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ABSTRACT

We present the design of a new functional programming language,
MLTS, that uses the λ-tree syntax approach to encoding bindings
appearing within data structures. In this approach, bindings never
become free nor escape their scope: instead, binders in data struc-
tures are permitted tomove to binders within programs. The design
of MLTS includes additional sites within programs that directly
support this movement of bindings. In order to formally define the
language’s operational semantics, we present an abstract syntax
for MLTS and a natural semantics for its evaluation. We shall view
such natural semantics as a logical theory within a rich logic that
includes both nominal abstraction and the ∇-quantifier : as a result,
the natural semantics specification ofMLTS can be given a succinct
and elegant presentation. We present a typing discipline that nat-
urally extends the typing of core ML programs and we illustrate
the features ofMLTS by presenting several examples. An on-line
interpreter forMLTS is briefly described.
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1 INTRODUCTION

Even from the earliest days of high-level programming, functional
programming languages were used to build systems that manipulate
the syntax of various programming languages and logics. For ex-
ample, Lisp was a common language for building theorem provers,
interpreters, compilers, and parsers, and the ML programming lan-
guage was designed as a “meta-language” for a proof checker [22].
While these various tasks involve the manipulation of syntax, none
of these earliest functional programming languages provided sup-
port for a key feature of almost all programming languages and
logics: variable binding.

Bindings in syntactic expressions have been given, of course, a
range of different treatments within the functional programming
setting. Common approaches are to implement bindings by using
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variable names or, in a more abstract way, by using de Bruijn in-
dexes [10]. Since such techniques are quite complex to get right
and since bindings are so pervasive, a great deal of energy has gone
into making tools and libraries that can help deal with binders: for
example, there is the locally nameless approach [4, 21, 30] and the
parametric higher-order abstract syntax approach [8].

Extending a functional programming language with features
that support bindings in data has been considered before: for ex-
ample, there have been the FreshML [53, 59] and CαML [52] exten-
sions to ML-style functional programming languages. Also, entirely
new functional programming languages, such as the dependently
typed Beluga [47] language, have been designed and implemented
with the goal of supporting bindings in syntax. In the domains
of logic programming and theorem proving, several designs and
implemented systems exist that incorporate approaches to bind-
ing: such systems include Isabelle’s generic reasoning core [43],
λProlog [37, 40], Qu-Prolog [6], Twelf [46], αProlog [5], the Minlog
prover [57], and the Abella theorem prover [3].

In this paper we present MLTS, a new language that extends
(the core of) ML and incorporates the λ-tree syntax approach to
encoding the abstract syntax of data structures containing binders.
Briefly, we can define the λ-tree syntax approach to syntax as
following the three tenets: (1) Syntax is encoded as simply typed
λ-terms in which the primitive types are identified with syntactic
categories. (2) Equality of syntax must include αβη-conversion.
(3) Bound variables never become free: instead, their binding scope
can move. This latter tenet introduces the most characteristic aspect
of λ-tree syntax which is often called binder mobility.MLTS is, in
fact, an acronym for mobility and λ-tree syntax.

This paper contains the following contributions.
- We present the design ofMLTS, a new functional language pro-
totype for dealing with bindings, aiming at expressivity and gen-
erality.

- We show how the treatment of bindings that has been successful
in the logic programming and theorem proving systems λProlog,
Twelf, and Abella, can be incorporated into a functional program-
ming language.
At the same time,MLTS remains a ML-family language; nominals
are treated similarly to constructors of algebraic datatypes (in
expressions and patterns), distinguishing our design from existing
proposals, such as Delphin and Beluga.

- We present some of the metatheory of MLTS.
- We have a full prototype implementation that is accessible online.

This paper is organized as follows. Section 2 introduces the
languageMLTS and aims to give a working understanding to the
reader of its new constructs and current implementation. Section 3
presents some of the foundational aspects ofMLTS’ design, which
comes from the proof-search (logic programming) paradigm, along
with its natural semantics. Section 4 contains a formal description
of the typing system for MLTS as well as some static restrictions

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


PPDP’2019, October 7–9, Porto, Portugal Ulysse Gérard, Dale Miller, and Gabriel Scherer

we impose on the language to obtain good reasoning principles.
We also state here some meta-theorems aboutMLTS. In Section 5
we elaborate on several issues that surround the insertion of binder
mobility into this functional programming language. Finally, in
Sections 6, 7, and 8 we present future work, related work, and
conclude.

2 A TOUR OFMLTS

We chose the concrete syntax ofMLTS to be an extension of that
of the OCaml programming language (a program in MLTS not
using the new language features should be accepted by the ocamlc
compiler). We assume that the reader is familiar with basic syntactic
conventions of OCaml [42], many of which are shared with most
ML-like programming languages.

This section presents the new constructs ofMLTS along with a
set of examples. We also provide a web application, TryMLTS [20],
that can serve as a companion during the reading of this introduc-
tion to the language.

2.1 The binding features ofMLTS

MLTS contains the following five new language features.
(1) Datatypes can be extended to contain new nominal constants

and the (new X in M) program phrase introduces a fresh
nominal X in the scope of the evaluation of the term M. The
value of this expression is the value of M, provided that this
value does not contain any remaining occurrence of X – this
would be a nominal escape failure. For example, the term
(new X in X) fails during evaluation.

(2) A new typing constructor => is used to type bindings within
term structures. This constructor is an addition to the already
familiar constructor -> used for function types.

(3) The backslash (\ as an infix symbol that associates to the
right) is used to form an abstraction of a nominal over its
scope. For example, (X\body) is a syntactic expression that
hides the nominal X in the scope body. Thus the backslash
introduces an abstraction.

(4) The infix symbol @ eliminates an abstraction: for example,
the expression ((X\body) @ t) denotes the result of the
capture-avoiding substitution of the abstracted nominal X
by the term t in body. The notation (t @ u v) stands for
(t @ u @ v) (@ associates to the left).

(5) Clauseswithinmatch-expressions can also contain the (nab
X in p -> t) binding form. Here, X is a nominal local to the
clause p -> t. At runtime it will be substituted by a nominal
Y from the ambient context that appears in the scrutiny of
the match at the same position than X does in p but does not
already appear in p -> t.

These new term operators have the following precedence from
highest to lowest: @, new and \. Other operators have the same
precedences and associativity than in OCaml. Thus the expression
fun r -> X\ new Y in r @ X reads as: fun r -> (X\ (new Y
in (r @ X))). All three binding expressions—(X\body), (new X

in body) and (nab X in rule)—are subject to α-renaming of
bound variables, just as the names of variables bound in let dec-
larations and function definitions. As we shall see, nominals are
best thought of as constructors: as a consequence, we follow the

OCaml convention of capitalizing their names. We are assuming
that, in all parts ofMLTS, the names of nominals (of bound variables
in general) are not available to programs since α-conversion (the
alphabetic change of bound variables) is always applicable. Thus,
compilers are free to implement nominals in any number of ways,
even ways in which they do not have, say, print names.

We enforce a few restrictions (discussed in Section 4.2) on match
expressions: Every nab-bounded nominals must occur rigidly (de-
fined in Section 4.2.3) in the pattern and expressions of the form
(m @ X1 ... Xj) in patterns are restricted so that m is a pattern
variable and X1, . . ., Xj are distinct nominals bound within the
scope of the pattern binding on m (which, as a pattern variable,
is scoped outside the scopes of nab-bound nominals and over the
whole rule). This restriction is essentially the same as the one re-
quired by higher-order pattern unification [32]: as a result, pattern
matching in this setting is a simple generalization of usual first-
order pattern matching.

We note that the expression (X\ r @ X) is interchangeable with
the simple expression r: that is, when r is of => type, η-equality
holds.

We now present two series of examples of MLTS programs. We
hope that the informal presentation given above plus the simplicity
of the examples will give a working understanding of the seman-
tics of MLTS. We delay the formal definition of the operational
semantics ofMLTS until Section 3.4.

