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Abstract
Proof assistants and the programming languages that implement them need to deal with a range
of expressions that involve bindings. Many mature proof assistants have been extended with
various packages and libraries so that bindings are addressed using various techniques (e.g., de
Bruijn numerals and nominal logic). I argue here, however, that bindings are such an intimate
aspect of the structure of expressions that they should be accounted for directly in the under-
lying programming language support for proof assistants. High-level and semantically elegant
programming language support can be found in rather old and familiar concepts. In particular,
Church’s Simple Theory of Types has long ago provided answers to how bindings interact with
logical connectives and quantifiers. Similarly, the proof search interpretation of Gentzen’s proof
theory provides a rich model of computation that supports bindings. I outline several principles
for dealing computationally with bindings that follow from their treatments in quantificational
logic and sequent calculus. I also briefly describe some implementations of these principles that
have helped to validate their effectiveness as computational principles.

1 Mechanization of meta theory

A decade ago, the POPLmark challenge suggested that the theorem proving community had
tools that were close to being usable by programming language researchers to formally prove
properties of their designs and implementations. The authors of the POPLmark challenge
looked at existing practices and systems and urged the developers of proof assistants to
make improvements to existing systems.

Our conclusion from these experiments is that the relevant technology has developed
almost to the point where it can be widely used by language researchers. We seek
to push it over the threshold, making the use of proof tools common practice in
programming language research—mechanized metatheory for the masses. [4]

In fact, a number of research teams have used proof assistants to formally proved significant
properties of entire programming languages. Such properties include type preservation, de-
terminancy of evaluation, and the correctness of an OS microkernel and of various compilers:
see, for example, [17, 18, 20, 26].

As noted in [4], the poor support for binders in syntax was one problem that held
back proof assistants from achieving even more widespread use by programming language
researchers and practitioners. In recent years, a number of extensions to programming
languages and to proof assistants have been developed for treating bindings. These go by
names such as locally nameless [7, 33], nominal reasoning [3, 8, 32, 36], and parametric
higher-order abstract syntax [9]. Some of these approaches involve extending underlying
programming language implementations while the others do not extend the proof assistant
or programming language but provide various packages, libraries, and/or abstract datatypes
that attempt to hide and orchestrate various issues surrounding the syntax of bindings. In
the end, nothing canonical seems to have appeared and we are left with a simple grid that
rates different approaches on various attributes [31].
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2 Mechanizing metatheory revisited

Clearly, mature and extensible proof assistants, such as, say, Coq, HOL, and Isabelle/HOL
can be extended to deal with syntactic challenges (such as bindings in syntax) that they
were not originally designed to handle. At the same time, it seems plausible and desirable
to pursue approaches to the problem of bindings in syntax and metatheory more generally.
In the next section, I suggest an analogies that might help us take the courage to propose
another approach to computation and reasoning with bindings.

2 An analogy: concurrency

Historically speaking, the first high-level, mature, and expressive programming languages to
be developed were based on sequential computation. When those languages were forced to
deal with concurrency, parallelism, and distributed computing, they were augmented with,
say, thread packages and remote procedure calls. Earlier pioneers of computer program-
ming languages and systems—e.g., Dijkstra, Hoare, Milner—saw concurrency and commu-
nications not as incremental improvements to existing imperative languages but as a new
paradigm deserving a separate study. The concurrency paradigm required a fresh and direct
examination and in this respect, we have seen a great number of concurrency frameworks
appear: e.g., Petri nets, CSP, CCS, IO-automata, and π-calculus. Given the theoretical
results and understanding that have flowed from work on these and related calculi, it has
been possible to find ways for conventional programming languages to make accommodations
within the concurrency and distributed computing settings. Such understanding and accom-
modations were not likely to flow from clever packages added to programming languages:
new programming principles from the theory of concurrency and distributed computing were
needed.

I will now present some foundational principles to the treatment of bindings that are
important to accommodate directly and immediately, even if we cannot immediately see
how those principles might fit into some existing, mature programming languages and proof
assistants.

