
Least and greatest fixed points in linear logic
Extended Version

June 12, 2007
David Baelde and Dale Miller

INRIA & LIX/École Polytechnique, Palaiseau, France
david.baelde at ens-lyon.org dale.miller at inria.fr

Abstract. The first-order theory of MALL (multiplicative, additive linear logic)
over only equalities is an interesting but weak logic since it cannot capture un-
bounded (infinite) behavior. Instead of accounting for unbounded behavior via
the addition of the exponentials (! and ?), we add least and greatest fixed point
operators. The resulting logic, which we call µMALL=, satisfies two fundamental
proof theoretic properties. In particular, µMALL= satisfies cut-elimination, which
implies consistency, and has a complete focused proof system. This second result
about focused proofs provides a strong normal form for cut-free proof structures
that can be used, for example, to help automate proof search. We then consider
applying these two results about µMALL= to derive a focused proof system for
an intuitionistic logic extended with induction and co-induction. The traditional
approach to encoding intuitionistic logic into linear logic relies heavily on us-
ing the exponentials, which unfortunately weaken the focusing discipline. We get
a better focused proof system by observing that certain fixed points satisfy the
structural rules of weakening and contraction (without using exponentials). The
resulting focused proof system for intuitionistic logic is closely related to the one
implemented in Bedwyr, a recent model checker based on logic programming.
We discuss how our proof theory might be used to build a computational system
that can partially automate induction and co-induction.

1 Introduction

In order to justify the design and implementation architecture of a computational logic
system, foundational results concerning the normal forms of proofs are often used. One
starts with the cut-elimination theorem since it usually guarantees other properties of the
logic (e.g., consistency) and that there is no need to automate the creation of lemmas
during proof search. In many situations, the cut-elimination theorem implies that all
formulas considered during the search for a proof are subformulas of the original, pro-
posed theorem. This does not hold, in particular, when higher-order (relation) variables
are used, which is the case in this paper where the rules for induction and co-induction
use such higher-order variables. A second normal form theorem, usually related to fo-
cused proofs [And92] is also important to establish. Such “focusing” theorems provide
normal forms that organize invertible and non-invertible inference rules into collections:
such striping of the inference rules in a cut-free derivation can be used to understand
which choices in building proofs might need to be reconsidered (via backtracking) and

which do not. As we shall see, focusing yields useful structure in cut-free proofs, even
when the subformula property does not hold.

Various computational systems have employed different focusing theorems: much
of Prolog’s design and implementations can be justified by the completeness of SLD-
resolution [AvE82]; uniform proofs (goal-directed proofs) in intuitionistic and intuition-
istic linear logics have been used to justify λProlog [MNPS91] and Lolli [HM94]; the
classical linear logic programming languages LO [AP91] and Forum [Mil96] have used
directly Andreoli’s general focusing result [And92] for linear logic.

In this paper, we establish these two foundational proof-theoretic properties for the
following logic. We first extend the multiplicative and additive fragment of linear logic
(MALL) with equality and quantification (via ∀ and ∃) over simply typed λ-terms.
Because of the bounded use of formulas during proof construction, provability in this
logic, call it MALL=, can be reduced to deciding unification problems (under a mixed
prefix) which is decidable for the first-order fragment of MALL=. An elegant and well
known way to make this logic more expressive is to add the exponentials ! and ? and
the rules of inference that allow for certain occurrences of formulas marked with these
systems to be contracted and weakened [Gir87]. Such modal-like operators are not,
however, without their problems. In particular, the exponentials are not canonical since
there are different ways to formulate the rules for the promotion and structural rules for
exponentials and some of these choices lead to different versions of logic (for example,
elementary and light linear logics [Gir98] and soft linear logic [Laf04]). Even if we
fix the inference rules for the exponentials, as in standard linear logic, the rules do
not describe unique exponentials. If one gives a red tensor and a blue tensor the same
inference rules, then one can prove that these two tensors are, in fact, equivalent. All of
linear logic connectives except the exponentials yield similar theorems. It is certainly
possible to consider a (partially ordered) collection of exponentials on top of MALL
(see, for example, [DJS93]).

An alternative to strengthen MALL with exponentials is to extend it with fixed
points. Early approaches to adding fixed points [Gir92,SH93] involved inference rules
that could only unfold fixed point descriptions: as a consequence, such logics could
not discriminate between a least and greatest fixed point. Stronger systems that allow
induction [MM00] as well as co-induction [Tiu04,MT03] include inference rules using
a higher-order variable that ranges over prefixed or postfixed points (invariants). Of
course, approaches that use (co)induction are not without problems as well: various
restrictions on fixed point expressions and on invariants may need to be considered. In
any case, we shall explore this alternative to exponentials: in particular, we extend the
logic MALL= to µMALL= by adding the two fixed points µ and ν.

Besides considering fixed points as alternatives to the exponentials, there are other
reasons for examining µMALL=. First, least and greatest fixed points are de Morgan
duals of one another and, hence, the classical nature of linear logic should offer some
economy and elegance in developing their proof theory, in contrast to intuitionistic
logic. Second, since linear logic can be seen as the logic behind intuitionistic logic,
it will be rather easy to develop a focusing proof system for intuitionistic logic and
fixed points based on the structure of the one we develop for µMALL=.

2

It is important to stress that we are using linear logic here as “the logic behind
computational logic” and not, as it is more traditionally understood, as the logic of
resource management (in the sense of multiset rewriting, database updates, Petri nets,
etc). Instead, we find the proof theory of linear logic an appropriate and powerful setting
for exploring the structure of proofs in various intuitionistic logics (see [LM07] for
another such use of linear logic).

In the next section, we define µMALL= and prove some of the most basic aspects
of its proof theory, including the cut-elimination theorem. Section 3 presents a focused
proof system that is complete for µMALL=. In Section 4 we describe a few examples of
(focused) derivations in µMALL=. Section 5 shows how the proof theory of µMALL=
can be applied to an intuitionistic logic extended with induction and co-induction, and
to the intuitionistic logic of fixed point unfoldings that is the foundation of the recent
computational system Bedwyr [BGM+07].

2 Linear logic extended with fixed points

We will use simply typed λ-calculus as our language of terms and assume that the reader
understands the basics involving substitution, equality, and complete set of unifiers for
such terms. In most of our examples variables will be of ground type, and thus the
possibly infinite complete set of unifiers can be replaced by the most general unifier
when there is one.

