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The operational semantics of a computation system is often presented as inference rules or, equiv-
alently, as logical theories. Specifications can be made more declarative and high-level if syntactic
details concerning bound variables and substitutions are encoded directly into the logic using
term-level abstractions (A-abstraction) and proof-level abstractions (eigenvariables). When one
wishes to use such logical theories to support reasoning about properties of computation, the usual
quantifiers and proof-level abstractions do not seem adequate: proof-level abstraction of variables
with scope over sequents (global scope) as well as over only formulas (local scope) seem required
for many examples. We will present a sequent calculus which provides this local notion of proof-
level abstraction via generic judgment and a new quantifier, V, which explicitly manipulates such
local scope. Intuitionistic logic extended with V satisfies cut-elimination even when the logic is
additionally strengthened with a proof theoretic notion of definitions. The resulting logic can be
used to encode naturally a number of examples involving name abstractions, and we illustrate the
uses of V with the m-calculus and an encoding of object-level provability.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]:

Mathematical Logic—Proof Theory; F.3.1 [Logics and Meanings of Programs]|: Specifying
and Verifying and Reasoning about Programs—Specification Techniques

General Terms: Design, Theory, Verification
Additional Key Words and Phrases: proof search, reasoning about operational semantics, generic
judgments, higher-order abstract syntax

1. EIGENVARIABLES AND GENERIC REASONING

In specifying and reasoning about computations involving abstractions, one needs
to encode both the static structure of such abstractions and their dynamic structure
during computation. One successful approach to such an encoding, generally called
higher-order abstract syntaz [Pfenning and Elliott 1988; Miller 2000], uses A-terms
to encode the static structure of abstractions and universally quantified judgments
to encode their dynamic structure. Consider in more detail the role of the universal
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2 . D. Miller and A. Tiu

quantifier and eigenvariables in proof search and the specification of computations.

There are, of course, at least a couple ways to prove the universally quantified
formula V,.2.B. The extensional approach attempts to prove Blt/z] for all (closed)
terms t of type 7. This rule might involve an infinite number of premises if the
domain of the type 7 is infinite. If the type 7 is defined inductively, a proof by
induction can replace the need for infinite premises with finite premises (the base
cases and inductive cases) but with the need to discover invariants. Another more
intensional approach, however, involves introducing a new variable, say, ¢ : T,
that has not been introduced before in the proof, and to prove the formula B|c/z]
instead. In natural deduction and sequent calculus proofs, such new variables are
called eigenvariables, and they are used to prove universally quantified formulas
generically.

In Gentzen’s original presentation of the sequent calculus [Gentzen 1969], eigen-
variables were immutable: once an eigenvariable is introduced (reading proofs
bottom-up), it is not used as a site for substitution. In other words, Gentzen’s
eigenvariables did not vary during proof search: rather they acted more as new,
scoped constants.

The intensional interpretation of quantifiers generally entails the extensional in-
terpretation: the following argument shows that this is a simple consequence of
the cut-elimination theorem. Assume that the sequent I' — Vx.B is proved using
the introduction of V on the right from the premise I' — B[c/z], where ¢ is an
eigenvariable and II(c) is a proof of this premise. Similarly, assume that the sequent
I",VxB — C is proved using the introduction of V on the left from the premise
I, Bt/x] — C, where t is some term. To reduce the rank of the cut formula
Vx.B between the sequents I' — Va.B and I'V,VaB — C, the eigenvariable c in
the sequent calculus proof II(¢) must be substituted by ¢ to yield a proof II(t) of
I' — BIt/z]: in this way, the cut-formula is now the smaller formula B[t/x]. In
Gentzen, this role of ¢ in II(c) as a site for substitution only takes place in the
meta-theory of proofs and not in proofs themselves.

Recent years have witnessed two different developments in the role of eigenvari-
ables in the specification of computation systems.

FEigenvariables as new, scoped constants. Focusing on their intensional nature
and guarantee of newness in proof search, eigenvariables have been used to en-
code name restrictions in the m-calculus [Miller 1993], nonces in security protocols
[Cervesato et al. 1999], reference locations in imperative programming [Chirimar
1995; Miller 1996], and constructors hidden within abstract data-types [Miller 1989)].
Eigenvariables also provide an essential aspect of recursive programming with data
encoded using higher-order abstract syntax: to move recursively through syntax
that is an outermost binder, replace the bound variable with an eigenvariable, that
is, a proof-level bound variable.

FEigenvariables as variables to instantiate. Computation in logic programming
can be seen as a (restricted) form of cut-free proof search. Cut and cut-elimination
can then be used to reason directly about computation: for example, if A has a
cut-free proof (that is, it can be computed) and we know that A D B can be proved
(possibly with cuts), cut-elimination allows us to conclude that B has a cut-free
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Y:(o,y:7)>Bly/z],I — C :T — (o,y:7)> Bly/z]
Y:0>Vsz.B,I' —C VL »:I' —op>V,x.B

Fig. 1. Rules for the V-quantifier.

proof (that is, it can be computed). As we mentioned above, such direct reasoning
on logic specification involves instantiations of eigenvariables. Similarly, focusing on
their extensional nature guaranteed by cut-elimination, enrichments to the sequent
calculus have been proposed by [Hallnds and Schroeder-Heister 1991; Schroeder-
Heister 1992; Girard 1992; McDowell and Miller 2000] in which eigenvariables are
intended as variables to be substituted. This enrichment to proof theory (discussed
here in Section 4) holds promise for providing proof systems for the direct reasoning
of logic specifications (see, for example, the above mentioned papers as well as
[McDowell and Miller 2002; McDowell et al. 2003]).

These two approaches are, however, at odds with each other. Consider, for exam-
ple, the problem of representing restriction of names or nonces using V quantifica-
tion. (The following example can be dualized in the event that a logical specification
uses 3 quantification instead of V, as in, for example, [Cervesato et al. 1999]). A
cut-free proof of the formula VaVy.P(z,y) proceeds by introducing two new and
distinct “names” or “nonces” whereas a proof of the expression Vz.P(z, z) involves
just one such item. Of course, in logic, the implication VzVy.P(z,y) D Vz.P(z, 2)
holds, so if there is a proof with the two different names, there must be one with
those names identified (via cut-elimination), and this is unlikely to be the intended
meaning of such quantification. This suggests that when using eigenvariables solely
to provide scope and newness to names, one cannot reason directly with the speci-
fication using the center piece of proof theory: cut-elimination.

Another setting where the difference between the extensional and intensional ap-
proaches to universal quantification occurs when we consider having an assumption
that is universally quantified. In Gentzen’s sequent system, having V,z.Bx as an
assumption (that is, on the left of the sequent arrow) is essentially equated to hav-
ing instead all instances Bt for terms ¢ of type 7. There are cases (one is considered
in more detail in Section 6) where we would like to make inferences from an as-
sumption of the form V.x.Bx that holds independent of the set of its instances: the
fact that such a statement could hold generically (intensionally) provides us with
information stronger than examining all instances of it. This is particularly true in
many intuitionistic settings where the domain of the type 7 might be empty or at
least not known to be inhabited.

2. THE V-QUANTIFIER

One approach to solving this problem of forcing one quantifier, the V-quantifier, to
have two behaviors that are not entirely compatible, is to extend the logic with a
new quantifier. In this paper, we do this by adding the V-quantifier: its role will be
to declare variables to be new and of local scope. The syntax of the formula V.,.z.B
is like that for the universal and existential quantifiers. Following Church’s Simple
Theory of Types [Church 1940], formulas are given the type o, and for all types
not containing o, V. is a constant of type (1 — 0) — o. The expression V, \z.B is
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usually abbreviated as simply V.,z.B or as Va.B if the type information is either
simple to infer or not important.

Intuitionistic sequents without the need to account for V are structures of the
form

ZIBl,...7Bn—>Bo.

Here, ¥ is a signature containing the list of all (explicitly typed) eigenvariables
of the sequent. The judgment X F ¢t : 7 means that ¢ is a simply typed A-term
of type 7 in which there may appear the (fixed) non-logical constants as well as
those eigenvariables in . We shall also say t is a ¥-term (of type 7), and, if 7
is o, t is a Y-formula. In the displayed sequent above, n > 0 and By, B1,..., By,
are Y-formulas. Informally, the meaning of this sequent would be that for every
substitution 6 that maps variables x : 7 € ¥ to terms of type 7, if B;6 holds for all
i=1,...,n, then Bypf holds.

To account for the V quantifier, we introduce into sequents a new element of
context. Sequents will now have one global signature (containing the sequent’s
eigenvariables) and several local signatures, used to scope local variables. More
generally, sequents have the structure

:010B1,...,0n,> B, — 0p> By.

