
Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Mechanized metatheory revisited?

Dale Miller
Draft: November 16, 2016

Abstract Proof assistants and theorem provers implement the meta-theory of logical

systems, which implies that they must deal with a range of linguistic expressions (e.g.,

types, formulas, and proofs) that involve variable bindings. Since most mature proof

assistants do not have built-in methods to treat bindings, they have been extended with

various packages and libraries that allow them to encode such syntax using, for example,

de Bruijn numerals. We put forward the argument that bindings are such an intimate

aspect of the structure of expressions that they should be accounted for directly in the

underlying programming language support for proof assistants and not via packages

and libraries. We present an approach to designing programming languages and proof

assistants that supports bindings directly in syntax by accounting for them within the

pervasive notion of term equality. However, more than enhancing equality is needed: one

must also support the mobility of binders between the term-level bindings, formula-level

bindings (quantifiers), and proof-level bindings (eigenvariables). A coherent semantics

for such an approach can be described using the proofs that result from a combination

of Church’s approach to terms and formulas (found in his Simple Theory of Types) and

Gentzen’s approach to sequent calculus proofs. We will illustrate how such a framework

provides an effective and semantically clean treatment of both computation on and

reasoning with syntax containing bindings. Some implemented systems that support

this approach to binding will be briefly described.
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To Do:
– Should we state (the obvious) somewhere? A function can be made relational in

rather direct ways. Of course, relations can be made into set-valued functions but

many popular specification frameworks rely on relations.

– Do I really have a DEFINITION of lambda tree syntax. Is there something quotable

here.

– Theme: push on mobility of bindings, lambda-tree syntax, and nabla. Make the

claim that the treatment of binding is intimate, not something that should be

added afterwards.

– Missing citations to OTT and

– the two special issues in JAR about the poplmark/bound variable issue.

– Explain the differences with Hybrid (a Coq/Isabelle library) and the work here.

Consider citing capretta09lc and several other hybrid papers.

– There are now two papers on ELPI (lpar 2015 and lfmtp 2016).

– Explain equality-left: The proof theory approach to reasoning moves from turning

simple failures into successes by using the decision process that is (first-order)

unification and flipping a failure (to unify) into a success for proof building. From

this, much richer aspects of negation can be established.

– To keep the notion of indeterminates, a new quantifier is introduced. It coincides

with forall when there are “no negations”, etc. Should I try to link this discussion

to Selinger’s paper on indeterminates in the semantics of the lambda-calculus?

– Argument often argued: mathematicians treat syntax like this so we do too. But

CS can teach mathematicians a thing or two.

– Declarative approaches can mean that the interaction of features is clear: abstract

datatypes, modules, higher-order programming are all based on abstractions and

these all fit together into one logic / framework with a uniform presentation.

– Great things can happen. Predict πI . The differences between closed and open

bisimulation is a difference between classical and intuitionistic logic (such as ex-

cluded middle on equality of names. Also, on page 19 of [132] with Alwen, we show

that there are three ways to move from the box modal for “free input action” to

modals for “bound input action.

– Modularity of logic: if bindings are not in syntax, then a first-order logic (without

raised quantifiers and without nabla) arises from this story.

– Cite? “Encoding a dependent-type lambda-calculus in a logic programming lan-

guage by A Felty, D Miller (CADE)

– Mention PHOAS [24].

– There was also a proposal to have two different arrow types in ML, one denoting

the syntactic abstraction and one function abstraction [73].

– One also has papers such as [58] which provides a “semantic analysis of higher-order

abstract syntax”: that analysis is only concerned with the abstraction-as-function

interpretation. Semantic analysis of programming with λ-tree syntax is likely to be

given by Kripke-style models such as those found in [90,75].]]

– Should I mention the presentation of Peter Selinger on indeterminates and the

eta-rule. A proper treatment of the lambda-calculus needs a means for extend-

ing signatures. Or adding indeterminates (in Selinger’s terminology). In the proof

theory setting, these are eigenvariables. In proof theory, substitution for indeter-

minates follows from using cut-elimination: for him, it looks like its a universal

property in the underlying category theory presentation.
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– Make sure that I stress somewhere that: LP technology can implement, for example,

evaluation and typing. For example, given the specification of typing, type check-

ing and type inference is possible to automate using unification and backtracking

search. Similarly, a specification of, say, big step evaluation can be used to provide

a symbolic evaluator for at least simple expressions [26].

– The following seems useful to say somewhere: The trap when thinking about induc-

tion and higher-order typing is to believe that natural deduction proofs are the only

notion of proof: indeed, they make a poor choice of proof since hypothetical reason-

ing (implications in assumptions) are hard to make into inductive structures. When

switching to sequent calculus, instead, inductive reasoning about the structure of

provability in sequent calculus captures much more reasoning power. (papers by

McDowell and Miller). Thus, we move from attempting to prove induction on pv B

to Γ ` B. Eigenvariables, however, are not captured in this inductive structure:

they still have a hypothetical (contravariant) nature (not the parallels between im-

plications and universal quantification). McDowell and Miller attempted an ad hoc

approach that was later made into a logical approach with Tiu and Miller.
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1 Metatheory and its mechanization

Mechanized theorem proving—in both its interactive and automatic forms—has been

applied in a wide range of domains. A frequent use of theorem provers is to formally

establish various properties of specific programs related to their correctness: e.g., prove

that a given program correctly sorts a list and always terminates or prove that a given

loop satisfies a given invariant.

A more niche domain to which theorem proving is being applied is that of the

metatheory of programming languages. In this domain, one takes a formal definition of

a particular programming language’s static semantics (e.g., typing), dynamic seman-

tics (e.g., evaluation), and translation semantics (e.g., compilation) and establishes

properties about all programs in that programming language.

We list a few, typical examples of metatheorems that are commonly proved.

1. If evaluation attributes values U and V to program M , then U and V are equal.

Thus, evaluation is a partial function.

2. If M is attributed the value V and it has the type A, then V has type A also. Thus,

types are preserved when evaluating an expression.

3. Applicative bisimulation for the programming language is a congruence [1,60].

Thus, equational-style rewriting using applicative bisimulation preserves that rela-

tion.

A theorem prover that is used for proving such metatheorems must deal with struc-

tures that are linguistic in nature: that is, metatheorems often need to quantify over

programs, program phrases, types, values, terms, and formulas. A particularly chal-

lenging aspect of linguistic expressions, one which separates them from other inductive

data structures (such as lists and binary trees), is their incorporation of bindings.

In fact, a number of research teams have used proof assistants to formally prove

significant properties of entire programming languages. Such properties include type

preservation, determinancy of evaluation, and the correctness of an OS microkernel

and of various compilers: see, for example, [64,65,67,92].

The authors of the POPLmark challenge [9] have pointed out that proving metathe-

orems about programming languages is often a difficult task given the proof assistants

available at that time (in 2005). In particular, their experiments using various systems

to work with on the metatheory of programming languages lead them to urged the

developers of proof assistants to make improvements to their systems.

Our conclusion from these experiments is that the relevant technology has de-

veloped almost to the point where it can be widely used by language researchers.

We seek to push it over the threshold, making the use of proof tools common

practice in programming language research—mechanized metatheory for the

masses. [9]

These authors also acknowledge that poor support for binders in syntax was one prob-

lem that held back proof assistants from achieving even more widespread use by pro-

gramming language researchers and practitioners.

In the decade following the POPLmark challenge, a number of approaches to rep-

resenting syntax containing bindings have been proposed, analyzed, and applied to

metatheory issues. These approaches go by names such as locally nameless [22], nom-

inal reasoning [10,109,112,135], and parametric higher-order abstract syntax [24]. In

the end, nothing canonical seems to have arisen: see [111,8] for detailed comparisons
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between different representational approaches. On the other hand, most of these ap-

proaches have been used to take existing mature proof assistants, such as Coq or

Isabelle, and extend them with new packages, new techniques, new features, and/or

new front-ends.

The incremental extension of mature proof assistants is only one way to address

this issue. In this paper, we propose another approach to mechanized metatheory and

we use the following analogy to set the stage for that proposal.

Early implementations of operating systems and distributed systems forced pro-

grammers to deal with concurrency, a feature not present in early programming lan-

guages. Various treatments of concurrency and distribution were addressed by adding

to mature programming languages thread packages, remote procedure calls, and/or

tuple spaces. Such additions made important contributions to what computer systems

could do in concurrent settings. None-the-less, early pioneers such as Dijkstra, Hoare,

Milner, and Petri considered new ways to express and understand concurrency via for-

malisms such as CCS, CSP, Petri Nets, π-calculus, etc. These pioneers left the world

of known and mature programs in an attempt to find natural and direct treatments

of concurrent behavior. While the resulting process calculi did not provide a single,

canonical approach to concurrency, their development and study have lead to much

greater insight into computation, computation, and interaction.

In a similar spirit, we will examine here an approach to metatheory that is not

based on extending mature theorem proving platforms. Instead, we look for means to

compute and reason with bindings within syntax that arise directly from logic and proof

theory, two topics that have a long tradition of allowing abstractions into the details

of syntactic representations. There has been a large number of technical papers and a

few implementations that provide an alternative approach to mechanized metatheory.

The goal of this paper is not technical: instead, it is intended to provide an overview

of this earlier work.

2 Dropping mathematics as an intermediate

Before directly addressing some of the computational principles behind bindings in

syntax, it seems prudent to describe and challenge also the conventional design of a

wide range of proof assistants.

The traditional approach to designing theorem provers to reason about computa-

tion employed in almost all ambitious proof assistants today follows the following two

step approach [78].

Step 1: Implement mathematics. This step is achieved by picking a general, well un-

derstood formal system. Common choices are first-order logic, set theory [97],

higher-order logic [25,50], or some foundation for constructive mathematics, such

as Martin-Löf type theory [68,27,28].

Step 2: Reduce reasoning about computation to mathematics. Computational systems

can be encoded via a model theoretic semantics (such as denotational semantics)

or as an inductive definition over a proof system encoding, say, an operational

semantics.

Placing (formalized) mathematics in the middle of this approach to reasoning about

computational systems is problematic since traditional mathematical approaches as-

sume extensional equality for sets and functions while computational settings may need
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to distinquish such objects based on intensional properties. The notion of algorithm

is an example of this kind of distinction: there are many algorithms that can compute

the same function (say, the function that sorts lists of integers). In a purely exten-

sional treatment, functions are represented directly and descriptions of algorithms are

secondary. If an intensional default can be managed instead, then function values are

secondary (usually captured via the specification of evaluators or interpreters).

For a more explicit example, consider whether or not the formula ∀w. λx.x 6= λx.w

is a theorem (assume that x and w are variables of some primitive type i). In a setting

where λ-abstractions denote functions (the usual extensional treatment), this formula

is equivalent to ∀wi.¬∀x.x = w we have not provided enough information to answer

this question: in particular, this formula is true if and only if the domain type i is

not a singleton. If, however, we are in a setting where λ-abstractions denote syntactic

expressions, then it is sensible for this formula to be provable since no (capture avoiding)

substitution of an expression of type i for the w in λx.w can yield λx.x. Taking this

latter step means, of course, separating λ-abstraction from the mathematical notion of

function.