2.2 Examples: the untyped λ-calculus
The untyped λ-terms can be defined inMLTS as the datatype:

type tm =
| App of tm * tm
| Abs of tm => tm ;;

The use of the => type constructor here indicates that the argument
of Abs is a binding abstraction of a tm over a tm. Notice the absence
of clause for variables. InMLTS, such a type, called an open type,
can be extended with a collection of nominal constructors of type
tm. Just as the type tm denotes a syntactic category of untyped
λ-terms, the type tm => tm denotes the syntactic category of terms
abstracted over such terms.

Following usual conventions, expressions whose concrete syntax
have nested binders using the same name are disambiguated by the
parser by linking the named variable with the closest binder. Thus,
the concrete syntax (Abs(X\ Abs(X\ X))) is parsed as a term
α-equivalent to (Abs(Y\ Abs(X\ X))). Similarly, the expression
(let n = 2 in let n = 3 in n) is parsed as an expression α-
equivalent to (let m = 2 in let n = 3 in n): this expression
has value 3.

TheMLTS program in Figure 1 computes the size of an untyped λ-
term t. For example, (size (App(Abs(X\X), Abs(X\X)))) evalu-
ates to 5. In the second match rule, the match-variable r is bound to
an expression built using the backslash. On the right of that rule, r
is applied to a single argument which is a newly provided nominal
constructor of type tm. The third match rule contains the nab binder
that allows the token X to match any nominal: alternatively, that
last clause could have matched any non-App and non-Abs term by
using the clause | _ -> 1. (Note that as written, the three match
rules used to define size could have been listed in any order.)
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let rec size t =
match t with

| App(n, m) -> 1 + size n + size m
| Abs(r) -> 1 + new X in size (r @ X)
| nab X in X -> 1;;

Figure 1: A program for computing the size of a λ-term.

let subst t u = new X in
let rec aux t = match t with

| X -> u
| nab Y in Y -> Y
| App(u, v) -> App(aux u, aux v)
| Abs r -> Abs(Y\ aux (r @ Y))

in aux (t @ X);;

let rec beta t = match t with
| nab X in X -> X
| Abs r -> Abs(Y\ beta (r @ Y))
| App(m, n) ->

let m = beta m in let n = beta n in
begin

match m with
| Abs r -> beta (subst r n)
| _ -> App(m, n)

end ;;

let two = Abs(F\ Abs(X\ App(F, App(F, X))));;
let plus = Abs(M\ Abs(N\ Abs(F\ Abs(X\

App(App(M,F), App(App(N,F),X))))));;
let times = Abs(M\ Abs(N\ Abs(F\ Abs(X\

App(App(M, App(N, F)), X)))));;

Figure 2: The function that computes the substitution [t/x]u
and the (partial) function that computes the β-normal form

of its argument.

The following sequence of expressions shows the evolution of a
computation involving the size function.

size (Abs (X\ (Abs (Y\ (App(X,Y))))));;
1 + new X in size (Abs (Y\ (App(X,Y))));;
1 + new X in 1 + new Y in size (App(X,Y));;
1 + new X in 1 + new Y in 1 + size X + size Y;;
1 + new X in 1 + new Y in 1 + 1 + 1;;

The first call to size binds the pattern variable r to X\ Abs(Y\
App(X,Y)). It is important to note that the names of bound vari-
ables withinMLTS programs and data structures are fictions: in the
expressions above, binding names are chosen for readability.

Figure 2 defines the function (subst t u) that takes an abstrac-
tion over terms t and a term u and returns the result of substituting
the (top-level) bound variable of t with u. This function works by
first introducing a new nominal X and then defining an auxiliary
function that replaces that nominal in a term with the term u. Fi-
nally, that auxiliary function is called on the expression (t @ X)
which is the result of “moving” the top-level bound variable in t to
the binding occurrence of the expression new X in. (As we note in
Section 5.3, such binder movement can sometimes be implemented
in constant time.) This substitution function has the type (tm
=> tm) -> (tm -> tm): that is, it is used to inject the abstraction
type => into the function type ->. Substitution is then used by the

let rec vacp1 t = match t with
| X\X -> false
| nab Y in X\ Y -> true
| X\ App(m @ X, n @ X)-> vacp1 m && vacp1 n
| X\ Abs(Y\ r @ X Y) -> new Y in

vacp1 (X\ r @ X Y);;

let rec vacp2 t =
new X in
let rec aux term = match term with

| X -> false
| nab Y in Y -> true
| App(m, n) -> aux m && aux n
| Abs(u) -> new Y in aux (u @ Y)

in aux (t @ X);;

let vacp3 t = match t with
| X\s -> true
| _ -> false;;

Figure 3: Three implementations for determining if an ab-

straction is vacuous.

let rec assoc x alist = match alist with
| ((u,y)::alst) -> if (u = x) then y else

(assoc x alst);;

type tm ' =
| App ' of tm ' * tm '
| Abs ' of tm ' => tm ';;

let rec id gamma term = match term with
| App(m,n) -> App '(id gamma m,id gamma n)
| Abs(r) -> new X in Abs '(Y\ (id

((X,Y)::gamma) (r @ X)))
| nab X in X -> assoc X gamma;;

Figure 4: Translating from tm to its mirror version tm'.

second function of Figure 2, beta, to compute the β-normal form
of a given term of type tm. This figure also contains the Church
numeral for 2 and operations for addition and multiplication on
Church numerals. In the resulting evaluation context, the values
computed by (beta (App(App(plus, two), two))) and (beta
(App(App(times, two), two))) are both the Church numeral
for 4.

For another example, consider a program that returns true if
and only if its argument, of type tm => tm, is such that its top-level
bound variable is a vacuous binding (i.e., the bound variable is
not free in its scope). Figure 3 contains three implementations of
this boolean-valued function. The first implementation proceeds by
matching patterns with the prefix X\, thereby, matching expressions
of type tm => tm. The second implementation uses a different style:
it creates a new nominal X and proceeds to work on the term t @ X,
in the same fashion as the size example. The internal aux function
is then defined to search for occurrences of X in that term. The
third implementation, vacp3, is not (overtly) recursive since the
entire effort of checking for the vacuous binding is done during
pattern matching. The first match rule of this third implementation
is essentially asking the question: is there an instantiation for the
(pattern) variable s so that the λX .s equals t? This question can
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type deb =
| Dapp of deb * deb
| Dabs of deb
| Dvar of int;;

let rec nth n l = match (n, l) with
| (0, x::k) -> x
| (c, x::k) -> nth (c - 1) k;;

let index x l =
let rec aux c x k = match (x, k) with

| nab X in (X, X::(l @ X)) -> c
| nab X Y in (X, Y::(l @ X Y)) ->

aux (c + 1) x (l @ X Y)
in aux 0 x l;;

let rec trans prefix term = match term with
| App(m, n) -> Dapp(trans prefix m,

trans prefix n)
| Abs r -> new X in

Dabs(trans (X:: prefix) (r @ X))
| nab Y in Y -> Dvar (index Y prefix);;

let rec dtrans prefix term = match term with
| Dapp(m, n) -> App(dtrans prefix m,

dtrans prefix n)
| Dabs r -> Abs(X\ dtrans (X:: prefix) r)
| Dvar c -> nth c prefix ;;

Figure 5: De Bruijn’s style syntax and its conversions with

type tm.

be posed as asking if the logical formula ∃s .(λX .s ) = t can be
proved. In this latter form, it should be clear that since substitution
is intended as a logical operation, the result of substituting for s
never allows for variable capture. Hence, every instance of the
existential quantifier yields an equation with a left-hand side that
is a vacuous abstraction. Of course, this kind of pattern matching
requires a recursive analysis of the term t and that can make pattern
matching costly. To address that cost, pattern matching can be
restricted so that such patterns do not occur (see Section 6) or
static checks can be added that often make such recursive descents
unnecessary (see Section 5.3).