3 How abstract is your syntax?

Two of the earliest formal treatments of the syntax of logical expressions were given by
Gödel [14] and Church [10] and, in both of these cases, their formalization involved view-
ing formulas as strings of characters. Clearly, such a view of logical expressions contains
too much information that is not semantically meaningful (e.g., white space, infix/prefix
distinctions, parenthesis) and does not contain explicitly semantically relevant information
(e.g., the function-argument relationship). For this reason, those working with syntactic
expressions generally parse such expressions into parse trees: such trees discard much that
is meaningless (e.g., the infix/prefix distinction) and records directly more meaningful in-
formation (e.g., the child relation denotes the function-argument relation). One form of
“concrete nonsense” generally remains in parse trees since they traditionally contain the
names of bound variables.

One way to get rid of bound variable names is to use de Bruijn’s nameless dummy tech-
nique [11] in which (non-binding) occurrences of variables are replaced by positive integers
that count the number of bindings above the variable occurrence through which one must
move in order to find the correct binding site for that variable. While such an encoding
makes the check for α-conversion easy, it can greatly complicate other operations that one
might want to do on syntax, such as substitution, matching, and unification. While all
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such operations can be supported and implemented using the nameless dummy encoding
[11, 19, 27], the complex operations on indexes that are needed to support those operations
clearly suggests that they are best dealt within the implementation of a framework and not
in the framework itself.

The following four principles about the encoding and treatment of syntax will guide our
further discussions.

Principle 1: The names of bound variables should be treated as the same kind of
fiction as we treat white space: they are artifacts of how we write expressions and
have no semantic content.

Of course, the name of variables are important for parsing and printing expressions but
such names should not be part of the meaning of an expression. This first principle simply
repeats what we stated earlier. The second principle is a bit more concrete.

Principle 2: There is “one binder to ring them all.”1

With this principle, we are adopting Church’s approach [10] to binding in logic, namely,
that one has only λ-abstraction and all other bindings are encoded using that binder.

Principle 3: There is no such thing as a free variable.

This principle is taken from Alan Perlis’s epigram 47 [28]. By accepting this principle, we
recognize that bindings are never dropped to reveal a free variable: instead, we will ask for
bindings to move. This possibility suggests the main novelty in this list of principles.

Principle 4: Bindings have mobility and the equality theory of expressions must
support such mobility.

Since the other principles are most likely familiar to the reader, I will now describe this last
principle in more detail.

4 Mobility of bindings

Since typing rules are a common operation in metatheory, I illustrate the notion of binding
mobility in that setting. In order to specify untyped λ-terms (to which one might attribute
a simple type via an inference), we introduce a (syntactic) type tm and two constants

abs : (tm→ tm)→ tm and app : tm→ tm→ tm.

Untyped λ-terms are encoded as terms of type tm using the following translation:

dxe = x, dλx.te = (abs (λx.dte)), and d(t s)e = (app dte dse)

This translation has the property that it maps bijectively α-equivalence classes of untyped
λ-terms to αβη-equivalence classes of simply typed λ-terms of type tm.

In order to satisfy Principle 3 above, we shall describe a Gentzen-style sequent as a
triple Σ : ∆ ` B where B is the succedent (a formula), ∆ is the antecedent (a multiset of
formulas), and Σ a signature, that is, a list of variables that are formally bound over the
scope of the sequent. Thus all free variables in the formulas in ∆ ∪ {B} are bound by Σ.
Gentzen referred to the variables in Σ as eigenvariables.

1 A scrambling of J. R. R. Tolkien’s “One Ring to rule them all, ... and in the darkness bind them.”
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The following inference rule is a familiar rule.
Σ : ∆, typeof x (int→ int) ` C

Σ : ∆,∀τ(typeof x (τ → τ)) ` C ∀L

This rule states that if the symbol x can be attributed the type τ → τ for all instances of
τ , then it can be assumed to have the type int → int. Thus, bindings can be instantiated
(the ∀τ is removed by instantiation). On the other hand, consider the following rules.