A key methodological element of this proposal is that we shall drop mathematics

as an intermediate and attempt to find a direct and intimate connection between

computation, reasoning, and logic.

Church’s Simple Theory of Types [25] is one of the most significant and early steps

taken in the design of a rich and expressive logic. In that paper, Church showed how

it was possible to turn the tables on the usual presentation of terms and formulas in

quantificational logic. Most presentations of quantification logic defined terms first and

then formulas were defined to incorporate such terms (within atomic formulas). Church

however defined the general notion of simply typed λ-term and defined formulas as a

subset of such λ-terms, namely, those of type o. The resulting formal system provided

an elegant way to reduce all formula-level bindings (e.g., the universal and existential

quantifiers) to the term-level λ-binder. His approach also immediately captured the

binders used in the definite description operators and Hilbert’s ε-operator. Church’s

presentation of formulas and terms are used in many active computational logic systems

such as the HOL provers [52], Isabelle [98], and λProlog [79].

Actually, Church’s 1940 paper introduced what today is seen as two higher-order

logics. Both of these logics are based on the same notion of term and formulas and

use the same inference rules—namely, βη-conversion, substitution, modus ponens, and

∀-generalization—but use different sets of axioms.

The first of Church’s logics is now often called elementary type theory (ETT) [5] and

involves using only axioms 1-6 which involve the axioms for classical propositional logic

as well as the basic rules for quantificational logic at higher-order (simple) types. The

second of Church’s logics is aforementioned simple theory of types (STT). This logic

arises by adding to ETT axioms 7-11: these axioms guarantee the existence of a non-

empty domain and of an infinite domain as well as contains the axioms of description

and choice as well as extensionality for functions. Church’s goal in strengthening ETT

by adding these additional axioms was to position STT as a proper foundations for

much of mathematics. Indeed, formal developments of significant parts of mathematics

can be found in Andrews’s textbook [6] and in systems such as HOL [50,57].

When we speak of dropping mathematics as an intermediate, it is at this point

that we wish to rewind the steps taken by Church (and implementers of some proof

assistants): for the task of mechanized metatheory, we wish to return to ETT and not

accept all of the mathematics oriented axioms.
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3 Elementary type theory

ETT is an appealing starting place for it parsimony in addressing both quantification

and bindings in terms by mapping them both to binding in simply typed λ-calculus.

Furthermore, the equality theory of ETT is that of α, β, and η-conversion is capable of

providing both support for (higher-order) quantification as well as for terms containing

bindings. Both alphabetic changes of bound variable names and Variable avoiding sub-

stitutions are all accounted for by the logical rules underlying ETT. The proof theory

for ETT has been well developed for both both intuitionistic and classical variants of

ETT (Church’s original version was based on classical logic). Among the results know

for ETT are cut-elimination [47,116,127], Herbrand’s theorem and the soundness of

Skolemization [72], completeness of resolution [4], and unification [62]. Subsets and

variants of ETT have been implemented and employed in various computational logic

systems. For example, the TPS theorem prover [84], the core of the Isabelle theorem

prover [100], the logic programming language λProlog [79], and the proof system Min-

log [124] are all based on various subsets of ETT. For more about the history of the

automation of ETT and STT see the handbook article [17].

The simple types in ETT are best though of as syntactic categories and that the

arrow type γ → γ′ is the syntactic categories of abstractions of categories γ over γ′.
Typing in this weak sense is essentially the same as Martin-Löf’s notion of arity types

[99]. This approach to syntactic categories is common within computational linguistics

where, for example, a transitive verb is given the syntactic category (S\NP )/NP which

is a sentence (S) that has two noun phrases (NP ) abstracted and where the forward

and backward slashes correspond to arrows indicating if the argument for and abstract

should be found to the left or to the right of the transitive verb. In Church’s logic, the

type o (omicron) is the type of formulas: other primitive types provide for multisorted

terms. For example, the universal quantifier ∀γ is not applied to a term of type γ and a

formula (of type o) but rather to an abstraction of type γ → o. Both ∀γ and ∃γ belong

to the syntactic category (γ → o) → o. When using ETT to encode some object-level

language, the terms and types of that language can be encoded as belonging to two

different primitive types: the syntactic categories object-level term and object-level

type.

Richer type systems, such as the dependently typed λ-calculi—known variously

as LF, λP , and λΠ [56,16]—are also important in a number of computational logic

systems, such as Coq [19], Agda [21], and Twelf [107], to name a few. Although we shall

limit the type system of our meta-logic to be simple types, the intuitionistic variant of

ETT is completely capable of faithfully encoding such dependently typed calculi [33,

126].

To be useful as the foundation of a mechanized metatheory, ETT needs extensions.

For example, ETT does not directly offer induction and coinduction which are both

clearly important for any logic hoping to prove metatheoretic results. Keeping close

to a proof-theoretic presentation of ETT, Section 8 describe an extension to ETT in

which term equality is treated as a logical connective (following the work by Schroeder-

Heister [121] and Girard [48]) and inference rules for induction [70] and coinduction

[12,128,133] are added. Section 9 presents an additional extension to the core of ETT

with the addition of the ∇ quantifier [43,83,128].

In conclusion, we have explicitly ruled out Church’s extension of ETT to STT as a

proper foundation for our revisit to metatheory. Instead we shall illustrate that a sepa-

rate extension to ETT—based on introducing inference rules for equality, fixed points,
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and ∇-quantification—satisfy many of the needs for an expressible and implementable

logic for mechanizing metatheory. It is important to note that while STT is equipped to

deal with the mathematical notion of function (given the use of the definite description

choice operator and extensionality), the extension to ETT we use here does not provide

a rich notion of function. Instead, relations are used to directly encode computations

and specifications. Of course, relations can encode functions—for example, the addi-

tion of two natural numbers would be a relation belonging to the syntactic category

nat → nat → nat → o—but the syntactic category nat → nat → nat would not con-

tain the usual functional notion of addition. Fortunately, meta-theory abounds with

relations that may or may not be functional. For example, the relationship between a

program and its type, between a process and its transitions, and between formula and

a proof are all relations.

4 How abstract is your syntax?

Two of the earliest formal treatments of the syntax of logical expressions were given

by Gödel [49] and Church [25] and, in both of these cases, their formalization involved

viewing formulas as strings of characters. Even in the 1970’s, one could find logicians

using strings as representations of formulas: for example, in [4], an atomic formulas

is defined as a formula-cum-string in which the leftmost primitive system which is

not a bracket is a variable or parameter. Clearly, such a view of logical expressions

contains too much information that is not semantically meaningful (e.g., white space,

infix/prefix distinctions, brackets, parenthesis) and does not contain explicitly seman-

tically relevant information (e.g., the function-argument relationship). For this reason,

those working with syntactic expressions generally parse such expressions into parse

trees: such trees discard much that is meaningless (e.g., the infix/prefix distinction)

and records directly more meaningful information (e.g., the child relation denotes the

function-argument relation). The names of bound variables is one form of “concrete

nonsense” that generally remains in parse trees.

One way to get rid of bound variable names is to use de Bruijn’s nameless dummy

technique [30] in which (non-binding) occurrences of variables are replaced by positive

integers that count the number of bindings above the variable occurrence through

which one must move in order to find the correct binding site for that variable. While

such an encoding makes the check for α-conversion easy, it can greatly complicate

other operations that one might want to do on syntax, such as substitution, matching,

and unification. While all such operations can be supported and implemented using

the nameless dummy encoding [30,66,95], the complex operations on indexes that are

needed to support those operations clearly suggests that they are best dealt within the

implementation of a framework and not in the framework itself.

The following four principles about the encoding and treatment of syntax will guide

our further discussions.

Principle 1: The names of bound variables have no semantic context: they are

artifact of how we write expressions and should not be present in abstracted

syntax.

Of course, the name of variables are important for parsing and printing expressions (just

as is white space) but such names should not be part of the meaning of an expression.

This first principle simply repeats what we stated earlier. The second principle is a bit

more concrete.
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Principle 2: All term-level and formula-level bindings are encoded using a

single binder.

With this principle, we are adopting Church’s approach [25] to binding in logic, namely,

that one has only λ-abstraction and all other bindings are encoded using that binder.

For example, the universal quantified expression (∀x.B x) is actually broken into the

expression (∀(λx.B x)), where ∀ is now treated as a constant of higher-type. Note

that this latter expression is η-equivalent to (∀ B) and universal instantiation of that

quantified expression is simply the result of using λ-normalization on the expression

(B t). In this way, many details about quantifiers can be reduced to details about

λ-terms.

Principle 3: There is no such thing as a free variable.

This principle is taken from Alan Perlis’s epigram 47 [103]. By accepting this principle,

we recognize that bindings are never dropped to reveal a free variable. This principle

also suggests the following, which is the main novelty in this list of principles.

Principle 4: Bindings have mobility and the equality theory of expressions

must support such mobility [77,79].

Since the other principles are most likely familiar to the reader, we describe in the next

section this last principle in more detail.

An important cost in parsing the string representation of, say, formulas to an ab-

stract syntax is the need to eventually produce a readable version of such abstracted

syntax. Since white space is removed during parsing, printing can be a complex task

of deciding on where new lines and indentations should be inserted. Similarly, when

bound variable names are removed, deciding on how to name binding during printing

is under constrained. We shall not consider here this problem with the printing of

readable versions of abstract syntax.

Another consequence of the principles describe above is that we shall give up on

the ability explicitly manipulate the names of bound variables. While some researchers

feel that such manipulations are “of key paractical importance” [36], we have taken

the opposite perspective: making it impossible to manipulate bound variable names

explicitly forces our specifications to be more abstract and more close to the underly-

ing semantics of computation systems. By analogy, when one programs in, say, modern

functional programming languages, one gives up being able to explicitly manipulate the

memory location associated to variables. While such abstracting variables from loca-

tions has allowed for a great many innovations in the execution of functional program-

ming languages (such as optimizing compilers, parallel execution, etc), certain practical

considerations made much harder (such as the implementation of garbage collection)

Similarly, giving up on explicitly manipulating bound variable names causes some prac-

tical difficulties (such as those involved with printing abstract syntax), we shall argue

here that the benefits of this particular abstraction are significant and interesting.