In the following, terms are denoted by s, t; vectors of terms are denoted by s, t; for-
mulas (objects of type o) are denoted by P,Q; finally x, c will represent eigenvariables.
We have the following formula constructors:

P ::= P ⊗ P | P ⊕ P | P M P | P & P | 1 | 0 | ⊥ | >
| ∃γx.Px | ∀γx.Px | s γ= t | s

γ

, t | µBt | νBt

Note that there are no atoms in this grammar. The syntactic variable γ ranges over
all simple types that do not contain o. The quantifiers have type (γ → o) → o and
the equality and inequality have type γ → γ → o. We shall almost always elide the
references to γ in these connectives assuming that they can be determined from context
when it is important to know their value. For most of this paper, the reader can assume
that γ is actually some fixed primitive type and that terms range over first-order terms
sorted by that type. These connectives are not new and play a little role in this work,
however they are crucial for examples in our point of view. The central feature here is
the fixed point constructs. The connectives µ and ν are of type (τ → τ) → τ where τ is
γ1 → · · · → γn → o for some arity n ≥ 0. We shall not decorate µ and ν with the values
of n, γ1, . . . , γn since they can usually be determined from context. The first argument
of a formula with top-level µ or ν is called the body of that fixed point formula, and will
be denoted by B. Finally, fixed point expressions can be arbitrarily nested.

Definition 1. We define the negation B of a body B, and extend the usual definition of
the involutive negation as follows:

B de f
= λp.λx.(B(λx.(px)⊥)x)⊥ (s = t)⊥ de f

= s , t (µBt)⊥ de f
= νBt

3

MALL rules First-order structure

` 1
` Γ, P ` ∆,Q
` Γ,∆, P ⊗ Q

` Γ, P,Q
` Γ, P M Q

` Γ

` Γ,⊥

` Γ, Pt
` Γ,∃x.Px

` Γ, Pc
` Γ,∀x.Px c new

` ∆,>

` Γ, P ` Γ,Q
` Γ, P & Q

` Γ, Pi
` Γ, P0 ⊕ P1 ` t = t

{` Γθ : θ ∈ csu(s .
= t)}

` Γ, s , t

Fixed points (where S is closed, x is new)

` Γ, B(µB)t
` Γ, µBt

µ
` Γ, S t ` BS x, (S x)⊥

` Γ, νBt ν
` µBt, νBt

µν

Fig. 1. Inference rules for µMALL=

A body B is said to be monotonic when for any variables p and t, the negation normal
and λ-normal form of Bpt does not contain any negated instance of p.

We shall assume that all bodies are monotonic. In other words, negation (•⊥ for
formulas and • for bodies) is not part of the syntax since negation normal form of
formulas and bodies without atoms do not contain negations and since we forbid them
explicitly in fixed point expressions. When we write negation in some inference rules,
we shall be considering it as implicitly computing the negation normal form.

The monotonicity of a function is also a natural condition for the existence of fixed
points in lattices or other models. The condition of monotonicity is used only syntacti-
cally here since we are not studying the semantics of µMALL=.

We present the inference rules for µMALL= in Figure 1. The initial rule is restricted
to fixed points. In the ν rule, which provides both induction and coinduction, S is called
the (co)invariant, and has the same type as νB, of the form γ1 → · · · → γn → o. The
treatment of equality dates back to [Gir92,SH93]. In the inequality rule, csu stands for
complete set of unifiers. This set has at most one element in the first-order case, but can
be infinite in presence of higher-order term variables, which we do not exclude. In that
case, the proofs are infinitely branching but still have a finite depth. They are handled
easily in our proofs by means of transfinite inductions. Again, the use of higher-order
terms, and even the presence of the equality connectives are not essential to this work.
All the results presented below hold in the logic without equality, and they do not make
much assumptions on the language of terms.

Proposition 1. The following inference rules are derivable:

` P, P⊥ init ` Γ, B(νB)t
` Γ, νBt νR

Proof The admissibility of init is a standard result. It is proved by induction on
F, the base case being the fixed points. The unfolding νR is derivable from ν, us-
ing the body of the definition B(νB) as the invariant S . The proof of co-invariance
(B(B(νB))x, (B(νB)x)⊥) is by induction on B. Thanks to its monotonicity, non-trivial

4

branches end by the following derivation:

` BνBx, BµBx
init

` BνBx, µBx
µ

ut

Let’s assume the admissibility of the cut rule for a moment, and prove a few inter-
esting result.

Proposition 2. The deep cut under a monotonic context B is admissible (x is new):

` Γ, BQt ` (Qx)⊥, Px
` Γ, BPt deep

Proof Building a derivation of BQt (BPt from the derivation of Qx (Px relies
on the dualities of the logic. It is proved by induction on the number of fixed point
connectives surrounding p in Bpx, with a subinduction on the size of B. We only de-
scribe the step for the fixed points, which reduces the property for λp.ν(Bp)t to that for
λp.Bp(ν(BQ)x).

` (ν(BQ)t)⊥, ν(BQ)t init

...

` (BQ(ν(BQ))x)⊥, BP(ν(BQ))x
` (ν(BQ)x)⊥, BP(ν(BQ))x

µ

` (ν(BQ)t)⊥, ν(BP)t ν

ut

Definition 2. We classify as asynchronous (resp. synchronous) the connectives M, ⊥,
&, >, ∀, ,, ν (resp. ⊗, 1, ⊕, 0, ∃, =, µ). A formula is said to be asynchronous (resp. syn-
chronous) when its top-level connective is asynchronous (resp. synchronous). A formula
is said to be fully asynchronous (resp. fully synchronous) when all of its connectives are
asynchronous (resp. synchronous). Finally, a body λpλx.Bpx is said to be fully asyn-
chronous (resp. fully synchronous) when the formula Bpx is fully asynchronous (resp.
fully synchronous).

Notice, for example, that λpλx.px is fully asynchronous and fully synchronous. The
next proposition plays a central role in the focusing proof system presented in Section
3 and is crucial for our encoding in Section 5 of intuitionistic logic extended with least
and greatest fixed points.

Proposition 3. The following structural rules are admissible provided that B is fully
asynchronous:

` Γ, νBt, νBt
` Γ, νBt νC ` Γ

` Γ, νBt νW

Hence, the following structural rules hold for any fully asynchronous formula P:

` Γ, P, P
` Γ, P C ` Γ

` Γ, P W

5

Proof We first prove the admissibility of νW. It is obtained by co-induction, choosing
⊥ as the co-invariant. We obtain the co-invariance proof from a more general result:
for any family of monotonic and fully asynchronous contexts (Bi)i, it is provable that
((Bi⊥t)i, 1). This is done by induction on the total size of the family. The proof is trivial
if the family is empty. If Bi⊥t is an inequality we conclude by induction with a new t ′; if
it’s > our proof is done; if it’s ⊥ (being a recursive occurence or not) this Bi disappears.
The M case is done by induction hypothesis, the resulting family has more bodies but
is smaller; the & makes use of two instances of the induction hypothesis. Finally, the ν
case is done by applying the ν rule with ⊥ as the invariant, the two subderivations being
built by induction.

Contraction is also an instance of the ν rule, choosing (λx. νBx M νBx) as the
co-invariant. The proof of co-invariance follows from that of (B(νB M νB)x, (BνBx M
BνBx)⊥), which in turn is a particular case of the more general form of derivation that
we are going to build:

` A(νB1 M νB1) . . . (νBn M νBn)x, (AνB1 . . . νBnx M AνB1 . . . νBnx)⊥

where A is a fully asynchronous n-ary monotonic context. We prove this by induction
on A.