For another simple example of computing on the untyped λ-
calculus, consider introducing a mirror version of tm, as is done
in Figure 4, and writing the function that constructs the mirror
term in tm' from an input term tm. This computation is achieved
by adding a context (an association list) as an extra argument that
maintains the association of bound variables of type tm and those of
type tm'. The value of id [] (Abs(X\ Abs(Y\ App(X,Y)))) is
(Abs'(X\ Abs'(Y\ App'(X,Y)))) (the types of X and Y in these
two expressions are, of course, different).

Figure 5 presents a datatype for the untyped λ-calculus in De
Bruijn’s style [10] as well as the functions that can convert be-
tween that syntax and the one with explicit bindings. The auxiliary
functions nth and index take a list of nominals as their second
argument: nth takes also an integer n and returns the nth nominal
in that list while index takes a nominal and returns its ordinal
position in that list. For example, the value of

let rec maptm fapp fabs fvar term =
match term with
| App(m,n) -> fapp (maptm fapp fabs fvar m)

(maptm fapp fabs fvar n)
| Abs(r) -> fabs (fun x ->

match x with
| nab X in X ->

maptm fapp fabs fvar (r @ X))
| nab X in X -> fvar X;;

let mapvar fvar term =
maptm (fun m -> fun n -> App(m, n))

(fun r -> Abs(X\ r X))
fvar term;;

let lookup sub var = match var with
| nab X in X ->

let rec aux s = match s with
| [] -> X
| (X,t)::sub -> t
| (y,t)::sub -> aux sub

in aux sub;;

let rec remove x l = match l with
| [] -> []
| h::tl -> if h = x then remove x tl

else h::( remove x tl);;

let fv term =
maptm union

(fun r -> new X in remove X (r X))
(fun x -> x::[]) term;;

let size term =
maptm (fun x -> fun y -> 1 + x + y)

(fun r -> new X in 1 + (r X))
(fun x -> 1) term;;

let terminals term =
maptm (fun x -> fun y -> x + y)

(fun r -> new X in (r X))
(fun x -> 1) term;;

Figure 6: Various computations on untyped λ-terms using

higher-order programs. Note that there are several occur-

rences of (r X) above that should not be written as (r @ X).

trans [] (Abs(X\ Abs(Y\ Abs(Z\ App(X,Z)))));;

is the term Dabs(Dabs(Dabs(Dapp(Dvar 2, Dvar 0)))) of type
deb. If dtrans [] is applied to this second term, the former term
is returned (modulo α-renaming, of course).

2.3 Examples: Higher-order programming

Recall the familiar higher-order function “fold-right”.

let rec foldr f a lst = match lst with
| [] -> a
| x :: xs -> f x (foldr f a xs);;
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This function can be viewed as replacing all occurrences of :: with
the binary function f and all occurrences of [] with a. The higher-
order program maptm in Figure 6 does the analogous operation on
the datatype of untyped λ-terms tm. In particular, the constructors
App and Abs are replaced by functions fapp and fabs, respectively.
In addition, the function fvar is applied to all nominals encountered
in the term. This higher-order function can be used to define a
number of other useful and familiar functions. For example, mapvar
function is a specialization of the maptm function that just applies a
given function to all nominals in an untyped λ-term. The application
of a substitution (an expression of type (tm * tm) list) to a term
of type tm can then be seen as the result of applying the lookup
function to every variable in the term (using mapvar). Using the
functions in Figure 6, the three expressions

Abs(X\ mapvar (fun x -> X)
(Abs(U\ Abs(V\ App(U,V)))));;

new X in new Y in lookup ((X,Abs(U\U))::
(Y, Abs(U\ App(U,U)))::[]) X;;

new X in new Y in lookup ((X,Abs(U\U))::
(Y, Abs(U\ App(U,U)))::[]) Y;;

evaluate to the following three λ-terms.

Abs(X\ Abs(Y\ Abs(Z\ App(X, X))))
Abs(X\ X)
Abs(X\ App(X, X))

Three additional functions are defined in Figure 6: fv constructs
the list of free variables in a term; size is a re-implementation of the
size function presented in Section 2.2; and terminals counts the
number of variable occurrences (terminal nodes) in its argument.

2.4 Current prototype implementation

Wehave a prototype implementation ofMLTS. A parser from our ex-
tended OCaml syntax and a transpiler that generates λProlog code
are implemented in OCaml. A simple evaluator and type checker
written in λProlog are used to type-check and execute the gener-
atedMLTS code. The implementation of the evaluator in λProlog is
rather compact but not completely trivial since the natural seman-
tics ofMLTS (presented in Section 3.4) contains features (namely,
∇-quantification and nominal abstraction) that are not native to
λProlog: they needed to be implemented. Both the Teyjus [54] and
the Elpi [12] implementations of λProlog can be used to execute
the MLTS interpreter. Since Elpi, the parser, and the transpiler
are written in OCaml, web-based execution was made possible by
compiling the OCaml bytecode to a Javascript client library with
js_of_ocaml [27].

There is little about this prototype implementation that is focused
on providing an efficient implementation of MLTS. Instead, the
prototype is useful for exploring the exact meaning and possible
uses of the new program features.

3 THE LOGICAL FOUNDATIONS OF A

SEMANTIC DEFINITION OFMLTS

Bindings are such an intimate part of the nature of syntax that we
should expect that our high-level programming languages account
for them directly: for example, any built-in notion of equality or

matching should respect at least α-conversion. (The paper [36] con-
tains an extended argument of this point in the setting of logic pro-
gramming and proof assistants.) Another reason to include binders
as a primitive within a functional programming languages is that
their semantics have a well understood declarative and operational
treatment. For example, Church’s higher-order logic STT [9] con-
tains an elegant integration of bindings in both terms and formulas.
His logic also identifies equality for both terms and formulas with
αβη-conversion. Church’s integration is also a popular one in theo-
rem proving—being the core logic of the Isabelle [44], HOL [23, 25],
and Abella [3] theorem provers—as well as the logic programming
language λProlog [37]. Given the existence of these provers, a good
literature now exists that describes how to effectively implement
STT and closely related logics. Since the formal specifications of
evaluation and typing will be given using inference rules and since
such rules can be viewed as quantified formulas, this literature
provides means for implementingMLTS.

3.1 Equality modulo α , β , η conversion

The abstract syntax behindMLTS is essentially a simply typed λ-
term that encodes untyped λ-calculus, as described in Section 3.4.
Furthermore, the equality theory of such terms is given by the fa-
miliar α , β , η conversion rules. As a result, a programming language
that adopts this notion of equality cannot take an abstraction and
return, say, the name of its bound variable: since that name can be
changed via the α-conversion, such an operation would not be a
proper function. Thus, it is not possible to decompose the untyped
λ-term λx .t into the two components x and t . Not being able to re-
trieve a bound variable’s name might appear as a serious deficiency
but, in fact, it can be a valuable feature of the language: for example,
a compiler does not need to maintain such names and can choose
any number of different, low-level representations of bindings to
exploit during execution. Since the names of bindings seldom have
semantically meaningful value, dropping them entirely is an inter-
esting design choice. That choice is similar to one taken in ML-style
languages in which the location in memory of a reference cell is
not maintained as a value in the language.

The relation of λ-conversion is invoked when evaluating the
expression (t @ s1 ... sn). As we shall see, MLTS is a typed
language so we can assume that the expressions s1, . . . ,sn have
types γ1, . . . ,γn , respectively, and that t must have type γ1 ⇒
· · · ⇒ γn ⇒ γ0. Thus, t is η-equivalent to a term with n abstrac-
tions, for example, X1\...Xn\ t' and the value of the expression
(t @ s1 ... sn) is the result of performing λ-normalization of
((X1\...Xn\ t') s1 ... sn).

3.2 Match rule quantification

Match rules inMLTS contain two kinds of quantification. The famil-
iar quantification of pattern variables can be interpreted as being
universal quantifiers. For example, the first rule defining the size
function in Section 2.2, namely,

| App(n, m) -> 1 + size n + size m

can be encoded as the logical statement

∀m∀n[(size (App(n, m))) = 1 + size n + size m].

