lift our approach to meta-programming with

applications to the issue of confluence in the λ-calculus. Section 7 extends our approach

to a fragment of linear logic. We conclude with a review of related work (Section 8).

This paper significantly extends our conference paper (Blanco et al. 2019) by clarifying

the relationship between specification and reasoning logic, by tackling new examples and

by including logic specifications based on linear logic. The code mentioned in this paper

can be found at

https://github.com/proofcert/pbt/tree/journal

2 The specification logic SL

Originally, logic programming was first based on relational specifications (i.e., formulas

in first-order predicate logic) given as Horn clauses. Such clauses can be defined as closed

formulas of the form ∀x̄[G ⊃ A] where x̄ is a list of variables (all universally quantified),

A is an atomic formula, and G (a goal formula) is a formula built using disjunctions,

conjunctions, existential quantifiers, true (the unit for conjunction), and atomic formu-

las. An early extension of the logic programming paradigm, called the hereditary Harrop

formulas, allowed both universal quantification and certain restricted forms of the intu-

itionistic implication (⊃) in goal formulas (Miller et al. 1991). A subsequent extension

https://github.com/proofcert/pbt/tree/journal
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of that paradigm, called Lolli (Hodas and Miller 1994), allowed universal quantifiers and

certain uses of the linear implication (() from Girard’s linear logic (Girard 1987).

Except for Section 7, we shall consider the following two classes of formulas.

D ::= G ⊃ A | ∀x : τ.D

G ::= A | tt | G1 ∨G2 | G1 ∧G2 | ∃x : τ.G | ∀x : τ.G | A ⊃ G

The D-formulas are also called program clauses and definite clauses while G-formulas are

goal formulas. We will omit type information when not relevant. Here, A is a schematic

variable that ranges over atomic formulas. Given the D-formula ∀x1 . . . ∀xn[G ⊃ A], we

say that G is the body and A is the head of that program clause. In general, every D-

formula is an hereditary Harrop formula (Miller et al. 1991), although the latter is a

much richer set of formulas.

kind nat type.

type z nat.

type s nat -> nat.

type nat nat -> o.

type nlist list nat -> o.

type append , rev list A -> list A -> list A -> o.

type reverse list A -> list A -> o.

nat z.

nat (s X) :- nat X.

nlist nil.

nlist (N::Ns) :- nat N, nlist Ns.

append nil K K.

append (X::L) K (X::M) :- append L K M.

reverse L K :- rev L K nil.

rev nil A A.

rev (X::L) K A :- rev L K (X::A).

Fig. 1. The λProlog specification of five predicates.

We use λProlog to display logic programs in this paper. For example, Figure 1 contains

the Horn clause specifications of five predicates related to natural numbers and lists.

The main difference between Prolog and λProlog that appears from this example is the

fact that λProlog is explicitly polymorphically typed. Another difference is that λProlog

allows goal formulas to contain universal quantification and implications.

Traditionally, entailment between a logic program and a goal has been described using

classical logic and a theorem proving technique called SLD-resolution refutations (Apt

and van Emden 1982). As is now common when intuitionistic (and linear) logics are

used within logic programming, refutations are replaced with proofs using Gentzen’s

sequent calculus (Gentzen 1935). Let P be a finite set of D-formulas and let G be a goal

formula. We are interested in finding proofs of the sequent P −→ G. As it has been shown

in (Miller et al. 1991), a simple, two-phase proof search strategy based on goal reduction

and backchaining forms a complete proof system when that logic is intuitionistic logic.
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(For a survey of how Gentzen’s proof theory has been applied to logic programming,

see (Miller 2022).) In the next section, we will write an interpreter for such sequents: the

code for that interpreter is taken directly from that two-phase proof system.

3 The reasoning logic RL

The specification logic SL we presented in the previous section is not capable of proving

the negation of any atomic formula. This observation is an immediate consequence of

the monotoncity of SL: that is, if P ⊆ P ′ and A follows from P then A follows from

P ′. If ¬A is provable from P then both A and ¬A are provable from P ∪ {A}. Thus,

we must conclude that P ∪ {A} is inconsistent, but that is not possible since the set

P ∪ {A} is satisfiable (interpret all the predicates to be the universally true property for

their corresponding arity). For example, neither (reverse (z :: nil) nil) nor its negation

are provable from the clauses in Figure 1.

Clearly, any PBT setting must permit proving the negation of some formulas, since,

for example, a counterexample to the claim ∀x.[P (x) ⊃ Q(x)] is a term t such that P (t)

is provable and ¬Q(t) is provable. At least two different approaches have been used to

move to a stronger logic in which such negations are provable. The Clark completion of

Horn clause programs can be used for this purpose (Clark 1978). An advantage of that

approach is that it requires only using first-order classical logic (with an appropriate

specification of equality) (Apt and Doets 1994; Lloyd and Topor 1984). A disadvantage

is that it only seems to work for Horn clauses: this approach does not seem appropriate

when working with intuitionistic and linear logics.

In this paper, we follow an approach used in both the Abella proof assistant (Baelde

et al. 2014; Gacek et al. 2012) and the Hybrid (Felty and Momigliano 2012) library for

Coq and Isabelle. In those systems, a second logic, called the reasoning logic (RL, for

short), is used to give an inductive definition for the provability for a specification logic

(in those cases, the specification logic is a fragment of higher-order intuitionistic logic). In

particular, consider the λProlog specification in Figure 2. Here, terms of type sl denote

formulas in SL. The predicate <>== is used to encode the SL-level program clauses: for

example, the specification in Figure 3 encode the Horn clause programs in Figure 1.

Note that we are able to simplify our specification of the <>== predicate; the universal

quantification at the RL level can be used to encode the (implicit) quantifiers in the SL

level.

Figure 4 contains the single clause specification of interp that corresponds to its

Clark’s completion. (In λProlog, the existential quantifier ∃X is written as sigma X.)

This single clause can be turned directly into the least fixed point expression displayed

in Figure 4. The proof theory for RL specifications using fixed points and equality has

been developing since the 1990s. Early partial steps were taken by Girard (Girard 1992a)

and Schroeder-Heister (Schroeder-Heister 1993). Their approach was strengthen to in-

clude least and greatest fixed points for intuitionistic logic (McDowell and Miller 2000;

Momigliano and Tiu 2012). Applications of this fixed point logic were made to both

model checking (Heath and Miller 2019; McDowell et al. 2003) and to interactive theo-

rem proving (Baelde et al. 2014).

The full RL has a proof search problem that is truly difficult to automate since proofs

involving least and greatest fixed points require the proof search mechanism to invent
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kind sl type. % Specification logic formulas

type tt sl. % True

type and , or sl -> sl -> sl. % Conjunction and disjunction

type some (A -> sl) -> sl. % Existential quantifier

type eq A -> A -> sl. % Equality

infixr and 50.

infixr or 40.

infix eq 60.

type <>== sl -> sl -> o. % Storing sl clauses

infix <>== 30.

type interp sl -> o. % Interpreter of sl goals

interp tt.

interp (T eq T).

interp (G1 and G2) :- interp G1, interp G2.

interp (G1 or G2) :- interp G1 ; interp G2.

interp (some G) :- interp (G T).

interp A :- (A <>== G), interp G.

Fig. 2. The basic interpreter for Horn clause specifications

type nat nat -> sl.

type nlist list nat -> sl.

type append , rev list A -> list A -> list A -> sl.

type reverse list A -> list A -> sl.

(nat z) <>== tt.

(nat (s X)) <>== (nat X).

(nlist nil) <>== tt.

(nlist (N::Ns)) <>== ((nat N) and (nlist Ns)).

(append nil K K) <>== tt.

(append (X::L) K (X::M)) <>== (append L K M).

(reverse L K) <>== (rev L K nil).

(rev nil A A) <>== tt.

(rev (X::L) K A) <>== (rev L K (X::A)).

Fig. 3. The encoding of the Horn clauses in Figure 1 as atomic formulas in RL.

interp G :- (G = tt); (sigma T\ G = (T eq T));

(sigma H\ sigma K\ G = (H and K), interp H, interp K);

(sigma H\ sigma K\ G = (H or K), interp H; interp K);

(sigma H\ sigma T\ G = (some H), interp (H T)) ;

(sigma B\ G <>== B), interp B).

Fig. 4. An equivalent specification of interp as one clause.

I = µλIλg [g = tt ∨ (∃t. g = (t eq t))

∨ (∃h∃k. g = (h and k) ∧ (I h) ∧ (I k))

∨ (∃h∃k. g = (h or k) ∧ (I h) ∨ (I k))

∨ (∃h∃t. g = (some h) ∧ (I (h t)))

∨ (∃b. (g <>==b) ∧ (I b))]

Fig. 5. The least fixed point expression for interp.
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invariants (pre- and post-fixed points), a problem that is far outside the usual logic

programming search paradigm. Fortunately, for our purposes here, we will be attempting

to prove simple theorems in RL that are strictly related to queries about SL formulas.

In particular, we consider only the following kinds of theorems in RL. Let A and P be,

respectively, an atomic formula and a finite set of D-formulas in SL. Also, let Â be the

direct encodings of A into a term of type sl, and let P̂ be a set of RL atomic formulas

using the <>== predicate that encodes the Horn clauses in P.

1. (I Â) is RL-provable from P̂ if and only if A is SL-provable from P. In addition,

these are also equivalent to the fact that (interp Â) is provable from P̂ using the

logic program for the interpreter in Figure 2.