– It is trivial if A is an inequality, > or ⊥.
– A is λp1 . . . λpnλx.pix: we have to prove (νBix M νBix, (νBix M νBix)⊥) which is

an instance of init.
– A is A1 M A2: we replace (A(νBi)ix M A(νBi)ix)⊥ by the equivalent formula

(A1(νBi)ix M A1(νBi)ix)⊥ ⊗ (A2(νBi)ix M A2(νBi)ix)⊥, thanks to cut. We can then
operate the appropriate splitting allowing us to conclude by induction hypothesis
on A1 and A2.

– A is A1 & A2: we build a derivation of (A1(νBi M νBi)ix, (A(νBi)ix M A(νBi)ix)⊥),
by induction hypothesis on A1 and a deep cut using the fact that:

(A1(νBi)i)⊥ ((A(νBi)i)⊥

The corresponding derivation for B2 is built the same way.
– A is ∀x. A′x: we introduce the quantifier, and instantiate the two existentials under

the tensor as before, thanks to a cut.
– A is λp1 . . . λpn. ν(A′p1 . . . pn): we conclude by induction hypothesis on

λp1 . . . λpnλpn+1. A′p1 . . . pn+1

with A′(νBi)i≤n as Bn+1 using the following widget:

Id
A′(νBi M νBi)i(νBn+1 M νBn+1)y, (A′(νBi)i(νBn+1)y M A′(νBi)i(νBn+1)y)⊥ Trivial

A′(νBi M νBi)i(νBn+1 M νBn+1)y, (νBn+1y M νBn+1y)⊥ cut

ν(A′(νBi M νBi)i)x, (ν(A′(νBi)i)x M ν(A′(νBi)i)x)⊥
ν

ut

Example 1. Units can be represented by means of = and ,. Assuming that 2 and 3 are
two distinct constants, then we have 2 = 2� 1 and 2 = 3� 0 (and hence 2 , 2� ⊥

and 2 , 3 � >). Here, P � Q denotes ` (P (Q) & (Q (P) and P (Q denotes
the formula P⊥ M Q.

6

Example 2. The µ (resp. ν) connective is meant to represent least (resp. greatest) fixed
points. For example ν(λp.p) is provable (take any provable formula as the co-invariant),
while its dual µ(λp.p) is not provable. More precisely: µ(λp.p)� 0 and ν(λp.p)� >.

Example 3. The least fixed point, as expected, entails the greatest. The following is a
proof of µBt (νBt.

` B(µB)x, B(νB)x
init

` B(µB)x, νBx
νR

` µBt, νBt
` νBt, νBt

The greatest fixed point entails the least fixed point when the fixed points are noetherian,
i.e., all unfoldings of B and B terminate.

In this paper we are investigating how far one can go without the exponentials, get-
ting the infinite behavior from the meaning of fixed points instead of modalities. If we
were to add, however, the usual inference rules for exponentials, the resulting proof sys-
tem would yield µBt � !µBt (and equivalently ? νBt � νBt) provided that B is fully
synchronous. In the language of the Logic of Unity (LU) [Gir93], fully asynchronous
(resp. fully synchronous) would be negative (resp. positive) or right-permeable (resp.
left-permeable) formulas. Mixing synchronous and asynchronous connectives would
yield a neutral formula.

We now outline the proof of cut-elimination. Although it is indirect and relies on
cut-elimination for full second-order linear logic (LL2), this is still a syntactic proof
of cut-elimination. It yields consistency of µMALL= as well as relative soundness and
completeness with respect to LL2.

Theorem 1. The logic µMALL= enjoys cut-elimination.

Proof We first show in Lemma 1 how to translate µMALL= formulas and proofs
into full second-order linear logic derivations, which are then normalized and focused,
and finally translated back to cut-free µMALL= derivations as shown in Lemma 2.
Formally speaking, the previous work on proof normalization for LL2 does not include
equality, but all the previous work on equality has shown that it has little role to play in
normalization. ut

Definition 3 (Translation from first-order to second-order). The translation com-
mutes with the connectives of MALL= and the negation, and is defined as follows on the
least fixed points:

dµBxe = ∀S . !(∀y . dBeS y(S y)(S x

Lemma 1. If ` Γ is derivable in µMALL= then ` dΓe is derivable in LL2.

Proof The validity of this encoding strongly relies on the monotonicity of definitions.
Indeed, S x will simulate correctly µBx only if it does not get negated by the body of the

7

definition after an application of µ. This is more formally expressed by the following
derivation using a slight variation on the deep cut rule:

dBedµBet ` dBedµBet

Trivial
!(∀y . dBeS y(S y),∀S . !(∀y . dBeS y(S y)(S x ` S x

!(∀y . dBeS y(S y), dµBex ` S x
!(∀y . dBeS y(S y), dBedµBet ` dBeS t deep

!(∀y . dBeS y(S y), dBedµBet ` S t
` dBedµBet (dµBte

The µ rule is naturally given by the encoding. The last non-trivial rule is µν: it is trans-
lated by an instance of the identity, involving a second-order ∀ introduction followed
by the corresponding introduction of the existential. It is the only time a second-order
existential is not instantiated by an d.e translation. ut

Lemma 2. If there is a focused cut-free derivation of ` dΓe, then there is a cut-free
derivation of ` Γ.

Definition 4. Let Θ be a set of formulas. We define:

bPcΘ =
{

µBx if P = S x for S atomic and (∀y.dBeS y(S y)⊥ ∈ Θ
Q if dQe = P

As usual we extend this notation to multisets. We’ll also forget to specify what is Θ when
it’s obvious.

Proof The precise statement is:

1. If there is a proof of ` Θ : Γ ⇑ ∆ where Θ = {(∀y.dBieS iy (S iy)⊥ | i ∈ I}, and Γ,
∆ are multisets of encodings or (positive) instances of an S i, then there is a proof of
` bΓ, ∆c.

2. If there is a proof of ` Θ : Γ ⇓ P, with the same condition onΘ then there is a proof
of ` bΓ, Pc.

The asynchronous cases are easy. Only the introduction of second-order universal
quantifier is not directly mapped to µMALL=. But it does not change the b.c translation.

Focusing on an unfolding hypothesis in Θ, the polarity of S makes it look exactly
how we want:

...

` Θ : Γ ⇓ dBieS iy ` Θ : S ix ⇓ (S ix)⊥

` Θ : Γ, S ix ⇓ dBieS i x ⊗ (S ix)⊥
` Θ : Γ, S ix ⇓ ∃y.dBieS iy ⊗ (S iy)⊥

In the synchronous case, we now consider the introduction of second-order ex-
istential quantifier. Focusing on it introduces the existential and the tensor, but also
the exponential. The instantiated invariant is of the form dIe for some closed I, because

8

cut-elimination and focusing never change the instantiations. Thus, Θ is useless in the
invariance subderivation. The derivation has the form:

...

` Θ :⇑ ∀y.dBIy(Iye
` Θ :⇓!∀y.dBIy(Iye

...