The third match rule for size contains the binder nab
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| nab X in X -> 1

which corresponds approximately to the generic ∇-quantifier (pro-
nounced nabla) that is found in various efforts to formalize the
metatheory of computational systems (see [3, 39] and Section 3.4).
That is, this rule can be encoded as ∇x.(size x = 1): that is, the
size of a nominal constant is 1.

Although there are two kinds of quantifiers around such match
rules, the ones corresponding to the universal quantifiers are im-
plicit in the concrete syntax while the ones corresponding to the
∇-quantifiers are explicit. Our design for MLTS places the implicit
quantifiers at outermost scope: that is, the quantification over a
match rule is of the form ∀∇. Another choice might be to allow
some (all) universal quantifiers to be explicitly written and placed
among any nab bindings. While this is a sensible choice, the ∀∇-
prefixes is, in fact, a reduction class in the sense that if one has
a ∀ quantifier inside a ∇-quantifier, it is possible to rotate that ∇-
quantifier inside using a technique called raising [32, 39]. That is,
the formula ∇x : γ∀y : τ (Bxy) is logically equivalent to the formula
∀h : (γ → τ )∇x : γ (Bx (hx )): note that as the ∇-quantifier of type
γ is moved to the right over a universal quantifier, the type of that
quantifier is raised from τ to γ → τ . Thus, it is possible for an
arbitrary mixing of ∀ and ∇ quantifiers to be simplified to be of the
form ∀∇.

3.3 Nominal abstraction

Before we can present the formal operational semantics of MLTS,
we need to introduce one final logical concept, nominal abstrac-

tion, which allows implicit bindings represented by nominals to
be moved into explicit abstractions over terms [18]. The following
notation is useful for defining this relationship.

Let t be a term, let c1, . . . ,cn be distinct nominals that possibly
occur in t , and let y1, . . . ,yn be distinct variables not occurring in t
and such that, for 1 ≤ i ≤ n, yi and ci have the same type. Then we
write λc1 . . . λcn .t to denote the term λy1 . . . λyn .t ′ where t ′ is the
term obtained from t by replacing ci byyi for 1 ≤ i ≤ n. There is an
ambiguity in this notation in that the choice of variables y1, . . . ,yn
is not fixed. This ambiguity is, however, harmless since the terms
that are produced by acceptable choices are all equivalent under
α-conversion.

Letn ≥ 0 and let s and t be terms of type τ1 → · · · → τn → τ and
τ , respectively; notice, in particular, that s takesn arguments to yield
a term of the same type as t . The formula s⊵t is a nominal abstraction

of degree n (or, simply, a nominal abstraction). The symbol ⊵ is
overloaded since it can be use at different degrees (generally, the
degree can be determined from context). The nominal abstraction
s ⊵ t of degree n is said to hold just in the case that s is λ-convertible
to λc1 . . . cn .t for some distinct nominals c1, . . . ,cn .

Clearly, nominal abstraction of degree 0 is the same as equality
between terms based on λ-conversion, and we will use = to denote
this relation in that case. In the more general case, the term on the
left of the operator serves as a pattern for isolating occurrences of
nominals. For example, if p is a binary constructor and c1 and c2
are nominals, then the nominal abstractions of the first row below

(fix size \ lam term \
match term
[(all m \ all n \

(pvariant c_App [(pvar n), (pvar m)]) ==>
(special add [( special add [(int 1),

(app size n)]),
(app size m)])),

(all r \ (pvariant c_Abs [pvar r]) ==>
(special add

[(int 1),
(new X \ app size

(arobase r X))])),
(nab X \ (pnom X) ==> (int 1))])

Figure 8: The abstract syntax of the size program.

hold while those in the second row do not.
λx .x ⊵ c1 λx .p x c2 ⊵ p c1 c2 λx .λy.p x y ⊵ p c1 c2
λx .x ̸⊵ p c1 c2 λx .p x c2 ̸⊵ p c2 c1 λx .λy.p x y ̸⊵ p c1 c1

A logic with equality generalized to nominal abstraction has
been studied in [16, 18] where a logic, named G, that contains fixed
points, induction, coinduction, ∇-quantification, and nominal ab-
straction is given a sequent calculus presentation. Cut-elimination
for G is proved in [16, 18] and algorithms and implementations
for nominal abstraction are presented in [16, 60]. An important
feature of the Abella prover—∇ in the head of a definition—can be
explained and encoded using nominal abstraction [17].

3.4 Natural semantics specification ofMLTS

We can now define the operational semantics of MLTS by giving
inference rules in the style of natural semantics (a.k.a. big-step
semantics) following Kahn [28]. The semantic definition for the
core of MLTS is defined in Figure 7. Since those inference rules
are written using a higher-order abstract syntax forMLTS, directly
inspired by λProlog term representations; we briefly describe how
that abstract syntax is derived from the concrete syntax.

Instead of detailing the translation from concrete to abstract
syntax, we illustrate this translation with an example. There is an
implementation of MLTS that includes a parser and a transpiler
into λProlog code: this system is available for online use and for
download at https://trymlts.github.io [20]. For example, the λProlog
code in Figure 8 is the abstract syntax for the MLTS program for
size given in Section 2.2.

The backslash (as infix notation) is also used in λProlog to denote
binders and it is the only λProlog primitive in Figure 8. The other
constructors are introduced to encodeMLTS abstract syntax trees.

This encoding ofMLTS syntax is a generalization of the famil-
iar semantic encoding of the untyped λ-calculus given by Scott
in 1970 [58], in which a semantic domain D and two continuous
mappings (retracts) Φ : D → (D → D) (encoding application)
and Ψ : (D → D) → D (encoding abstraction) are used to en-
code the untyped λ-calculus. For example, the untyped λ-calculus
λxλy ((xy)y) is encoded as a value in domain D using the expres-
sion (Ψ(λx (Ψ(λy (Φ(Φ x y) y)))))). In Figure 8, the constructors
c_App and c_Abs represents the Φ and Ψ functions, respectively.
The λProlog abstraction operator (backslash) is used to build ex-
pressions that correspond to inhabitants of D → D.

https://trymlts.github.io
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values
V ::= X

| lam(λx .M x )
| backslash (λX .V X )
| variant c [V1, . . . ,Vn]

⊢ lam R ⇓ lam R

⊢ ∀i ∈ [1;n], Ti ⇓ Vi
⊢ variant c [T1, . . . ,Tn] ⇓ variant c [V1, . . . ,Vn]

⊢ ∇X .(E X ) ⇓ V

⊢ new (λX .E X ) ⇓ V

⊢ M ⇓ lam R ⊢ N ⇓ U ⊢ (R U ) ⇓ V

⊢ appM N ⇓ V

⊢ M ⇓ U ⊢ (R U ) ⇓ V

⊢ (letM R) ⇓ V

⊢ R (fix R) ⇓ V
⊢ fix R ⇓ V

⊢ M ⇓ backslash R ⊢ (R X ) ⇓ V

⊢ arobaseM X ⇓ V

⊢ ∇X .(E X ) ⇓ (V X )

⊢ backslash (λX .E X ) ⇓ backslash (λX .V X )

⊢ clause T Rule U ⊢ U ⇓ V

⊢ (match T (Rule::Rules )) ⇓ V
⊢ ¬(∃u, clause T Rule u) ⊢ (match T Rules ) ⇓ V

⊢ (match T (Rule::Rules )) ⇓ V

⊢ ∃x .clause T (P x ) U

⊢ clause T (all (λx .P x )) U

⊢ matches T P ⊢ (λZ1 . . . λZm .(p =⇒ u)) ⊵ (P =⇒ U )

⊢ clause T (nab Z1 . . . nab Zm .(p =⇒ u)) U

⊢ ∀i ∈ [1;n], matches ti pi
⊢ matches (variant c [t1, . . . ,tn]) (pvariant c [p1, . . . ,pn])

nominal(c )
⊢ matches c (pnom c ) ⊢ matches x (pvar x )

Figure 7: A natural semantics specification of evaluation.

The constant fix represents anonymous fixpoints, to which re-
cursive functions are translated (we also have an n-ary fixpoint for
mutually-recursive functions). Note that fix x \ t is idiomatic
λProlog syntax for the application fix (x \ t), omitting paren-
theses to use fix in the style of a binder.