2. If λProlog’s negation-as-finite-failure procedure (NAF) succeeds for the goal (interp Â)

with respect to the program P (using the logic program for the interpreter in Fig-

ure 2), then ¬(I Â) is RL-provable from P̂ (Hallnäs and Schroeder-Heister 1991).

In this case, there is no SL-proof of A from P.

Note that the second statement above is not an equivalence: that is, there may be proofs

of ¬(I Â) in RL, which will not be captured by negation-as-finite-failure. For example, if

p is an atomic SL formula and P is the set containing just p ⊃ p, then the usual notion of

negation-as-finite-failure will not succeed with the goal p̂ and logic program containing

just p̂ <>== p̂, while there would be a proof (using induction) that ¬(I p̂).
Thus, we can use λProlog as follows. If λProlog proves (interp Â) then we know

that A is provable from P in SL. Also, if λProlog’s negation-as-finite-failure proves that

(interp Â) does not hold, then we know that A is not provable from P in SL. In

conclusion, although λProlog has limited abilities to prove formulas in RL, it can still be

used in the context of PBT where we require limited forms of inference in RL.

4 Controlling the generation of tests

4.1 Generate-and-test as a proof-search strategy

Imagine that we wish to write a relational specification for reversing lists. There are, of

course, many ways to write such a specification, say P, but in every case it should be

the case that if P ` (reverse L R) then P ` (reverse R L): that is, reverse is symmetric.

In the RL setting that we have described in the last section, this property can be

written as the formula

∀L∀K.(interp (reverse L K)) ⊃ (interp (reverse K L))

where we forgo the (̂ ) notation. If a formula like this is provable, it is likely that the

only such proofs would involve finding an appropriate induction invariant (and possibly

additional lemmas). In the property-based testing setting, we are willing to look, instead,

for counterexamples to a proposed property. In other words, we are willing to consider

searching for proofs of the negation of this formula, namely

∃L∃K.(interp (reverse L K)) ∧ ¬(interp (reverse K L)).

This formula might be easier to prove since it involves only standard logic programming

search mechanisms. Of course, proving this second formula would mean that the first

formula is not provable.
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More generally, we might wish to prove a number of formulas of the form

∀x : τ [(interp (P (x))) ⊃ (interp (Q(x)))]

where both P and Q are SL-level relations (predicates) of a single argument (it is an

easy matter to deal with more than one argument). Often, it can be important in this

setting to move the type judgment x : τ into the logic by turning the type into a predicate:

∀x[(interp (τ(x)∧P (x))) ⊃ (interp (Q(x)))]. As we mentioned above, it can be valuable

to first attempt to find counterexamples to such formulas prior to pursuing a proof. That

is, we might try to prove formulas of the form

∃x[(interp (τ(x) ∧ P (x))) ∧ ¬(interp (Q(x)))] (*)

instead. If a term t of type τ can be discovered such that P (t) holds while Q(t) does

not, then one can return to the specifications in P and Q and revise them using the

concrete evidence in t as a witness of how the specifications are wrong. The process of

writing and revising relational specifications should be smoother if such counterexamples

are discovered quickly and automatically.

The search for a proof of (∗) can be seen as essentially the generate-and-test paradigm

that is behind much of property-based testing. In particular, a proof of (∗) contain the

information needed to prove

∃x[(interp (τ(x) ∧ P (x)))] (**)

Conversely, not every proof of (∗∗) yields, in fact, a proof of (∗). However, if we are

willing to generate proofs of (∗∗), each such proof yields a term t such that [τ(t) ∧ P (t)]

is provable. In order to achieve a proof of (∗), we only need to prove ¬Q(t). In the proof

systems used for RL, such a proof involves only negation-as-finite-failure: that is, all

possible paths for proving Q(t) must be attempted and all of these must end in failures.

Of course, there can be many possible terms t that are generated in the first steps of

this process. We next show how the notion of a proof certificate can be used to flexibly

constraint the space of terms that can generated for consideration against the testing

phase.

4.2 Proof certificate checking with expert predicates

Recall that we assume that the SL is limited so that D-formulas are Horn clauses. We

shall consider the full range of D and G-formulas in Section 6 when we consider PBT for

metaprogramming.

Figure 6 contains a simple proof system for Horn clause provability that is augmented

with proof certificate (using the schematic variable Ξ) and additional premises involving

expert predicates. The intended meaning of these augmentations are the following: proof

certificates contain some description of a proof. That outline might be detailed or it might

just provide some hints or constraints on the proofs it describes. The expert predicates

provide additional premises that are used to “extract” information from proof certificates

(in the case of ∨ and ∃) and to provide continuation certificates where needed.

Figure 7 contains the λProlog implementation of the inference rules in Figure 6:

here the infix turnstile ` symbol is replaced by the check predicate and the predi-

cates ttE, andE, orE, someE, eqE, and backchainE name the predicates tte(·), ∧e(·, ·, ·),
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tte(Ξ)

Ξ ` tt
Ξ1 ` G1 Ξ2 ` G2 ∧e(Ξ,Ξ1,Ξ2)

Ξ ` G1 ∧G2

Ξ′ ` Gi ∨e(Ξ,Ξ′, i)

Ξ ` G1 ∨G2

Ξ′ ` G[t/x] ∃e(Ξ,Ξ′, t)

Ξ ` ∃x : τ.G
(1)

=e(Ξ)

Ξ ` t = t

Ξ′ ` G backchaine(A,Ξ,Ξ
′)

Ξ ` A (2)

The two provisos (1) and (2) are:

1. The term t is of type τ .
2. There is a program clause ∀x̄(G′ ⊃ A′) ∈ P and a substitution for the variables x̄ such

that A is A′θ and G is G′θ.

Fig. 6. A proof system augmented with proof certificates and “expert” predicates.

% Certificates

kind cert type.

kind choice type.

type left , right choice.

% The types for the expert predicates

type ttE , eqE cert -> o.

type backchainE sl -> cert -> cert -> o.

type someE cert -> cert -> A -> o.

type andE cert -> cert -> cert -> o.

type orE cert -> cert -> choice -> o.

% Certificate checker

type check cert -> sl -> o.

check Cert tt :- ttE Cert.

check Cert (T eq T) :- eqE Cert.

check Cert (G1 and G2) :- andE Cert Cert1 Cert2 ,

check Cert1 G1 , check Cert2 G2.

check Cert (G1 or G2) :- orE Cert Cert ’ LR ,

((LR = left , check Cert ’ G1);

(LR = right , check Cert ’ G2)).

check Cert (some G) :- someE Cert Cert1 T, check Cert1 (G T).

check Cert A :-

backchainE A Cert Cert ’, (A <>== G), check Cert ’ G.

Fig. 7. A simple proof checking kernel.

∨e(·, ·, ·), ∃e(·, ·, ·), =e(·), and backchaine(·, ·, ·) used as premises in the inference rules

in Figure 6. The intended meaning of the predicate check Cert G is that there exists

a proof of G from the Horn clauses in P that fits the outline prescribed by the proof

certificate Cert. Note that it is easy to show that no matter how the expert predicates

are defined, if the goal check Cert G is provable in λProlog then the goal interp G is

provable in λProlog and, therefore, G is a consequence of the program clauses stored in

P.

A proof certificate will be any term of type cert (see Figure 7) and an FPC is a logic

program that specifies the meaning of the (six) expert predicates. For example, Figure 8

declares two constructors for certificates and displays two FPCs, i.e., the clauses describ-
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type height int -> cert.

type sze int -> int -> cert.

ttE (height _).

eqE (height _).

orE (height H) (height H) _.

someE (height H) (height H) _.

andE (height H) (height H) (height H).

backchainE _ (height H) (height H’) :- H > 0, H’ is H - 1.

ttE (sze In In).

eqE (sze In In).

orE (sze In Out) (sze In Out) _.

someE (sze In Out) (sze In Out) _.

andE (sze In Out) (sze In Mid) (sze Mid Out).

backchainE _ (sze In Out) (sze In ’ Out) :-

In > 0, In’ is In - 1.

Fig. 8. Two FPCs that describe proofs that are limited in either height or in size.

kind max type.

type max max -> cert.

type binary max -> max -> max.

type choose choice -> max -> max.

type term A -> max -> max.

type empty max.

ttE (max empty).

eqE (max empty).

orE (max (choose C M)) (max M) C.

someE (max (term T M)) (max M) T.

andE (max (binary M N)) (max M) (max N).

backchainE _ (max M) (max M).

Fig. 9. The max FPC

ing how the expert clauses treat certificates based on these two constructors. Specif-

ically, the first FPC defines the experts for treating certificates that are constructed

using the height constructor. As is easy to verify, the query (check (height 5) G)

(for the encoding G of a goal formula) is provable in λProlog using the clauses in Fig-

ures 7 and 8 if and only if the height of that proof is 5 or less. Similarly, the sec-

ond FPC uses the constructor sze1 (with two integers) and can be used to bound the

total number of instances of backchaining steps in a proof. In particular, the query

(sigma H\ check (sze 5 H) G) is provable if and only if the total number is 5 or less.