` Θ : Γ ⇓ dIxe⊥
` Θ : Γ ⇓ (!∀y.dBedIey(dIey) ⊗ dIxe⊥
` Θ : Γ ⇓ ∃S .!(∀y.dBeS y(S y) ⊗ (S x)⊥

Which does translate well into:

...

` bΓc, (Ix)⊥

...

` BIy(Iy
` BI⊥y, Iy

=

` bΓc, νBx
` bΓc, (µBx)⊥

=

Finally, the existential can be instantiated by its S i. The µν rule will be used to
decode the derivation, which has the following form:

...

` Θ :⇑ ∀y.dBeIy(Iy
` Θ :⇓!∀y.dBeIy(Iy ` Θ : S x ⇓ (S x)⊥

` Θ : S x ⇓ (!∀y.dBeS y(S y) ⊗ (S x)⊥

` Θ : S x ⇓ ∃S .!(∀y.dBeS y(S y) ⊗ (S x)⊥

ut

As shown in the above proof, fixed points can be encoded by means of second-
order quantification and exponentials. However, first-order MALL with exponentials
and first-order MALL with fixed points are incomparable.

It has been observed [Gir92,SH93] that exponentials and non-monotonic definitions
combine to yield inconsistency: for example, the definition p ≡ p⊥ (that is, the fixed
point µλp.p⊥) does not lead to an inconsistency, whereas the definition p ≡ ?(p⊥) (that
is, µλp. ?(p⊥)) does. To reproduce the latter inconsistency in µMALL=, one needs to
be able to unfold the expression νλp. !(p⊥). But this is not implied by Proposition 1
since its body is not monotonic. Thus, even in presence of exponentials, we currently
do not have any example of non-monotonic definition that invalidates the consistency
of µMALL=.

3 Focused proofs
As we have explained in the introduction, completeness of a focused proof system is
a valuable property for a logic to possess. Focused proofs have applications in proof-
search since it reduces the proof-search space by limiting the situations when backtrack-
ing is necessary. Focused proofs are also useful for justifying game theoretic semantics
[MS05] and have been central to the design of Ludics [Gir01].

9

A good focused proof system for µMALL= is not a simple consequence of the trans-
lation of fixed points into LL2 that is used in the proof of Theorem 1: applying linear
logic focusing to the result of that translation leads to a poorly structured system that is
not consistent with our classification of connectives as asynchronous and synchronous.
On the contrary, we present the proof system in Figure 2 as a good candidate for a
focused proof system for µMALL=. We use explicit annotations of the sequents in the
style of Andreoli. In the synchronous phase sequents have the form ` Γ ⇓ P. In the
asynchronous phase they have the form ` Γ ⇑ ∆ where Γ and ∆ are both multisets of
formulas. In both sequents, Γ is a multiset of synchronous formulas and ν-expressions.
The convention on ∆ is a slight departure from Andreoli’s original proof system where ∆
is a list (which can be used to provide a fixed but arbitrary ordering of the asynchronous
phase).

Asynchronous phase
` Γ ⇑ P,Q, ∆
` Γ ⇑ P M Q, ∆

` Γ ⇑ P, ∆ ` Γ ⇑ Q, ∆
` Γ ⇑ P & Q, ∆

` Γ ⇑ ∆

` Γ ⇑ ⊥, ∆ ` Γ ⇑ >, ∆

{` Γθ ⇑ ∆θ : θ ∈ csu(s .
= t)}

` Γ ⇑ s , t, ∆
` Γ ⇑ Pc, ∆
` Γ ⇑ ∀x.Px, ∆ c new

` Γ ⇑ S t, ∆ `⇑ BS x, S x⊥
` Γ ⇑ νBt, ∆ x new ` Γ, νBt ⇑ ∆

` Γ ⇑ νBt, ∆

Synchronous phase
` Γ ⇓ P ` Γ′ ⇓ Q
` Γ, Γ′ ⇓ P ⊗ Q

` Γ ⇓ Pi

` Γ ⇓ P0 ⊕ P1

`⇓ 1 `⇓ t = t
` Γ ⇓ Pt
` Γ ⇓ ∃x.Px

` Γ ⇓ B(µB)x
` Γ ⇓ µBx ` νBx ⇓ µBx

Switching (where P is synchronous, Q asynchronous)

` Γ,P ⇑ ∆
` Γ ⇑ P, ∆

` Γ ⇓ P
` Γ, P ⇑

` Γ ⇑ Q
` Γ ⇓ Q

Fig. 2. A focused proof-system for µMALL=

The rules for equality are not surprising. The main novelty here is the treatment of
fixed points. Depending on the body, both µ and ν rules can be applied any number of
times — but not with any co-invariant concerning ν. Notice for example that an instance
of µν can be η-expanded into a larger derivation, unfolding both fixed points to apply
µν on the recursive occurrences. As a result, each of the fixed point connectives has two
rules in the focused system: one treats it as “an atom” and the other one as an expression
with “internal structure.”

In accord with Definition 2, µ is treated during the synchronous phase and ν during
the asynchronous phase. (Alternatives to this choice are discussed later.) Roughly, what
the focused system implies is that if a proof involving a ν-expression proceeds by co-
induction on it, then this co-induction can be done at the beginning; otherwise that
formula can be ignored in the whole derivation, except for the µν rule. Focusing on a µ-
expression yields two choices: unfolding or applying the initial rule for fixed points. If

10

the body is fully synchronous, the focusing will never be lost. For example, if nat is the
(fully synchronous) expression µ(λnat.λx. x = 0 ⊕ ∃y.x = s y ⊗ nat y), then focusing
puts a lot of structure on a proof of Γ ⇓ nat t: either t is a ground term representing a
natural number and Γ is empty, or t = snx for some n ≥ 0 and Γ is {(nat x)⊥}.

We shall now proceed with the completeness proof.

3.1 Trivial extra structure
We first slightly modify the system for technical reasons, without changing its expres-
sivity. Both changes are quite obvious to apply as they only involve modifications of
some leafs of a derivation.

– We add a new fixed point constructor ν0. The ν rule applies only on ν and the initial
rule applies only on ν0. The connective ν0 will not be classified as an asynchronous
or synchronous, it is something else.
This new connective is only about marking some greatest fixed points as “frozen”:
one can’t use ν on them. To make things clear we should also introduce a µ0 which
behaves exactly as µ, and is also classified as synchronous. This allows us to extend
the negation:

(ν0Bt)⊥ de f
= µ0Bt

It is possible to derive ν from ν0 using the ν rule:

` Γ, ν0Bt
` Bν0Bt, Bµ0Bt

init

` Bν0Bt, µ0Bt
` Γ, νBt

And that’s indeed what should be done before applying the initial rule.
– We also avoid that the initial asynchronous rules can be applied before other asyn-

chronous rules. It means that the rules > and , only apply when there is no asyn-
chronous formula in the context. It makes it possible to apply any appliable asyn-
chronous rule first without increasing the size of a derivation.
This “preprocessing” is only a technical device for the focalization proof, we stress

that it is possible in the focused system to apply> before other asynchronous rules, and
that the initial rule does not have to be expanded.
Definition 5. In this slightly revised system, two measures become interesting: hµ(Π)
and |Π |, which are both ordinals. |Π | is the number of connectives in the conclusion,
counting 1 for µ and ν expressions, but 0 for ν0. The µ-height of a derivation Π with
subderivations (Πi)i is inductively defined by:

hµ(Π) =
{

1 + sup{hµ(Πi)} if the first rule of Π is µ or ν;
sup{hµ(Πi)} otherwise.