Here, o;, for i = 0,...,n are signatures and the other items are as above. We shall
consider sequents to be binding structures in the sense that the signatures, both the
global and local ones, are abstractions over their respective scopes. The variables in
Y. and o; will admit a-conversion by systematically changing the names of variables
in signatures as well as those in their scope, following the usual convention of the
A-calculus. In general, however, we will assume that the local signatures o; contain
names different than those in the global signature X. The expression o> B is called
a generic judgment or simply judgment. Equality between judgments follows from
the notion of equality of A-terms, that is, two judgments z>B and gy C are equal if
and only if Az.B =g, A\y.C. We use script letters A, B, etc. to denote judgments.
We write simply B instead of o > B if the signature o is empty.

The introduction rules for V are given in Figure 1. The variable y must be new
to the variables in ¢ and ¥ (implicit in the definition of sequent). The expression
(0,y : 7) denotes the signature containing the type declaration y : 7 appended to
the end of the list 0. Notice that since the left and right rules are essentially the
same, this quantifier will be self dual: that is, -V Bx is equivalent to Vz—Bz.

3. AN INTUITIONISTIC LOGIC WITH V

We now consider Gentzen’s LJ calculus [Gentzen 1969] with the addition of global
and local signatures and V. Besides this new quantifier, the other logical connec-
tives are L, T, A, V, D, ¥,, and 3, (again, the type 7 does not contain o): their
inference rules are given in Figure 2. Notice that no inference rule in Figure 2 re-
quires non-empty local signatures: as a result, if all the local signatures in sequents
in a derivation built from those rules are set to empty, the resulting derivation is a
standard derivation in intuitionistic logic.

The interaction between the global and local signatures and the universal and
existential quantifiers needs some explanations. In the rule for V£ (and, dually, for
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Y:A— B >:B,I' —C

S:ooB T —osB M SIAT ——C cut
ZZB,B,F—’C »:I'—C r
S:BT —cC © S:BT—c "
E:obL,F—»Blﬁ Y:I'—ob>T ™"
:00B, ' — D :0pC,I' — D
AL AL
Y:o0BANC, T — D Y:o0BANC, T — D
Y:I' — o> B >:I' —opC Y:o>BI' —D Y:orC,I' —D
S:T —oboBAC AR S:0oBVC,T —D
:I' — o> B VR :I'—opC VR
>:I'—o>BVC >:I'—o>BVC
»:I'— o> B :ovC,I' — D r :o>B,I' —opC R
Y:o>BDCTI — D - >:I' —0o>BDC -

S,obt:T Y:o0> B[t/z],I — C Y,h:T' — o> B[(h o)/z]
Y:o>Vrx.B,T — C vL :I' —op>Va.B
3,h:opB[(ho)/z], — C S,obt:T ¥:T — o> Blt/z]
Y:op>3dz.B,T — C 3L >:I' —o>3rx.B

Fig. 2. The intuitionistic rules of FO.

IR), the quantifier appears in the scope of the global signature ¥ and the local
signature o. This quantifier can be instantiated (reading the rule bottom-up) with
a term built from variables in both of these signatures. Similarly, in the rule for
VYR (and, dually, for 3£), the quantifier appears in the scope of the global signature
¥ and the local signature o. This quantifier can be instantiated (reading the rule
bottom-up) with an eigenvariable whose intended range is over all terms built from
variables in ¥ and o. Since, however, the eigenvariable h is stored in the global
scope, its dependency on o would be forgotten unless we employ some particular
encoding technique. For this purpose, we use raising [Miller 1992]: to denote a
variable of type 7y that can range over some set of constants and over the variables
inoc=(x1:71,.-.,%n : Tn) (n > 0), we can use instead the term (hx; ...x,) where
the variable h ranges over the set of constants only (the dependency on o can be
forgotten). Of course, the type of h will be 77 — --+ — 7,, — 79 instead of simply
7o. In the inference rules of Figure 2, we write (ho) to denote (hxy...x,).

For the sake of consistency with a naming convention from the papers [McDowell
1997; McDowell and Miller 2000], we shall refer to the inference system defined
with just the rules in Figure 2 as FOA (mnemonic for a “first-order logic for -
expressions”). The proof system resulting from the addition of the rules for V
(Figure 1) is called FOAY.

Figure 3 lists some theorems of FOAY involving V. In general, we use ~C' to
abbreviate C' D L and B = C to abbreviate (B D C) A (C D B). As a result
of these equivalences, V can alway be given atomic scope within formulas (with
the simple cost of raising the quantified variables in its scope). Figure 4 lists some
non-theorems of FOAY involving V. In the next section we will extend the core
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Vaz-Bx = -VzBz Vz(Bx A Cz) = VaBx A VaCx
Vz(Bz VvV Cx) = VzBz V VzCx Va(Bzx O Cx) = VaBx D VaCx
VaVyBxy = YhVazBx(hx) Va3yBxy = IhVa Bz (hx)
VaVyBxy D VyVaxBzy Ve.T=T, Ve.l=1

Fig. 3. Some theorems of FOAV.

VaVyBzy D VzBzz (1) VzBx D JdzBx (
VyVzBzy D VaVyBzy (3) VeBz D VzBzx (
JzBx O VxBx (5) B D VzB (
VzBz D VzBx (7) VaVyBzy D VyVzBzy (

Fig. 4. Some non-theorems of FOAV. In (6),  is not free in B.

logic with a proof theoretic notion of definition. In this extension, we will be able
to prove certain instances of the last three of these non-theorems (see the end of
Section 7.2). The first five will not be provable in the extension, and it seems
important to not prove them.

4. INTRODUCTION RULES FOR DEFINITIONS

Introduction rules are, generally, restricted to logical connectives and quantifiers.
The recent development of a proof theoretic notion of definitions [Hallnds and
Schroeder-Heister 1991; Schroeder-Heister 1992; Girard 1992; McDowell and Miller
2000] provides left and right introduction rules also for non-logical predicate sym-
bols, provided that they are “defined” appropriately. Given certain restrictions on
the syntax of definitions, a logic with such definition introduction rules can enjoy
cut-elimination. In this section, we take the treatment of definitions from [McDow-
ell 1997; McDowell and Miller 2000] and extend it to handle the extension of local
signatures.

DEFINITION 4.1. A definitional clause is written VZ.pt 2 B, where p is a predi-
cate constant, every free variable of the formula B is also free in at least one term in
the list ¢ of terms, and all variables free in pt are contained in the list Z of variables.
The atomic formula pt is called the head of the clause, and the formula B is called
the body. The symbol = is used simply to indicate a definitional clause: it is not
a logical connective. A definition is a (perhaps infinite) set of definitional clauses.
The same predicate may occur in the head of multiple clauses of a definition: it is
best to think of a definition as a mutually recursive definition of the predicates in
the heads of the clauses.

Although predicates are defined via mutual recursion, circularities through im-
plications (negations) must be avoided. To do this, we stratify definitions by first
associating to each predicate p a natural number lvl(p), the level of p. The notion
of level is generalized to formulas as follows.

DEFINITION 4.2. Given a formula B, its level Ivl(B) is defined as follows:
(1) Wi(pt) = Wvl(p)
(2) (L) =W(T)=0
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(3) WI(BAC) =W](BVC)=max(lvl(B),vl(C))
(4) WI(B > C) = max(Ivl(B) + 1,1v1(C))
(5) Wl(Va.B) = vl(Va.B) = vl(3z.B) = V1(B).

For every definitional clause Vz.pt = B, we shall require that vl(B) < Wi(p).
This requirement allows us to prove cut-elimination for FOA2V (see Section 7 and
[McDowell and Miller 2000]).

Definition rules involve the use of substitutions. We recall some basic definitions
related to substitutions. A substitution 6 is a mapping (with application written in
postfix notation) from variables to terms, such that the set {x | 26 # z} is finite.
Although substitutions are extended to mappings from terms to terms, generic
judgments to generic judgments, etc, when we refer to the domain and the range
of a substitution, we refer to those sets defined on this most basic function. A
substitution is extended to a function from terms to terms in the usual fashion.
Composition of substitutions is defined as x(6 o o) = (26)0o, for all variable z. Two
substitutions ¢ and o are considered equal if for all variables z, zo =, x0 (equal
modulo 7-conversion). The empty substitution is written as e. The application of a
substitution € to a generic judgment x1,...,x, > B, written as (x1,...,x, > B)0, is
Y1, -, Yn > B if (Ax1 ... Az, B)0 is equal (modulo A-conversion) to Ay; ... Ay,.B’.
If T is a multiset of generic judgments, then I'9 is the multiset {J0 | J € T'}. Finally,
if ¥ is a signature then X6 is the signature that results from removing from ¥ the
variables in the domain of # and adding the variables that are free in the range of
0.

The introduction of a defined atom may take place in the context of a local
signature. To account for this, we again use the technique of raising to code this
dependency by introducing the notion of “raised” definition clause.