5 Mobility of bindings

Since the search for proofs is a key principle behind the proof search paradigm, we make

use of Gentzen style sequents to encode the judgment that is the current attempt at

being proved since such sequent explicitly maintain the “current set of assumptions and

the current attempted consequence.” For example, the sequent ∆ ` B is the judgment
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that states that B is a consequence of the assumptions in ∆. A literal translation of

Gentzen’s sequents makes us of free variables. In particular, when attempting to prove

a sequent with a universal quantifier on the right, the corresponding right introduction

rule employs an eigenvariable, that is a “new” or “fresh” variable. For example, in the

inference figure

B1, . . . , Bn ` B0[v/x]

B1, . . . , Bn ` ∀xγ .B0
∀R,

the variable v is not free in the lower sequent. Gentzen called such new variables

eigenvariables. Unfortunately, written this way, this inference figure violates the Perlis

principle (Principle 3 in Section 4). Instead, we augment sequents with a prefix Σ that

collects eigenvariables and binds them over the sequent. The universal-right introduc-

tion rule now reads as

Σ, v : γ : B1, . . . , Bn ` B0[v/x]

Σ : B1, . . . , Bn ` ∀xγ .B0
∀R,

where we assume that the eigenvariable signature contains always distinct variables

(as is always possible given α-conversion for binding constructs). As a result, sequents

contain both assumptions and eigenvariables as well as the target goal to be proved.

We shall refer to eigenvariables as sequent-level bindings. (Ultimately, a second kind of

sequent-level binding will be introduced in Section 9).

To illustrate the notion of binder mobility, consider specifying the typing rela-

tion that holds between untyped λ-terms and simple types. Since this problem deals

with the two syntactic categories of expressions, we introduce two primitive types: tm

is the type of terms encoding untyped λ-terms and ty is the type of terms encod-

ing simple type expressions. Untyped λ-terms can be specified using two constants

abs : (tm→ tm)→ tm and app : tm→ tm→ tm (note that there is no third construc-

tor for treating variables). Untyped λ-terms are encoded as terms of type tm using the

following translation function:

dxe = x, dλx.te = (abs (λx.dte)), and d(t s)e = (app dte dse).

This translation has the property that it maps bijectively α-equivalence classes of un-

typed λ-terms to αβη-equivalence classes of simply typed λ-terms of type tm. Sim-

ple type expressions can be encoded by introducing two constants, say i : ty and

arrow : ty→ ty→ ty. Let of : tm→ ty→ o be the type of the predicate encoding the

type typing relation between untyped terms and simple types (following Church [25],

we use the type o as the type of formulas).

The following inference rule is a familiar rule regarding typing.

Σ : ∆, of t (arrow i i) ` C
Σ : ∆,∀y(of t (arrow y y)) ` C ∀L

This rule states (when reading it from premise to conclusion) that if the formula C

follows from the assumption that t has type (arrow i i) then C follows from strengthen

that assumption to the assertion that t can be attributed the type (arrow y y′) for all

instances of y. In this rule, the binding for y is instantiated: this inference rule is an

example of Gentzen’s rule for the introduction of the ∀ quantifier on the left.
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On the other hand, consider the following inferences.

Σ, x : ∆, of dxe y ` of dBe y′

Σ : ∆ ` ∀x(of dxe y ⊃ of dBe y′)
∀R, ⊃ R

Σ : ∆ ` of dλx.Be (y → y′)
backchaining

These inferences illustrates how bindings can, instead, move during the construction of

a proof. In this case, the term-level binding for x in the lower sequent can be seen as

moving to the formula level binding for x in the middle sequent and then to the proof

level binding (as an eigenvariable) for x in the upper sequent. Thus, a binding is not

converted to a “free variable”: it simply moves. The last inference rule is justified by

backchaining with respect to a clause that we present below.

This mobility of bindings needs supported from the equality theory of expressions.

Clearly, equality already includes α-conversion by Property 1. We also need a small

amount of β-conversion. If we rewrite these last inference rules using the definition of

the d·e translation, we have the following inference figures.

Σ, x : ∆, of x y ` of (B x) y′

Σ : ∆ ` ∀x(of x y ⊃ of (B x) y′)
∀R

Σ : ∆ ` of (abs B) (arrow y y′)
backchaining

Note that here B is a variable of arrow type tm→ tm and that instances of these infer-

ence figures will create an instance of (B x) that may be a β-redex: that β-redex has,

however, a greatly restricted form. In particular, observe that B is a schema variable

that is implicitly universally quantified around this inference rule: if one formalizes

this approach to type inference in, say intuitionistic logic, then the following formula

captures that quantification.

∀B∀y∀y′[∀x(of x y ⊃ of (Bx) y′) ⊃ of (abs B) (arrow y y′)]. (∗)

Also observe that the alternation of quantifiers implies that any instantiation of B

leaves the β-redex (B x) in the state where the argument x is not free in the instance of

B: this is enforced by the fact that substitutions into formulas does not capture bound

variables. Thus, the only form of β-conversion that is needed to support this notion

of binding mobility is the so-called β0-conversion rule, defined as as (λy.t)x = t[x/y],

provided that x is not free in λy.t. (Note that this conversion is equivalent to (λx.t)x = t

in the presence of α-convergence.) The backchaining inference rule above is now justified

was the act of backchaining [80] using this displayed formula (which is assumed to be

present in the set of assumptions ∆).

Mobility of bindings is supported using β0 since the internally bound variable y in

the expression (λy.t)x is replaced by the externally bound variable x in the expression

t[x/y]. Note that β0 supports the following symmetric interpretation of λ-abstraction.

– If t is a term over the signature Σ ∪ {x} then λ-introduction yields the term λx.t

which is a term over the signature Σ.

– If λx.s is a term over the signature Σ then the β0 reduction of ((λx.s) y) is a

λ-elimination yielding [x/y]t, a term over the signature Σ ∪ {y}.

Thus, β0 reduction provides λ-abstraction with a rather weak form of functional in-

terpretation: give a λ-abstraction and an increment to a signature, β0 yields a term
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Fig. 1 Moving from (1) to (2) involves β0 expansions; moving from (2) to (3) involves a
rewriting of λ-abstracted terms; and moving from (3) to (4) involves β0 contractions.

over the extended signature. The λ-abstraction has a dual interpretation since it takes

a term over an incremented signature and hides that increment.

To further illustrate how β0 conversion supports the mobility of binders, consider

how one specifies the following rewriting rule: given a universal quantification of the

conjunction of formulas, rewrite it to be the conjunction of universally quantified for-

mulas. In this setting, we would write something like

(∀(λx.(A x ∧B x))) 7→ (∀(λx.A x)) ∧ (∀(λx.B x)),

where A and B are schema variables. To rewrite an expression such as (∀λz(p z z ∧
q a z)), we first need to use β0 expansion to get the expression

(∀λz[((λw. p w w)z) ∧ ((λw. q a w)z)]).

At this point, the variables A and B in the rewriting rule can be instantiated by the

terms λw. p w w and λw. q a w, respectively, which yields the expression

(∀(λx.(λw. p w w) x)) ∧ (∀(λx.(λw. q a w) x)).

Finally, a β0 contraction yields the expected expression (∀(λx.(p x x)∧(q a x))). Notice

that at no time did a bound variable become unbound.
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Figure 1 graphically illustrates this process of rewriting in the presence of bindings.

Assume that we have a term (illustrated in (1) of Figure 1 as a large triangle) and that

we wish to replace a subterm (the dark gray triangle) with another term (the light

gray triangle in image (4)). Since the subterm in (1) contains occurrences of two bound

variables, we write that subterm as t(x, y) (where we assign the names x and y to those

two bindings). When moving from image (1) to (2), we use β0 expansion to replace

replace t(x, y) with (λuλv.t(u, v))xy. Notice now that the subterm λuλv.t(u, v) is now

closed and, as a result, it can be rewritten to, say λuλv.s(u, v) (yielding (3)). Finally,

β0-reduction yields the term illustrated in (4). Thus, β0 expansion and reduction allows

a subterm be released from its dependency on bindings in its environment by making

those dependencies into local bound variables. Of course, instead of rewriting simply t

to s, we needed to rewrite the abstractions λuλv.t(u, v) to λuλv.s(u, v).

6 Proof search provides a framework

From a proof theoretic perspective, reasoning can be seen as a process that builds a

(sequent calculus) proof. The cut rule (the use of both modus ponens and lemmas) is

a dominate inference rule when reasoning is seen in this fashion [45]. The proof search

approach to computation [80] is also such a process for building proofs but one that

is governed by a systematic search for a cut-free proof. In general, cut-elimination

is not part of these approaches to computation or reasoning. With the growing use

of formal systems to encode aspects of mathematical reasoning, there are starting to

appear some applications of cut-elimination within the reasoning process: consider, for

example, proof mining where implicit but formal proofs can be manipulated to extract

mathematically useful information [?]. In section 11, we shall provide a different set of

examples where cut-elimination is used to formally reason about computations specified

using the proof search paradigm.

One of the appealing aspects of using proof search to describe computation and

reasoning is that it is possible to give a rich account of binder mobility (as illustrated

in Section 5). Thus, this paradigm allows for specifying both recursive programming

over data with bindings as well as reasoning inductively about such specifications.

As such, proof search within ETT can accommodate all four principles dealing with

abstract syntax that were listed in Section 4. To be clear, when we speak of the “logic

programming” approach to specifications, we do not mean to include specific aspects

of implementations of logic programming languages, such as Prolog or λProlog. For

example, both of those languages make use of depth-first search: such a search regime

is often inappropriate for automated reasoning.

The use of logic programming principles in proof assistants pushes against usual

practice: since the first LCF prover [51], many (most?) proof assistants have had in-

timate ties to functional programming. For example, such theorem provers are often

implemented using functional programming language: in fact, the notion of LCF tac-

tics and tacticals was originally designed and illustrated using functional programming

principles [51]. Also, such provers often view proofs constructively and can output the

computational content of proofs as functional programs [18].

Most of the remainder of this paper provides an argument and some evidence that

the proof search paradigm is an appropriate and appealing setting for mechanizing

metatheory. Also, I shall focus on the specification of mechanized meta-theory tasks

and not on their implementation: it is completely possible that logic programming
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principles are used in specifications while a functional programming language is used

to implement that specification language (for example, current implementations of

Teyjus and Abella are written in OCaml [32,117]).

6.1 Expressions versus values

Keeping with the theme mentioned in Section 2 that types denote syntactic types,

the terms of logic must then denote expressions. If we are representing terms without

bindings, then terms denote themselves, in the sense of free algebras: for example,

the equality 3 = 1 + 2 fails to hold. While this is a standard expectation in the logic

programming paradigm, the functional programming paradigm recognizes this equality

as holding since, in that paradigm, expressions do not denote themselves but their value.

That is, in the functional programming paradigm, if we wish to speak of expressions,

we would need to introduce a datatype for abstract syntax (e.g., parse trees) and then

one would have difference expressions for “three” and for “one plus two”: in such a

datatype, expressions and their value coincides.

The treatment of syntax with bindings within the functional programming paradigm

is generally limited to two different but broad approaches. First, one can map binders

in syntax to function abstractions: thus, abstract syntax may contain functions. We

shall speak more about that approach to encoding in the functional programming set-

ting in Section 7. Second, one can build a datatype denote syntax trees using different

representations of bindings, such as names or de Bruijn’s nameless dummies [30]. The

implementer of such a datatype would also need to encode notions such as α-equality,

free/bound distinctions, and capture avoiding substitution. Such an approach to en-

coding syntax with bindings is usually challenged when attempting to treat Principles

3 and 4 of Section 4. In order to support the notion that there are no free variables,

contexts must be introduced and used as devices for encoding bindings: such bindings

usually become additional data-structures and additional arguments and technical de-

vices that must treated with care. With its formal treatment of contexts (based on

Contextual Model Type Theory of [96]), the Beluga programming language [108] rep-

resents the state-of-the-art in this approach to syntax.