Figure 9 contains the FPC based on the constructor max that is used to record explic-

itly all information within a proof, not unlike a proof-term in type theory: in particular,

all disjunctive choices and all substitution instances for existential quantifiers are col-

lected into a binary tree structure of type max. In this sense, proof certificates built with

1 This spelling is used since “size” is a reserved word in the Teyjus compiler for λProlog (Qi et al. 2015).
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this constructor are maximally explicit. Such proof certificates are used, for example,

in (Blanco et al. 2017); it is important to note that proof checking with such maximally

explicit certificates can be done with much simpler proof-checkers than those used in

logic programming since backtracking search and unification are not needed.

A characteristic of the FPCs that we have presented here is that none contain the

substitution terms used in backchaining. At the same time, they may choose to explicitly

store substitution information for the existential quantifiers in goals (see the max FPC

above). While there is no problem in reorganizing our setting so that the substitution

instances used in the backchaining inference are stored explicitly (see, for example, (Chi-

hani et al. 2017)), we find our particular design convenient. Furthermore, if we wish to

record all the substitution instances used in a proof, we can write logic programs in the

Clark completion style (Clark 1978). In that case, all substitutions used in specifying

backchaining are also captured by explicit existential quantifiers in the body of those

clauses.

If we view a particular FPC as a means of restricting proofs, it is possible to build an

FPC that restricts proofs satisfying two FPCs simultaneously. In particular, Figure 10

defines an FPC based on the (infix) constructor <c>, which pairs two terms of type

cert. The pairing experts for the certificate Cert1 <c> Cert2 simply request that the

corresponding experts also succeed for both Cert1 and Cert2 and, in the case of the orE

and someE, also return the same choice and substitution term, respectively. Thus, the

query

?- check (( height 4) <c> (sze 10 H)) G

will succeed if there is a proof of G that has a height less than or equal to 4 while also

being of size less than or equal to 10. A related use of the pairing of two proof certificates

is to distill or elaborate proof certificates. For example, the proof certificate (sze 5 0)

is rather implicit since it will match any proof that used backchain exactly 5 times.

However, the query

?- check ((sze 5 0) <c> (max Max)) G.

will store into the λProlog variable Max more complete details of any proof that satisfies

the (sze 5 0) constraint. These maximal certificates are an appropriate starting point

for documenting both the counterexample and why it serves as such. In particular, this

forms the infrastructure of an explanation tool for attributing “blame” for the origin of

a counterexample.

Various additional examples and experiments using the pairing of FPCs can be found

in (Blanco et al. 2017). Using similar techniques, it is possible to define FPCs that target

specific types for special treatment: for example, when generating integers, only (user-

defined) small integers can be inserted into counterexamples.

5 PBT as proof elaboration in the reasoning logic

The two-level logic approach resembles the use of meta-interpreters in logic programming.

Particularly strong versions of such interpreters have been formalized in (McDowell and

Miller 2002; Gacek et al. 2012) and exploited in (Baelde et al. 2014; Felty and Momigliano

2012). In our generate-and-test approach to PBT, the generation phase is controlled by
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type <c> cert -> cert -> cert.

infixr <c> 5.

ttE (A <c> B) :- ttE A, ttE B.

eqE (A <c> B) :- eqE A, eqE B.

someE (A <c> B) (C <c> D) T :- someE A C T, someE B D T.

orE (A <c> B) (C <c> D) E :- orE A C E, orE B D E.

andE (A <c> B) (C <c> D) (E <c> F) :- andE A C E, andE B D F.

backchainE At (A <c> B) (C <c> D) :-

backchainE At A C, backchainE At B D.

Fig. 10. FPC for pairing

using appropriate FPCs, and the testing phase is performed by the standard, vanilla

meta-interpreter (such as the one in Figure 2).

To illustrate this division between generation and testing, consider the following two

simple examples. Suppose we want to falsify the assertion that the reversal of a list is equal

to itself. The generation phase is steered by the predicate check, which uses a certificate

(its first argument) to produce candidate lists according to a generation strategy. The

testing phase performs the list reversal computation using the meta-interpreter interp,

and then negates the conclusion using negation-as-finite-failure, yielding the clause:

prop_rev_id Gen Xs :- check Gen (nlist Xs),

interp (rev Xs Ys),

not (interp (Xs eq Ys)).

If we set Gen to be say height 3, the logic programming engine will return, among

others, the answer Xs = s z :: z :: nil. Note that the call to not is safe since, by

the totality of rev, Ys will be ground at calling time.

As a second simple example, the testing of the symmetry of reverse can be written as:

prop_rev_sym Gen Xs :- check Gen (nlist Xs),

interp (rev Xs Ys),

not (interp (rev Ys Xs)).

Unless one’s implementation of reverse is grossly mistaken, the engine should complete

its search (according to the prescriptions of the generator Gen) without finding a coun-

terexamples.

We now illustrate how we can capture in our framework various flavors of PBT.

5.1 Exhaustive generation

While PBT is traditionally associated with random generation, several tools rely on

exhaustive data generation up to a bound (Sullivan et al. 2004) — in fact, such strategy

is now the default in Isabelle/HOL’s PBT suite (Blanchette et al. 2011). In particular,

1. (Lazy)SmallCheck (Runciman et al. 2008) views the bound as the nesting depth of

constructors of algebraic data types.
2. αCheck (Cheney et al. 2016) employs the derivation height.

Our sze and height FPCs in Figure 8, respectively, match (1) and (2) and, therefore,

can accommodate both.
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One minor limitation of our method is that, although check Gen P will generate

terms up to the specified bound when using either sze or height for Gen, the logic

programming engine will enumerate these terms in reverse order, starting from the

bound and going downwards, during a PBT query. For example, a query such as

?- prop_rev_id (height 10) Xs will return larger counterexamples first, starting here

with a list of nine 0 and a 1. This means that if we do not have a good estimate of the

dimension of our counterexample, our query may take an unnecessary long time or even

loop.

A first fix, as we have seen, is certificate pairing. The query

?- prop_rev_id (( height 10) <c> (sze 6 _)) Xs

will converge quickly, quicker in fact that with the separate bounds, to the usual minimal

answer. However, we still ought to have some idea about the dimension of the counterex-

ample beforehand and this is not realistic. Yet, it is easy, thanks to logic programming,

to implement a simple-minded form of iterative deepening, where we backtrack over an

increasing list of bounds:

prop_rev_sym_it Start End Xs :-

mk_list Start End Range , member H Range ,

check (height H) (nlist Xs),

interp (rev Xs Ys),

not (interp (Xs eq Ys)).

Here, mk_list Start End Range holds when Start,End are positive integers and Range

is the of list natural numbers [Start,...,End]. In addition, we can choose to express

size as a function of height — of course this can be tuned by the user, depending on the

data they are working with:

prop_rev_sym_it Start End Xs :-

mk_list Start End Range , member H Range , Sh is H * 3,

check (( height H) <c> (sze Sh _)) (nlist Xs),

interp (rev Xs Ys),

not (interp (Xs eq Ys)).

While these test generators are easy to construct, they have the drawback of recom-

puting candidates at each level. A better approach is to introduce an FPC for a form of

iterative deepening for exact bounds, where we output only those candidates requiring

that precise bound. This has some similarity with the approach in Feat (Dureg̊ard et al.

2012). We will not pursue this avenue here.

5.2 Random generation

The FPC setup can be extended to support random generation of candidates. The idea

is to implement a form of randomization of choice points: when a choice appears, we

flip a coin to decide on which case to choose. There are two major sources of choice

in running a logic program: which disjunct in a disjunction to pick and which clause

to on which to backchain. In this subsection, we will assume that there is only one

clause for backchaining: this can be done by putting clauses into their Clark-completion

format (Clark 1978). Thus, both forms of choice are represented as the selection of a

disjunct within a disjunction. For example, we shall write the definitions of the nat and

nlist predicates from Figure 3 as follows.
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type random cert.

ttE random.

eqE random.

orE random random Choice :- next_bit I,

((I = 0, Choice = left); (I = 1, Choice = right)).

someE random random _.

andE random random random.

backchainE _ random random.

Fig. 11. FPC for random generation

(nat N) <>== (N eq z) or

(some N’\ N eq (s N’) and (nat N’)) or ff.

(nlist L) <>== (L eq nil) or

(some N\ some Ns\ L eq (N::Ns) and (nat N)

and (nlist Ns)) or ff.

In these two examples, the body of clauses is written as a list of disjunctions: that is, the

body of such clauses is written as

D1 or D2 or · · ·Dn or ff,

where n ≥ 1 and D1, . . . , Dn are formulas that are not disjunctions. (Here, false, written

as ff, represents the empty list of disjunctions.) This choice of writing the body of clauses

will make it easier to specify a probability distribution to the disjunctions D1, . . . , Dn

(see the FPC defined in Figure 12).

A simple FPC given by the constructor random is described in Figure 11. Here, we

assume that the predicate next_bit can access a stream of random bits.

A more useful random test generator is based on a certificate instructing the kernel

to select disjunctions according to certain probability distributions. The user can specify

such a distribution in a list of weights assigned to each disjunction. In the examples

we consider here, these disjuncts appear only at the top level of the body of the clause

defining a given predicate. When the kernel encounters an atomic formula, the backchain

expert backchainE is responsible for expanding that atomic formula into its definition,

which is why the expert is indexed by an atom. At this stage, it is necessary to consider

the list of weights assigned to individual predicates.

Consider the FPC specification in Figure 12. This certificate has two constructors. The

constant noweight indicates that no weights are in force at this part of the certificate.