The expression lam x \ ... represents the MLTS expression
fun x -> ...; in our abstract syntax we write lam(λX . . . . ). (We
do not make a syntactic distinction between X and x which are just
variables, but we use uppercase variables in the abstract syntax for
variables that represent nominals in the language.) Similarly, the
expression new X \ ... encodes new X in ...; in our abstract
syntax we write new (λX . . . . ). The expression-former match rep-
resents pattern-matching, it expects a scrutinee and a list of clauses.
Clauses are built from the infix operator ==>, taking a pattern on the
left and a term on the right, and from quantifiers all, to introduce
universally-quantified variables (implicit inMLTS programs), and
nab to introduce nominals. all-bound variables and nab-bound
nominals have the type of expressions; they are injected in pat-
terns by pvar and pnom. pvariant (in patterns) and variant (in
expressions) denote datatype constructor applications, they expect
a datatype constructor and a list of arguments. special expects the
name of a run-time primitive (arithmetic operations, polymorphic
equality...) and a list of arguments. int represents integer literals.
Finally, we use explicit AST expression-formers backslash and
arobase (a French name for @) and pattern-formers pbackslash
and parobase to represent the constructions \ and @ ofMLTS. Only
arobase is present in this example.

It is intended that the inference rules given in Figure 7 are, in
fact, notations for formulas in the logic G. For example, schema
variables of the inference rules are universally quantified around
the intended formula; the horizontal line is an implication; the list
of premises is a conjunction; and ⇓ is a binary (infix) predicate, etc.
Some features of G are exploited by some of those inference rules:
those features are enumerated below.

Figure 7 starts with a grammar for values. In addition to lambda-
abstractions, backslash -expressions (with a value as the body) and
variant values, (open) values also include nominals. Evaluating

a closed term can never produce a nominal, but evaluation rules
under binders may return nominals.

In the rules for app, let and fix, a variable of arity type 0→ 0
(namely, R) is applied to a term of arity type 0. These rules make
use of the underlying equality theory of simply typed λ-terms in G
to perform a substitution. In the rule for apply, for example, if R is
instantiated to the term λw .t and U is instantiated by the term s ,
then the expression written as (R U ) is equal (in G) to the result of
substituting s for the free occurrences ofw in t : that is, to the result
of a β-reduction on the expression ((λw .t ) s ). (While matching and
applying patterns is limited to β0-reduction, full β-reduction is used
for the natural semantic specification.)

Existential quantification is written explicitly into the first rule
for patterns. We write it explicitly here to highlight the fact that
solving the problem of finding instances of pattern variables in
matching rules is lifted to the general problem of finding substitu-
tion terms in G.

The proof rules for natural semantics are nondeterministic in
principle. Consider attempting to prove that t , a term of arity type
0, has a value: that is, ∃V ,t ⇓ V . It can be the case that no proof
exists or that there might be several proofs with different values
for V . No proofs are possible if, for example, the condition in a
conditional phrase does not evaluate to a boolean or if there are
insufficient match rules provided to cover all the possible values
given to a match expression. Ultimately, we will want to provide a
static check that could issue a warning if the rules listed in a match
expression are not exhaustive. Conversely, the variables introduced
by all and nab in patterns may have several satisfying values, if
they are not used in the pattern itself, or only in flexible occurrences
(see Section 4.2.3).

The nominal abstraction of G is directly invoked to solve pattern
matching in which nominals are explicitly abstracted using the
nab binding construction. When attempting to prove the judgment
⊢ clause T Rule U , the inference rules in Figure 7 eventually lead
to an attempt to prove in G an existentially quantified nominal
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abstraction of the form
∃x1 . . . ∃xn[(λZ1 . . . λZm .(p =⇒ u)) ⊵ (P =⇒ U )].

Here, the arrow =⇒ is simply a formal (syntactic) pairing operator,
expecting a pattern on the left and a term on the right. The schema
variables x1, . . . ,xn can appear free only in p and u.

The last ingredient of our pattern-matching rule is the judgment
(⊢ matchesT P ) that checks that a term or valueT is indeedmatched
by a pattern P . Since patterns and terms are encoded using two
distinct syntactic categories, this judgment relates pattern-formers
to the corresponding term-formers. Nominals are embedded in
patterns by the pnom(c ) pattern-former, which matches a corre-
sponding nominal—the condition nominal(c ) can be expressed in
terms of nominal abstraction (λX .X )⊵c . Term variables introduced
by all are embedded in patterns by the pvar pattern-former, and
they can match any term x—note that in this rule, x denotes an
arbitrary term, substituted for a term variable by the all-handling
rule.

It is worth pointing out that given the way we have defined
the operational semantics of MLTS, it is immediate that “nominals
cannot escape their scopes.” For example, the expression (new X
in X) does not have a value (in abstract syntax, this expression
translates to new (λX .X )). More precisely, there is no proof of
⊢ ∃v .(new (λX .X )) ⇓ v using the rules in Figure 7. To see why
this is an immediate consequence of the specification of evaluation,
consider the formula (which encodes the rule in Figure 7 for new)

∀E∀V [(∇X .(E X ) ⇓ V ) ⊃ (new E ⇓ V )].
Given that the scope of the ∇X is inside the scope of ∀V , it is not
possible for any instance of this formula to allow the X binder
to appear as the second argument of the ⇓ predicate. While such
escaping is easily ruled out using this logical specification, a direct
implementation of this logic may incur a cost, however, to con-
stantly ensure that no escaping is permitted. (See Section 5.2 for
more discussion on this point.)

4 TYPING RULES AND RESTRICTIONS,

SMALL-STEP SEMANTICS,

META-THEOREMS

In this section we present a typing discipline forMLTS, followed
by a few restrictions on pattern matching necessary for it to remain
well behaved and the establishment of standard formal results.

4.1 Typing

Given thatMLTS is a rather mild extension of OCaml at the syntax
level, a typing system for MLTS is simple to present and follows
standard practices. Figure 9 contains the rules for typing the new
features ofMLTS: additional rules for encoding let and let rec
constructions (as well as for built-in types such as integers) must
also be added, but these follow the usual pattern. The inference
rules in this figure involve the following typing judgments.

Γ ⊢ M : A Γ ⊢ A : R : B Γ ⊢ M : A ⊣ ∆ open A

In all of these rules, Γ is the usual association between bound
variables and a type: in our situation, Γ will associate both variables
and nominals to type expressions. (We also assume that the order
of pairs in Γ is not important.) The first of these judgments is the

usual typing judgment between a program expression M and A. The
second of these judgments is used to type a clause R that has a left-
hand side of type A and a right-hand side of type B. For example,
the following typing judgment should be provable.

Γ ⊢ tm : Abs(r) -> 1 + (new X in size (r @ X)) : int

Since this rule expression is intended to be closed (that is, the
variable r is quantified implicitly around this rule), the actual value
of Γ will not impact this particular typing judgment. The third
typing judgment above is used to analyze the left-hand-side of a
match rule: in particular, Γ ⊢ M : A ⊣ ∆ holds if during the process
of analyzing the pattern M, pattern variables are produced (since
these are implicitly quantified) and placed into the typing context
∆. For example, the following should be provable.

Γ ⊢ Abs(r) : tm ⊣ {r : tm => tm}

Some of the inference rules in Figure 9 contain premises of the
form (open A) where A is a primitive type. Types for which this
judgment holds are called open types and are the types of bindings
in the new and backslash expressions: equivalently, open types can
contain nominals. For our purposes here, we can assume that every
type that is defined in a program (using the type command) is
presumed to be open. For example, the judgment (open tm) needs
to be true so that the type tm => tm can be formed in the various
typing rules. On the other hand, the built-in type for integers int
should not be considered open in this sense. Clearly a keywordmust
be added to datatype declarations to indicate if a type is intended
as open in this sense.