DEFINITION 4.3. Let V., x ...V, x,.H = B be a definition clause. Let y1,. .., ym
be a list of variables of types ai,...,qm, respectively. A raised definition clause
with respect to the signature {y; : @1, ..., Ym : aun} is defined as

Vhy ... Vhyy>HO = 5> B

where 6 is the substitution [(h1 §)/x1, ..., (h, §)/z,] and h;, for every ¢ € {1,...,n},
is of type aty — ... — amy — T

Raised definition clauses can be seen as definitions for atomic judgments and a
definition clause is just a concise way of representing a family of definition clauses
for atomic judgments. Raising a definition in this manner is similar to V-lifting
[Paulson 1989; Miller 1992].

The following relation is useful for presenting the introduction rules for defined
atomic judgments.

DEFINITION 4.4. The four-place relation dfn(p,.4,6,8) holds for the atomic
judgment A, the judgment B, and the substitutions p and 6 if there is a raised

clause Vh; ...Yh, H = B in the given definition such that Ap = H6.

Obviously, for the relation dfn(p, A, 8, B) to hold, given a raised clause H £ B, the
judgments A, B and H must share the same local signature (up to a-conversion).
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$:T — B {Zp: (B)8,Tp — Cp|din(p, A, 0,B)}
ST defR, where dfn(e, A, 6, B) STAT = ¢C defl

Fig. 5. The definition introduction rules

The right and left rules for atoms are given in Figure 5. Specifying a set of
sequents as the premise should be understood to mean that each sequent in the
set is a premise of the rule. Notice that in the def( rule, the free variables of the
conclusion can be instantiated in the premises. In particular, a variable in ¥ could
possibly be replaced by several new variables.

These rules for definitions add considerable expressive power to intuitionistic
logic. For example, defR is essentially the backchaining rule found in logic pro-
gramming, while defl is essentially a case analysis on how an atom can be proved
and can be used to establish finite failure. Together, these two rules can be used to
encode simulation and bisimulation in certain abstract transition systems [McDow-
ell et al. 2003]. Other uses involve reasoning about computational system [McDowell
and Miller 2002].

The rule defC may have infinite number of premises, since the domain of the
substitution p and # may include variables which are not free in A and B. It is
possible to have a finite number of premises, provided that we restrict the definitions
to have only a finite number of clauses and to restrict the use of deff to those
judgments A such that for every raised definition clause there is a finite, complete
set of unifiers (CSU) [Huet | of A and the head of the clause. Then the following
inference rules can be shown interadmissible with defL:

{26 :B6,T9 — CO | 6 € CSU(A, H) for some clause Vh[H = B]}
AT —C

defl .su-

This rule is originally due to [Eriksson 1991] and is also used in [McDowell and
Miller 2000]. The proof of its interadmissibility with def follows the same outline
as the one in [McDowell and Miller 2000]. The meta-theoretic analysis of definitions
(see Section 7) is more naturally addressed using defC while the presentation of
examples (see Sections 5 and 6) is more natural using defL s,

The proof system that arises from adding together the inference rules in Figures 2
and 5 is called FOM2. If we add to FOA® the rules in Figure 1, the resulting proof
system is called FOX*Y (pronounced “fold nabla”). It is this logic that will involve
us for the remainder of this paper.

An important type of definitions are those that are similar to Horn clauses. In
particular, an hc-goal (named for Horn clauses) is a formula built from the base
set of logic connectives T, A, V, and 3. An hcv—goal is a formula built from these
connectives and V; an hcv—goal is a formula built from the base set and V; and
an hc”V -goal is a formula admitting those connectives as well as both V and V.
A definition is an hc-definition (resp., hc"-definition, hc" -definition, and hc”" -
definition) if the body of all of its clauses are hc-goals (resp., hc”-goals, hc" -goals,
and hc”V -goals). Notice that all of these kind of definitions are trivially stratifiable.
Numerous interesting computer science motivated specifications are examples of
hc”-definitions: we consider in more detail two such examples in Sections 5 and 6.
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P—»A P -
= T Q match 7?match
TP — P [t=2]P — Q [x=z]P — Q
A A A A
P— R Q— R P—R Q—R
I sum T sum " sum I sum
P+Q— R P+Q—R P+Q@—R P+Q —R
A A
P—P Q—q
— a b« — a b«
PlQ— P |Q PlQ—P|Q
A A
P—M Q—N

par par

P1Q -2 an(Mn | Q) PQ - (P | Nn)

A A Tzy
Vn(Pn — P’'n) Vn(Pn — P’'n) Vy(My — M'y)
" res " res . open
vn.Pn — vn.P'n vn.Pn — Am vn.(P'nm) vy. .My — M’
lz Tz Tx lx
P—M Q—N P—M Q-=~N
— out = close = close
outxy P—— P PlQ — vn.(Mn| Nn) P|Q — vn.(Mn|Nn)
lz Tey Ty la
; P—M Q—¢ P—P Q—N
= in = com — com
inz M — M PlQ— (My)| Q' PlQ — P'[(Ny)

Fig. 6. The rules for the (late) m-calculus.

5. EXAMPLE: THE n-CALCULUS

Operational semantics of specification languages or programming languages is often
given using inference rules, following the small-step approach (a.k.a., structured
operational semantic) or big-step approach (a.k.a. natural semantics). Frequently,
the proper specification of such semantics includes the generation of new names
to be used for such things as nonces in security protocols [Cervesato et al. 1999],
locations for reference cells [Chirimar 1995; Miller 1996], or new communication
channels [Milner et al. 1992]. One declarative way to capture these features in the
inference rule setting is to employ scoped (eigen)variables. Given the logic FOAY,
we now have the ability to scope variables within sequents either globally via V or
locally via V. We illustrate these choices with a specification of the m-calculus.
Consider encoding m-calculus [Milner et al. 1992] using higher-order abstract
syntax following [Miller and Palamidessi 1999; Miller and Tiu 2002]. Since we are
focused here on abstractions in syntax, we shall deal with only finite w-calculus
expression, that is, expressions without ! or defined constants. Extending this
work to infinite process expressions should be possible by adding induction (as in
[McDowell et al. 2003]) or co-induction to our proof system. We shall require three
primitive syntactic categories: n for channels, p for processes, and a for actions.
The output prefix is the constructor out of type n — n — p — p and the input
prefix is the constructor in of type n — (n — p) — p: the m-calculus expressions
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A
vn.Pn — vn.Qn = Vn(Pn — Qn)
X A 1Xy
vy.Py — Q = Vy(Py — Qy)
X A
nXM-—M =T
£

- XY 11X
P|Q— S|(TY) £ 3XP—5SAQ—T

Fig. 7. Corresponding definition clauses

Zy.P and z(y).P are represented as (out x y P) and (in & Ay.P), respectively. We
use | and +, both of type p — p — p and written as infix, to denote parallel
composition and summation, and v of type (n — p) — p to denote restriction. The
m-calculus expression () P will be encoded as vAn.P, which itself is abbreviated as
simply vz.P. The match operator, [- = -] is of type n — n — p — p. When 7 is
written as a prefix, it has type p — p. When 7 is written as an action, it has type
a. The symbols | and T, both of type n — n — a, denote the input and output
actions, respectively, on a named channel with a named value: e.g., | zy denotes
the action of inputing y on channel =x.

We use two predicates to encode the one-step transition semantics for the -

calculus. The predicate - —— - of type p — a — p — o0 encodes transitions

involving free values and the predicate - —— - of type p — (n — a) — (n — p) — o
encodes transitions involving bound values. Figure 6 (taken from [Miller and Tiu
2002]) contains the inference rules specifying the late version of the transitions for
the m-calculus [Milner et al. 1992]. In these rules, capital letters (possibly primed)
are used to denote schema variables for inference rules: these schema variables
have primitive types such as a, n, and p as well as functional types such as n — a
and n — p. These inference rules can trivially be written as definition clauses: a
few such clauses are presented in Figure 7. Here, schema variables are universally
quantified (implicitly) at the top-level of such clauses. Notice that the complicated
side conditions in the original specification of w-calculus are no longer present, as
they are now treated directly and declaratively by the meta-logic. For example, the
side condition that x # y in the open rule is implicit, since = is outside the scope
of y and therefore cannot be instantiated with y.

To illustrate the expressiveness that the V quantifier adds to logic, consider the
following presentations of the transition system for the m-calculus. Let £ be the
complete definition for the one step transitions for the m-calculus. Clearly, £ is an
hcY-definition. Let £’ be the result of replacing all occurrences of V in £ with V.
Furthermore, let £” be the result of replacing all occurrences of the symbol Zin
the definition clauses of £’ by reverse implication: thus, £ is a set of formulas and
is not a definition. Finally, assume that we are only interested in computing the
one-step transitions of the late m-calculus, that is, proving atomic formulas such as

P A, P’ or P A P’ (let B range over such atomic formulas).