The other certificate is of the form cases Rnd Ws Acc, where Rnd is a random number

(between 0 and 127 inclusively), Ws are the remaining weights for the remaining disjunc-

tions, and Acc is the accumulation of the weights that have been skipped at this point in

the proof-checking process. The value of this certificate is initialized (by the backchainE

expert) to be cases Rnd Ws 0 using the a random 7-bit number Rnd (which can be com-

puted by calling next_bit seven times) and a list of weights Ws stored in the weights

predicate associated to the atomic formula that is being unfolded.

The weights (in Figure 12) used here for nat-atoms selects the first disjunction (for

zero) one time out of four and select the successor clause in the remaining cases. Thus,
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type noweight cert.

type cases int -> list int -> int -> cert.

ttE noweight.

eqE noweight.

andE noweight noweight noweight.

someE noweight noweight _.

backchainE Atom noweight (cases Rnd Ws 0) :-

weights Atom Ws , read_7_bits Rnd.

orE (cases Rnd (W::Ws) Acc) Cert Choice :- Acc ’ is Acc + W,

((Acc ’ > Rnd , Choice = left , Cert = noweight) ;

(Acc ’ =< Rnd , Choice = right , Cert = (cases Rnd Ws Acc ’))).

weights (nat _) [32 ,96].

weights (nlist _) [32 ,96].

iterate N :- N > 0.

iterate N :- N > 0, N’ is N - 1, iterate N’.

Fig. 12. An FPC that selects randomly from a weighted disjunct.

this weighting scheme favors selecting small natural numbers. The weighting scheme for

nlist similarly favors short lists. For example, the query2

iterate 5, check noweight (nlist L).

would then generate the following stream of five lists of natural numbers (depending, of

course, on the random stream of bits provided).

L = nil

L = nil

L = s (s (s (s (s (s z))))) :: s (s (s (s (s (s (s z)))))) :: z ::

s (s z) :: s (s (s z)) :: s z :: s z ::

s (s (s (s (s (s (s (s (s (s (s (s (s (s z))))))))))))) ::

s z :: z :: nil

L = s z :: z :: z :: s z :: s (s (s (s (s (s (s (s z))))))) :: nil

L = s z :: s (s (s (s (s (s z))))) :: nil

As an example of using such randomize test case generation, the query

iterate 10, check noweight (nlist L),

interp (reverse L R) ,

not (interp (reverse R L))) .

will test the property that reverse is a symmetric relation on 10 randomly selected short

lists of small numbers.

As we mention in Section 8, this is but one strategy for random generation and quite

possibly not the most efficient one, as the experiments in (Blanco et al. 2019) indicate.

2 You can only execute this and the next query with an implementation that can access a stream of
random bits. This is not shown here.
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kind item type.

type c_nat nat -> item.

type c_list_nat list nat -> item.

type subterm item -> item -> o.

type collect list item -> list item -> cert.

ttE (collect In In).

eqE (collect In In).

orE (collect In Out)

(collect In Out) C.

andE (collect In Out) (collect In Mid) (collect Mid Out).

backchainE _ (collect In Out) (collect In Out).

someE (collect [( c_nat T) | In] Out)

(collect In Out) (T : nat).

someE (collect [( c_list_nat T)|In] Out)

(collect In Out) (T : list nat).

subterm Item Item.

subterm Item (c_nat (succ M)) :- subterm Item (c_nat M).

subterm Item (c_list_nat (Nat::L)) :- subterm Item (c_nat Nat) ;

subterm Item (c_list_nat L).

Fig. 13. An FPC for collecting substitution terms from proof and a predicate to compute

subterm.

In fact, programming random generators is an art (Hritcu et al. 2013; Fetscher et al.

2015; Lampropoulos et al. 2018) in every PBT approach. We can, of course, use the

pairing of FPCs (Figure 10) to help filter and fully elaborate structures generated using

the randomization techniques mentioned above.

5.3 Shrinking

Randomly generated data that raise counter-examples may be too large to be the basis

for the often frustrating process of bug-fixing. For a compelling example, look no further

than the run of the information-flow abstract machine described in (Hritcu et al. 2013).

For our much simpler example, there is certainly a smaller counter-example than the

above for our running property, say z :: s z :: nil.

Clearly, it is desirable to find automatically such smaller counterexamples. This phase

is known as shrinking and consists of creating a number of smaller variants of the bug-

triggering data. These variants are then tested to determine if they induce a failure. If

that is the case, the shrinking process can be repeated until we get to a local minimum.

In the QuickCheck tradition, shrinkers, as well as custom generators, are the user’s

responsibility, in the sense that PBT tools offer little support for their formulation. This

is particularly painful when we need to shrink modulo some invariant, e.g., well-typed

terms or meaningful sequences of machine instructions.

One way to describe shrinking using FPCs is to follow the following outline.
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type huniv (item -> o) -> cert.

ttE (huniv _).

eqE (huniv _).

orE (huniv Pred) (huniv Pred) _.

andE (huniv Pred) (huniv Pred) (huniv Pred).

backchainE _ (huniv Pred) (huniv Pred).

someE (huniv Pred) (huniv Pred) (T:nat) :-

Pred (c_nat T).

someE (huniv Pred) (huniv Pred) (T:list nat) :-

Pred (c_list_nat T).

Fig. 14. An FPC for restricting existential choices.

Step 1: Collect all substitution terms in an existing proof. Given a successful proof that

a counterexample exists, use the collect FPC in Figure 13 to extract the list of terms

instantiating the existentials in that proof. Note that this FPC formally collects a list

of terms of different types, in our running example nat and list nat: we accommodate

such a collection by providing constructors (e.g., c_nat and c_list_nat) that map each

of these types into the type item. Since the third argument of the someE expert predicate

can be of any type, we use the ad hoc polymorphism available in λProlog (Nadathur and

Pfenning 1992) to specify different clauses for this expert depending on the type of the

term in that position: this allows us to chose different coercion constructors to inject all

these terms into the one type item.

For the purposes of the next step, it might also be useful to remove from this list any

item that is a subterm of another item in that list. (The definition of the subterm relation

is given also in Figure 13.)

Step 2: Search again restricting substitution instances. Search again for the proof of a

counterexample but this time use the huniv FPC (Figure 14) that restricts the existential

quantifiers to use subterms of terms collected in the first pass. (The name huniv is

mnemonic for “Herbrand universe”: that is, its argument is a predicate that describes the

set of allowed substitution terms within the certificate.) Replacing the subterm relation

with the proper-subterm relation can further constrain the search for proofs. For example,

consider the following λProlog query, where G is a formula that encodes the generator,

Is is the list of terms (items) collected from the proof of a counterexample, and H is the

height determined for that proof.

check (( huniv (T\ sigma I\ member I Is , subterm T I)) <c>

(height H) <c> (max Max)) B.

In this case, the variable Max will record the details of a proof that satisfies the height

bound as well as instantiates the existential quantifiers with terms that were subterms

of the original proof. One can also rerun this query with a lower height bound and by

replacing the implemented notion of subterm with “proper subterm”. In this way, the

search for proofs involving smaller but related instantiations can be used to shrink a

counterexample.
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6 PBT for metaprogramming

We now describe how we can move PBT into the setting of metaprogramming. For ex-

ample, we would like to find counterexamples to claims that might be made about the

evaluation of a certain functional program or about the type preservation of a program-

ming language. The main difficulty in treating entities such as programs as data struc-

tures within a (meta) programming settings is the treatment of bound variables. There

have been many approaches to the treatment of term-level bindings within symbolic

systems: they include nameless dummies (de Bruijn 1972), higher-order abstract syntax

(HOAS) (Pfenning and Elliott 1988), nominal logic (Pitts 2003), parametric HOAS (Chli-

pala 2008), and locally nameless (Charguéraud 2011). The approach used in λProlog,

called the λ-tree syntax approach (Miller 2019), is based on the movement of binders

from term-level abstractions to formula-level abstractions (i.e., quantifiers) to proof-level

abstract variables (called eigenvariables in (Gentzen 1935)). This approach to bindings

is probably the oldest one, since it appears naturally when organizing Church’s Simple

Theory of Types (Church 1940) within Gentzen’s sequent calculus (Gentzen 1935). As

we illustrate in this section, the λ-tree syntax approach to bindings allows us to lift PBT

to the meta-programming setting in a simple and modular manner. In what follows, we

assume that the reader has a passing understanding of how λ-tree syntax is supported

in frameworks such as λProlog or Twelf (Pfenning and Schürmann 1999).

The treatment of bindings in λProlog is intimately related to including into G-formulas

universal quantification and implications. While we restricted SL in the previous two

sections to Horn clauses, we now allow the full set of D and G-formulas that were defined

in Section 2. To that end, we now replace the interpreter code given in Figure 2 with

the specification in Figure 15. Here, the goal interp Ctx G is intended to capture the

fact that G follows (in SL) from the union of the atomic formulas in Ctx and the logic

programs defined by the <>== predicate.

Similar to the extensions made to interp, we need to extend the notion of FPC and

the check program: this is given in Figure 16. Three new predicates—initE, impC, and

allC—have been added to FPCs. Using the terminology of (Chihani et al. 2017), the

last two of these predicates are referred to as clerks instead of experts. This distinction

arises from the fact that no essential information is extracted from a certificate by these

predicate, whereas experts often need to make such extractions. In order to use a previ-

ously defined FPC in this setting, we simply need to provide the definition of these three

definitions for the constructors used in that FPC. For example, the max and sze FPCs

(see Section 4.2) are accommodated by the additional clauses listed in Figure 17.