The logic programming paradigm with its emphasis on expressions instead of values

provides another approach to treating syntax containing bindings that simply involves

adopting an equality theory on expressions. In order to treat syntax with bindings at

the proper level of abstraction, it is necessary to have the treatment of expressions In

particular, by supporting both α-conversion and β0-conversion it is possible for both

Principle 1 and 4 to be supported. It has been know since the late 1980’s that the

logic programming paradigm can support the theory of α, η, and full β–conversions

and, as such, it can support a suitably abstract approach to syntax with bindings: for

example, the systems λProlog [79,93], Twelf [107], and Isabelle [101] provide such a

proof search based approach to abstract syntax. While unification of simply typed λ-

terms modulo αβη is undecidable in general [61], the systematic search for unifiers has

been described [62]. It is also known that within the higher-order pattern unification

restriction, unification modulo αβ0η is not only decidable and unary but it is also

complete for unification modulo αβη [74]. This restricted form of unification is all that

is needed to automatically support the kind of term processing illustrated in Figure 1.
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6.2 Dominance of relational specifications

The focus of most efforts to mechanize meta-theory is to build tools to support pro-

gramming language researchers and designer when they reason about the static and

the dynamic semantic definitions of various specifications languages (such as the λ-

calculus and the π-calculus) and programming languages. Static semantics is usually

presented as a typing systems. Dynamic semantics will be given using either small step

semantics, such as is used in structural operational semantics (SOS) [110], or as big

step semantics, such as is used in natural semantic [63]. In all of these styles of semantic

specifications, relations and not functions are the direct target of specifications. For

example, the specification of proof systems and type systems use provability and typing

judgments binary predicates such as Ξ ` B or T : γ. A relation, such as M ⇓ V , is also

used when specifying the evaluation of, say, a functional program M to a value V . In

case it holds that evaluation is a (partial) function, then it is a meta-theorem that

∀M∀V ∀V ′ [M ⇓ V ∧M ⇓ V ′ ⊃ V = V ′]

Of course, if the programming language being considered involves communication with

its environment, evaluation may not be functional in this simple sense. Relations and

not functions are the usual specification vehicle for capturing a range of programming

semantics.

For a concrete example, consider the specification of CCS where small step semantic

specification are usually given by defining the ternary relation of labeled transition

systems P
a
−−→ Q between two processes P and Q and an action a. For example, the

usual SOS specification of labeled transitions for CCS contains the inference rules

in Figure 2. The connection between those inference rules and logic programming

clauses is transparent: in particular, the rules in Figure 2 can be written naturally

as the the logic programming clauses in Figure 3. The close connection between such

semantic specifications and logic programming allows for the immediate animation of

such specifications using common logic programming interpreters. For example, both

typing judgments and such operational semantic specifications have been animated

via a Prolog interpreter in the Centaur project [26] and via a λProlog interpreter for

computational systems employing binders [7,53,79].

The connection between semantic specifications and logic programs goes further

than mere animation. Such logic programs can be taken as formal specifications about

which it is possible to prove properties of the original. For example, logic programs

have been systematically transformed in meaning perserving ways in order to prove

that certain abstract machines implement certain simply functional programming lan-

guages [54,55]. The Twelf system provided automated tools for reasoning about logic

programs, thereby allowing direct proofs of, for example, progress theorems and type

perservation [106,122]. We shall illustrate a systematic approach to reasoning about

logic programming specifications in Abella in Section 11.

6.3 Trading side conditions for more expressive logics

The inference rules used to specify both static semantics (e.g., typing) and dynamic

semantics (e.g., small-step and big-step operational semantics) often contain an assort-

ment of side conditions. Such side conditions can break and obscure the declarative
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P
A
−−→ P ′

P +Q
A
−−→ P ′

Q
A
−−→ Q′

P +Q
A
−−→ Q′

P
A
−−→ P ′

P |Q
A
−−→ P ′ |Q

Q
A
−−→ Q′

P |Q
A
−−→ P |Q′

P
A
−−→ P ′ Q

Ā
−−→ Q′

P |Q
τ
−−→ P ′ |Q′

Fig. 2 A few rules that can be a part of the formalization of labeled transitions for CCS.
Tokens starting with a captial letter are schematic variables.

kind proc , act type.

type tau act.
type bar act -> act.

type plus , par proc -> proc -> proc.
type one proc -> act -> proc -> o.

one (plus P Q) A P’ :- one P A P’.
one (plus P Q) A Q’ :- one Q A Q’.
one (par P Q) A (par P’ Q) :- one P A P’.
one (par P Q) A (par P Q’) :- one Q A Q’.
one (par P Q) tau (par P’ Q’) :- one P A P’, one Q (bar A) Q’.

Fig. 3 The logic programming specification of SOS rules for CCS, written using the syntax
of λProlog [79]. Here, the kind keyword declares proc and act as two syntactic categories
denoting processes and actions, respectively. Tokens starting with a captial letter are variables
that are universally quantified around the individual clauses.

nature of specifications: their presences can signal that a more expressive logical frame-

work for specifications should be used.

The inference rules in Figure 2 for describing the transition system for CCS have no

side conditions and their mapping into first-order Horn clauses (Figure 3) is unproblem-

atic. Consider, however, some simple specifications regarding the untyped λ-calculus.

The specification of call-by-value evaluation for untype λ-terms can be written as

M ⇓ λx.R N ⇓ U S ⇓ V
(M N) ⇓ V

provided S = R[U/x].

There, the side condition requires that S is the result of substituting U for the free

variable x in R. Similarly, when specifying a typing discipline on untyped λ-terms, we

typically see specifications such as

Γ, x : γ ` t : σ
Γ ` λx.t : γ → σ

provided x /∈ fn(Γ ).

Here, the side condition specifies that the variable x is not free in the context Γ . In

system such as π-calculus, which includes sophisticated uses of bindings, transition

system come with numerous side conditions. Take, for example, the open inference rule

[88]

P
x̄y−→ P ′

(y)P
x̄(w)−→ P ′{w/y}

provided y 6= x, w /∈ fn((y)P ′).
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Here the side condition has two conditions on variables name appearring in that infer-

ence rule.

As we shall see in Sections 8 and 12, the side conditions in the inference rules

above can all be eliminated simply by encoding those rules in a logic richer than first-

order Horn clauses. In particular, the logic underlying λProlog, the hereditary Harrop

formulas [80] provide an immediate specification of these rule, in part, because the

intuitionistic logic theory of hereditary Harrop formulas directly supports the λ-tree

approach to syntax.

6.4 Substitution lemmas for free

One of the reason to use a logic to formalize static and dynamic semantic specifications

is that that formalism—as an artifact—can have significant formal properties of its

own. For example, proof search as a computation paradigm usually constructs cut-free

proofs of the propositions on which it is asked to compute. A famous meta-theorem

of intuitionistic logic is the cut elimination theorem of Gentzen [45]: if properly used,

the cut-elimination theorem can be seen as the “mother of all substitution lemmas”.

An example of a substitution lemma is the following: if λx.B has type γ → γ′ and N

has type γ then the result of substituting N for x in B, i.e., [N/x]B, has type γ′. ***

To illustrate this claim, we return to the specification of the typeof predicate given

in Section 5. This binary relation relates the syntactic categories tm (for untyped λ-

terms) and, say, ty (for simple type expression). The logical specification of the typeof

predicate might attribute integer type or list type to different expressions via clauses

such as

∀T : tm ∀L : tm ∀y : ty [of T y ⊃ of L (list y) ⊃ of (T :: L) (list y)].

Consider an attempt to prove the sequent Σ : ∆ ` of (abs R) (y → y′) where the

assumptions (the theory) contains only one rule for proving such a statement (a typical

assumption for the arrow type constructor) and that that assumption is the clause

(∗) used in the discussion of Section 5. Since the introduction rules for ∀ and ⊃ are

invertible, the sequent above is provable if and only if the sequent

Σ, x : ∆, of x y ` of (R x) y

is provable. Given that we are committed to using a proper logic (such as intuitionistic

logic), it is the case that instantiating an eigenvariable in a provable sequent yields a

provable sequent. Thus, the sequent

Σ : ∆, of N y ` of (R N) y

must be provable. Thus, we have just shown, using nothing more than rather simple

properties of logic that if

Σ : ∆ ` of (abs B) (y → y′) and Σ : ∆ ` of N y

then (using modus ponens) Σ : ∆ ` of (B N) y′. (Of course, instances of the term

(B N) are β-redexes and the reduction of such redexes result in the substitution of

N into the bound variable of the term that instantiates B.) Such lemmas about sub-

stitutions are common and often difficult to prove [3,137]: in this setting, this lemma

is essentially an immediate consequent of using logic and logic programming princi-

ples. In Section 11, we illustrate how the Abella theorem prover provides a general

methodology that explicitly uses the cut-elimination theorem in this fashion.
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7 λ-tree syntax

The term higher-order abstract syntax (HOAS) was originally defined as an approach

to syntax that used “a simply typed λ-calculus enriched with products and polymor-

phism” [105]. It seems that few researchers currently use this term in a setting that in-

cludes products and polymorphism (although simple and dependently typed λ-calculus

are often used). A subsequent paper identified HOAS as a technique “whereby variables

of an object language are mapped to variables in the meta-language” [107]. While this

definition of HOAS seems the dominate one in the literature, this term is problematic

for at least two reasons.

First, this term is ambiguous since the metalanguage (often the programming lan-

guage) can similarly vary a great deal. For example, if the metalanguage is a functional

programming language or an intuitionistic type theory, the binding in syntax is usu-

ally mapped to the binding available for defining functions. In this setting, HOAS

representation of syntax incorporates function spaces on expressions [31,58] in order

to define expressions. If the metalanguage is a logic programming language such as

λProlog or Twelf, then the λ-abstraction available in those languages does not corre-

spond to function spaces but to the weaker notion of hiding variables within a term,

thereby producing a term of an abstracted syntactic type (see Section 2). Referring to

these different approach to encoding syntax with the same term leads to misleading

statements in the literature.

Second, the adjective “higher-order” is unnecessary. When applied in computa-

tional logic settings, the term “higher-order” is used in ambiguous ways [79]. Also

underlying notion of equality and unification of terms discussed in Section 5 is com-

pletely valid without reference to typing and it is the order of a type that usually

determines whether or not a variable is first-order or higher-order. When it comes to

unification, in particular, it seems more appropriate to view pattern unification as a

mild extension to first-order unification than it is to view it as an extreme restriction

to “higher-order unification” (a.k.a. unification of simply typed λ-terms). For example,

pattern unification can be applied to untyped λ-terms [74, Section 9.3]. Thus, if there

are no types, and hence no types of “higher-order”, why retain this adjective?