As we shall see in Section 7.2, when we restrict ourselves to Horn definitions
(no implications and, hence, no negations in the body of definitions), then it is
not possible to distinquish between uses of V and V in the body of clauses. In
particular, Proposition 7.8 implies that - : - — B is provable in FOA*Y using
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definition £ if and only if - : -+ — B is provable in FOM* using definition £’.
Furthermore, a cut-free proof of - : - — B in FOA® using definition £’ does not
contain occurrences of deff, and, as a result, the definition mechanism itself can
be replaced: the sequent - : - — B is provable in FOA® with the definition £’ if
and only if the sequent ¥ : L — B is provable in FOM. Thus, only a standard
logic programming, such as AProlog, is needed to compute with this specification of
one-step transitions for the m-calculus, and V and definitions do not add expressive
power.

To see what expressive power is contributed by both V and definitions in a proof
system, we will need to consider the problem of dealing with negative information
about transitions in mw-calculus. Such information is often needed when proving
simulation of processes, e.g., in showing that a process can make certain transitions
and no more. We shall see that the encoding of the restriction operator using
V-quantifier is not appropriate in this case while the use of V is appropriate.

In the following illustration, we shall use the original syntax of the m-calculus for
readability purpose: when we mix that original syntax with logic, we will assue that
the reader encodes it directly into logic following the encoding mentioned above.

Consider the process (y)[x = y]Zy.0. This process cannot make any transition
since the bound variable y denotes a name different from x. We would therefore
expect that the following is provable.

VaV2YQVa[((y) [z = y](72.0) — Q) D 1]

If we had used V in encoding restriction (that is, in the premises of inference rules res
and open in Figure 6), attempting to prove the above formula would have reduced
to attempting to prove the sequent

{2,2,Q,0} : Vy.([z = y)(22.0) — Q) — L.

The only applicable rule (given the cut-elimination result in Corollary 7.6) is VL,
followed by defl. For the sequent to be provable, z and y would have to be instan-
tiated with different terms so that the deff rule will produce an empty premise.
However, we see that there are at least two instantiations of variables that identify
them: namely, the substitution {w/y, w/z, wz/a, 0/Q} gives us

(2} : (Jw = w)(@2.0) = 0) — L

and the substitution {z/y, Zz/a, 0/Q} gives us

{z} : ([z = 2](z2.0) =, 0) — L.

In the first case, the scoping of variables at the object-level is lost at the meta-
level, while in the second case, the newness assumption on y is violated. However,
these two aspects are captured precisely by V, as it is shown in the derivation in
Figure 8.. The success of the topmost instance of defL s, depends on the failure of
the unification problem Aw.x = Aw.w. Notice that the scoping of object variables
is maintained at the meta-level by the separation of (global) eigenvariables and (lo-
cally bound) generic variables. The “newness” of w is internalized as A-abstraction
and hence it is not subject to any instantiation.
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12 . D. Miller and A. Tiu

= defLcsu
{z,2,Q,a}: w> ([zr = w|(z2.0) —a> Q) — L _
{z,2,Q,a}:.>Vy.([z = y](Z2.0) a—> Q) — L defloss
{z,2,Q 0} : .0 ((Y)r =y](22.0) — Q) — L
DR

{.2,Q,a} i— .> ()e = y)(@=.0) — Q) D L

Fig. 8. The proof of a negation.

sim P Q2 YAYP' (P —— P') 53Q.(Q —— Q') Asim P’ Q] A
VXVP' [(P X P> 3Q.(Q R Q') AVw.sim (P'w) (Q'w)] A
VXVP' [(P LR P> 3Q.(Q Ll Q') A Vw.sim (P'w) (Q'w)]

Fig. 9. Definition of w-calculus simulation

A more complete picture of the differences between V and V is illustrated in the
definition clause for simulation in Figure 9. Notice the when checking simulation for
bounded inputs, the V quantifier is used while for bounded outputs, the V quantifer
is used.

Let us consider the following four m-calculus expressions. (Here we are using the
usual abbreviations: when only a name, say z, is used as a prefix, it denotes the
prefix z(w), where w is vacuous in its scope; when the bar’ed name, say z, is used
as a prefix, it denotes the prefix Za, where a is some fixed value; the expression
Z(y).P abbreviates (y)Zy.P; and when a prefix is written without a continuation,
the continuation 0 is assumed. Thus, for example, § | z denotes ga.0 | z(w).0.)

Pi=a(y).(ylz)  Pr=a(y)((72)+(29))
Ps=2(y).(ulz)  Pa=2(y).((72) + (2.9))

The process P, is simulated by P; but the converse is not true since after P;
preforms an (| xz), it is possible for the resulting process to take a 7 step. The
sequence of actions (] zz) and 7 is not possible with P5. The processes P; and Py
do, however, simulate each other (they are, in fact, bisimilar). The only difference
between these pairs of processes is, of course, that the first is prefixed with a
bounded input prefix while the second is prefixed with a bounded output prefix.
These different bounded prefixes are handled in the simulation definition in Figure 9
using, in one case, V and the other case V.
For example, consider proving the sequent

pe—— sim (2(y) (¥ | 2)) (2(y)-((5:2) + (2.9))),

which, as we discussed above, should fail. The free names = and z are interpreted as
meta-level constants. The attempt to prove this sequent reduces (via defR, VR, and
D R) to needing to prove the three sequents (1-3) in Figure 10. A simple argument
about the permutabilities of inference rules [McDowell and Miller 2000] shows that
if a sequent with an atom on the left has a proof, it has a proof with an instance of
the defl.s, rule that introduces that atom. Thus, we can conclude that sequents
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A, P (9«“(741)1\']@ | 2)) Sy . 3Q’ [(z(y)-((3- Z) (Z 7)) =, Q' Asim P Q'] (1)
N, P": (z(y)-(§ | 2)) ? P — 3Q[(=(v)-((7-2) + (2-9))) Rl Q/ AVw.sim (P'w) (Q'w)] (2)
N, P (z(y).(g|2)) — P' — 3Q'[(z(y)-(7-2) + (= ))) SN Q’ A Vz.sim (P'z) (Q'w)] (3)
te— 3Q/[(i( y)-((§.2) + (2.9))) N o /\Vw sim (@ | 2) (Q'w)] (4)
w,A,P’l:]\(71I;|z)—>P’—>3Q[(( )+(zw))—>Q’/\s1mP’Q](5)
w,N,P": (w| z) TT P — 3Q'[((w.2) + (z.w)) Bl Q' ANVu.sim (P'u) (Q'u)] (6)
w,N,P': (w|z) — P' — 3Q'[((w.z) + (z.w)) éQ’/\Vusun (P'u) (Q'u)] (7)
<1 — 3Q[((y).((7-2) + (2.9))) LN Q'A Vw sim (W | z) (Q'w)](4)
(Aw) (Aw
) ( )) —>Q’/\Slm (P'w) Q'(5°
L(Nw)
NP i wp (@] 2) ) (Pw) — w 3Q[(@.2) + (2.0)) (6
(7

T(Nw) T(Nw
N,P :wp(w]z) — (P'w) — w>3Q[((w.2) + (z.w)) é Q' A Vu.sim (P'wu) (Q'u)]

AP rwp (w|2) — (P'w) — wp>3Q'[((w. )
é Q’ AVu.sim (P'wu) (Q'w)](6”)
)

Fig. 10. Some sequents

(1) and (3) are trivially provable since the required unification problem in defl.s,
fails for all clauses in the definition. The second sequent is the consequence of a
non-trivial occurrence of the defL.,, rule, giving rise to the need to prove sequent
(4) in Figure 10 (here, the variable N is instantiated to  and P’ is instantiated
to Ay.(g | 2)). Proving this requires making the appropriate substitution for @’
(obvious) and then proving the sequent

i+ — Yw.sim (0] 2) ((0.2) + (z2.0))

Similarly to our first step, proving this reduces to the three sequents (5), (6), and
(7). Applying defL.s, rule to sequents (6) and (7) produces one premise for each
case, which eventually leads to proving the sequents w,u : - — sim w w and

;- — ubsim z z; both are trivially provable. A proof of (5) using defL.s, has
two premises: one with A instantiated to 7, w to z, and P’ to 0|0, and one with
A instantiated to T wa and P’ to 0| z (w is not instantiated). The first of these
premise sequents is the sequent

— 3Q[((2.2) + (2.2) —— Q' Asim (0]0) Q']

This is not provable since there is no 7 transition from ((z.z) + (2.2)). As a result,
since this sequent is not provable we may conclude that the original sequent is
not provable. The reason for this failure is also clear from this attempt of a proof
construction: although both P; and P, make an initial input step, the first of the
resulting pair of processes can make a 7 step but the second cannot.