To showcase the ease with which we handle searching for counterexamples in binding

signatures, we go back in history and explore a tiny bit of the classical theory of the

lambda-calculus, namely the Church-Rosser theorem and related notions. We recall two

basic definitions, for a binary relation R and its Kleene closure R∗:
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type all (A -> sl) -> sl. % Universal quantifier

type =o sl -> sl -> sl. % Intuitionistic implication

infixr =o 30.

type interp list sl -> sl -> o. % The new type for interp

interp Ctx tt.

interp Ctx (T eq T).

interp Ctx (G1 and G2) :- interp Ctx G1, interp Ctx G2.

interp Ctx (G1 or G2) :- interp Ctx G1; interp Ctx G2.

interp Ctx (some G) :- interp Ctx (G T).

interp Ctx (A =o G) :- interp (A::Ctx) G.

interp Ctx (all G) :- pi x\ interp Ctx (G x).

interp Ctx A :- member A Ctx;

(A <>== G), interp Ctx G.

Fig. 15. A re-implementation of the interpreter code in Figure 2 that treats implications

and universal quantifiers in G-formulas.

type check cert -> list sl -> sl -> o. % New type for check

type initE cert -> o. % Expert for initial rule

type impC cert -> cert -> o. % Clerk for implication

type allC cert -> (A -> cert) -> o. % Clerk for universal

check Cert Ctx tt :- ttE Cert.

check Cert Ctx (T eq T) :- eqE Cert.

check Cert Ctx (G1 and G2) :- andE Cert Cert1 Cert2 ,

check Cert1 Ctx G1 ,

check Cert2 Ctx G2.

check Cert Ctx (G1 or G2) :- orE Cert Cert ’ LR ,

((LR = left , check Cert ’ Ctx G1);

(LR = right , check Cert ’ Ctx G2)).

check Cert Ctx (some G) :- someE Cert Cert1 T,

check Cert1 Ctx (G T).

check Cert Gamma (D =o G ) :- impC Cert Cert ’,

check Cert ’ (D:: Gamma) G.

check Cert Gamma (all G) :- allC Cert Cert ’,

pi x\ check (Cert ’ x) Gamma (G x).

check Cert Ctx A :- initE Cert , member A Ctx.

check Cert Ctx A :- backchainE Cert Cert ’,

(A <>== G), check Cert ’ Ctx G.

Fig. 16. A re-implementation of the FPC checker in Figure 7 that treats implications

and universal quantifiers in G-formulas.

initE (max empty).

allC (max C) (x\ max C).

impC (max C) (max C)

initE (sze In In ’) :- In > 0, In ’ is In - 1.

allC (sze In Out) (x\ sze In Out).

impC (sze In Out) (sze In Out).

Fig. 17. Additional clauses for two FPCs.
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(λx. M) N −→β [x 7→ N ]M
B− β

M −→β M
′

λx.M −→β λx.M
′ B− ξ

M1 −→β M
′
1

M1 M2 −→β M
′
1 M2

B− APP1
M2 −→β M

′
2

M1 M2 −→β M1 M
′
2

B− APP2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x ∈ Γ
Γ ` x : exp

Γ `M : exp Γ `M ′ : exp

Γ `M M ′ : exp

Γ, x `M : exp

Γ ` λx.M : exp

Fig. 18. Specifications of beta reduction and well-formed terms.

kind exp type.

type app exp -> exp -> exp.

type lam (exp -> exp) -> exp.

type beta exp -> exp -> sl.

type is_exp exp -> sl.

beta (app (lam M) N) (M N) <>== tt.

beta (app N1 N2) (app N11 N2) <>== beta N1 N11.

beta (app N1 N2) (app N1 N22) <>== beta N2 N22.

beta (lam M) (lam N) <>== all x\ beta (M x) (N x).

is_exp (app E1 E2) <>== is_exp E1 and is_exp E2.

is_exp (lam E) <>== all x\ is_exp x =o is_exp (E x).

Fig. 19. The λProlog specification of the inference rules in Figure 18.

R

R

R

R

diamond for R

R∗

R∗

R∗

R∗

confluence for R

Given the syntax of the untyped lambda-calculus:

Terms M ::= x | λx. M |M1 M2

in Fig. 18 we display the standard rules for beta reduction, consisting of the beta rule

itself augmented by congruences.

Fig. 19 displays the encoding in λ-tree form of the syntax of the untyped lambda

calculus. As it is now a staple of λProlog and similar systems, we do not comment it

further. Note how in the encoding of the beta rule, substitution is realized via meta-level

application and how in the B−ξ rule we descend into an abstraction via SL-level universal

quantification. The clause for generating/checking abstractions features the combination

of hypothetical and parametric al judgments.

When proving the confluence of a (binary) reduction relation, a key stepping stone

is the diamond property. In fact, diamond implies confluence. It is a well-known fact,

however, that beta reduction does not satisfy the diamond property, since redexes can
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be discarded or duplicated and this is why notions such as parallel reduction have been

developed (Takahashi 1995).

To find a counterexample to the claim that beta reduction implies the diamond prop-

erty, we write the following simple code, which abstracts over a binary reduction relation.

type joinable (exp -> exp -> sl) -> exp -> exp -> sl.

type prop_dia cert -> (exp -> exp -> sl) -> exp -> o.

joinable Step M M <>== tt.

joinable Step M1 M2 <>== some P\ (Step M1 P) and (Step M2 P).

prop_dia Cert Step M :-

check Cert nil (is_exp M),

interp nil (Step M M1),

interp nil (Step M M2),

not(interp nil (joinable Step M1 M2)).

Note that the NAF call is safe since, when the last goal is called, all variables in it will

be bound to closed terms. A minimal counterexample found by exhaustive generation is:

app (lam x\ app x x) (app (lam x\ x) (lam x\ x))

or, using the identity combinators, the term (λx. x x)(I I), which beta reduces to

(I I)(I I) and (I I). Of course, the property would not be falsified had we taken Step to

be the reflexive-transitive closure of beta reduction, or, for that matter, other relations

such as parallel reduction and complete developments—see the code in the repository for

their implementation. As expected, such queries do not report any counterexample.

Let us dive further by looking at η-reduction in a typed setting. Again, it is well-

know (see, e.g. (Selinger 2008)) that the diamond property fails for βη-reduction for

the simply-typed lambda calculus, once we add unit and pairs: the main culprit is the

η rule for unit, which licenses any term of type unit to η-reduce to the empty pair.

Verifying the existence of such counterexamples requires building-in typing obligations

in the reduction semantics, following the style of (Goguen 1995). In fact, it is not enough

for the generation phase to yield only well-typed terms, lest we meet false positives.

Since a counterexample manifests itself considering only η and unit, we list in Fig. 20

the η rules restricted to arrow and unit; see Fig. 21 for their implementation.

A first order of business is to ensure that the typing annotations we have inserted in

the reduction semantics are consistent with the standard typing rules. In other words,

we need to verify that eta reduction preserves typing. The encoding of the property

Γ `M −→η M
′ : A =⇒ Γ `M : A ∧ Γ `M ′ : A

follows and does not report any problem.

wt_pres M M’ A <>== (wt M A) and (wt M’ A).

prop_eta_pres Gen M M’ A:-

check Gen nil (is_exp M),

interp nil (teta M M’ A),

not (interp nil (wt_pres M M’ A)).

However, had we made a small mistake in the rules in Fig. 20, say forget a typing
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Γ `M : A→ B x 6∈ FV(M)

Γ ` λx.(M x) −→η M : A→ B
η Γ `M : 1

Γ `M −→η 〈〉 : 1
η − 1

Γ `M −→η M
′ : A→ B Γ ` N : A

Γ `M N −→η M
′N : B

E-App-L
Γ `M : A→ B Γ ` N −→η N

′ : A

Γ `M N −→η M N ′ : B
E-App-R

Γ, x:A `M −→η M
′ : B

Γ ` λx.M −→η λx.M
′ : A→ B

E-ξ

Fig. 20. Type-directed η reduction

type wt exp -> ty -> sl.

type teta exp -> exp -> ty -> sl.

wt unit unitTy <>== tt.

wt (lam M) (arTy A B) <>== all x\ wt x A =o wt (M x) B.

wt (app M N) B <>== some A\ wt M (arTy A B) and wt N A.

teta (lam x\ app M x) M (arTy A B) <>== wt M (arTy A B).

teta M unit unitTy <>== (wt M unitTy).

teta (app M N) (app M’ N) B <>==

some A\ (teta M M’ (arTy A B)) and (wt N A).

teta (app M N) (app M N’) B <>==

some A\ (teta N N’ A) and (wt M (arTy A B)).

teta (lam M) (lam N) (arTy A B) <>==

all w\ wt w A =o teta (M w) (N w) B.

Fig. 21. The λProlog specification of the inference rules in Figure 20.

assumption in a congruence rule:

Γ `M −→η M
′ : A→ B

Γ `M N −→η M
′N : B

E-App-L− BUG

then type preservation would have failed with the following counterexample.

A = unitTy

N = app (lam (x\ unit)) (lam (x\ x))

M = app (lam (x\ x)) (lam (x\ x))

A failed attempt of an inductive proof of this property in a proof assistant would have

eventually pointed to the missing assumption, but testing is certainly a faster way to

discover this mistake.