Proposition 4. The lexicographic order on (hµ(Π), |Π |) is compatible with the sub-
derivation order.
Proof Any application removes one connective and thus decreases |Π | (without chang-
ing hµ(Π)), except µ and ν which decrease hµ(Π). ut

The couple (hµ(Π), |Π |) will be simply called the measure in the followings.

11

3.2 Preliminaries

Lemma 3. Proofs support instantiation: if σ ranges over first-order variables and ` Γ
then ` Γσ. Moreover, the instantiated derivation has a least or equal measure.

Proof This property is a standard and straightforward one, as the fixed points do not
change anything here. ut

Lemma 4. If S and S ′ are both covariants for B then so is S ⊕ S ′. Moreover the
resulting covariance proof has the same hµ() height as the highest original proof of
invariance.

Proof The proof of invariance of S ⊕ S ′ starts with a &. Then we get the proof
of B(S ⊕ S ′)x, S x⊥ (resp. B(S ⊕ S ′)x, S ′x⊥) from the proof of BS x, S x⊥ (resp.
BS ′x, S ′x⊥). The transformation is straightforward and relies on monotonicity, and ob-
viously does not increase the µ-height. ut

We now present some interesting notions introduced by Alexis Saurin [MS07],
which make the focalization proof clear and simple.

Definition 6 (Descendant). We distinguish several occurences of a formula in a se-
quent, and in a derivation. We define the notion of immediate descendant between for-
mulas involved in a rule application. For example in

` Γ, P ` Q, ∆
` Γ, P ⊗ Q, ∆

P and Q are immediate descendants of P ⊗ Q, and every formula in ∆, Γ in the premises
is an immediate descendant of the corresponding formula in the conclusion. In the ν
rule, the formulas from the co-invariance proofs are not descendants of any formula,
and S t is the immediate descendant of νBt1. The relation of descendance is the reflexive
and transitive closure of the immediate descendance.

Definition 7. The positive trunk of a derivation is its largest open sub-derivation which
contains only applications of synchronous rules.

Definition 8. We define the relation ≺ on the formulas of the base sequent of a deriva-
tion Π . P ≺ Q iff there exists P′, asynchronous descendant of P in Π , and Q′, syn-
chronous descendant of Q, such that P′ and Q′ occur in the same sequent of the positive
trunk of Π .

The intended meaning of P ≺ Q is that we must focus on P before Q. Therefore,
the natural question is the existence of minimal elements for that relation, equivalent to
its acyclicity.

Proposition 5. If Π starts with a synchronous rule, and P is minimal for ≺ in Π , then
so are its descendants in their respective subderivations.

1 We shall only use that notion in positive trunks anyway.

12

Proof It is enough to notice how the ≺ relation evolves in a positive trunk. The re-
lations below and on top of a ⊕ rule are isomorphic. The same thing holds for ∃ and
µ. The application of = and 1 ends the derivation , and hence the positive trunk. There
only remains the interesting case: the tensor. In that case the relation below the tensor
is (isomorphic to) the union of the two relations on top of it, in which only two points
get merged, namely the two descendants of the split tensor. ut

Lemma 5. The relation ≺ is acyclic.

Proof We re-use previous observations on the evolution of ≺ in a proof and proceed
by induction. There is not anything to do for the = and 1 cases. If the derivation starts
with a ⊕, ∃ or µ, the acyclicity on ≺ on the conclusion comes from the acyclicity for
the subderivation. For ⊗, assuming the acyclicity of ≺ on the premises, we cannot have
a cycle in the conclusion: this cycle cannot lie within the ancestors of a single branch,
so it has to involve the split tensor, but then it would have to be involved twice because
it is the only node linking the two ancestors components, and we contradict again the
acyclicity of ≺ on the premises. ut

3.3 Permutation lemmas

Lemma 6. If ` Γ, P where P is an asynchronous formula, then there is a derivation
where P is active in the conclusion, and it is has smaller or equal size than the original.

Proof We proceed by induction on the height of the proof. If P is not active in the
first rule, then by induction make it active in the immediate subderivations where it
occurs. Then permute the first two rules. The resulting derivation will have the same
conclusion, and it is also easily checked that it has no more ν and ν rules, so it will have
equal (in most of the cases) or smaller size (e.g. in ∗/>).

The MALL permutations are usual and interact well with our measure. Most of the
permutations involving the new rules are not surprising, such as ⊗ /ν:

` Γ, P, S t ` BS x, S x⊥
` Γ, P, νBt ` Γ′, P′
` Γ, Γ′, P ⊗ P′, νBt −→

` Γ, P, S t ` Γ′, P′
` Γ, Γ′, P ⊗ P′, S t ` BS x, S x⊥

` Γ, Γ′, P ⊗ P′, νBt

& /ν holds thanks to Lemma 4:

Π
` Γ, P, S t

ΠS
` BS x, S x⊥

` Γ, P, νBt

Π ′

` Γ, P′, S ′ t
ΠS ′

` BS ′x, S ′x⊥
` Γ, P′, νBt

` Γ, P & P′, νBt
⇓

Π
` Γ, P, S t

` Γ, P, S t ⊕ S ′ t

Π ′

` Γ, P′, S ′ t
` Γ, P′, S t ⊕ S ′ t

` Γ, P & P′, S t ⊕ S ′ t

φ1(ΠS)
` B(S ⊕ S ′)x, (S x)⊥

φ2(ΠS ′)
` B(S ⊕ S ′)x, (S ′x)⊥

` B(S ⊕ S ′)x, ((S ⊕ S ′)x)⊥ &

` Γ, P & P′, νBt

13

Another non-trivial case is ⊗ / , which makes use of Lemma 3:

{` (Γ, P)σ | σ ∈ csu(u, v)}
` Γ, P, (u = v)⊥ ` Γ′,Q
` Γ, Γ′, P ⊗ Q, (u = v)⊥ →

{

` (Γ, P)σ ` (Γ′,Q)σ
` (Γ, Γ′, P ⊗ Q)σ | σ ∈ csu(u, v)

}

` Γ, Γ′, P ⊗ Q, (u = v)⊥

ut

Lemma 7. In a sequent without any asynchronous formula, if P is a minimal syn-
chronous then it can be applied first. Moreover the new derivation has a smaller or
equal measure.