In the inference rules in Figure 9, whenever we extend the typing
context Γ to, say, Γ,X : A, we assume that X is not declared in Γ
already. Since α-conversion is always possible within terms, this
assumption can always be satisfied. Note that since pattern variables
are restricted (as is usual) so that they have at most one occurrence
in a given pattern, the union of contexts, in the form ∆1, . . . ,∆n
never attributes more than one type to the same variable.

The prototype implementation TryMLTS [20] of MLTS contains
a type inference engine that runs on top of λProlog: given the hy-
pothetical judgments available in λProlog, the implemented typing
system is structured differently (but equivalently) to the one given
in Figure 9. By using λProlog, we were able to turn this typing
system into one that does type inference: this type inference engine
does not infer polymorphic typing, however.

4.2 Restriction on matching

Since we are not able to decompose bindings into their bound
variable and body, we need to find alternative means for analyzing
the structure of terms containing bindings. As our earlier examples
illustrated, matching within patterns can be used to probe terms
and their bindings. If we do not place restrictions on the use of
pattern variables, then patterns can have complex behaviors that
we may wish to avoid during evaluation.

4.2.1 Unique occurrence of pattern variables. We impose a familiar
restriction on the match rules: a pattern variable must have exactly
one occurrence within a match pattern. Asking for at least one
occurrence avoids under-specified pattern variables, that could be
bound to anything. As is typical in ML-style languages, asking for
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Γ,x : C ⊢ x : C
Γ ⊢ M : A -> B Γ ⊢ N : A

Γ ⊢ (M N) : B
Γ,x : A ⊢ M : B

Γ ⊢ (fun x -> M) : A -> B

Γ ⊢ M : A Γ,x : A ⊢ M : B
Γ ⊢ let x = M in N : B

Γ,X : A ⊢ M : B open A

Γ ⊢ (X \ M) : A => B

Γ ⊢ r : A1 => ... => An => A Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ (r @ t1 ... tn) : A

C : A1, . . . ,An → B Γ ⊢ t1 : A1 . . . Γ ⊢ tn : An
Γ ⊢ C(t1,...,tn) : B

Γ ⊢ M : A Γ ⊢ N : B
Γ ⊢ (M, N) : A * B

Γ,X : A ⊢ M : B open A

Γ ⊢ (new X in M) : B
Γ ⊢ term : B Γ ⊢ B : R1 : A . . . Γ ⊢ B : Rn : A

Γ ⊢ match term with R1 | ... | Rn : A

Γ,X : C ⊢ A : R : B open C

Γ ⊢ A : nab X in R : B
Γ ⊢ L : A ⊣ ∆ Γ,∆ ⊢ R : B

Γ ⊢ A : L -> R : B
Γ ⊢ X1 : A1 . . . Γ ⊢ Xn : An open A1 . . . open An

Γ ⊢ (r @ X1 ... Xn) : A ⊣ r : A1 => ... => An => A

Γ ⊢ x : A ⊣ x : A
Γ ⊢ p : A ⊣ ∆1 Γ ⊢ q : B ⊣ ∆2

Γ ⊢ (p,q) : A * B ⊣ ∆1,∆2

C : A1, . . . ,An → B Γ ⊢ p1 : A1 ⊣ ∆1 . . . Γ ⊢ pn : An ⊣ ∆n
Γ ⊢ C(p1,...,pn) : B ⊣ ∆1, . . . ,∆n

Figure 9: Typing rules based on the concrete syntax for the new features ofMLTS.

at most one occurrence relieves pattern matching from the need to
check equality of terms. Since terms can be large, pattern matching
could involve a costly recursive descent of terms; we forbid re-
peated occurrences of pattern variables and force the programmer
to insert equality checking outside the pattern matching operation.
Thus, instead of defining memb : tm -> tm list -> bool with
the following code using a repeated match variable
let rec memb x l = match (x,l) with

| (x,[]) -> false
| (x,(x::l)) -> true
| (y,(x::l)) -> memb x l;;

we can require the programmer to write an equality predicate for
type tm and then rewrite the program above as follows.
let rec eqtm t s = match (t,s) with

| (App(m1 ,m2), App(n1,n2)) -> eqtm m1 n1 &&
eqtm m2 n2

| (Abs r, Abs s) -> new X in eqtm (r @ X)
(s @ X)

| nab X in (X, X) -> true
| _ -> false;;

let rec memb x l = match (x,l) with
| (x,[]) -> false
| (x,(y::l)) -> if (eqtm x y)

then true else (memb x l);;

Given the definition of the tm datatype, it is clear that a compiler for
MLTS could define its own equality predicate for this type. In that
case, repeated variable occurrences in patterns could be allowed
since resolving such patterns could be done using these equality
predicates.

4.2.2 Restricted use of higher-order pattern variables. Since pattern
variables within match rules can have higher-order types, occur-
rences of those variables within patterns need to be restricted:
otherwise, undesirable features of higher-order matching could
appear. Fortunately, there is a natural restriction on occurrences of
pattern variables that guarantees that a match either fails or suc-
ceeds with at most one solution. That restriction is the following:

every occurrence of an expression of the form (r @ X1 ... Xn)
in the left-hand side of a match rule must be such that the pattern
variable r is applied to n ≥ 0 distinct nominals X1 ... Xn and
those nominals are bound within the scope of the binding for r. For
example, the following expression is not well formed
Abs(X\ (match Abs(Y\ App(X,Y)) with

| Abs(Z\ r @ Z X) ->
Abs(Z\ r @ X Z)));;

since the scope of the nominal X contains the (implicit) scope of the
pattern variable r, which is around the rule (Abs(Z\ r @ Z X)
-> Abs(Z\ r @ X Z)).

This restriction can be motivated within a purely logical setting
as follows. Let j be a primitive type and let F : j → j → j be a
simply typed constant. The formula ∃д : j → j ∀X : j [д X =
(F X X )] has a unique proof in which д is instantiated by the term
λW .(F W W ). Note that the binding scope of the variable X is
inside the binding scope of the variable д. If, however, one switches
the order of the quantifiers, yielding ∀X : j ∃д : j → j [д X =
(F X X )], then there are four different proofs of this equation: if one
replaces the outermost universal quantifier with an eigenvariable
(or nominal), say A, then there are four different solutions for д,
namely, λW .(F A A), λW .(F AW ), λW .(F W A), and λW .(F W W ).

The subset of higher-order unification in which unification vari-
ables (a.k.a., logic variables, meta-variables, pattern variables) are
applied to distinct bound variables restricted as described above, is
called higher-order pattern unification or Lλ unification [32]. (We
assume here the usual convention that unification problems and
matching problems only involve terms that are in β-normal form.)
This particular subset of higher-order unification is commonly im-
plemented in theorem provers such as Abella [3], Minlog [57], and
Twelf [46] as well as recent implementations of λProlog [12, 54].
A functional programming implementation of such unification is
given in [41].

The following results about higher-order pattern unification are
proved in [32].

(1) It is decidable and unitary, meaning that if there is a unifier
then there exists a most general unifier.
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(2) It does not depend on typing. As a result, it is possible to add
it to the evaluator forMLTS based on untyped terms.

(3) The only form of β-conversion that is needed to solve such
unification problems is what is called β0-conversion which
is a form of the β rule that equates (λx .t )x with t .

An equivalent way to write the β0-conversion rule (assuming the
presence ofα-conversion) is that (λx .t )y converts to t[y/x] provided
that y is not free in λx .t . Notice that applying β0 reduction actually
makes a term smaller and does not introduce new β redexes: as a
result it is not a surprise that such unification (and, hence, matching)
has low computational complexity.

4.2.3 All nab bound variables must have a rigid occurrence. There
is an additional restriction on match rules that is associated to the
nab binder that appear in such rules. We say that an occurrence
of a nab-quantified nominal is flexible if it is in the scope of an
@. For example, in the code in Figure 10, the nominal binding W
has two occurrences that are flexible: one each within (r @ Z W)
and (r @ W Z). All other occurrences of a nab-bound nominal are
rigid. For example, in the match rule | nab X in X -> 1, X has a
binding occurrence and a rigid occurrence. In the auxiliary function
used by the index function in Figure 5, namely,
let rec aux c x k = match (x, k) with

| nab X in (X, X::(l @ X)) -> c
| nab X Y in (X, Y::(l @ X Y)) ->

aux (c + 1) x (l @ X Y)

the nominals X and Y have both rigid and flexible occurrences within
their scope.