Turning to the case of expressions P3 and Py, consider proving the sequent

- — sim (2(y).(7 | 2)) (2(y)-((7-2) + (2.9)));

which, as we discussed above, should succeed. A proof attempt of this sequent
proceeds similar to the previous example, yielding the sequent (4’) in Figure 10.
Proving this reduces to the three sequents (5'), (6'), and (7'): notice that w is
not given global scope in the sequents but local scope and that the eigenvariables
(A, P’; and N') are raised with respect to their counterparts in (5), (6), and (7)).
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14 . D. Miller and A. Tiu

Sequents (6’) and (7') are proved as in (6) and (7). In this case, however, a proof
of (5') using defL.s, has exactly one premise, where A is instantiated to Aw. T wa
and P’ to Aw.0 | z. The resulting sequent is

e we 3Q((@.2) + (2.0)) % @ Asim (0] 2) Q]

This sequent, like all the remaining ones in this proof attempt, now have a simple
proof.

Notice that although we have now encountered higher-order unification problems
and higher-order substitutions, the unification problems generated from this partic-
ular example fall within higher-order pattern unification or Ly-unification [Miller
1991; Nipkow 1993]. This subset of the unification of simply typed A-terms has
complexity similar to that of first-order unification, in that it is decidable and has
most general unifiers when unifiers exist. Proof search for a sequent that starts
out with first-order quantification will remain “essentially” first-order, even though
raising introduces variables of higher-order type.

The encoding of m-calculus above can also be extended to include the mismatch
operator by using negation.

A
r=y>DLl P—

[w%y]PiQ

Operationally, mismatch is modeled as failure of unification at the logic level. Notice
that the resulting definition is not Horn anymore since we have an implication in
the body of the clause representing the above inference rule. As a consequence,
Proposition 7.8 is not applicable to this definition.

mismatch

6. EXAMPLE: AN OBJECT-LOGIC ENCODING

Consider the problem of proving the formula
VuVU[q <u7t1> <Ua t2> <U?t3>]7

where ¢ is a three place predicate, (-,-) is used to form pairs, t; and ts are some
first-order terms, and the only assumptions for the predicate ¢ are the (universal
closure of the) three atomic formulas: ¢ X X YV, ¢ XY X and ¢ Y X X. Clearly,
this query succeeds only if terms to and t3 are equal [Miller and Tiu 2002]. One
natural way to formalizing this reasoning involves first encoding provability of an
object-level first-order logic in FOA2Y and then to reason directly on this encod-
ing. Let obj be the type of object-level logic, let T obj and & : obj — obj — obj
be object-level true and conjunction, and let V and 3 be object-level quantifiers at
type (i — obj) — obj (for some fixed type i ranging over first-order object-level
terms). To encode provability, we use two predicates pv - of type obj — o to indicate
first-order provability and bc(-,-) of type obj — obj — o as an auxiliary predicate
indicating “backchaining”. The definition clauses on the left side of Figure 11 en-
codes provability for a first-order logic programming language that is restricted to
hc” and is parametrized by the predicates atom - (describing object-level atomic
formulas) and prog - - (describing object-level logic programs clauses). The defini-
tion clauses on the right side of the figure contains such additional clauses for the
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pvrr 2 T

pv (G&G) = pvGApv G’

pv (VG) & Va.pv (Gz)
pv (3G) = Jz.pv (Gx) X=X 27T
pv A = 3D.atom A A prog D A be(D, A) atom (¢ X Y Z) 2T
be(A, A) £ atom A prog (YXVY ¢ X X Y) E
be(G D D, A) £ be(D,A)Apv G prog (VXVY ¢ XY X) 2 T
be(V D, A) £ 3t. be(D t, A) prog (VXVY qY X X) & T

Fig. 11. Interpreter for an object-level logic and additional clauses.

example we are considering here.

Notice that while the object-level logic here is hc” (since our motivating example
concerned with the provability of a universally quantified formula), the meta-level
definition is hcV.

The query that captures our intended example is the following formula

Va,y, z[pv (VuVolg (u,2) (v,y) (v,2)]) Dy = 2]

along with the definition consisting of the clauses in Figure 11. Attempting a proof
of this formula leads to the following sequent (after applying some right rules and
a pair of defL s, and VL rules):

XY, Z: (s,r)>pv(q (s, X) (rn,Y) (r,Z)) — Y =Z.

A series of defL.s, rules will now need to be applied in order to work through the

encoding of the object-level interpreter. In the end, three separate unification prob-

lems will be attempted, one for each of the three ways to prove the predicate ¢. In

particular, the defL., rule will attempt to unify the term AsAr.(¢q (s, X) (r,Y) (r, Z))
with each of the following three terms:

AsAr(q (X' sr) (X' sr) (Y sr))
AsAr.(qg (X" sr) (Y sr) (X' s7))
AsAr(q (Y sr) (X' sr) (X' s7))

The first two unification problems fail and hence the corresponding occurrences of
defL s, succeed. The third of these unification problems is solvable, however, with
X' instantiated to AsAr.(r, Z), Y’ instantiated to AsAr.(s, Z), Y instantiated to Z
(or vice versa), and X uninstantiated. As a result, this third premise is the sequent

.- — Y =Y which is provable using defR.

The more common approach to encoding object-logic provability into a meta-logic
uses the meta-level universal quantifier instead of the V for the clause encoding the
provability of object-level universal quantification: that is, the clause

pv (Va.G z) = Ve[pv (G z)].

is used instead. In this case, attempting a proof of this formula reduces to an
attempt to prove the sequent

X, Y, Z :epv (g (s1,X) (s2,Y) (r, Z)) —pY = Z,
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16 . D. Miller and A. Tiu

and were s; and sy are two terms. To complete the proof, these two terms must
be chosen to be different. While this sequent can be proved, doing so requires
the assumption that there are two such distinct terms (the domain is non-empty
and not a singleton). Our encoding using V allows this (meta-level) proof to be
completed in a more natural way without this assumption.

7. META THEORIES

We now present some meta-theoretic results concerning the logic FOAMY. The
main such result is, of course, that it satisfied cut-elimination.

7.1 Cut Elimination

The proof of cut-elimination for FOA*N that we present here is similar to the one
given by Gentzen [Gentzen 1969] in that the main induction involves the heights of
proofs an additional measure involving the level of cut formulas. The stratification
of definitions makes sure that the level of cut formulas does not increase when
permuting up cut over definition rules, while other measures decrease. Central to
the proof is the following substitution lemma about FOA*Y proofs: if £ : T — C
has a proof and 6 be a substitution, then there is a derivation of %0 : I'0 — C6
such that certain measures are not increased. The precise statement will follow.

We define several measures on derivation that are needed to show termination of
cut reduction.

DEFINITION 7.1. Given a derivation IT with premise derivations {II, };, the height
of the derivation II, denoted by ht(IT), is lub({ht(IL;)};) + 1, where lub(S) denotes
the least upper bound of the set S. The measure def(IT) which indicates the depth
of applications of def( rule is defined as follows.

def(IT) = lub({def(II;)};) + 1, if II ends with a defl rule
¢ | lub({def(11;) }1), otherwise.

Similary, the depth of c¢£ rules is defined as

_J lub({contr(II;)};) + 1, if II ends with a cL rule
contr(IT) = { lub({contr(I1;) },), otherwise.

Note that given the possible infinite branching of def( rule, the measures defined
above can, in general, be ordinals. Therefore in proofs involving induction on those
measures, transfinite induction is needed. In the following inductive proofs, we often
do case analyses on the last rule of a derivation. In such situation, the inductive
cases for both successor ordinals and limit ordinals are basically covered by the
case analyses on the inference figures involved, and we shall not make explicit use
of transfinite induction.

LEMMA 7.2. Let II be a derivation of ¥ : T' — C. Then there is a derivation
II' of 8,2 : T — C, where x € &, such that ht(II') < ht(II), def(II") < def(II) and
contr(IT") < contr(II).

PRrROOF. By induction on ht(IT). O

LEMMA 7.3. Let II be a derivation of ¥ : I' — C and 0 be a substitution. Then
there is a derivation 110 of 30 : T'0 — CO such that ht(I10) < ht(II), def(I1f) <
def(IT) and contr(I1f) < contr(II).
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PRroOF. By induction on ht(II). Most cases follow immediately from induction
hypothesis. We show the interesting cases involving defL and defR.
Suppose I ends with the defC rule

{ I1(e.B) }
Yp:BO,T'p — Cp dfn(p,A,7,

5)
def]
Y: AT —C efL,

where A and B are the judgments. Suppose dfn(p’,.A40,7',B) holds. We have
(A0)p' = H~y', given a raised definition clause Vij.[H = B|, where 7 are chosen
to be distinct from the variables in ¥ and the variables free in the range of 6.
Then, obviously, dfn(f o p’, A,~', B) holds as well. Therefore we construct 18 as
the derivation

{ 11000’ . B) }
YX(@op): By, T"0p — COp’ dfn(p, A0 ' B)

Y0 : A0, T'0 — CO

defl.