Proof If P is active, there is nothing to do. Otherwise, we will make it active in the
subderivations. We can do that by induction: by minimality of P the subderivation’s
conclusion does not have any asynchronous formula; and P is still minimal in the sub-
derivations. Then we permute the first two layers of rules, which are synchronous. The
permutation of synchronous rules are already know for MALL, and the new cases in-
volving = or µ are straightforward. The size preservation is easy to check. ut

Theorem 2. The focusing system is sound and complete with respect to µMALL=.

Proof Soundness is trivial. We prove completeness by induction:

– If there are any, pick an asynchronous formula arbitrarily, and transform the deriva-
tion by making that formula active thanks to Lemma 6. By induction, focalize the
subderivations, and add the first rule in the focalized system.

– When there is no asynchronous formula left, we’ve shown in Lemma 5 that there is
a minimal synchronous. Lemma 7 allow us to get a proof where this synchronous is
active, we focalize its subderivations, choosing the minimal formula’s subformulas
as new minimal formulas, which makes it possible to glue that in the focalized
system.

We actually still have a derivation in µMALL=+ν0, but it is structured in a way that
makes it simple to translate it to the focalized system. The only non-trivial thing is the
handling of ν0: ν0 is translated to ν and toplevel occurences of ν0 are moved to the left
of ⇓. ut

Remark 1. The derivations resulting from the transformation described here are not
optimal. For example the immediate proof of ` νBt, µBt is first transformed into

` ν0Bt, µBt

` ν0Bt, µBt
...

` Bν0Bt, BµBt
` Bν0Bt, µBt

` νBt, µBt

14

then it is focalized and finally translated in the focalized system. We end up with a
derivation of the form

` νBt ⇓ µBt
` νBt, µBt ⇑
` νBt ⇑ µBt
`⇑ νBt, µBt

...

`⇑ BνBt, µBt
`⇑ νBt, µBt

The point of the expansion of the initial rule was to allow the permutation of a & fol-
lowed by ν on one side and µν on the other.

4 Examples

We shall now give a few theorems in µMALL=. Although we do not give their deriva-
tions here, we stress that all of these examples are proved naturally in the focused proof
system. The reader will also note that although µMALL= is linear, these derivations are
intuitive and their structure resemble that of proofs in intuitionistic logic.

We first define a few least fixed points expressing basic properties of natural num-
bers. We assume two constants z and s of respective types n and n → n. Note that all
these definitions are fully synchronous.

nat de f
= µ(λnatλx. x = z ⊕ ∃y. x = s y ⊗ nat y)

even de f
= µ(λevenλx. x = z ⊕ ∃y. x = s (s y) ⊗ even y)

plus de f
= µ(λplusλaλbλc. a = z ⊗ b = c

⊕ ∃a′∃c′.a = s a′ ⊗ c = s c′ ⊗ plus a′ b c′)

leq de f
= µ(λleqλxλy. x = y ⊕ ∃y′. y = s y′ ⊗ leq x y′)

half de f
= µ(λhalfλxλh. (x = z ⊕ x = s z) ⊗ h = z

⊕ ∃x′∃h′. x = s (s x′) ⊗ h = s h′ ⊗ half x′ h′)

The following statements are theorems, all of which can be proved by induction. The
main insights required for proving these theorems involve deciding which fixed point
expression should be introduced by induction: the proper invariant is not the difficult
choice here since the context itself is adequate in these cases.

` ∀x. nat x(even x ⊕ even (s x)
` ∀x. nat x(∀y∃z. plus x y z
` ∀x. nat x(plus x z x
` ∀x. nat x(∀y. nat y(∀z. plus x y z (nat z

In the last theorem, the assumption (nat x)⊥ is not needed and can be weakened, thanks
to Proposition 3. In order to prove (∀x. nat x(∃h. half x h) one has to use a complete
induction, i.e., use the strengthened invariant (λx. nat x ⊗ ∀y. leq y x(∃h. half y h).

15

A typical example of co-induction involves the simulation relation. Assume that
step : state → label→ state → o is an inductively defined relation encoding a labeled
transition system. Simulation can be defined using the definition

sim de f
= ν(λsimλpλq. ∀a∀p′. step p a p′ (∃q′. step q a q′ ⊗ sim p′ q′).

Reflexivity of simulation (∀p. sim p p) is proved easily by co-induction with the co-
invariant (λpλq. p = q). Instances of step are not subject to induction but are treated
“as atoms”. Proving transitivity, that is,

∀p∀q∀r. sim p q(sim q r (sim p r

is done by co-induction on (sim p r) with the co-invariant (λpλr. ∃q. sim p q ⊗ sim q r).
The focus is first put on (sim p q)⊥, then on (sim q r)⊥. The fixed points (sim p′ q′)
and (sim q′ r′) appearing later in the proof are treated “as atoms”, as are all negative
instances of step.

Except for the totality of half, all these theorems seem simple to prove using a
limited number of heuristics. For example, one could first try to treat fixed points “as
atoms”, an approach that would likely fail quickly if inappropriate. Second, depending
on the “rigid” structure of the arguments to a fixed point expression, one might choose
to either unfold the fixed point or attempt to use the surrounding context to generate an
invariant.

5 Translating Intuitionistic Logic

The examples in the previous section make it clear that despite its simplicity and linear-
ity, µMALL= can be related to a more conventional logic. In particular we are interested
in drawing some connections with an extension of intuitionistic logic with inductive
and coinductive definitions. We will show that the focusing of µMALL= derivations
yields a similar result in the intuitionistic setting. A general approach for making such
a connection is to first encode intuitionistic logic in µMALL=, focus the derivations
of encodings, and translate them back to intuitionistic derivations. When doing so, it
is interesting to minimize the use of exponentials in the encoding since these connec-
tives weaken the focusing discipline. This is precisely what the extension of the asyn-
chronous/synchronous classification allows. In the following, we show a simple first
step to this program, in which we actually capture a non-trivial fragment of intuitionis-
tic logic extended with fixed points even though µMALL= does not have exponentials
at all.

We shall consider an intuitionistic logic in which there are no atomic formulas but
were there are (positive) equalities and the two fixed point constructors µ and ν. Let
µLJ= be the proof system that extends Gentzen’s cut-free LJ [Gen69] with the following

16

rules for equality and (co)inductive expressions.

{(Γ ` G)θ : θ ∈ csu(s .= t)}
Γ, s = t ` G = L

Γ ` t = t = R

BS x ` S x Γ, S t ` G
Γ, µBt ` G µL

Γ, µBt ` µBt µ0
Γ ` B(µB)t
Γ ` µBt µR

Γ, B(νB)t ` G
Γ, νBt ` G νL

Γ, νBt ` νBt ν0
S x ` BS x Γ ` S t

Γ ` νBt νR

We have observed (Prop. 3) that structural rules are admissible for fully asyn-
chronous formulas of µMALL=. This property will allow us to get a faithful encoding of
a fragment of µLJ= in µMALL= despite the absence of exponentials. The encoding must
be organized so that formulas appearing in the left-hand side of µLJ= sequents must be
encoded as fully asynchronous µMALL= formulas. The only connectives allowed to
appear negatively will thus be ∧, ∨, =, µ and ∃. Moreover, the encoding must com-
mute with negation, in order to translate the (co)induction rules correctly. This leaves
no choice in the following design.