The ambiguity of the term HOAS causes confusion and misunderstanding. For

example, the literature has statements such as the following.

– Referring to HOAS, the authors of [36] say that “[i]ts big drawback, in its origi-

nal form at least, is that one looses the ability to define functions on syntax by

structural recursion and to prove properties by structural induction—absolutely

essential tools for our intended applications to operational semantics”.

– In [118, p. 365], we find the statement that “higher-order abstract syntax used in

a shallow embedding” when applied to “the π-calculus have been studied in Coq

and λProlog. Unfortunately, higher-order datatypes are not recursive in a strict

sense, due to the function in the continuations of binders. As a consequence, plain

structural induction does not work, making syntax-analysis impossible. Even worse,

in logical frameworks with object-level constructors, so-called exotic terms can be

derived.”

If not read carefully, these negative conclusions about HOAS can be interpreted as

applying to all methods of encoding object-level bindings into a meta-level binding.

Note that the use of the term “exotic” above applies to those encodings of syntax

where rich function spaces are embedded within terms: while exotic terms can appear
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in Coq encodings [31], they are not possible in λProlog since it contains no function

spaces.

To avoid this ambiguous term, the term “λ-tree syntax” was introduced in [81]:

with its obvious parallel to the term “parse tree syntax”, this term seems to be a

more appropriate to describe an approach to syntactic representation described in

the previous sections and based on the notions of syntactic categories, β0-conversion,

and mobility of bindings. Thus, the term “λ-tree syntax” refers to the form of HOAS

that is available in such logic programming settings as λProlog and Twelf. In those

settings, it has long been known how to write relational specifications that compute by

recursion over the syntax of expressions containing bindings. At the end of the 1990’s,

explicit reasoning about such relational specifications was part of the Twelf project

[107] and was being developed for λProlog specifications following the “two-level logic

approach” [69,71]. Still more sophisticated reasoning about relational specifications

has been built into the Abella proof assistant where it is routine to prove inductive

and coinductive theorems involving λ-tree syntax (see [13,38,44]). We describe Abella

more in Section 10.

8 Computing and reasoning with λ-tree syntax

We illustrate here how the proof theory of intuitionistic logic with higher-order (but

not predicate) quantification provides a rich computational setting for the direct ma-

nipulation of λ-tree syntax.

8.1 Relational specifications using λ-tree syntax

A common method to specify the call-by-value evaluation of untyped λ-terms is using

natural semantics [63] (also known as big-step semantics). For example, the following

two inference rules

λx.R ⇓ λx.R
M ⇓ λx.R N ⇓ U S ⇓ V

(M N) ⇓ V
provided S = R[N/x]

are commonly taken to be the definition of the binary relation · ⇓ · which relates two

untyped λ-terms exactly when the second is the value (following the call-by-value strat-

egy for reduction) of the first. Notice that rule for evaluating an application involves a

side condition that refers to a (capture avoiding) substitution.

A typical formal representation of the untyped λ-calculus echos Scott’s familiar

way of encoding their semantics by introducing a suitable domain D and two re-

tracts between [D → D] and D: in our more syntactic approach we introduce a

new syntactic category, the type tm, and two constructors mimicking the two retracts

abs : (tm→ tm)→ tm and app : tm→ (tm→ tm). This encoding is supported by the

following correspondences: terms of type tm in βη-long normal form are in one-to-one

correspondence with closed, untyped λ-terms modulo α-convergence.

Using such constructors, the inference rules displayed above can be written as

abs R ⇓ abs R
M ⇓ (abs R) N ⇓ U (R U) ⇓ V

(app M N) ⇓ V
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sig cbv.

kind tm type.
type abs (tm -> tm) -> tm.
type app tm -> tm -> tm.
type eval tm -> tm -> o.

module cbv.

eval (abs R) (abs R).
eval (app M N) V :- eval M (abs R), eval N U, eval (R U) V.

Fig. 4 A signature and a module file specifying call-by-value evaluation for the untyped λ-
calculus.

In these inference rules, the schematic variables M , N , U , and V have type R while

tm ranges over the syntactic category of tm→ tm. Notice that the formal substitution

written as S = R[N/x] above has been replaced by the application (R N): since this

term is a β-redex, the untyped λ-term that it corresponds to is the result of performing

a β-reduction. Using quantification in ETT, it is natural to encode these two inference

rules as the following Horn clauses in ETT.

∀R (eval (abs R) (abs R))

∀M∀N∀U∀V ∀R (eval M (abs R) ∧ eval N U ∧ eval (R U) V ⊃ eval (app M N) V )

Here, the infix notation · ⇓ · is replaced by the prefixed symbol eval and the type of

the quantified variables M , N , U , V , and R is the same as when they were used as

schematic variables. Since the equality theory of ETT contains β-conversion, the term

(R U) might be a β-redex if R is an abstraction (that can always be assumed given the

presence of η-conversion). In that case, the result of performing a β-reduction would

result in the formal substitution of the argument U into the abstraction R, thereby

correctly implementing the substitution proviso of the first pair of displayed inference

rules above. The λProlog syntax for this specification is given in Figure 4: here kinds

and types are explicitly declared in the signature part of specification and several usual

logic programming conventions are used to displayed Horn clauses (upper case letters

denote variables that are universally quantified around the full clause, conjunctions are

written with a comma, and implication is written instead as :- denoting “implied-by”.

8.2 A specification of object-level substitution and its correctness proof

The example above involving the specification of evaluation of untyped λ-terms illus-

trates how abstracted syntax can be used along with β-conversion in order to perform

object-level substitution. As was illustrated above, the of full β-conversion present in

ETT (and λProlog) makes it immediate to encode object-level substitution. We can,

however, open up the blackbox that is β-conversion and write a simple specification of

substitution using only relational specifications and the mobility of binders.

Figure 5 contains the specification of two predicates. In isolation, the copy predicate

encodes equality in the following sense. Let C denote the set of clauses in Figure 5.

The judgment C ` copy M N is provable if and only if M and N are equal (that

is, βη-convertible). The forward direction of this theorem can be proved by a simple
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type tm tm -> o.
type copy tm -> tm -> o.
type subst (tm -> tm) -> tm -> tm -> o.

tm (app M N) :- tm M, tm N.
tm (abs R) :- pi x\ tm x => tm (R x).

copy (app M N) (app P Q) :- copy M P, copy N Q.
copy (abs M) (abs N) :- pi x\ copy x x => copy (M x) (N x).

subst M T S :- pi x\ copy x T => copy (M x) S.

Fig. 5 A relational specification of object-level substitution.

kind ty type.
type i, j ty.
type arr ty -> ty -> ty.
type of tm -> ty -> o.

of (app M N) A :- of M (arr B A), of N B.
of (abs R) (arr A B) :- pi x\ of x A => of (R x) B.

Fig. 6 A relational specification of object-level typing.

induction on the uniform proof [80] of that judgment C ` copy M N . The converse

is proved by induction on the structure of the βη-long normal form of terms of type

tm. If the copy predicate is used hypothetically, as in the specification of the subst

relation, then it can be used to specify substitution. The following is an immediate (and

informal) proof of the following correctness statement for subst: C ` subst R M N

is provable if and only if N is equal to the βη-long normal form of (R M). The proof

of the converse direction is, again, done by induction on the βη-long form of M (of

type tm → tm). The forward direction has an even more direct proof: since the only

way one can prove C ` subst R M N is to prove C, copy x M ` copy (R x) N ,

where x is a new (eigenvariable). Since instantiating an eigenvariable in a sequent

with any term of the same type yields another provable sequent, then we know that

C, copy M M ` copy (R M) N is provable. By the previous theorem about copy, we

also know that C ` copyM M holds and by the cut-rule of the sequent calculus (modus

ponens), we know that C ` copy (R M) N is provable which means (using again the

theorem about copy) that N is equal to (R M).

One of the keys to reasoning about relational specifications using logical specifi-

cations is the central use of sequent calculus judgments. For example, in the example

above, we did not attempt to reason by induction on the provability of ` copy M N

but rather on the provability of Γ ` copy M N for suitable context Γ .

8.3 The open-world and closed-world perspectives

As previous examples have illustrated, the specification of atomic formulas, such as

of M N and copy M N, assume the open world assumption. For example, in order to

prove copy (abs R) (abs S) from assumptions C, the process of searching for a proof
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generates a new member (an eigenvariable) of the type tm, say c, and add the formula

copy c c to the set of assumptions C. Thus, we view the type tm and the theory (the

logic program) about members of that type as expandable. Such an open world per-

spective is common in relational specification languages that manipulate λ-tree syntax

[56,79,80,107].

The open-world perspective to specification has, however, a serious problem: in

that setting, it is not generally possible to prove interesting negations. For example,

one would certainly want to prove that self-application in the untyped λ-calculus does

not have a simple typing: for example, our metalogic should be strong enough to prove

Σ : C ` ¬ ∃y : ty. of (abs λx (app x x)) y,

where Σ is the signature and C is the specification of the (of · ·) predicate in Figure 6.

This not possible since intuitionistic logic satisfies the following monotonicity property:

if C is a subset of C′ and if Σ : C ` G then Σ : C′ ` G (for any formula G). In particular,

let C′ extend C with the additional atomic formula (of (abs λx (app x x)) c) for some

constant c of type ty. If the negation above is provable then so too is

Σ : C′ ` ¬ ∃y : ty. of (abs λx (app x x)) y,

which means that our logic specification for the predicate of is inconsistent, which is,

in fact, not the case.

The contrast to the open-world perspective is the familiar closed-world perspective.

Consider proving the theorem

∀n[ fib(n) = n2 ⊃ n ≤ 20 ],

where fib(n) is the nth Fibonacci number. Of course, we do not attempt a proof by

assuming the existence of a new (non-standard) natural number n for which the nth

Fibonacci number is n2. Instead, we prove that among the (standard) natural numbers,

we find that there are only three values of n (0, 1, and 12) such that fib(n) = n2 and

that all three of those values are less than 20. The set of natural numbers is closed and

induction allows us to prove such theorems about them.

Thus, it seems that in order to prove theorems about λ-tree syntax, we need both

the open-world and the close-world perspectives: the trick is, of course, discovering how

it is possible to accommodate these two contradictory perspectives at the same time.

8.4 Induction, coinduction, and λ-tree syntax

Since any discussion of mechanizing metatheory needs to have induction and coin-

duction reasoning principles, we shall assume that these are part of the logic we are

using for reasoning. There are many ways to provide schemes for least and greatest

fixed points within a proof theory setting. Gentzen’s proof of the consistency of Peano

arithmetic introduced natural number induction using a familiar notion invariant-based

induction [46]. Both Schroeder-Heister [121] and Girard [48] considered approachs to

adding fixed point unfolding to proof theory but neither of them considered the problem

of least and greatest fixed points. A series of papers [12,43,70,128,133] has developed a

proof-theoretic approach for both induction and coinduction within intuitionistic and

linear logics. Based on such work, we assume that the metalogic used in the rest of this

paper is an intuitionistic logic with both inference rules for induction and coinduction.
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While we shall not describe the proof theory of that logic in detail here, we do mention

the following.