Σ, x : ∆, typeof dxe τ ` typeof dBe β
Σ : ∆ ` ∀x(typeof dxe τ ⊃ typeof dBe τ ′) ∀R

Σ : ∆ ` typeof dλx.Be (τ → τ ′)
Definition of typeof.

These rules illustrates how bindings can, instead, move during the construction of a proof.
In this case, the term-level binding for x in the lower sequent can be seen as moving to the
formula level binding for x in the middle sequent and then to the proof level binding (as an
eigenvariable) for x in the upper sequent. Thus, a binding is not lost or converted to a “free
variable”: it simply moves.

This mobility of bindings needs supported from the equality theory of expressions.
Clearly, equality already includes α-conversion by Property 1. We also need a small amount
of β-conversion. If we rewrite this last inference rule using the definition of the d·e transla-
tion, we have the inference figures

Σ, x : ∆, typeof x τ ` typeof (Bx) τ ′

Σ : ∆ ` ∀x(typeof x τ ⊃ typeof (Bx) τ ′) ∀R

Σ : ∆ ` typeof (abs B) (τ → τ ′)
Definition of typeof.

Note that here B is a variable of arrow type tm→ tm and that instances of these inference
figures will create an instance of (B x) that may be a β-redex. As I now argue, that β-redex
has a limited form. First, observe that B is a schema variable that is implicitly universally
quantified around this inference rule: if one formalizes this approach to type inference in,
say, λProlog or Twelf, one would write a specification similar to the formula

∀B∀τ∀τ ′[∀x(typeof x τ ⊃ typeof (Bx) τ ′) ⊃ typeof (abs B) (τ → τ ′)].

Second, any closed instances of (B x) that is a β-redex is such that the argument x is not
free in the instance of B: this is enforced by the nature of (quantificational) logic since the
scope of B is outside the scope of x. Thus, the only form of β-conversion that is needed
to support this notion of binding mobility is the so-called β0-conversion rule (λx.t)x = t or
equivalently (in the presence of α-conversion) (λy.t)x = t[x/y], provided that x is not free
in λy.t.

Given that β0-conversion is such a simple operation, it is not surprising that higher-order
pattern unification, which simplifies higher-order unification to a setting only needing α, β0,
and η conversion, is decidable. For this reason, matching and unification can be used to help
account for the mobility of binding. Note also that there is an elegant symmetry provided
by binding and β0-reduction: if t is a term over the signature Σ ∪ {x} then λx.T is a term
over the signature Σ and, conversely, if λx.s is a term over the signature Σ then the β0
reduction of ((λx.s) y) is a term over the signature Σ ∪ {y}.

5 Logic programming provides a framework

As is suggested by the discussion above, quantificational logic using the proof-search model
of computation can be used to capture all four principles listed in the previous section. While
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it might be possible to account for these principles also in, say, a functional programming
language (a half-hearted attempt at such a design was made in [22]), the logic programming
paradigm supplies an appropriate framework for satisfying all these properties. In particular,
the higher-order hereditary Harrop [24] subset of an intuitionistic variant of Church’s Simple
Theory of Types [10] provides an expressive foundation for logic programming, much of which
is built into λProlog [23].

The use of logic programming principles in proof assistants pushes against usual practice:
since the first LCF prover [15], many (most?) proof assistants have not only been built
using functional programming but also exploit functional programming principles in the
constructive interpretation of proofs as well as the design of, say, tactics and tacticals.

Besides the obvious, there are several high-level differences between using functional
programming and logic programming principles that are relevant to the mechanization of
metatheory.