The one additional restriction that we need is the following:
every nab-bound variable must have at least one rigid occurrence
in the left part of the match rule (the pattern) that falls within the
scope of its binder. For example, the code in Figure 10 does not
satisfy this restriction since every occurrence of W in the pattern is
flexible (there is just one such occurrence).

This restriction ensures that each nab-bound nominal in a match-
ing clause is mapped to a uniquely-determined nominal of the
ambient context. As interesting counter-examples, consider

match Z with
| nab X Y in (r @ X Y) -> term

where Z is a nominal, and
match 1 with
| nab X in 1 -> t

which are both ruled out by this restriction. In the first example,
there are two instantiations for r that make this match succeed,
namely, using the terms X\Y\X and X\Y\Y. This breaks the determi-
nacy property – Theorem 4.3. In the second example, the nominal
X is completely unconstrained by the pattern. If this program was
allowed, our natural semantics dictates that it should behave as new
X in t; the restriction guarantees that new is the only language
construct that may introduce dynamic nominal-escape failures.

Abs(X\ (match Abs(Y\ App(X,Y)) with
| nab W in Abs(Z\ r @ Z W) ->

Abs(Z\ r @ W Z)));;

Figure 10: Code that does not satisfy the restriction on oc-

currences of nab bound variables.

evaluation contexts
E[□] ::= □

| appM E | app E N
| backslash (λX .E) | arobase E X
| new (λx .E)
| variant c [M1 . . .Mk ,E,Mk+2 . . .Mn]
| match E [R1, . . . ,Rn]

app (lam R) V ⇝hd R V arobase (backslash R) X ⇝hd R X

fix R⇝hd R (fix R)
M ⇝hd M ′

E[M]⇝ E[M ′]

X < V

E[new (λX .V )]⇝ E[V ]
Figure 11: Small step reduction: core fragment

rigid paths
π ::= □

| variant C i π
| backslash (λX .π )
| arobase π X

Rigid occurrence in a value: V ′ ∈π V

V ′ ∈□ V
′

V ′ ∈π Vk
V ′ ∈(variant C k π ) variant c [V1, . . . ,Vn]

∇X . V ′ ∈π V

V ′ ∈(backslash (λX .π )) (backslash (λX .V ))

V ′ ∈π backslash (λX .V )

V ′ ∈(arobase π X ) V

Rigid occurrence in a pattern: p′ ∈π p

p′ ∈□ p
′

p′ ∈π pk
p′ ∈(variant C k π ) variant c [p1, . . . ,pn]

∇X . p′ ∈π p

p′ ∈(backslash (λX .π )) (backslash (λX .p))

p′ ∈π p

p′ ∈(arobase π X ) (arobase p X )

Rigid occurrence in a clause: p′ ∈π R

∇Z . p′ ∈π R

p′ ∈π nab (λZ .R)

∇x . p′ ∈π R x

p′ ∈π all R
p′ ∈π p

p′ ∈π p → M

Figure 12: Rigid paths in values and patterns
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V with R⇝ ∅,N

match V (R::Rs )⇝hd N

∄N . (V with R⇝ ∅,N )

match V (R::Rs )⇝hd match V Rs

Matching a value against a clause: V with R⇝ σ ,N

∇X . ∃π ,Y .
X ∈π R X
Y ∈π V

Y < R X Y < σ
V with R Y ⇝ σ ,N

V with nab R⇝ σ ,N

∇x . V with R⇝ σ [x 7→ Vx ],N x

V with (all R)⇝ σ ,N Vx

V matches p as σ
V with (p → N )⇝ σ ,N

Matching a value against a pattern: V matches p as σ

∇X . V X matches p X as σ
backslash V matches backslash p as σ

backslash V matches p as σ
V X matches arobase p X as σ

∀i ∈ 1..n, Vi matches pi as σi
C (V1 . . .Vn ) matches C (p1 . . .pn ) as

⊎
i σi

V matches x as (x 7→ V ) V matches _ as ∅ X matches X as ∅

Figure 13: Small step reduction: pattern-matching

4.3 Small-step operational semantics

As a complement to the natural (big-step) semantics of Figure 7,
we developed a small-step operational semantics of MLTS. Its two
salient features are as follows: (1) the small-step treatment of evalua-
tion contexts clarifies the moments during reduction where escape-
checking must be performed (this is often left implicit in the natural
semantics), and (2) its treatment of pattern-matching does not use
nominal-abstraction – it implements an equivalent but lower-level
mechanism. This lower-level expression of the handling of nabla-
bound nominals in pattern-matching gives a more operational intu-
ition of the language, and it also guides practical implementations
in languages without native support for nominal abstraction. In
fact, we co-evolved this operational semantics with the λProlog
implementation of the language, the former guiding the latter, with
the bugs found playing with the latter informing changes to the
former – using the natural semantics as a reference specification
for what the behavior should be.

Due to space restrictions, we will not give a fully detailed ex-
planation of this operational semantics. For the details, the figures
will have to speak for themselves, we will below give a high-level
presentation of the rules.

Core language (without pattern-matching). Figure 11 gives a small-
step operational semantics for the fragment of the language without
pattern-matching. We use the standard approach of decomposing
reduction into a head reduction and evaluation contexts.

Our evaluation contexts allow reduction under the nominal ab-
straction (backslash (λX .E) is an evaluation context): it does not
delay computation like the standard λ-abstraction does.

The other non-standard aspect of this fragment is the treatment
of the name-creation construct new (λX .M ). Instead of trying to
“generate a fresh nominal” in the small-step semantics, we simply
allow reduction under new binders – the stack of new in the current
evaluation context is the set of “ambient nominals” available at this
point of the program execution. In addition to the standard rule
allowing reduction under context, we have an extra contextual rule
to allow popping a new binder off the context: when the term inside
that binder has been fully evaluated to a value, so we have a term
of the form E[new (λX .V )], we can remove the binder after per-
forming an escape check (X < V ), continuing evaluation with E[V ].
If the escape check fails, the term is stuck – this is the presentation
in our semantics of nominal escape as a dynamic failure.

Paths of rigid occurrences. As we explained in Section 4.2.3, a
clause of the form nab (λX .p → M ) is only accepted if the nominal
X has at least one rigid occurrence in the pattern p. The operational
semantics uses this criterion. In Figure 12, we define a grammar of
rigid paths π , which represent evidence that a given occurrence of
a sub-pattern (sub-value) in a pattern (value) is in rigid position, as
defined by the judgments p′ ∈π p and v ′ ∈π v .

Looking at the path (arobase π X ) in a pattern (arobase p X )
selects a sub-value by looking at π in p. In terms, (arobase v X ) is
not a value, but any value V X can be eta-expanded to the (non-
value) form (arobase (backslash λX .V X ) X ), so we look for the
sub-value at path π in (backslash λX .V X ).

Operational semantics of pattern matching. The treatment of
pattern-matching in this operational semantics, given in Figure 13
is not particularly small-step: matching a value against a clause is
a single step, so it is more big-step in nature. The key interest of
these rules is that they do not use nominal abstraction, and instead
“implement” the same behavior in a more computational style.

The judgment (v matches p as σ ) holds when the value v can
be matched against the value p, by performing the substitution σ –
from pattern variables in p into sub-values of v . The inputs of the
judgment are v and p, and the substitution σ is an output of the
inference process.

The judgment (v with R⇝ ∅,N ) holds when the value v can be
matched against the clause R, returning a right-hand-side N to eval-
uate. In N , the pattern variables bound in R (by the clause-former
all (λx .R)) have already been substituted with the corresponding
sub-values of v . In the general case, we want to define the meaning
of matching a valuev against a clause R after having traversed some
all-quantifications, that is with extra pattern variables in the ambi-
ent context; the general form of the judgment is v with R⇝ σ ,N ,
where σ is a substitution from those ambient pattern variables,
which still occur free in N .