– Inductive and coinductive definitions generally need to be stratified in some manner

so that their use can be guaranteed to be consistent, which is usually shown by

proving cut-elimination.

– Monotonicity of intuitionistic provability does not damage these approaches to

the closed-world perspective since one views inductive definitions as outside of

sequents by either making such definitions auxilary to the sequent calculus [121,

70] or by putting such definitions into the term structure of formulas via µ- and

ν-expressions [12,15]. In either case, augmenting assumptions (the left-hand side

context of sequents) does not change the definitions of inductive predicates.

Given that we have adopted these strong principles in the logic, the closed-world

perspective is enforced. How then can we recover the open-world perspective in this

setting? We do this in two steps. First, we describe in Section 9 the ∇ (nabla) quan-

tifier which reintroduces the notion of generic quantification critical for supporting

the mobility of binder. Second, we describe in Section 11 the two-level logic approach

to reasoning that allows us to embed within our reasoning logic an inductive data

structure which encodes the sequent calculus of the logic that permits the open world

perspective.

9 The ∇-quantifier

Consider the following problem about reasoning with an object-logic (taken from [82]).

Let H be the set containing the following three (quantified) formulas.

∀x∀y[q x x y], ∀x∀y[q x y x], ∀x∀y[q y x x]

Here, q is a predicate constant of three arguments. The sequent

H −→ ∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉]

is provable (in either Gentzen’s LJ or LK sequent calculi [45]) from H only if terms

t2 and t3 are equal. We can attempt to formalize this statement about object-level

provability with the following kind of meta-level formula

∀t1∀t2∀t3
(
{H ` ∀u∀v[q 〈u, t1〉 〈v, t2〉 〈v, t3〉]} ⊃ t2 = t3

)
.

We use the curly brackets here informally to denote the provability of object-level

provability of the sequent it encodes. One can imagine trying to treat the object-level

universal quantifiers as meta-level universal quantifiers, as in the following formulas.

∀t1∀t2∀t3
(
[∀u∀v{H ` (q 〈u, t1〉 〈v, t2〉 〈v, t3〉)}] ⊃ t2 = t3

)
This second formula is only provable, however, if there are at least two different mem-

bers of the underlying object-level type. That approach to proving this second formula

is unfortunate since the original formula is provable without any assumptions on exten-

sions of the object-level type. Thus, it seems to be a mistake to reduce these object-level

universal quantifiers to the meta-level universal quantifier.
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For a similar but simpler example, consider the ξ inference rule, often written as

t = s

λx.t = λx.s
.

This inference rule violates the Perlis principle (Principle 3 in Section 4) since occur-

rences of x in the premise are free. If we fix this violation by inserting the universal

quantifier into the rule
∀x.t = s

λx.t = λx.s

then the equivalence (∀x.t = s) ≡ (λx.t = λx.s) holds. As we argued in Section 2,

this equivalence is problematic for λ-tree syntax since we want ∀w ¬(λx.x = λx.w) to

be provable because it is impossible for there to be a (capture avoiding) substitution

for w into λx.w that results in the term λx.x. However, since this latter formula is

equivalent to ∀w ¬∀x.x = w this (first-order) formula cannot be proved since it is false

for a first-order model with a singleton domain.

The ∇-quantifier [82,83] provides an elegant logical treatment of these examples

and it is the one logical feature that does not appear in conventional notions of com-

putational logic. It is the case, however, that ∇-quantification is similar to the Gabbay

and Pitt’s freshness quantifier [37]: they are both self dual, i.e., ∇x¬Bx ≡ ¬∇xBx,

and in weak settings (roughly Horn clauses), they coincide [40].

While this new quantifier can informally be described as providing a formalization of

“newness” and “freshness” in a proof system, it is possible to describe it more formally

using the theme of the mobility of binders. In particular, sequents are generalized from

having one global signature (the familiar Σ) to also having several local signatures,

Σ : σ1 . B1, . . . , σn . Bn ` σ0 . B0,

where σi is a list of variables, locally scoped over the formula Bi. The expression σi . Bi
is called a generic judgment. The ∇-introduction rule proof for binder mobility with

these local signatures.

Σ : (σ, xγ) . B, Γ ` C
Σ : σ . ∇xγ .B, Γ ` C

∇L
Σ : Γ ` (σ, xγ) . B

Σ : Γ ` σ . ∇xγ .B
∇R

In these rules, the variable x is assumed to not occur in the local signature to which

it is added: such an assumption is always possible since α-conversion is available

for all term, formula, and sequent-level bindings. Apparently, the generic judgment

(x1, . . . , xn) . t = s can be identified, at least informally with the generic judgment

. ∇x1 · · ·∇xn.t = s and with the formula ∇x1 · · ·∇xn.t = s. Since these introduction

rules are the same on the left and the right, one expects that this quantifier is self-dual.

Instead of listing all the other inference rules for formulas using this extended sequent,

we simply note that the following equivalences involving logical connectives hold as

well.

∇x¬Bx ≡ ¬∇xBx ∇x(Bx ∧ Cx) ≡ ∇xBx ∧∇xCx
∇x(Bx ∨ Cx) ≡ ∇xBx ∨∇xCx ∇x(Bx⇒ Cx) ≡ ∇xBx⇒ ∇xCx
∇x∀yBxy ≡ ∀h∇xBx(hx) ∇x∃yBxy ≡ ∃h∇xBx(hx)

∇x∀yBxy ⇒ ∀y∇xBxy ∇x.> ≡ >, ∇x.⊥ ≡ ⊥

Note that the scope of a∇ quantifier can be moved in over all propositional connectives.

Moving it’s scope below the universal and existential quantifier requires the familiar



25

notion of raising [76]: that is, the when ∇ moves inside a quantified expression, the

type of the quantified variable must be raised by the type of the ∇-quantified variable.

The ∇-quantifier is the missing quantifier for formulating the ξ-rule: that is, the

rule can now be written as
∇x.t = s

λx.t = λx.s
.

Using this inference rule, the following three formulas are equivalence.

∀w ¬(λx.x = λx.w) ∀w ¬∇x.x = w ∀w ∇x.x 6= w.

All of these formulas are provable using the rules for ∇ presented above.

As mentioned in Section 8.4, the logic we are considering here does not contain

non-logical (undefined) predicate symbols. Instead, all relations on which we wish to

reason are defined as fixed point expressions. If the only thing that one does with fixed

point expressions is to unfold them, then the initial rule, often written for Gentzen

sequents as

Σ : Γ,A ` A initial

is not, in fact, needed. Thus, it is the rules for equality (and the logical constants for

true and false) that represent the leaves of a proof. As a result, it can be straight-

forward to extend sequent calculus proof search procedures to accommodate the ∇-

quantifier. In particular, when the ∇ quantifier is encountered, the quantified variable

is move to the corresponding local binding location; when existential and universal

variables are encountered, these can be raised by the variables in the corresponding

local context, and when an generic judgment involving only the equality is encoun-

tered, say, (x1, . . . , xn) . t = s then consider this a standard equality but of λ-terms,

i.e., λx1 · · ·λxn.t = λx1 · · ·λxn.s. For example, the Bedwyr model checker [14] was

extended to allow for the ∇-quantifier: the main challenge to such an implementation

was the inclusion of (subsets of) simply typed λ-term unification [62,74].

The story behind ∇ becomes a bit more complex when one strengthens the logic so

that in addition to unfolding fixed points, induction and coinduction inference rules are

used to provide for least and greatest fixed points. In those cases, the initial rule plays

an important role that cannot be removed. The issue becomes: when is a sequent of

the form Σ : Γ, σ . A ` σ′ . A′ to be considered initial. There seems to be two natural

approaches to defining the initial rule in the presence of generic judgments.

Minimal approach One approach declares Σ : Γ, x1, . . . , xn . A ` y1, . . . , ym . A′ to

be initial exactly when λx1 · · ·λxn.A and λy1 · · ·λym.A′ are λ-convertible. Such a def-

inition seems too strong, however, since the order of variables in two different local

context does not seem important: in particular, it would seem natural that ∇x∇y.B
should be logically equivalent to ∇y∇x.B. This minimal approach was used and ana-

lyzed in [11]. In that setting, local signature contexts are allowed to exchange the order

of their variables.

Nominal approach Besides exchange, it might also seem natural to allow a form of

strengthening: that is, to allow the equivalence of∇x.B with B whenever x is not free in

B. A consequence of such an equivalence is that all types are non-empty. For example,

the formula ∃xi.B is not provable if the type i does not contain any inhabitants.

However, the formula ∇yi∃xi.B might be provable: there is, at least, one inhabitant of
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type i, namely, the nominal y. This kind of argument can easily be generalized to show

that this strengthening equivalence implies that types for which one uses ∇ necessarily

contain an infinite number of members. While Baelde argues [11] that certain adequacy

issues can be complicated when strengthening is allow, the strengthening principle has

been formally studied [41,39,43,130] and implemented into the Abella theorem prover

[13]. The nominal approach also allows for a different way of writing local (generic)

contexts within sequent. Via the strengthening rule, all local contexts can have the

same number of variables (just add more to those that are shorter than the maximum

length). Furthermore, all contexts can be variables with the same names (using α-

conversion). In such a setting, then, instead of writing the many local signatures that

are now all the same, we can write that local signature as if it is global (although acting

locally). Such a conventions is taken, for example, in displaying sequents within the

Abella prover.

One remaining feature which strengthens the integration of the ∇-quantifier with

the rest of the (fixed point) logic is to allow ∇ in the head of fixed point definitions

[41] or the roughly equivalent enrichment of term equality called nominal abstractions

[43]. Instead of describing this extension here, we illustrate it in the next section.
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10 The Abella theorem prover

Outline:

- illustrate some simple definitions and inductive reasoning

- Example: cbn or cbv definition. Theorem: cbv is functional. Theorem: the diver-

gent operator has not cbv value.

Most of the proof theory principles and logic designs that we have motivated so

far are implemented in the Abella interactive theorem prover. First implemented by

Gacek in 2009 as part of his PhD [39], the system has attracted a number of additional

developers and users. Abella is written in OCaml and the most recent versions of the

system are available via GitHub and OPAM. A tutorial appears online as [13]. The

logical foundation that is closest to that which is implemented is the logic G in [43]. The

approach to induction and coinduction in Abella differs significantly with that based

on proof theory: in particular, the proof theory of G requires entering invariants and

co-invariants for induction and coinduction rules, which Abella leaves such invariants

implement, opting for a natural and convenient kind of guarded circular reasoning.
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11 The two-level logic approach

DM Mention that nabla does not always imply universal. But it is the case that this

does hold for object-level proof system.

DM Mention that stratification in the specification language is not important: the

seq judgment is always stratified. The seq predicate is a stratified inductive predicate in

the reasoning logic that can be used to encode non-stratified inductive logic programs

(theories) in the specification logic.