Otherwise, suppose II ends with the defR rule
!/
¥>:I'— Bp

ST A R

where A and B are the judgments, and dfn(e, A, p, B) holds for a given raised
definition clause Vj.[H = B]. By Definition 4.4, this means A = Hp. Obviously,
AB = (Hp)0 and therefore dfn(e, .46, p o 6, B) holds as well. We can then construct
110 as the derivation

Hl
30 :1T0 — Bpb
50:10 — A9 R

where I1'6 is obtained from IT’ by inductive hypothesis.

Since each transformation step from II to II6 does not introduce extra applica-
tions of rules, ht(I19), def(I10) and contr(I10) are less or equal than ht(II), def(II)
and contr(II), respectively. They can be smaller than the corresponding measures
of II because in the case of defL there could be fewer premises. [J

In proving cut-elimination, we use a more general form of cut rule, called the
multicut rule,

A1—>B1 An—>Bn Bl,...,Bn,F—>C
A, LA, T —C

mc.

This generalization is due to Slaney [Slaney 1989], and it is used to simplify the
presentation of cut-elimination proof.

We associate a measure to a derivation ending with mc and show that the measure
decreases as we permute up the mc rule. The general cut-elimination theorem is
proved by successively removing the topmost cut instances. The measure involves
a multiset as one of its component. We use W to denote multiset union.
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18 . D. Miller and A. Tiu

DEFINITION 7.4. Let E be the following derivation ending with a multicut rule:

1T, IL, II
ZZA1—>81 ZAn—>Bn Z:Bl,...,Bn,I’—>C
mc.
S:AL.. AT C ¢
Assume also that the proofs Iy, . .., IT,,, IT are (multi)cut-free. We define a measure

1(Z) to be the tuple
(max{lvl(B1),...,Wl(B,)}, def(II), contr(IT), Z | B |, M(B)) ,

where M(Z) is the multiset {ht(IIy),...,ht(I1,,), ht(II)} and | B; | is the number of
occurrences of logical connectives in B;. The ordering on the measure yu is defined
lexicographically on the ordering of its components.

THEOREM 7.5. Let = be a derivation of ¥ : I' — C ending with a multicut,
which is the only cut in the derivation. Then there exists a cut-free derivation of
the same sequent.

PROOF. Let Z be the derivation
Hl Hn II
ZZA1—>81 ZAn—>Bn Z:Bl,...,Bn,F—>C
Ay A, T —C

mec.

If n =0, = reduces to the premise derivation II.

For n > 0 we specify the reduction relation based on the last rule of the premise
derivations. If the rightmost premise derivation IT ends with a left rule acting on a
cut formula B;, then the last rule of IT; and the last rule of II together determine
the reduction rules that apply. We classify these rules according to the following
criteria: we call the rule an essential case when II; ends with a right rule; if it ends
with a left rule, it is a right-commutative case; if II; ends with the init rule, then we
have an aziom case. When II does not end with a left rule acting on a cut formula,
then its last rule is alone sufficient to determine the reduction rules that apply. If
IT ends in a rule acting on a formula other than a cut formula, then we call this
a left-commutative case. A structural case results when IT ends with a contraction
or weakening on a cut formula. If IT ends with the init rule, this is also an axiom
case. For simplicity of presentation, we always show i = 1 and we often abbreviate
judgments like o> B and o > C as B and C when the local signature o is irrelevant
to the context of discussion.

Essential cases:

AR/ A L: If1I; and II are
1 11y I

Y:Ay —orB] X:A]—o>BY » Y:o0Bf,.... —C
Y:A; —o>BANBY 4 Y:o0>Bi A i’,...,F—>CA

L

then = reduces to the derivation =’
1Ty I, I
S:A— B - X:A,— B, 2:B,....B,[ —C
YA, A, T —C

ACM Transactions on Computational Logic, Vol. V, No. N, October 2003.

mec.



A proof theory for generic judgments : 19

The measure (=) is smaller than p(Z'), since

max{Ivl(B)), v1(Bs), ..., V1(B,)} < max{Ivl(By),...,vl(B,)},

def(IT") = def(II), contr(Il) = contr(I') and | B} |<| By | .

Therefore we can apply the inductive hypothesis to Z’ to obtain a cut free derivation.
The case for the other AL rule is symmetric.
VR/V L: IfII; and IT are
I
Y:A —op>DBj
Y:Ay —o>B VB v

R

H/ H//
Y:0pB,Ba... ., B, I —C E:O‘DB{,BQ,...,BTL,F_)C\/
Y:0>ByVB!,By....,B,,' —C

L,

then = reduces to a derivation =’
1T} 11, I
A — B - XA, — B, ¥:B,....8,, —C
EIAl,...,An,F—>C

mec.

As in previous case, the size of cut formulas decreases, and therefore inductive
hypothesis applies to the reduct Z’'. The case for the other VR rule is symmetric.
DR/ D L: Suppose II; and IT are
1Ty
Y:opB{,A; — o> DB}
Y:Ay —o>B{ DB

DR

H/ H//
X:By....By,I' —0o>B; X:0>B!,B,....,B,, —C
S :05B,5 B}, Ba,.... By, T — C

D L.

Let =1 be

o) 50
2:Ai —Bi)icomy £:Bo,....B,T — B,

S Ay AT — B e
and let Z5 be
=1 I
YAy . AT — B X:B,A — B e

YA LA, T — BY

The derivation Z; has a smaller size of cut formula than =, while other measures
remain non-increasing. Therefore, inductive hypothesis can be applied to eliminate
the multicut in =;. The measure p(Z3) is strictly smaller than p(Z) because

WI(B)) < W1(B1) < max{vl(By),...,Iv(B,)}.
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Recall that Wvl(B] D BY) = max{lvl(B]) + 1,v1(B{)}. Therefore, the multicut in
Eo can be eliminated by inductive hypothesis to get a cut-free derivation =5.
The derivation Z then reduces to the following derivation Z’:

= { II; } 1
Yi...— B 2iAi—Bi)icpay v BY {Bi}ici2.n}, I —C
Z2Al,...7An,F,A2,...,An,F—>C
XA, A, T —C

We use the double horizontal lines to indicate that the relevant inference rule (in
this case, c¢£) may need to be applied zero or more times. Again, since the cut
formulas size decreases, we have u(Z') < u(Z) and therefore inductive hypothesis
can be applied to eliminate the multicut in Z’.

VR/VL: If I and II are

=2

mec.

C

1T I
Y, h: Ay — o> B[(h 0)/x] S,obt:T E:abBi[t/x},...,F%Cvﬁ
Y: Ay —op>V.x.B] Y:o>pV,2.Bf,...,I —C

then = reduces to the derivation =’

IT, [\t /h] II; H,
. / YA — B )
Y:A; — o> Bl[t/z] ie{2.n} X:...—C
I Al,...,An,F —C

mec.

The size of cut formulas decreases while other measures are non-increasing, therefore
#(2") < u(2) and the cut in Z' can be removed by induction hypothesis.
IR/3L:. If TI; and IT are

Iy I
Sobt:T Y:A; — o> Bit/a] . Y,h:o>Bi[(ho)/z],...., T — C i
X:A; —or3x.B] R Y:o>32,..B,..., —C
then Z reduces to the derivation =’
1, { I } [\t /B
S:A ——ob Bit/e] ZiBi—Bilicony vionBlt/d,... —C
mc.

Ay, A, T —C
As in the previous case, we can apply the induction hypothesis to remove the cut
in 2.

VR/VL. Suppose II; and II are

H/ !
YA — (ojy)DBi[y/x] P (U,y)DB{[yl}[xL...,,l"' —C
Y: A —o>VaDB] Y:o>Va.Bi,....T —C VL.
Then = reduces to the derivation =’
1T 11’
Y: Ay — (o,y)> Bily/x] Y:(o,y)> Bily/x],... — C e

YA, A, T —C

ACM Transactions on Computational Logic, Vol. V, No. N, October 2003.



A proof theory for generic judgments . 21

The size of the cut formula decreases while other measures remain non-increasing,
therefore the multicut in Z’ can be eliminated by applying the inductive hypothesis.

defR /defL:. Suppose II; and II are

Hll { p,D
YA — Bo 3p:Dy,Bap, ..., Bup, I'p— Cp
S A, B, R S By B B, T —c  defl

By the defR rule in Iy, dfn(e, By, 6, B}) holds. Then = reduces to =’

Hll { H1 } He,Bi
S B A —Bilich .y $:B60,Bs,... By T —C
EZA17...,An,P—>c

mc.

By the definition of definition clause, we have lvl(B]) < Ivl(B;), and therefore the
maximum level of cut formulas is non-increasing. However, def(IT¢%1) < def(IT),
therefore p(2') < w(Z) and inductive hypothesis can be applied to remove the
multicut in Z’.