We can now refute the diamond property for η. The harness is the obvious extension

of the previous definitions, where to foster better coverage we only generate well-typed

terms:

prop_eta_dia Cert M A :-

check Cert nil (wt M A and is_ty A),

interp nil (teta M M1 A),

interp nil (teta M M2 A),

not(interp nil (joinable_teta M1 M2 A)).

One counterexample found by exhaustive generation is lam x\ lam y\ app x y, which
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at type (unitTy -> unitTy) -> unitTy -> unitTy, reduces to lam x\ x by eta at

function type and lam x\ lam y\ unit by eta at unit.

7 Linear logic as the specification logic

One of linear logic’s early promises was that it could help in specifying computational

systems with side-effects, exceptions, and concurrency (Girard 1987; Girard 1992b). In

support of that promise, an early application of linear logic was to enhance big-step

operational semantic specifications (Kahn 1987) for programming languages that incor-

porated such features: see, for example, (Andreoli and Pareschi 1990; Hodas and Miller

1994; Chirimar 1995; Miller 1996; Pfenning 2000). In this section, we adapt the work

in (Mantovani and Momigliano 2021) to show how PBT can be applied in the setting

where the specification logic is a fragment of linear logic.

7.1 SL as a subset of linear logic

We extend the definition of SL given in Section 2 to involve the following grammar for

D and G-formulas.

D ::= G( A | ∀x : τ.D

G ::= A | tt | G1 ∨G2 | G1 ∧G2 | ∃x : τ.G | ∀x : τ.G | A ⊃ G
| A( G | !G

That is, we allow G-formulas to be formed using the linear implications( (with atomic

antecedents) and the exponential !. As the reader might be aware, linear logic has two

conjunctions (& and ⊗) and two disjunctions (` and ⊕). When we view G-formulas in

terms of linear logic, we identify ∨ as ⊕ and ∧ as ⊗ (and tt as the unit of ⊗). Note that

we have also changed the top-level implication for D-formulas into a linear implication:

this change is actually a refinement in the sense that the ( is a more precise form of

the top-level implications of D-formulas.

A proof system for this specification logic is given in Figure 22: here, P is a set of closed

D-formulas. The sequent Γ; ∆ ` G has a left-hand side that is divided into two zones, each

of which are multisets of atomic formulas. The Γ zone is the unbounded zone, meaning

that the atomic assumptions that it contains can be used any number of times in building

this proof. The ∆ zone is the bounded zone, meaning that its atomic assumptions must

be used exactly once in building this proof. In order to support this strict accounting of

formulas in the bounded zone, that zone must be empty in certain rules (the · is used

to denote the empty zone), it must be the multiset contains exactly one formula (as in

one of the two initial rules displayed in the last row of inference rules), and it must be

split when dealing with a conjunctive goal. Also note that (when reading inference rules

from conclusion to premises) a goal of the form A ⊃ G, places its assumption A in the

unbounded zone and a goal of the form A( G, places its assumption A in the bounded

zone. Finally, the goal !G can only be proved if the bounded zone is empty: this is the

promotion rule of linear logic.

The inference rule for ∧ can be expensive to realize in a proof search setting, since, when

we read inference rules from conclusion to premises, it requires splitting the bounded zone

into two multisets before proceeding with the proof. Unfortunately, at the time that this
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Γ; · ` tt
Γ; ∆1 ` G1 Γ; ∆2 ` G2

Γ; ∆1,∆2 ` G1 ∧G2

Γ; ∆ ` Gi
Γ; ∆ ` G1 ∨G2

i ∈ {1, 2}

Γ; · ` G
Γ; · ` !G

Γ; ∆ ` G[y/x]

Γ; ∆ ` ∀x : τ.G
(3)

Γ; ∆ ` G[t/x]

Γ; ∆ ` ∃x : τ.G
(1)

Γ, A; ∆ ` G
Γ; ∆ ` A ⊃ G

Γ; ∆, A ` G
Γ; ∆ ` A( G

Γ;A ` A Γ, A; · ` A
Γ; ∆ ` G
Γ; ∆ ` A (2)

The three provisos (1), (2), and (3) are the standard ones. The first two are repeated from
Figure 6.

1. The term t is of type τ .
2. There is a program clause ∀x̄(G′ ( A′) ∈ P and a substitution for the variables x̄ such

that A is A′θ and G is G′θ.
3. The eigenvariable y is not free in the formulas in the concluding sequent.

Fig. 22. A sequent calculus proof system for our linear SL.

∆I \∆I ` tt
∆I \∆M ` G1 ∆M \∆O ` G2

∆I \∆O ` G1 ∧G2

∆I , !A \∆O, !A ` G
∆I \∆O ` A ⊃ G

∆I , A \∆O,� ` G
∆I \∆O ` A( G

∆I \∆I ` G
∆I \∆I ` !G

∆I \∆O ` Gi
∆I \∆O ` G1 ∨G2

i ∈ {1, 2}
∆I \∆O ` G[y/x]

∆I \∆O ` ∀x : τ.G
(1)

∆I \∆O ` G[t/x]

∆I \∆O ` ∃x : τ.G
(2)

∆I , A,∆
′
I \∆I ,�,∆′

I ` A ∆I , !A,∆
′
I \∆I , !A,∆

′
I ` A

∆I \∆O ` G
∆I \∆O ` A

(3)

The three proviso (1), (2), and (3) are the same as in Figure 22.

Fig. 23. The I/O proof system alternative to the proof system in Figure 22.

split is made, it might not be clear which atoms in the bounded zone will be needed to

prove the left premise and which are needed to prove the right premise. If the bounded

zone contains n distinct items, there are 2n possible ways to make such a split: thus,

considering all splittings is far from desirable. Figure 23 presents a different proof system

that is organized around making this split in a lazy fashion. Here, the sequents are of

the form ∆I \∆O ` G where ∆I and ∆O are lists of items that are of the form �, A,

and !A (where A is an atomic formula).

The idea behind proving the sequent ∆I \ ∆O ` G is that all the formulas in ∆I

are input to the proof search process for finding a proof of G: in that process, atoms

in ∆I that are not marked by a ! and that are used in building that proof are then

deleted (by replacing them with �). That proof search method outputs ∆O as a result

of such a deletion. Thus, the process of proving ∆I \ ∆O ` G1 ⊗ G2 involves sending

all full context ∆I into the process of finding a proof of G1, which returns the output

context ∆M , which is then made into the input for the process of finding a proof of G2.
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type bang sl -> sl.

type -o sl -> sl -> sl. % Linear implication

infixr -o 35.

kind optsl type. % Option SL formulas

type del optsl.

type bnd , ubnd sl -> optsl.

type llinterp list optsl -> list optsl -> sl -> o.

type pick sl -> list optsl -> list optsl -> o.

llinterp In In tt.

llinterp In In (T eq T).

llinterp In Out (G1 and G2) :- llinterp In Mid G1,

llinterp Mid Out G2.

llinterp In Out (G1 or G2) :- llinterp In Out G1;

llinterp In Out G2.

llinterp In Out (some G) :- llinterp In Out (G T).

llinterp In Out (all G) :- pi x\ llinterp In Out (G x).

llinterp In In (bang G) :- llinterp In In G.

llinterp In Out (A =o G) :- llinterp ((ubnd A)::In)

((ubnd A)::Out) G.

llinterp In Out (A -o G) :- llinterp ((bnd A)::In) (del::Out) G.

llinterp In Out A :- pick A In Out;

(A <>== G), llinterp In Out G.

pick A (bnd A::L) (del::L).

pick A (ubnd A::L) (ubnd A::L).

pick A (I::L) (I::K) :- pick A L K.

Fig. 24. An interpreter based on the proof system in Figure 23.

The correctness and completeness of this alternative proof system follows directly from

results in (Hodas and Miller 1994). A λProlog specification of this proof system appears

in Figure 24. In that specification, the input and output contexts are represented by a

list of option-SL-formulas, which are of three kinds: del to denote �, (ubnd A) to denote

!A, and (bnd A) to denote simply A.

Note that if we use this interpreter on the version of SL described in Section 2 (i.e.,

without occurrences of ( and ! within G formulas), then the first two arguments of

llinterp are the always the same. If we further restriction ourselves to having only

Horn clauses (i.e., they have no occurrences of implication in G formulas), then those

first two arguments of llinterp are both nil. Given these observations, the interpreters

in Figures 2 and 15 can be derived directly from the one given in Figure 24.

It is a simple matter to modify the interpreter in Figure 23 in order to get the corre-

sponding llcheck predicate that works with proof certificates. In the process of making

that change, we need to add two new predicates: the clerk predicate limpC to treat the

linear implication and the expert predicate bangE to treat the ! operator. In order to save

space, we do not display the clauses for the llcheck predicate.

A simple linear logic program is the one that turns a switch on and off.

type on , off sl.
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type toggle sl -> sl.

toggle G <>== on and (off -o G).

toggle G <>== off and (on -o G).

When attempting to prove toggle G when the bounded zone is ∆, on should reduce to

attempting to prove G where the bounded zone is ∆, off (conversely, when the roles of

on and off are switched). This operational reading of these clauses is supported by the

following inference rules (following the rules in Figure 22).