DM Explicitly define the seq predicate for a small logic. hH2 might be okay.

Abella is more general.

Abella allows for the convenient and powerful reasoning about object-level reason-

ing using the so-called two level logic approach to reasoning about computation [44,

71]. In principle, Abella’s least fixed point definitions are able to completely capture

provability of hereditary Harrop formula within intuitionistic logic. Such a definition

can capture provability of λProlog specifications, such as those given in Figures 4, 5,

and 6. Furthermore, Abella can also have special tactics that allow for meta-theorems

about the object-level logic to be supported directly: in particular, the cut-elimination

theorem for the object-level logic is a powerful tactic, as we now illustrate.

Assume that the clauses in Figures 4 and 6 are gathered together into one logic

program that is loaded into Abella. The formula {eval M V} denotes the Abella-level

statement that the goal eval M V is provable from that one loaded logic program.

More generally, the formula {H1,...,Hn |- G} denotes the fact that the object-logic

sequent with formulas H1,...,Hn on the left and formula G on the right is provable in

the object-logic. (When the left hand side of the sequent is empty, then the turnstile

|- is not displayed.)

Theorem type_preserve :
forall E V T, {eval E V} -> {of E T} -> {of V T}.

induction on 1. intros. case H1.
search.
case H2.

apply IH to H3 H6. case H8. apply IH to H4 H7.
inst H9 with n1 = U. cut H11 with H10.
apply IH to H5 H12. search.

This is the complete proof script entered into Abella. While there is some simi-

larities with Coq scripts, the inst and cut commands are specific to Abella and to

its built-in support for a two-level logic reasoning. Just before the inst command is

issued, the proof system of Abella appears as follows.

Variables: V T U R N M B
IH : forall E V T, {eval E V}* -> {of E T} -> {of V T}
H3 : {eval M (abs R)}*
H4 : {eval N U}*
H5 : {eval (R U) V}*
H6 : {of M (arr B T)}
H7 : {of N B}
H9 : {of n1 B |- of (R n1) T}
H10 : {of U B}
============================
{of V T}

The list of variables are the eigenvariables that are bound in this sequent. The inductive

hypothesis is labeled with IH and the asterisks one some of the assumptions are part
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of Abella’s approach to doing induction (about which we say no more here: see, [13,

39] for more).

Assumption H9 captures the object-level provability judgment that for a fresh

object-level eigenvariable n1 (captured as a nominal variable), that the sequent with

of n1 B on the left and of (R n1) T on the right is provable. The inst H9 with n1 = U

is responsible for instantiating the nominal variable n1 with the term U yielding the

hypothesis

H11 : {of U B |- of (R U) T}

That is, since H9 holds generically (that is, for a nominal constant n1) then it holds for

every instant of that nominal constant. Similarly, the cut command applies that hypo-

thetical with the assumption H10 that of N U and this yields the following assumption

(added to those above).

H12 : {of (R U) T}

Applying the inductive hypothesis IH to hypotheses H5 and H12 finally yields the desired

goal.

The combination of the inst and cut commands provides an elegant and completely

formal proof of the substitute lemma that states that if the type of (abs R) is the arrow

type (arr B T) and if U has type B then the result of instantiating the abstract (abs R)

with U, that is, (R U), has type T. This substitution lemma employs the meta-theory of

the object-level sequent calculus in order to make this kind of research now immediate.

The Abella system has been successfully used to prove a range of metatheoretic

properties about well known formal systems. Complete formalizations for all the fol-

lowing topics can be found on the Abella web site or in cited papers.

– Untyped λ-calculus: Takahashi’s proof of the Church-Rosser property using com-

plete developments, a characterization of β-reduction via paths through terms;

Loader’s proof of standardization; type preservation of call-by-name and call-by-

value for simple types and system F types; and Huet’s proof of the cube property

of λ-calculus residuals [2].

– Simply typed λ-calculus: Tait’s logical relations argument for weak normalization

and Girard’s proof of strong normalization.

– Object-level proof systems: cut-elimination and the the completeness of a Hilbert-

style proof system.

– Process calculi, particularly CCS and π-calculus.

The logic G [43] and the Abella theorem prover have been successfully at providing

elegant and direct specifications of and formal proofs about many aspects of the π-

calculus. In the next section, we focus on this formal treatment of this particular

process calculus.

DM Accattoli’s CPP paper argues that Abella can also give substitution-lemmas-

for-cheap: they can be stated and proved directly and the lambda-tree syntax repre-

sentation make it all simply.
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12 A case study: the π-calculus

The π-calculus [87,88] is an interesting challenge for formalizations since its meta-

theory must deal with not only bindings, substitution, and α-conversion but also with

induction and coinduction. It also has a mature theory [89,120] which helps in devel-

oping and judging successful formalizations.

12.1 Encoding the syntax of the π-calculus

DM Put also here the OPEN inference rule: at the end of 6.3 (page 18) I put this

inference rule (with nabla) and say that we will review it again. I should probably

put the pi-calculus transition system in both lambda Prolog and Abella syntax: this

should be a place where we can state that forall and nabla are interchangable (for

may behavior). The lambda Prolog subsystem in Abella maps object-level forall to

meta-level nabla.

In order to encode the π calculus processes, we introduce two primitive types de-

noting the syntactic categories for processes and names and we use the primitive types

p and n for these. The syntax is the following:

P := 0 | τ.P | x(y).P | x̄y.P | (P | P ) | (P + P ) | (x)P | [x = y]P

There are two binding constructors here. The restriction operator (x)P is encoded

using a constant of type (n → p) → p. The input operator x(y).P is encoded using a

constant of type n→ (n→ p)→ p.

kind n, p, a type. % Sorts for names , processes , actions

type null p.
type bang , taup p -> p.
type match , out n -> n -> p -> p.
type plus , par p -> p -> p.
type nu (n -> p) -> p.
type in n -> (n -> p) -> p.

In order to encode π-calculus transitions we introduce a new primitive type for the

syntactic type of action expressions. There are three constructors for actions: τ : a for

silent actions, ↓: n→ n→ a for input actions, and ↑: n→ n→ a for output actions.

↓ xy : a denotes the action of inputting y on channel x

↑ xy : a denotes the action of outputting y on channel x

↑ x : n→ a denotes outputting of an abstracted name, and

↓ x : n→ a denotes inputting of an abstracted variable.

type tau a.
type dn, up n -> n -> a.
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oneb (in X M) (dn X) M. % bound input
one (out X Y P) (up X Y) P. % free output
one (taup P) tau P. % tau
one (match X X P) A Q :- one P A Q. % match prefix
oneb (match X X P) A M :- oneb P A M.
one (plus P Q) A R :- one P A R. % sum
one (plus P Q) A R :- one Q A R.
oneb (plus P Q) A M :- oneb P A M.
oneb (plus P Q) A M :- oneb Q A M.
one (par P Q) A (par P1 Q) :- one P A P1. % par
one (par P Q) A (par P Q1) :- one Q A Q1.
oneb (par P Q) A (x\par (M x) Q) :- oneb P A M.
oneb (par P Q) A (x\par P (N x)) :- oneb Q A N.
% restriction
one (nu x\P x) A (nu x\Q x) :- pi x\ one (P x) A (Q x).
oneb (nu x\P x) A (y\ nu x\Q x y) :- pi x\ oneb (P x) A (y\ Q x y).
% open
oneb (nu x\M x) (up X) N :- pi y\ one (M y) (up X y) (N y).
% close
one (par P Q) tau (nu y\ par (M y) (N y)) :-

oneb P (dn X) M , oneb Q (up X) N.
one (par P Q) tau (nu y\ par (M y) (N y)) :-

oneb P (up X) M , oneb Q (dn X) N.
% comm
one (par P Q) tau (par (M Y) T) :- oneb P (dn X) M, one Q (up X Y) T.
one (par P Q) tau (par R (M Y)) :- oneb Q (dn X) M, one P (up X Y) R.

Fig. 7 Specifications for the syntax and one step (late) transitions for the finite π-calculus.

12.2 Encoding the labeled transition system

Mention different choices: early / late are easy to accommodate.

References: [81,83,128].

One-step transitions are encoded as two different predicates:

P
A
−−→ Q free or silent action, A : a

P
↓x
−−⇀M bound input action, ↓ x : n→ a, M : n→ p

P
↑x
−−⇀M bound output action, ↑ x : n→ a, M : n→ p

type one p -> a -> p -> o.
type oneb p -> (n -> a) -> (n -> p) -> o.

Three example inference rules defining the semantics of π-calculus.

x̄y.P
x̄y
−−→ P

P
α
−−→ P ′

[x = x]P
α
−−→ P ′

P
α
−−→ P ′

(y)P
α
−−→ (y)P ′

y 6∈ n(α)

OUTPUT-ACT : x̄y.P
x̄y
−−→ P

4
= >

MATCH : [x = x]P
α
−−→ P ′ 4

= P
α
−−→ P ′

RES : (x)Px
α
−−→ (x)P ′x

4
= ∇x.(Px

α
−−→ P ′x)

DM Finite pi-calculus versus full pi-calculus. Reference Tiu’s paper.
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Internal mobility The πI -calculus (the π-calculus with internal mobility [119]) can also

be seen as a setting where only β0-conversion is needed [79]. In the π-calculus literature

there is a notion of “internal mobility” captured by the πI -calculus of Sangiorgi [1996].

In this fragment, β0 is the only form of β that is needed to bind input variables to

outputs. It is noted in [79] that if one takes a λ-tree specification for one-step transitions

for the π-calculus and removes from it those clauses that may require β-conversion (as

opposed to β0-conversion), then one is left with a specification of the πI -calculus for

“internal mobility” [119]: that is, the notion of binder mobility described in Section 5

directly accounts for the internal mobility captured by this subset of the π-calculus.

Non-transition. Negation. Consider the process (y)[x = y]x̄z.0. It cannot make any

transition since y has to be “new”; that is, it cannot be x. The following statement is

provable.

∀x∀Q∀α.[((y)[x = y](x̄z.0)
α
−−→ Q) ⊃ ⊥]

DM Explain why this is provable. There is an essential feature of nabla here.
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12.3 Encoding simulation in the π-calculus

Show that a certain pi-calculus expression is bisim to 0. This is equivalent to showing

that that expression does not make a transition. This is then motivates a certain

formula that, if treated with a universal quantification, leads to something that is not

provable. Instead, the nabla solves the problem.

Simulation for the π-calculus is defined simply as:

sim P Q
4
= ∀A,P ′ [P

A
−−→ P ′ ⇒ ∃Q′.Q

A
−−→ Q′ ∧ sim P ′ Q′] ∧

∀X,P ′ [P
↓X
−−⇀ P ′ ⇒ ∃Q′.Q

↓X
−−⇀ Q′ ∧ ∀w.sim (P ′w) (Q′w)] ∧

∀X,P ′ [P
↑X
−−⇀ P ′ ⇒ ∃Q′.Q

↑X
−−⇀ Q′ ∧∇w.sim (P ′w) (Q′w)]

Bisimulation is easy to encode (just add additional cases).