Definition 9. We restrict formulas to two fragments described by the two syntactic vari-
ables G andH:

G ::= G ∧ G | G ∨ G | s = t | µ(λpx.Gpx)t | ∃x.Gx
| ∀x.Gx | H ⊃ G | ν(λpx.Gpx)t

H ::= H ∧H | H ∨H | s = t | µ(λpx.H px)t | ∃x.H x

Formulas inH and G are translated in µMALL= as follows:

[P ∧ Q] de f
= [P] ⊗ [Q]

[P ∨ Q] de f
= [P] ⊕ [Q]

[s = t] de f
= s = t

[µBt] de f
= µ[B]t

[∃x.Px] de f
= ∃x.[Px]

[∀x.Px] de f
= ∀x.[Px]

[νBt] de f
= ν[B]t

[P ⊃ Q] de f
= [P]([Q]

[λpλx.Bpx] de f
= λpλx.[Bpx]

Proposition 6. For any P ∈ G, P is provable in µLJ= if and only if [P] is provable in
µMALL=, under the restrictions that (co)invariants λx.S x in µMALL= (resp. µLJ=) are
such that S x is in [H] (resp.H).

Proof The proof transformations are simple and compositional. The induction rule
is mapped to ν rule for (µBt)⊥; the left unfolding for co-inductives to µ for (νBt)⊥. In
order to restore the additive behavior of some intuitionistic rules (e.g.,∧R) and translate
the structural rules, we can contract and weaken our fully asynchronous formulas on the
left of µLJ= sequents. ut

Linear logic provides an appealing proof theoretic setting because of its empha-
sis on dualities and on its clear separation of concepts (additive/multiplicative, asyn-
chronous/synchronous). Our experience is that µMALL= is a good place to study fo-
cusing in the presence of least and greatest fixed point operators. To get similar results

17

for intuitionistic logic, one can either work from scratch entirely within, say, µLJ=, or
use an encoding into linear logic. Given a mapping from intuitionistic to linear logic,
and a complete focused proof system for linear logic, one can often build a complete
“focalized” proof-system for intuitionistic logic. The usual encoding of intuitionistic
logic into linear logic involves exponentials, which can damage focusing structures (by
causing both synchronous and asynchronous phases to end). Hence, a careful study of
the polarity of linear connectives must be done (cf. [DJS93,LM07]) in order to minimize
the role played by the exponentials in such encodings. Here, as a result of Proposition 6,
it is possible to get a complete focused system for µLJ= on G (under the assumptions
that (co)invariants are in H) that inherits the strong structure of the linear focusing
derivations.

Although G is not as expressive as full µLJ=, it catches many interesting and use-
ful problems. For example, any Horn-clause specification can be expressed in H as a
least fixed point and theorems that state properties such as totality or functionality of
predicates defined in this manner are in G. Theorems that state more model-checking
properties, for example, ∀x.p(x) ⊃ q(x), where p and q are one-placed least fixed point
expressions over [H], are also in G. Finally, the theorems about natural numbers pre-
sented in Section 4 are within [G] although two of the derivations (for the totality of half
and that the sum of natural numbers is a natural number) do not satisfy the restriction
on co-invariants.

The logic µLJ= is closely related to LINC [Tiu04]. The main difference is the ab-
sence of the ∇ quantifier in our system: we suspect that ∇ can be added to µMALL= in
the same relatively orthogonal fashion that LINC added it to LJ. The resulting exten-
sion to µMALL= (and µLJ=) should allow natural ways to reason about specifications
involving variable bindings, in the manner illustrated in [BGM+07,Tiu04,Tiu05]. An-
other difference is that fixed points in LINC have to satisfy a stratification condition,
which is strictly stronger than monotonicity; co-invariants also have to satisfy a techni-
cal restriction related to stratification. While our system, derived from linear logic, does
not share such restrictions, neither difference is relevant when we restrict our attention
to formulas in G.

Interestingly, the fragment G has already been identified in LINC [TNM05], and
the Bedwyr system [BGM+07] implements a proof-search strategy for it that is com-
plete under the assumption that all fixed points are noetherian (and hence that least and
greatest fixed points coincide and that (co)induction can be restricted to unfolding).
This strategy coincides with the focused system for µLJ= restricted to noetherian fixed
points: there is no need for any explicit contraction and you can always eagerly elimi-
nate left-hand side (asynchronous) connectives before working on the goal (right-hand
side); moreover there is no need for the initial rule µν.

6 Discussion about the focusing system

The design of the above focused proof system for µMALL= is rather satisfactory. For
example, its treatment of µ as synchronous and ν as asynchronous is consistent with
a similar treatment of these operators via game semantics given in [MS05,Sti96]. Fo-
cusing is also natural and helpful when trying to prove theorems in µMALL=, such as

18

the examples proposed in Section 4. Finally, as we have seen in Section 5, this focused
proof system yields another one for an intuitionistic logic similarly extended with fixed
points, and accounts for the proof search strategy underlying the implemented prover
Bedwyr [BGM+07]. It is worth noting, however, two unusual aspects of focused proofs
in µMALL=.

6.1 A choice inside asynchronous rules.

As we noted, there are two rules for each of the fixed point connectives. Having a
choice of rules in the asynchronous phase is, at first, rather surprising since it is during
this phase of proof construction that we expect to see invertible rules and no choices.
One way to look at this is that, in fact, the ν-connective should be annotated or divided
into an infinite number of different connectives. In particular, consider replacing the ν
constructor with both νε (with the same types and arity as ν) and νS (where S is an
annotated formula abstraction of the appropriate type). Now consider the proof system
that results from replacing the three rules involving ν in Figure 2 by the rules

` Γ ⇑ S t, ∆ `⇑ BS x, S x⊥
` Γ ⇑ νS Bt, ∆ x new ` Γ, νεBx ⇑ ∆

` Γ ⇑ νεBx, ∆ ` νεBx ⇓ µBx

Notice that using such annotated formulas, there is no longer any choice in the asyn-
chronous phase. Furthermore, if in the expression νS B it is really the case that S is a
co-invariant, i.e., (BS x, S x⊥) is provable, then the first inference rule is invertible.

From a focused proof of F, it is possible to extract an annotation of F that is provable
in the disambiguated focused system. This extraction requires the non-trivial composi-
tion of co-invariants in a manner similar to that used for the permutation of ν and &.
Such annotations might be useful for the partial automation of proof search involving
induction and co-induction. For example, ν connectives could be labeled with partial
information about what to do with the connective in the asynchronous phase: unfold,
freeze (i.e., treat as atomic), use the sequent as the invariant, etc. Such hints might be
enough to mechanize a large amount of simple but tedious proofs by (co)induction.
Notice that since we have annotated ν but not µ, we should not think that ν’s with an-
notations are logical connectives: instead, such annotations hint at the structure of a
particular proof involving that annotated expression.