Left-commutative cases:

oL/ o L: Suppose IT ends with a left rule other than ¢£ and wL acting on By,

and II; is
I
YA — By

EZA1—>Bl

oL,

where oL is any left rule except D L, defL, and X is a subset of 3X’. Then Z reduces
to the derivation Z’

mo L 1w
S Al B BB — Bl ey wiB,. BT —C
AL A A, T —C
ZIAl,Ag,...,An,F—>C

mc

oL,

where II; and II' are obtained from II; and IT by applying Lemma 7.2. Let =]
be a premise derivation of Z'. Since for each IT¢, ht(Il{) < ht(Il;) and since
ht(IT%) < ht(IT;) and ht(II') < ht(II), the multiset M(Z]) is strictly smaller (in
the multiset ordering) than the multiset M(E). Since other measures remain un-
changed, u(Z}) < u(E) (and this applies to arbitrary premise derivations of Z') and

therefore by induction hypothesis all the multicuts in 2’ can be eliminated.

D L/ o L:. Suppose IT ends with a left rule other than ¢£ and w£ acting on By
and II; is
I} oy
Y:Al — oD} Y:00D{ Al — B
Y:0>D) DD/, A} — B
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Let =1 be
1Ty I, I
Y:o>DY, Ay — B -+ X:A,— B, X:By,...,8,,T —C
Yiob DY AL Ay A, T —C

mc.

Then = reduces to
1Ty
Y:Al — o> Dj _
=1
YA Ao AL, T — o Y:oo DY A Ag A, T —C
Y:o>0Dy D DY, A A, A, T —C

wil
Di

D L.

The multicut in =; can be eliminated by inductive hypothesis since M(Z;) < M(ZE)
and other measures are equal.

defL/ o L:. If TI ends with a left rule other than ¢£ and wL acting on B; and
H1 is

ns?
1
{Ep : DO, Alp — Blp}
S AA — By
By the definition of defL rule, the relation dfn(p,.4,6,D) holds for a given raised

definition clause VZ.[H = D] where Z are chosen to be different from the variables
in 3. Then = reduces to the derivation =’

J

defLl.

Yp:Ajp— Bjp

Yp:Dp,Alp — Bip Sp:...—Cp .
m
Sp:DO,Ap,...,App,Tp—Cp
def
S AN, AT C “
where j ranges over {2,...,n}. Let ¥ be an arbitrary premise derivation of Z’.

Since ht(I1¥'") < ht(Il;) and ht(IIp) < ht(II) and for each j, ht(Il¥ p) < ht(Il7 p),
the multiset M(¥) is smaller than M(Z) and therefore induction hypothesis can
be applied to eliminate the multicut in ¥ (and consequently, all multicuts in Z’).
Right-commutative cases:

—/ o L:. Suppose II is

o
Y By,..., B, Ti —C
Y:Bi,....B,0 —C

oL,

where ¥’ D ¥ and oL is any left rule other than D L, def, acting on a judgment

other than By, ..., B,. Then = reduces to the derivation =’
1T 1T, I
YN — B - YA, —B, Y:Bi,...,B,,T" —¢C c
m

E/ZAl,...,An,Fi—>C

YA, AT —C oL.

ACM Transactions on Computational Logic, Vol. V, No. N, October 2003.



A proof theory for generic judgments : 23
The height of IT? is smaller than the height of II, therefore using the same argument

as in the case deff/ o L we can eliminate the multicuts in Z'.

—/ D L:. Suppose II is

H/ H//
:By,...,B,, 1" —o>D" X:By,...,B,,06D" T —C

S:B1,....8,,00D >D'. ' —C o L
Let =1 be
114 1L, I
Y: A — B - X:A,— B, X:By,....B,, " —o>D me
YA LA, T — oD
and =5 be
Hl Hn HH
A — B - X:A,— B, E:Bl,...,Bn,UDD”,I"—»CmC

Y:A,...,A,, oD TV —C

Then = reduces to

=9
YA AT — oD XAy, Ap oD TV —C
Y:A,..., AL, oD DD TV —C

DL

By similar arguments to the previous cases, i.e., the multiset of heights decreases
in Z; and Z9, the multicuts in 2’ can be eliminated.

—/defl:. Tf I is

12
Sp:Bip,...,B,p, DO T'p — Cp
Y:By,..., By, ATV —C

defl.

Then = reduces to

{ Hzp } Hp,’D
208 —Bir)icny Sp: {Biplicrmy. Do, I'p — Cp
Zp : Alpa ceey Anp7 D97 Flp - Cp
YA, LA AT —C

mc

defl.

Since def(IT”P) < def(IT), we can apply the inductive hypothesis to remove the
multicuts.

—/oR: If I is

Y By,..., By, T — (i
Y:Bi,....B,,T —C
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where oR is any right rule, then = reduces to
1T 1L, I
YA — B - YA, — B, Y¥:Bi,....B,, " —( m
YA A, T —

C

Y:AL... AT —C oR.

Here the derivation II} is obtained from II; by Lemma 7.2 and hence ht(II}) <
ht(I1;) < ht(II). Therefore the multicuts in the reduct can be then eliminated by
induction hypothesis.

Structural cases:

—/cL: M is
/
2:81,31,62,...,BH,F—>C
Y:B1,....B,,L —C

cl,

then = reduces to

I, {Z'Ani B} I
YA — B P8 T Pi ) ey 2:51,81752,...,Bn,F—>Cm
ZZAl,Al,AQ,...,An,F%C

C.

C

ZIAl,...,An,F—>C

The measure contr(Il') < contr(II), while the maximum level of cut formulas does
not change and def(II) = def(Il'). Therefore u(Z’) < p(Z) and we can apply the
inductive hypothesis to remove the multicut in the reduct.
—/wL:. I IIis
H/
X:By,....B,, I —C
S :B1,Bay... Byl —C°

L,

then = reduces to

{ooal s I
YA — Bi) oy S:By,... Byl —C
EZA27...,An,F—>c

ZZAl,A27...,An,F—>C

C.

wil

The total size of cut formulas decreases in the reduct, therefore we can apply the
inductive hypothesis to remove the multicut.
Axiom cases:

init/—:. If TI; ends with the init rule, that is, B; € Ay, then Z reduces to

H2 Hn H
YAy — By - XN:A,— B, Z:Bl,Bg,...,Bn,F—>Cm

EiBl,AQ,...7An,F—>C
S AL Ay AT —cC Yk
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The size of cut formulas decreases, while other measures are non-increasing, there-
fore the multicut can be eliminated by induction hypothesis.

—/init:. If IT ends with the init rule and C is a judgment in T', then = reduces to

S:AL.. A, T —c wit

If IT ends with the init rule, but C is not a judgment in I'; then C must be one of
the cut judgments, say B;. In this case = reduces to

II;
E:A1—>81

YA, LA, T — By

wLl

O

The following corollary is the cut-elimination result for FOAAY

by repeatedly removing uppermost cuts in a proof.

and it is proved

COROLLARY 7.6. Given a fized stratified definition, a sequent has a proof in
FOMNAY if and only if it has a cut-free proof.

7.2 Properties of V

We shall now show that when definitions are essentially Horn clauses, the difference
between V and V cannot actually be observed. In particular, we show that V
and V can be interchanged for hc” -definitions and hc”Y-goals without affecting
provability. In proving this statement inductively we need a stronger hypothesis,
that is, we can interchange the scope of variables in this case (either global or local)
without affecting provability.

LEMMA 7.7. Let D be an hc"Y -definition, and let G be an hc” -goal. The se-
quent X : . — (o1, x,092) > G is provable if and only if the sequent

Y, h:.— (0102)>G|(hoy)/x]

is provable. Moreover, given a derivation 11 of the first sequent, there is a a deriva-
tion II' of the second sequent such that ht(I') < ht(II), and vice versa.

PrOOF. We show that given a derivation II of one sequent, we can construct a
derivation II' of the other sequent by induction on ht(IT). In the transformation,
there is no extra rules introduced, therefore ht(II') < ht(II). We show here the
non-trivial cases where the derivation II ends with either VR or defR.

Let II be a derivation of ¥ : . — (07,2, 02)>G. Then we construct a derivation
Il of ¥, h : . — (0102) > G[(hoy)/x] as follows. First, suppose that IT ends with
VR, that is,

1
Zaf LT (UlaanQ) DGI[(fo-l .’L'O'Q)/y]
Y. — (01,2,09) >Vy.G’

VR.

Applying the substitution [AoiAzAos.f' o102/ f] to II;, where f’ is a new eigen-
variable, we obtain a derivation E of X, f' : . — (01,2,02) > G'[(f' 01 02)/y].
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By Lemma 7.3 substitution does not increase the height of derivation, therefore
induction hypothesis can be applied to Z to get a derivation Z’ of

S, h, f i = (01,00) > G'[(hoyog) [z, (f o1 02) /y].

We can therefore take the following derivation as IT'
=/

b f . — (0102) > G[(hor) [z, (f o1 02) /3]
Y. h:.— (0109)>Vy.G'[(hoy)/z]
Second, suppose that I ends with defR

I1,
Y:.—(0o1,2,00)> D0

VR.