5.1 Expressions versus values
In logic programming, (closed) terms denote themselves and only themselves (in the sense
of free algebra). It often surprises people that in Prolog, the goal ?- 3 = 1 + 2 fails, but
the expression that is the numeral 3 and the expression 1 + 2 are, of course, different ex-
pression. The fact that they have the same value is a secondary calculation (performed
in Prolog using the is predicate). Functional programming however fundamentally links
expressions and values: the value of an expression is the result of applying some evaluation
strategy (e.g., call-by-value) to an expression. Thus the value of both 3 and 1 + 2 is 3 and
these two expressions are, in fact, equated. Of course, one can easily write datatypes in
functional programming languages that denote only expressions: datatypes for parse trees
are such an example. However, the global notion that expressions denote values is particu-
larly problematic when expressions denote λ-abstractions. The value of such expressions in
functional programming is trivial and immediate: such values simply denote a function (a
closure). In the logic programming setting, however, an expression that is a λ-abstraction
is just another expression: equality based on α (and η) conversion is non-trivial and, when
the properties of Section 3 are respected, expressive. The λ-abstraction-as-expression aspect
of logic programming is one of that paradigm’s major advantages for the mechanization of
metatheory.

5.2 Syntactic types
Given the central role of expressions (and not values), types in logic programming often
simply denote syntactic categories. That is, such syntactic types are useful for distinguishing,
say, encodings of types from terms from formula from proofs or program expressions from
commands from evaluation contexts. For example, the typeof specification in Section 4 is a
binary relation between the syntactic categories tm (for untyped λ-terms) and, say, ty (for
simple type expression). The logical specification of the typeof predicate might attribute
integer type or list type to different expressions via clauses such as

∀T : tm ∀L : tm ∀τ : ty [typeof T τ ⊃ typeof L (list τ) ⊃ typeof (T :: L) (list τ)].

Given our discussion above, it seems natural to propose that if τ and τ ′ are both syntactic
categories, then τ → τ ′ is a new syntactic category that describes objects of category τ ′

with a variable of category τ abstracted. For example, if o denotes the category of formula
(a la [10]) and tm denotes the category of terms, then tm→ o denotes the type of term-level
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abstractions over formulas. As we have been taught by Church, the quantifiers ∀ and ∃ can
then be seen as constructors that take expressions of syntactic category tm→ o to formulas:
that is, these quantifiers are given the syntactic category (tm→ o)→ o.

5.3 Substitution lemmas for free
Assume that there is only one rule for proving (typeof (abs R) (τ → τ ′)) (a typical
assumption for the arrow type constructor). Since the introduction rules for ∀ and ⊃
are invertible, the sequent Σ : ∆ ` typeof (abs R) (τ → τ ′) is provable if and only if
Σ, x : ∆, typeof x τ ` typeof (R x) τ ′. Given that we are committed to using a proper
logic (such as higher-order intuitionistic logic), it is the case that modus ponens is valid and
that instantiating an eigenvariable in a provable sequent yields a provable sequent. In this
case, the sequent Σ : ∆, typeof N τ ` typeof (R N) τ ′ must be provable. Thus, we have
just shown, using nothing more than rather minimal assumptions about the specification
of typeof (and formal properties of logic) that if Σ : ∆ ` typeof (abs B) (τ → τ ′) and
Σ : ∆ ` typeof N τ then Σ : ∆ ` typeof (B N) τ ′. (Of course, instances of the term
(B N) are β-redexes and the reduction of such redexes result in the substitution of N into
the bound variable of the term that instantiates B.) Such lemmas about substitutions are
common and often difficult to prove [38]: in this setting, this lemma is essentially an imme-
diate consequent of using logic and logic programming principles. In principle, Gentzen’s
cut-elimination theorem (the formal justification of modus ponens) is essentially the mother
of all substitution lemmas. Even if one is not interested in using β-reduction as a black box
to encode object-level substitution, this framework still provides simple means to specify
substitution and to prove substitution lemmas [1].