Γ; on ` on
Γ; ∆, off ` G

Γ; ∆ ` off( G

Γ; ∆, on ` on ∧ (off( G)

Γ; ∆, on ` toggle G

To illustrate a more interesting linear logic program, consider the following specification

of the predicate that relates two lists if and only if they are permutations of each other.

type element A -> sl.

type perm list A -> list A -> sl.

perm (X::L) K <>== element X -o perm L K.

perm nil (X::K) <>== element X and perm nil K.

perm nil nil <>== tt.

As the reader can verify, the goal

?- llinterp nil nil (perm [1,2,3] K).

will produce six solutions for the list K and they will all be permutations of [1,2,3].

More generally, however, a call to the perm predicate will occur in settings where the

input and output contexts are not necessarily empty, for example, in the query

?- llinterp In Out ((perm [1,2,3] K) and Goal).

where Out might have some entries in In marked as deleted and where Goal is some goal.

In order to ensure that the permutation specification works properly in such a situation,

we should invoke the following goal instead:

?- llinterp In Out ((bang (perm [1,2,3] K)) and Goal).

This invocation will ensure that all the entries that are in the bounded zone are passed

to the process of building a proof of Goal.

7.2 The operational semantics of λ-terms with a counter

Figure 25 contains the SL specification of call-by-value and call-by-name big-step oper-

ational semantics for a version of the λ-calculus to which a single memory location (a

counter) is added3. The untyped λ-calculus of Section 6, with its two constructors app

and lam, is extended with the additional four constants.

3 This specification can easily be generalized to finite registers or to a specification of references in
functional programming languages (Chirimar 1995; Miller 1996).
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type cst int -> exp. % Coerce integers into expressions

type set int -> exp. % Command to set the counter

type get exp. % Command to get the counter ’s value

type unit exp. % Value returned by set

The specification in Figure 25 uses continuations to provide for a sequencing of oper-

ations. A continuation is an SL goal formula that should be called once the program

getting evaluated is completed. For example, the attempt to prove the goal cbn M V K

when the bounded zone is the multiset containing only the formula counter C (for some

integer C) reduces to an attempt to prove the goal K with the bounded zone consisting

of just counter D (for some other integer D), provided V is the call-by-name value of M.

This situation can be represented as the following (open) derivation (following the rules

in Figure 22).

P; counter D ` K
...

P; counter C ` cbn M V K

Such a goal reduction can be captured in λProlog using the following higher-order quan-

tified expression

?- (pi k\ (pi I\ pi O\ llinterp I O k) =>

(llinterp [bnd(counter 0)] _ (cbn M V k)).

Operationally, λProlog introduces a new eigenvariable (essentially, a local constant) k of

type sl and assumes that this new SL formula can be proved no matter the values of the

input and output contexts. Once this assumption is made, the linear logic interpreter is

then called with the counter given the initial value of 0 and with the cbn evaluator asked

to compute the call-by-name value of M to be V and with the final continuation being k.

This hypothetical reasoning can be captured by the following predicate.

type eval (exp -> exp -> sl -> sl) -> exp -> exp -> o.

eval Pred M V :-

(pi k\ (pi I\ pi O\ llinterp I O k) =>

(llinterp [bnd(counter 0)] _ (Pred M V k))).

It is well known that if the call-by-name and call-by-value strategies terminate when

evaluating a pure untyped λ-term (those without side-effects such as our counter), then

those two strategies yield the same value. One might conjecture that this is also true

once counters are added. To probe that conjecture, we write the following logic program.

prop_cbnv Cert M V U:-

llcheck Cert nil nil (is_prog M),

eval cbn M V, eval cbv M U,

not(llinterp nil nil (V eq U)).

The query prop_cbnv (height 3) M V U returns the smallest counterexample to the

claim that call-by-name and call-by-value produce the same values in this setting. In

particular, this query instantiates M with app (lam (w\ get)) (set (- 1)): this ex-

pression has the call-by-name value of 0 while the it has a call-by-value value of −1, given

the generator is_prog in Fig. 25.
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type is_prog , value exp -> sl.

type is_int , counter int -> sl.

type cbn , cbv exp -> exp -> sl -> sl.

is_int (~ 1) <>== tt. %% some integers

is_int 0 <>== tt.

is_int 42 <>== tt.

value unit <>== tt.

value (cst N) <>== tt.

value (lam M) <>== tt.

is_prog (cst C) <>== is_int C.

is_prog get <>== tt.

is_prog (set N) <>== is_int N.

is_prog (app E1 E2) <>== is_prog E1 and is_prog E2.

is_prog (lam E) <>== all x\ is_prog x =o is_prog (E x).

cbn V V K <>== value V and K.

cbn get (cst C) K <>== counter C and (counter C -o K).

cbn (set C) unit K <>== counter D and (counter C -o K).

cbn (app E1 E2) V K <>== some R\ cbn E1 (lam R) (cbn (R E2) V K).

cbv V V K <>== value V and K.

cbv get (cst C) K <>== counter C and (counter C -o K).

cbv (set C) unit K <>== counter D and (counter C -o K).

cbv (app E1 E2) V K <>== some R\ some U\ cbv E1 (lam R)

(cbv E2 U (cbv (R U) V K)).

Fig. 25. Specifications of call-by-name (cbn) and call-by-value (cbv) evaluations.

7.3 Queries over linear λ-expressions

A slight variation to is_exp (Figure 19) yields the following SL specification that succeeds

with a λ-term only when the bindings are used linearly.

type is_lexp exp -> sl.

is_lexp (app E1 E2) <>== is_lexp E1 and is_lexp E2.

is_lexp (lam E) <>== all x\ is_lexp x -o is_lexp (E x).

Using this predicate and others defined in Section 6, it is an easy matter to search

for untyped λ-terms with various properties. Consider, for example, the following two

predicates definitions.

type prop_pres1 , prop_pres2

cert -> (exp -> exp -> sl -> sl) -> exp -> exp -> o.

prop_pres1 Cert Step M N :-

llcheck Cert nil nil (is_lexp M),

eval Step M V,

not(llinterp nil nil (is_lexp V)).

prop_pres2 Cert Step M V :-
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llcheck Cert nil nil (is_exp M),

not(llinterp nil nil (is_lexp M)),

llinterp nil nil (wt M Ty),

eval Step M V,

llinterp nil nil (is_lexp V).

The prop_pres1 predicate is designed to search for linear λ-terms that are related by

Step to a non-linear λ-term. When Step is cbn or cbv, no such term is possible. The

prop_pres2 predicate is designed to search for non-linear λ-terms that have a simple

type (via the wt predicate) and are related by Step to a linear λ-term. When Step is

cbn or cbv, the smallest such terms (using the certificate (height 4)) are

app (lam x\ lam y\ y) (app (lam x\ x) (lam x\ x))

app (lam x\ lam y\ y) (lam x\ x)

app (lam x\ lam y\ y) (lam x\ lam y\ y)

app (lam x\ lam y\ y) (lam x\ lam y\ x)

All of these terms evaluates (using either cbn or cbv) to the term (lam x\ x).

8 Related work and conclusions

8.1 Two-level logic approach

First-order Horn clauses have a long tradition, via the Prolog language, of specifying com-

putation. Such clauses have also been used to specify the operational semantics of other

programming languages: see, for example, the early work on natural semantics (Kahn

1987) and the Centaur system (Borras et al. 1988). The intuitionistic logic setting of

higher-order hereditary Harrop formulas (Miller et al. 1991)—a logical framework that

significantly extends the SL logic in Section 2—has similarly been used for the past

three decades to specify the static and dynamic semantics of programming language:

see, for example, (Hannan and Miller 1992; Hannan 1993). Similar specifications could

also be written in the dependently typed λ-calculus LF (Harper et al. 1993): see, for

example, (Burstall and Honsell 1988; Michaylov and Pfenning 1992).

Linear logic has been effectively used to enrich the natural semantic framework. The

Lolli subset of linear logic (Hodas and Miller 1994) as well as the Forum presenta-

tion (Miller 1996) of all of linear logic have been used to specify the operational semantics

of references and concurrency (Miller 1996) as well as the behavior of the sequential and

the concurrent (piped-line) operational semantics of the DLX RISC processor (Chirimar

1995). Another fruitful example is the specification of session types (Caires et al. 2016).

Ordered logic programming (Polakow and Yi 2000; Pfenning and Simmons 2009) has also

been investigated. Similar specifications are also possible in linear-logic inspired variants

of LF (Cervesato and Pfenning 2002; Schack-Nielsen and Schürmann 2008; Georges et al.

2017).

The use of a separate reasoning logic to reason directly on the kind of logic specifica-

tions used in this paper was proposed in (McDowell and Miller 2002). That logic included

certain inductive principles that could be applied to the definition of sequent calculus

provability. That framework was challenged, however, by the need to treat eigenvariables

in sequent calculus proof systems. The ∇-quantifier, introduced in (Miller and Tiu 2005),

provided an elegant solution to the treatment of eigenvariables (Gacek et al. 2012). In
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this paper, our use of the reasoning logic is mainly to determine reachability and non-

reachability: in those situations, the ∇-quantifier can be implemented by the universal

quantifier in λProlog (see (Miller and Tiu 2005, Proposition 7.10)). If we were to inves-

tigate PBT examples that go beyond that simple class of queries, then we would have to

abandon λProlog for the richer logic that underlies Abella (Gacek et al. 2011): see, for ex-

ample, the specifications of bisimulation for the π-calculus in (Tiu and Miller 2010). The

two-level approach extends to specifications in dependently typed λ-calculus, first via the

Mω reasoning logic over LF in (Schürmann 2000) and then more extensively within the

Beluga proof environment (Pientka and Dunfield 2010; Pientka and Cave 2015).