¥:.— (o1,2,09)> A defR

where Vwy ... wy.[o1, 2, 090 H 2 o1, x,09>D] is the raised definition clause matching
o1,%,02> A, that is, A\o1 AzAoe. A =g, (Ao1AzAoe.H)0. We can assume without loss
of generality that the substitution 6 is of the form

{Ao1 Az Aoty /wy, ..., Ao e oty /w, .
Let us define a substitution ~ as follows
v = {Ao1 Az A03.(uy 0102) Jwr, . .., Ao1 Az o2 (U, 0102) /Wy }.

where u1,...,u, are new variables different from w and o1, z, 0. The correspond-
ing raised definition clause for o109 > A[(ho1)/x] is

Yuq ... Uy Joro9> Hy 2 o109 D~].
It can be verified that the following substitution
p={(Ao1Aoa.t1[(hor)/z]))/u1, ..., (Ao dostp[(hor)/x]) /un}
does the following matching
(Ao1Aoa.A[(hor)/x]) =g (Ag1Aae.Hy)p.
Notice that DO[(ho1)/x] =g, Dyp. Therefore we construct I as the derivation
Iy
S, h:.— (0102)> Dyp
S, h:.— 01090 A[(hoy)/z]

defR,

where IT} is obtained by induction hypothesis.

Conversely, from the derivation I’ we construct the derivation of IT as follows. Let
us assume that x is not in X. We first notice that the problem can be simplified by
removing the dependency of h on o1, that is by applying the substitution [Aoy.z/h]
to IT'. We can therefore suppose a simpler case where IT' is a derivation of X, x :
. — 0102 > G. We examine the following two non-trivial cases.

Suppose II’ ends with VR

T,
Yo, f . — 0109 G'[(f 0102) /Y]

Y,x . — 0109 >Vy.G’

VR.
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Applying the substitution [(AoyAos.f’ o1 x 02)/ f] to derivation II;, we get a deriva-
tion Iy of 3, z, ' : . — 0109 > G'[(f' 01 ¢ 02)/y]. The derivation II is then
1T
S f . — o1,x,000 G'[(f o1 2 02) /Y]
Y. —o0y,2,0>Vy.G

VR,

where II} is obtained by applying the induction hypothesis to IIs.
For the second case, suppose II' ends with defR

IT;
Yox . — o109D0

defR

Y,x:.— 0109 A

where Yw; ... Vwy,.[or09 > H = o102 > D] is the matching definition clause, i.e.,
Ao1Ao2 =gy, (Ao1Aoa.H)O. As in the previous case we can suppose that 6 is of the
form

{()\01/\02.151)/11)17 ey ()\JlAUQ.tn)/wn}.

The corresponding raised definition clause for the judgment o1, z, 09> A is
Yug ... Vuy.loyx oo > Hy 2o zo0> DA,

where v = {(Aog1Aog.uy 01 2 09) /w1, ..., (Ao1 02Uy, 01 T 02) /Wy, }. Let p be the
substitution

{Ao1 Az Ao ty, ..., Ao1  \xAoa.t, }.

It can be verified that the equation (AoiAzAo2.A) =3, (Ag1AzAoe.Dv)p holds, and
that D~p = D6. Therefore we construct II as the derivation
1Ty
i — 0'1,.13,0'2D9

defR

Y:.—o0,x,00>A
where II} is obtained from induction hypothesis. [

PROPOSITION 7.8. Let D be an hc"Y -definition and let D' be the he”Y -definition
resulting from replacing some occurrences of ¥V and V in in the body of clauses of
D with V and V¥, respectively. Similarly, let G be an hcvv—goal and let G' be the
he"V -goal resulting from replacing some occurrences of ¥V and V in G with V and
V, respectively. If the sequent ¥ : - — o> G is provable using definition D then
the sequent X : - — o > G’ is provable using definition D’.

PRroOOF. Let II be a derivation of ¥ : - — o> G. We construct a derivation IT’
of ¥ : - — o> G’ by induction on the measure ht(IT). The non-trivial cases are
when II ends with the introduction rule for the connective being interchanged.

Suppose G =Vx.H, G’ = Vz.H' and II ends with VR.

1Ty
Y,h:.— o> H[(ho)/x]
Y:.—op>Vae.H
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By Lemma 7.7 there is a derivation II} of ¥ : . — (o, 2) > H such that ht(I}) <
ht(IT;). We can therefore apply the induction hypothesis to IT} to get a derivation
II; of ¥ : . — (0,2) > H'. The derivation IT' is therefore

I,
Y:.— (o,z)> H'
Y:.—o>Vaz.H

The case where G = Vx.H, G’ =Va.H' and II ends with VR is done analogously,
since Lemma 7.7 works on both directions. []

VR

As a consequence of this proposition, the difference between V and V (or, equiva-
lently, between the global and local signatures of a sequent) cannot be seen if one
is simply attempting to “evaluate” hc” logical programs by determining the goals
that they can prove. To illustrate the difference between these two quantifiers, we
need to consider goals and/or definitions that contain implications. We have done
this in Section 5, for example, when we illustrated the differences between V and V
with the specification of simulation in the w-calculus.

In Figure 4 we presented eight non-theorems of FOAY and claimed that, with
certain restrictions, the last three are provable. For a fixed noetherian definition
(see the following Definition), we claim the following: formula (8) is provable and
if the definition is furthermore hc”" then formulas (6) and (7) are also provable.
The fact that formula (8) is a theorem of FOAAY for noetherian definitions follows
from Proposition 7.10. The proof of the provability of formulas (6) and (7) follows
similarly.

DEFINITION 7.9. A definition D is noetherian if for every definition clause Vz.[pt =

B] in D, it holds that lvl(p) > lvl(B).
PROPOSITION 7.10. Given a noetherian definition, the sequent
¥:T,orB— o' >B,
where o' is a permutation of o, is provable in FONAY .

PROOF. We construct a derivation of I',o > B — ¢’ > B inductively. The in-
duction is on the level of B with subordinate induction on the size of B. We can
assume without loss of generality that all predicates in the definition are assigned
levels greater than 0 and that all predicates in the sequent are defined (an unde-
fined predicate p can be considered as defined by p = 1). The cases where B is
a non-atomic formula are straightforward; we just apply the introduction rules for
the outermost connective in B, coordinated between left and right rules. In the
case where B is an atomic formula, suppose that dfn(p,o > B,6,0 > D) holds for
a clause YAy, ..., hy.[o> H = o> D], that is, (A\a.B)p =g, (Aa.H)#. Let § be the
substitution {(Ao.hio”)/h1,...,(Ao.h),0")/hy}. Tt is suffice to show that there is
a substitution ~ such that dfn(e, (6 > B)p, v, 0’ > D) holds for the raised clause

VR, ...,k .[o> HS = o> D§]. The following substitution solves the matching:

(z) = Ao’ .(h;0) o, if © = h; for some i € {1,...,n},
A 0(x), otherwise.
U
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We conjecture that if we incorporated into our proof system an appropriate in-
duction inference rule, then the restriction of noetherian can be removed from
Proposition 7.10 and from the claims made for formulas (6) and (7) of Figure 4.

8. RELATED WORK AND CONCLUSION

We have considered the approach to the specification of computation in which
term-level and proof-level abstractions are used to encode abstractions both of the
static structure of expressions (e.g., using meta-level A-abstractions to encode the
input prefix in the m-calculus) and the dynamic structure of computation (e.g.,
name generation as eigenvariables). While this style of syntactic representation has
been successfully used to enumerate judgments about operational semantics and
to encode object-logic provability, proof level abstractions (eigenvariables) seem in-
adequate when one wishes to reason about computation directly (as outlined in
Section 1). Since this style of syntactic representation is best understood declar-
atively within proof theory, we have explored a simple mechanism within sequent
calculus to expand the notion of abstraction in the building of proofs. Our ap-
proach to the V quantifier is thus not an attempt at a new notions of “freshness”
or a semantics for “name generation”.

It is natural to ask about possible connections between the V-quantifier and the
new quantifier of Pitts and Gabbay [Gabbay and Pitts 2001; Pitts 2003]. Both are
self dual and both have similar sets of applications in mind. The focus on V has
been proof theoretical while the work on Pitts and Gabbay has been focused on
model theory. More concretely, while V neither implies nor is implied by V or 3,
the quantifier of Pitts and Gabbay is entailed by V and entails 3.

To work with interesting examples, an implementation of FOAV is needed. The
Isabelle theorem prover might provide a setting for building an interactive theorem
prover given the work reported in [Momigliano et al. 2002]. A natural next step
is to attempt adding directly to FOA*V induction and co-induction: induction
should work much as it does in FOXNAN [McDowell and Miller 2000]. Some related
work on co-induction appears in [Momigliano et al. 2002].
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