6.2 Are the polarities of µ and ν forced?

While the classification of µ as synchronous and ν as asynchronous is rather satisfying
and is backed by several other observations, that choice does not seem to be forced from
the focusing point of view alone. Maybe µ can be handled in the asynchronous phase,
instead? After all the µ rule is invertible. Consider replacing the fixed point rules in the
focused proof system in Figure 2 with the following four inference rules:

` Γ ⇑ B(µB)t, ∆
` Γ ⇑ µBt, ∆

` Γ, µBt ⇑ ∆
` Γ ⇑ µBt, ∆

` Γ ⇓ S t `⇑ BS x, (S x)⊥
` Γ ⇓ νBt ` µBt ⇓ νBt

19

We conjecture that the resulting proof system is complete for µMALL=. The non-trivial
step in such a proof would involve the permuting of the inference rules for µ and &.
The invertibility of µ allows it, but we have not proved the termination of the whole
transformation.

To go one step further, one wonders if arbitrary assignment of “bias” to expressions
such as (µBt) and (νBt) can be made in a fashion similar to the way literals are given
fixed but arbitrary “bias” in Andreoli’s original focused proof system [And92]. Thus,
maybe some µ expressions can be synchronous while others are asynchronous.

7 Conclusion and Future Work

µMALL= is an elegant logic supporting reasoning on inductive and co-inductive spec-
ifications. We have shown that it has two important proof-theoretic properties: namely,
cut-elimination and the completeness of focused proofs. The design and completeness
of a focused proof system is the major contribution of this paper. We have also shown
that µMALL= is expressive and formally connected it to a fragment of intuitionistic
logic extended with fixed points, a step that brings µMALL= closer to applications. Fi-
nally, we have identified an implemented system that attempts to find focused proofs
within the noetherian part of this logic.

There are a number of interesting open questions to consider next. At the proof the-
ory level, we would like to understand better whether or not dropping the monotonicity
requirement leads to inconsistency or not and to what extent we can provide alternative
assignment of polarities (synchronous/asynchronous) to fixed points. We can also con-
sider adding exponentials and atomic formulas to µMALL= so that all of µLJ= could be
encoded (in which case, a precise connection to the focused proof systems of [LM07]
should be explored). Such an extension to µMALL= could also be used to generalize
the uses of induction in the linear logic programming setting of [PM05]. At the system
designing and implementation level, our focused proof system should help in designing
a logic engine that attempts to prove formulas involving induction and co-induction.
Our hope is that the focused proof system would help in understanding the strengths
and limitations of various heuristics for generating invariants and co-invariants.

Acknowledgments We thank Alexis Saurin for helpful discussions and the anonymous
reviewers of a previous draft of this paper for their comments, which helped us to reor-
ganize this paper. This work has been supported in part by INRIA through the “Equipes
Associées” Slimmer and by the Information Society Technologies programme of the
European Commission, Future and Emerging Technologies under the IST-2005-015905
MOBIUS project.

References

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of
Logic and Computation, 2(3):297–347, 1992.

[AP91] J.M. Andreoli and R. Pareschi. Linear objects: Logical processes with built-in inher-
itance. New Generation Computing, 9(3-4):445–473, 1991.

20

[AvE82] K. R. Apt and M. H. van Emden. Contributions to the theory of logic programming.
Journal of the ACM, 29(3):841–862, 1982.

[BGM+07] David Baelde, Andrew Gacek, Dale Miller, Gopalan Nadathur, and Alwen Tiu. The
Bedwyr system for model checking over syntactic expressions. To appear in CADE-
21, 2007.

[DJS93] Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure of exponen-
tials: Uncovering the dynamics of linear logic proofs. In Georg Gottlob, Alexander
Leitsch, and Daniele Mundici, editors, Kurt Gödel Colloquium, volume 713 of LNCS,
pages 159–171. Springer, 1993.

[Gen69] Gerhard Gentzen. Investigations into logical deductions. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam,
1969.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Gir92] Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting to the mailing

list linear@cs.stanford.edu, February 1992.
[Gir93] Jean-Yves Girard. On the unity of logic. Annals of Pure and Applied Logic, 59:201–

217, 1993.
[Gir98] Jean-Yves Girard. Light linear logic. Information and Computation, 143, 1998.
[Gir01] Jean-Yves Girard. Locus solum. Mathematical Structures in Computer Science,

11(3):301–506, June 2001.
[HM94] Joshua Hodas and Dale Miller. Logic programming in a fragment of intuitionistic

linear logic. Information and Computation, 110(2):327–365, 1994.
[Laf04] Yves Lafont. Soft linear logic and polynomial time. Theoretical Computer Science,

318(1-2):163–180, 2004.
[LM07] Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic. To

appear in CSL 2007, April 2007.
[Mil96] Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical Computer

Science, 165(1):201–232, September 1996.
[MM00] Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions and

induction. Theoretical Computer Science, 232:91–119, 2000.
[MNPS91] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs

as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125–
157, 1991.

[MS05] Dale Miller and Alexis Saurin. A game semantics for proof search: Preliminary re-
sults. In Proceedings of the Mathematical Foundations of Programming Semantics
(MFPS), 2005.

[MS07] Dale Miller and Alexis Saurin. From proofs to focused proofs: a modular proof of
focalization in linear logic. To appear in CSL 2007, April 2007.

[MT03] Alberto Momigliano and Alwen Tiu. Induction and co-induction in sequent calculus.
In Mario Coppo Stefano Berardi and Ferruccio Damiani, editors, Post-proceedings of
TYPES 2003, number 3085 in LNCS, pages 293 – 308, January 2003.

[PM05] Elaine Pimentel and Dale Miller. On the specification of sequent systems. In LPAR
2005: 12th International Conference on Logic for Programming, Artificial Intelli-
gence and Reasoning, number 3835 in LNAI, pages 352–366, 2005.

[SH93] Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, Eighth
Annual Symposium on Logic in Computer Science, pages 222–232. IEEE Computer
Society Press, IEEE, June 1993.

[Sti96] Colin Stirling. Games for bisimulation and model checking. Notes for Mathfit Work-
shop on Finite Model Theory, University of Wales, Swansea, July 1996.

[Tiu04] Alwen Tiu. A Logical Framework for Reasoning about Logical Specifications. PhD
thesis, Pennsylvania State University, May 2004.

21

[Tiu05] Alwen Tiu. Model checking for π-calculus using proof search. In Martı́n Abadi and
Luca de Alfaro, editors, CONCUR, volume 3653 of LNCS, pages 36–50. Springer,
2005.

[TNM05] Alwen Tiu, Gopalan Nadathur, and Dale Miller. Mixing finite success and finite fail-
ure in an automated prover. In Proceedings of ESHOL’05: Empirically Successful
Automated Reasoning in Higher-Order Logics, pages 79 – 98, December 2005.

22