Bisimulation corresponds to open bisimulation. If the meta-logic is made classical,

then late bisimulation is captured. The difference can be reduced to the excluded middle

∀x∀y. x = y ∨ x 6= y [132].

DM The directness and naturalness of the encoding for the π-calculus bisimula-

tion is evident in the fact that simply changing the underlying logic from intuitionistic

to classical changes the interpretation of that one definition from open bisimulation to

late bisimulation [132].

CoDefine bisim : p -> p -> prop by
bisim P Q :=

(forall A P1, {one P A P1} ->
exists Q1, {one Q A Q1} /\ bisim P1 Q1) /\

(forall X M, {oneb P (dn X) M} ->
exists N, {oneb Q (dn X) N} /\ (forall w, bisim (M w) (N w)) ) /\

(forall X M, {oneb P (up X) M} ->
exists N, {oneb Q (up X) N} /\ nabla w, bisim (M w) (N w)) /\

(forall A Q1, {one Q A Q1} ->
exists P1, {one P A P1} /\ bisim Q1 P1) /\

(forall X N, {oneb Q (dn X) N} ->
exists M, {oneb P (dn X) M} /\ (forall w, bisim (N w) (M w))) /\

(forall X N, {oneb Q (up X) N} ->
exists M, {oneb P (up X) M} /\ nabla w, bisim (N w) (M w)).

Honsell, Miculan, and Scagnetto in [59], theory of context. Coding in Coq. Actually

some of there specifications come close to looking like those by Miller and Tiu. Different

logical foundations but similar looking specifications.
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(a) Propositional connectives and free action modalities:

(true :) P |= true
4
= >.

(and :) P |= A&B
4
= P |= A ∧ P |= B.

(or :) P |= A∨̂B 4
= P |= A ∨ P |= B.

(match :) P |= 〈X=̇X〉A 4
= P |= A.

(match :) P |= [X=̇Y ]A
4
= (X = Y ) ⊃ P |= A.

(free :) P |= 〈X〉A 4
= ∃P ′(P

X
−−→ P ′ ∧ P ′ |= A).

(free :) P |= [X]A
4
= ∀P ′(P

X
−−→ P ′ ⊃ P ′ |= A).

(b) The obvious approach to bound action modalities.

(out :) P |= 〈↑X〉A 4
= ∃P ′(P

↑X
−−⇀ P ′ ∧∇y.P ′y |= Ay).

(out :) P |= [↑X]A
4
= ∀P ′(P

↑X
−−⇀ P ′ ⊃ ∇y.P ′y |= Ay).

(c) The obvious approach to bound action modalities.

(in :) P |= 〈↓X〉A 4
= ∃P ′(P

↓X
−−⇀ P ′ ∧ ∃y.P ′y |= Ay).

(in :) P |= [↓X]A
4
= ∀P ′(P

↓X
−−⇀ P ′ ⊃ ∀y.P ′y |= Ay).

(d) Late modality:
P |= 〈↓X〉lA 4

= ∃P ′(P
↓X
−−⇀ P ′ ∧ ∀y.P ′y |= Ay).

P |= [↓X]lA
4
= ∀P ′(P

↓X
−−⇀ P ′ ⊃ ∃y.P ′y |= Ay).

(e) Early modality:
P |= 〈↓X〉eA 4

= ∀y∃P ′(P
↓X
−−⇀ P ′ ∧ P ′y |= Ay).

P |= [↓X]eA
4
= ∃y∀P ′(P

↓X
−−⇀ P ′ ⊃ P ′y |= Ay).

Fig. 8 Modal logics for the π-calculus in λ-tree syntax

12.4 Modal logics for mobility

Modal logics for pi-calculus [134,132].
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12.5 Bisimulation up to

DM Drop this section. Leave on some citations at most.

Consider the problem of formalizing the meta-theory of bisimulation-up-to [85,

115] for the π-calculus [86]. Such a meta-theory can be used to allow people working in

concurrent systems to write hopefully small certificates (actual bisimulations-up-to) in

order to guarantee that bisimulation holds (usually witnessed directly by only infinite

sets of pairs of processes).

In order to employ the Coq theorem prover, for example, to attack such meta-theory

it would probably need to be extended with packages in two directions. First, a package

that provides flexible methods for doing coinduction following, say, the Knaster-Tarski

fixed point theorems, would be necessary. Indeed, such a package has been implemented

and used to prove various meta-theorems surrounding bisimulation-up-to (including the

subtle meta-theory surrounding weak bisimulation) [113,114,20]. Second, a package for

the treatment of bindings and names that are used to describe the operational semantics

of the π-calculus. Such packages exist (for example, see [10]) and, when combined with

treatments of coinduction, may allow one to make progress on the meta-theory of the

π-calculus. Recently, the Hybrid systems [34] has shown a different way to incorporate

both induction, coinduction, and binding into a Coq (and Isabelle) implementation.

Such an approach could be seen as one way to implement this meta-theory task on top

of an establish formalization of mathematics.

There is another approach that seeks to return to the most basic elements of logic

by reconsidering the notion of terms (allowing them to have binders as primitive fea-

tures) and the notion of logical inference rules so that coinduction can be seen as,

say, the de Morgan (and proof theoretic) dual to induction. In that approach, proof

theory principles can be identified in that enrich logic with least and greatest fixed

points [12,70,91] and with a treatment of bindings [132,41,43]. Such a logic has been

given a model-checking-style implementation [14] and is the basis of the Abella theo-

rem prover [13,42]. Using such implementations, the π-calculus has been implemented,

formalized, and analyzed in some detail [131,129] including some of the meta-theory

of bisimulation-up-to for the π-calculus [23].
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12.6 Performing proof search specifications

DM Is this subsection needed at all?

lambda Prolog for one-step

Bedwyr for model checking (finite) pi-calculus

Role of unification, backtracking, and focused proofs.

A Proof Search Specification of the π-Calculus [131,129].
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13 Related work

Besides the Abella, Bedwyr, and Twelf system mentioned above, there are a number

of other implemented systems that support some or all aspects of λ-tree syntax: these

include Beluga [108], Hybrid [34], Isabelle [102], Minlog [123], and Teyjus [94]. See [35]

for a survey and comparison of several of these systems. NB There is also the recent

paper ”The Logic of Hereditary Harrop Formulas as a Specification Logic for Hybrid”

by Chelsea Battell and Amy Felty. (dropbox for Amy)

There are many efforts for mechanizing metatheory. See *various JAR special is-

sues*. Comparisons are difficult although many have been published: see ...

Here, I limit discussions about systems that are closer in spirit to what is proposed

here. Twelf, Beluga, Agda?,

13.1 Dependent typing

The typing that has been motivated above is rather simple: one takes the notions of

syntactic types as syntactic category—e.g., programs, formulas, types, terms, etc—

and adds the arrow type constructor to denote abstractions of one syntactic type over

another one. Since typing is, of course, an open-ended concept, it is completely possible

to consider any number of ways to refine types. For example, instead of saying that

a given expression denotes of term (that is, the expression has the syntactic type for

terms), one could instead say that such an expression denotes, for example, a function

from integers to integers. For example, the typing judgment t : tm (“t denotes a term”)

can be refined to t : tm (int→ int) (“t denotes a term of type int→ int). Such richer

types are supported (and generalized) by the dependent type paradigm [29,56] and

given a logic programming implementation in, for example, Twelf [104,107].

Most dependently typed λ-calculi come with a fixed notion of typing and with

a fixed notion of proof (natural deduction proofs encoded as typed λ-terms). The

reliance described here on logical connectives and relations is expressive enough to

specify dependently typed frameworks [125,126] but it is not committed to only that

notion of typing and proof.

In this paper, we keep our attention on logic instead of type theory since we do not

wish to commit now to one notion of proof (such as dependently typed λ-terms) nor to

just intuitionistic logic principles: embracing classical and linear logic proof principles

also seem an essential part of specifying and reasoning about meta-theory.

DM Another problem with dependent typing is that we need to deal with two

logics ultimately: one for specifying computations and one for reasoning about compu-

tation. It has been hard enough to pick the right logics (with associated connectives)

for these logics: picking their proofs and forcing them to look like lambda-terms is a bit

too hard. Maybe additional research will uncover new roles to play with dependently

typed terms.

DM (Maybe this does not go under related work?) Ultimately, one should explore

to what extent the mathematical concerns that Church expressed by moving from ETT

to STT can be addressed as extensions to the logic described in this paper. To the extent

that bindings in expressions is not a concern of a given formalization, then ∇ and its

associated operations (nominal abstractions, higher-order unification) found in ETT

are not used. There has been occasionally interest in having a formal language that

contains two abstractions with two arrow types: one for abstractions over syntax and
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one for function spaces. The substitution operation on syntax would map the former

into the later [73]. Maybe references to Tim Sheard on Dali are appropriate here but

they seem not to have been cited and they are old.

DM From [36, Page 1] there is a quote from the Honsell, et al paper. There are

recent proposals to overcome this shortcoming
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14 Conclusions

I have argued that parsing concrete syntax into parse trees does not yield a sufficiently

abstract representation of expressions: the treatment of bindings should be made more

abstract. I have also described and motivated the λ-tree syntax approach to such a

more abstract framework. For a programming language or proof assistant to support

this level of abstraction in syntax, equality of syntax must be based on α and β0 (at

least) and must allow for the mobility of binders from within terms to within formu-

las (i.e., quantifiers) or proof state (i.e., eigenvariables). I have also argued that the

logic programming paradigm—broadly interpreted—provides an elegant and high-level

framework for specifying both computation and deduction involving syntax contain-

ing bindings. This framework is offered up as an alternative to the more conventional

approaches to mechanizing metatheory using formalizations based on more conven-

tional mathematical concepts. Thus, in contrast to the conclusions of the POPLmark

challenge that increments to existing provers will solve the problems surrounding the

mechanization of metatheory, I argue that we need to consider making a significant

shift to the underlying paradigm that has been built into the most mature of today’s

proof assistants.

DM A problem here is that treating term equality and unification as a black box

is likely to lead to serious problems. For first-order problems (including the pattern

unification subset), mgus exist for unifiable pairs. But for richer subsets of logic, CSU

are complex objects that may be infinite [62]. Clearly, such complexity is not a good

idea is a primitive inference.

I have described an extension of ETT targeting metatheory and not mathematics.

The resulting logic provides for λ-tree syntax in a direct fashion, via binder-mobility,∇-

quantification, and the unification of λ-terms. Induction over syntax containing bind-

ings is available: in its richest setting, such induction is done over sequent calculus

proofs of typing derivations. Operational semantics and typing judgments are often

encoded directly. The Abella system has been used to successfully capture important

aspects of the metatheory of the λ-calculus, π-calculus, programming languages, and

object-logics.

DM Ultimately, we would like to merge into one logic these two branches: namely

G and STT. Hybrid is an attempt to do this at the systems level.

Acknowledgments. Part of this work has been funded by the ERC Advanced Grant

ProofCert.
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