5.4 Dominance of relational specifications
Another reason that logic programming can make a good choice for metatheoretic reasoning
systems is that logic programming is based on relations (not functions) and that metathe-
oretic specifications are often dominated by relations. For example, the typing judgment
describe in the Section 4 is a relation. Similarly, operational semantics, both small step
(SOS) and big step (natural semantics) are relations. Occasionally, specified relations—
typing or evaluation—describe a partial function but that is generally a result proved about
the relation.

A few logic programming-based systems have been used to illustrate how typing and op-
erational semantic specifications can be animated. The core engine of the Centaur project,
called Typol, used Prolog to animate metatheoretic specifications and both λProlog and
Twelf have been used to provide convincing and elegant specifications of typing and opera-
tional semantics for expressions involving bindings [2, 23].

6 λ-tree syntax

The term higher-order abstract syntax (HOAS) was originally defined as an approach to
syntax that used “a simply typed λ-calculus enriched with products and polymorphism” [29].
A subsequent paper identified HOAS as a technique “whereby variables of an object language
are mapped to variables in the meta-language” [30]. The term HOAS is problematic for a
number of reasons. First, it seems that few, if any, researchers use this term in a setting that
includes products and polymorphism (although simple and dependently typed λ-calculus are
often used). Second, since the metalanguage (often the programming language) can vary
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a great deal, the resulting notion of HOAS is can vary similarly, including the case where
HOAS is a representation of syntax that incorporate function spaces on expressions [16].
Third, the adjective higher-order seems over used and inappropriate here: in particular,
the equality (and unification) of terms discussed in Section 4 is completely valid without
reference to typing. If there are no types, what exactly is “higher-order”? For these reasons,
the term “λ-tree syntax”, with its obvious parallel to the term “parse tree syntax” is now
more commonly used for the style of encoding described in this paper [5, 23].

7 Reasoning with λ-tree syntax

There is more to mechanizing metatheory than performing unification and doing logic pro-
gramming-style search. One should also deal with negations: for example, one wants to prove
that certain terms do not have simple types (i.e., ` ¬∃τ : ty. typeof (abs λx (app x x)) τ).
Proving that a certain relation actually describes a (partial or total) function has proved
to be an important kind of metatheorem to prove [30]. Additionally, one should also deal
with induction and co-induction and be able to reason directly about, say, bisimulation of
π-calculus expressions as well as confluence of λ-conversion. The Twelf system [30] is able
to prove many of the simpler forms of such metatheorems.

In recent years, several researchers have developed two extensions to logic and proof
theory that have made it possible to reason in rich and natural ways about expressions
containing bindings. One of these extensions involved a proof theory for least and greatest
fixed points: results from [21, 35] have made it possible to build automated and interactive
theorem provers in a simple, relational setting. Another extension [13, 25, 25] introduced the
∇-quantifier which allows logic to reason in a rich and natural way with bindings: in terms
of mobility of bindings, the ∇-quantifier provides an additional formula-level and proof-level
binding, thereby enriching the expressiveness of quantificational logic.

Given these developments in proof theory, it has been possible to build both an interac-
tive theorem prover, called Abella [5, 12], and an automatic theorem prover, called Bedwyr
[6], that unfolds fixed points in a style similar to a model checker. These systems have suc-
cessfully been able to prove a range of properties involving, for example, the λ-calculus and
the π-calculus [1, 5, 34]. The directness and naturalness of the encoding for the π-calculus
bisimulation is evident in the fact that simply changing the underlying logic from intuition-
istic to classical changes the interpretation of that one definition from open bisimulation to
late bisimulation [34].

8 Conclusions

The higher-order logic of Church and the sequent calculus of Gentzen provide a simple
and high-level framework for specifying both computation and deduction involving syntax
containing bindings. Given that the style of computation that is used here is based on the
search for (cut-free) proofs, logic programming-style specifications seems a natural fit for
mechanizing metatheory. Various computer systems, in particular, λProlog, Twelf, Bedwyr,
and Abella are built on these principles and help to validate this approach to metatheory.
A great deal more support for system building of these kind still need to be done in order
to get this new breed of proof assistants accepted by the masses.
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