However, formal verification by reasoning over a linear logic frameworks, is still in its

infancy, although the two-level approach is flexible enough to accommodate one reasoning

logic over several SL. The most common case study is type soundness of MiniML with

references, first checked in (McDowell and Miller 2002) with the Π proof checker and then

by Martin in his dissertation (Martin 2010) using Isabelle/HOL’s Hybrid library (Felty

and Momigliano 2012), in several styles, including linear and ordered specifications. More

extensive use of Hybrid, this time on top of Coq, includes the recent verification in a

Lolli-like specification logic of type soundness of the proto-Quipper quantum functional

programming language (Mahmoud and Felty 2019), as well as the meta-theory of sequent

calculi (Felty et al. 2021).

8.2 Foundational proof certificates

The notion of foundational proof certificates was introduced in (Chihani et al. 2017) as

a means for flexibly describing proofs to a logic programming base proof checker (Miller

2017). In that setting, proof certificates can include all or just certain details, whereby

missing details can often be recreated during checking using unification and backtracking

search. The pairing FPC in Section 4.2 can be used to elaborate a proof certificate into

one including full details and to distill a detailed proof into a certificate containing less

information (Blanco et al. 2017).

Using this style of proof elaboration, it is possible to use the ELPI plugin to Coq (Tassi

2018) (which supplies the Coq computing environment with a λProlog implementation)

to elaborate proof certificates from external theorem prover into fully detailed certificates

that can be checked by the Coq kernel (Manighetti et al. 2020; Manighetti 2022). This

same interface between Coq and ELPI allowed Manighetti el al. to illustrate how PBT

could be used to search for counterexamples to conjectures proposed to Coq.

Using an FPC as a description of how to traverse a search space bears some resemblance

with principled ways to change the depth-first nature of search in logic programming

implementations. An example is Tor (Schrijvers et al. 2014), which, however, is unable

to account for random search. Similarly to Tor, FPCs would benefit of partial evaluation

to remove the meta-interpretive layer.

8.3 Property based testing for meta-theory model-checking

The literature on PBT is very large and always evolving. We refer to (Cheney and

Momigliano 2017) for a review with an emphasis to its interaction with proof assistants

and specialized domains such as programming language meta-theory.
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While Isabelle/HOL were at the forefront of combining theorem proving and refuta-

tions (Blanchette et al. 2011; Bulwahn 2012), nowadays most of the action is within

Coq: QuickChick (Paraskevopoulou et al. 2015) started as a clone of QuickCheck, but

soon evolved in a major research project involving automatic generation of custom gen-

erators (Lampropoulos et al. 2018), coverage based improvements of random genera-

tion (Lampropoulos et al. 2019), as well as going beyond the executable fragment of

Coq (Paraskevopoulou et al. 2022).

Within the confine of model checking PL theory, a major player is PLT-Redex (Felleisen

et al. 2009), an executable DSL for mechanizing semantic models built on top of DrRacket

with support for random testing à la QuickCheck; its usefulness has been demonstrated in

several impressive case studies (Klein et al. 2012). However, Redex has limited support for

relational specifications and none whatsoever for binding signature. On the other hand,

αCheck (Cheney and Momigliano 2017; Cheney et al. 2016) is built on top of the nomi-

nal logic programming language αProlog and it checks relational specifications similar to

those considered here. Arguably, αCheck is less flexible than the FPC-based architecture,

since its generation strategy can be seen as a fixed choice of experts. The same comment

applies to (Lazy)SmallCheck (Runciman et al. 2008). In both cases, those strategies

are wired-in and cannot be varied, let alone combined as we can via pairing. For a

small empirical comparison between our approach and αCheck on the PLT-Redex bench-

mark http://docs.racket-lang.org/redex/benchmark.html, please see (Blanco et al.

2019).

In the random case, the logic programming paradigm has some advantages over the

labor-intensive QuickCheck approach of writing custom generators. Moreover, the last

few years have witnessed an increasing interest in the (random) generation of data sat-

isfying some invariants (Claessen et al. 2015; Fetscher et al. 2015; Lampropoulos et al.

2018); in particular well-typed λ-terms, with an application to testing optimizing com-

pilers (Palka et al. 2011; Midtgaard et al. 2017; Bendkowski et al. 2018). Our approach

can use judgments (think typing), as generators, avoiding the issue of keeping generators

and predicates in sync when checking invariant-preserving properties such as type preser-

vation (Lampropoulos et al. 2017). Further, viewing random generation as expert-driven

random back-chaining opens up several possibilities: we have chosen just one simple-

minded strategy, namely permuting the predicate definition at each unfolding, but we

could easily follow others, such as the ones described in (Fetscher et al. 2015): permuting

the definition just once at the start of the generation phase, or even changing the weights

at the end of the run so as to steer the derivation towards axioms/facts. Of course, our

default uniform distribution corresponds to QuickCheck’s oneOf combinator, while the

weights table to frequency. Moreover, pairing random and size-based FPC accounts for

some of QuickCheck’s configuration options, such as StartSize and EndSize.

In mainstream programming, property-based testing of stateful programs is accom-

plished via some form of state machine (Hughes 2007; de Barrio et al. 2021). The idea of

linear PBT has been proposed in (Mantovani and Momigliano 2021) and applied to mech-

anized meta-theory model checking, although limited to first-order encodings, e.g. the

compilation of a simple imperative language to a stack machine. For efficient generation

of typed linear lambda terms, see (Tarau and de Paiva 2020)

http://docs.racket-lang.org/redex/benchmark.html
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8.4 Final remarks

We have described an approach that uses logic programming techniques viewed through

the lens of proof-theory to design a uniform and flexible framework that accounts for

many features of PBT. Given this proof-theoretic pedigree, it was immediate to extend

PBT to the metaprogramming setting, inheriting the handling of λ-tree syntax, which

is naturally supported by λProlog and notably absent from most other environments for

meta-theory model checking. Similarly it was straightforward to apply PBT to specifica-

tions in fragments of linear logic.

While λProlog is used here to discover counterexamples, one does not actually need to

trust the logical soundness of λProlog, negation-as-failure making this a complex issue.

Any identified counterexample can be exported and utilized within, say, Abella. In fact,

it would be a logical future task to incorporate our perspective on PBT into Abella in

order to accommodate both proofs and disproofs, as many proof helpers frequently do.

The strategy we have outlined here serves more as a proof-of-concept or logical recon-

struction than as a robust implementation. A natural environment to support PBT for

every specification in Abella is the Bedwyr model-checker (Baelde et al. 2007), which

shares the same meta-logic, but is more efficient from the point of view of proof search.

Finally, we have just hinted at ways for localizing the origin of the bugs reported

by PBT. This issue can benefit from research in declarative debugging as well as in

justification for logic programs (Pemmasani et al. 2004). Coupled with recent results in

focusing (Miller and Saurin 2006) this could lead us also to a reappraisal of techniques

for repairing (inductive) proofs (Ireland and Bundy 1996).
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Schack-Nielsen, A. and Schürmann, C. 2008. Celf - A logical framework for deductive and
concurrent systems (system description). In IJCAR. Lecture Notes in Computer Science, vol.
5195. Springer, 320–326.

Schrijvers, T., Demoen, B., Triska, M., and Desouter, B. 2014. Tor: Modular search
with hookable disjunction. Sci. Comput. Program. 84, 101–120.

Schroeder-Heister, P. 1993. Rules of definitional reflection. In 8th Symp. on Logic in Com-
puter Science, M. Vardi, Ed. IEEE Computer Society Press, IEEE, 222–232.

Schürmann, C. 2000. Automating the meta theory of deductive systems. Ph.D. thesis, Carnegie
Mellon University. CMU-CS-00-146.

Selinger, P. 2008. Lecture notes on the lambda calculus. https://arxiv.org/abs/0804.3434.

Sullivan, K., Yang, J., Coppit, D., Khurshid, S., and Jackson, D. 2004. Software assurance
by bounded exhaustive testing. In Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA ’04. ACM, New York, NY, USA, 133–
142.

Takahashi, M. 1995. Parallel reductions in lambda-calculus. Inf. Comput. 118, 1, 120–127.

Tarau, P. and de Paiva, V. 2020. Deriving theorems in implicational linear logic, declaratively.
In ICLP Technical Communications. EPTCS, vol. 325. 110–123.

Tassi, E. 2018. Elpi: an extension language for Coq (Metaprogramming Coq in the Elpi λProlog
dialect). working paper or preprint.

Tiu, A. and Miller, D. 2010. Proof search specifications of bisimulation and modal logics for
the π-calculus. ACM Trans. on Computational Logic 11, 2, 13:1–13:35.

http://teyjus.cs.umn.edu/

	Introduction
	The specification logic SL
	The reasoning logic RL
	Controlling the generation of tests
	Generate-and-test as a proof-search strategy
	Proof certificate checking with expert predicates

	PBT as proof elaboration in the reasoning logic
	Exhaustive generation
	Random generation
	Shrinking

	PBT for metaprogramming
	Linear logic as the specification logic
	SL as a subset of linear logic
	The operational semantics of -terms with a counter
	Queries over linear -expressions

	Related work and conclusions
	Two-level logic approach
	Foundational proof certificates
	Property based testing for meta-theory model-checking
	Final remarks

	References