The correspondence with the natural semantics is as follows:
v with R⇝ σ ,N in the operational semantics holds if and only if
clause v R[σ ] N [σ ] holds in the natural semantics.

4.4 Formal properties ofMLTS

Given the restrictions of Section 4.2, we can list the following three
formal properties aboutMLTS.
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Theorem 4.1 (Nominals do not escape). Let E be the abstract

syntax of an MLTS program that does not contain any free nominal.

If ⊢ E ⇓ V is provable then V does not contain any free nominals.

The proof of this follows from a simple induction on the struc-
ture of proofs in the logic G: the precise nature of the semantic
specification given in Figure 7 is not relevant. The systematic use
of the ∇-quantifier guarantees this conclusion.

Theorem 4.2 (Type preservation). If the typing judgment ⊢ E :
A and the evaluation judgment ⊢ E ⇓ V holds, then so does ⊢ V : A.

The proof is mostly standard, but it must handle the pattern-
matching rule defined by nominal abstraction. This is done us-
ing our rigid paths π . We can easily prove that if the judgment
clause V nab (λZ1. . . . nab (λZn .p → N )) holds, then the path πi
of Zi in p is also the path of some nominal Yi in v . Then one needs
an intermediate lemma to say that the type A of a value or pattern
and a path π within that value or pattern uniquely determine the
type B of the sub-value or the sub-pattern; because p and v have
the same type, the nominals Zi and Yi must also have the same
type, which is key to the type-preservation argument.

Theorem 4.3 (Determinacy of evaluation). If ⊢ E ⇓ V and

⊢ E ⇓ U then V = U .

The proof of this theorem follows the usual outline. Again, rigid
paths are used in the pattern-matching rule to justify that the
nominals bound by nabla-abstraction are uniquely determined.

Detailed proofs of these theorems can be found in the forthcom-
ing Ph.D. dissertation of the first author [19].

5 BINDER MOBILITY

We started this programming language project with the desire to
treat binders in syntax as directly and naturally as possible. We
approached this project by designing the MLTS language with
more binders than, say, OCaml: it has not only the usual binders for
building functions and for refactoring computation (via the let con-
struction) but also new binders that are directly linked to binders in
data (via the new X in, nab X in, and X\ operators). Finally, the
natural semantics ofMLTS in G and its implementation in λProlog
are all based on using logics that contain rich binding operators
that go beyond the usual universal and existential quantifiers. It is
worth noting that if one were to write MLTS programs that do not
need to manipulate data structures containing bindings, then the
new binding features of MLTS would not be needed and neither
would the novel features of both G and λProlog. Thus, in a sense,
binders have not been formally implemented in this story: instead,
binders of one kind have been implemented and specified using
binders in another system. We were able to complete a prototype
implementation of MLTS since the implementers of λProlog pro-
vide a low-level implementation of bindings that we are able to use
in our static and dynamic semantics specifications.

One way to view the processing of a binder is that one first opens
the abstraction, processes the result (by “freshening” the freed
names), and then closes the abstraction [52]. In the setting ofMLTS,
it is better to view such processing as the movement of a binder:
that is, the binder in a data structure actually gets re-identified with
an actual binder in the programming language. As we illustrated in
Section 2.2 with the following step-by-step evaluation

size (Abs (X\ (Abs (Y\ (App(X,Y))))));;
new X in 1 + size (Abs (Y\ (App(X,Y))));;
new X in 1 + new Y in 1 + size (App(X,Y));;
new X in 1 + new Y in 1 + 1 + size X + size Y;;
new X in 1 + new Y in 1 + 1 + 1 + 1;;

the bound variable occurrences for X and Y simply move. It is never
the case that a bound variable becomes free: instead, it just becomes
bound elsewhere.

5.1 β0 versus β
As we describe in Section 4.2.2, we insist that in the left side of a
match rule, all subexpressions of the form (r @ X1 ... Xn) are
such that the scope of the binding for r contains the scopes of the
bindings for the distinct variables in X1, . . ., Xn. On the right-hand
side of a match rule, however, it seems that one has an interesting
choice. If on the right, we have an expression of the form (r @
t1 ... tn) then clearly, the terms t1, . . ., tn are intended to be
substituted into the abstraction that is instantiated for the pattern
variable r: that is, we need to use β-conversion on this redex. One
design choice is that we restrict the terms t1, . . ., tn to be distinct
nominals just as on the left-hand-side: in this case, β-reduction
of the expression (r @ t1 ... tn) requires only β0 reductions.
A second choice is that we allow the terms t1, . . ., tn to be unre-
stricted: in this case, β-reduction of the expression (r @ t1 ...
tn) requires more general (and costly) β-reductions. Our current
implementation allows for these richer forms of @ expressions.

A similar trade-off between allowing β-conversion or just β0
conversion has also been studiedwithin the theory and design of the
π -calculus. In particular, the full π -calculus allows the substitution
of arbitrary names into input prefixes (modeled by β-conversion)
while the πI -calculus (π -calculus with internal mobility [55]) is
restricted in such a way that the only instances of β-conversions
are, in fact, β0-conversions (see Chapter 11 in [37]).

Another reason to identify the β0 fragment of β-conversion
is that β0 reduction provides support for binder mobility and it
can be given effective implementations, sometimes involving only
constant time operations (see Section 5.3).

5.2 Nominal-escape checking

As we have mentioned in Section 3.4, nominals are not allowed
to escape their scope during evaluation and quantifier alternation
can be used to enforce this restriction at the logic level. When one
implements the logic, one needs to implement (parts of) the unifica-
tion of simply typed λ-terms [26] and such unification is constantly
checking that bound variable scopes are properly restricted. There
are times, however, when the expensive check for escaping nomi-
nals are not, in fact, needed. In particular, it is possible to rewrite
the inference rule in Figure 7 for the new binding operator as the
following rule.

⊢ ∇X .(E X ) ⇓ (U x ) U = λX .V

⊢ new E ⇓ V

Here, bothU andV are quantified universally around the inference
rule. Attempting a proof of the first premise can result in the con-
struction of some (possibly large) value, say t , such that ⊢ (E X ) ⇓ t
holds. We can immediately form the binding ofU 7→ λX .t without
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checking the structure of t . The second premise is where the exam-
ination of t may need to take place: if X is free in t , then there is
no substitution for V that makes λX .t equal to λX .V . This check
can be expensive, of course, since one might in principle need to
examine the entire structure of t to solve this second premise. There
are many situations, however, where such an examination is not
needed and they can be revealed by the type system. For example,
if the type of U is, say, tm => int, there should not be any pos-
sible way for an untyped λ-term to have an occurrence inside an
integer. Furthermore, there are static methods for examining type
declarations in order to describe if a type τ1 → τ2 (for primitive
types τ1 and τ2) can be inhabited by at most vacuous λ-terms (see,
for example, [33]). Of course, if the types of τ1 and τ2 are the same
(say, tm), then type information is not useful here and a check of
the entire structure t might be necessary. Other static checks and
program analyses might be possible as a way to reduce the costs of
checking for escaping nominals: the paper [53] includes such static
checks albeit for a technically different functional programming
language, namely FreshML [59].

5.3 Costs of moving binders

As we have mentioned before, binders are able to move from, say,
a term-level binding to a program-level binding by the use of β0. In
particular, ify is a binder that does not appear free in the abstraction
λx .B then the β0 reduction of (λx .B)y causes the x binding in B to
move and to be identified with the y binder in B[y/x]. If one must
actually do the substitution of y for x in B, a possibly large term (at
least its spine) must be copied. However, there are some situations
where this movement of a binding can be inexpensive. For example,
consider again the following match rule for size.

| Abs(r) -> 1 + (new X in size (r @ X))

If we assume that the underlying implementation of terms use De
Bruijn’s indexes, it is possible to understand the rewriting needed
in applying this match clause to be a constant time operation. In
particular, if r is instantiated with an abstraction then its top-level
constructor would indicate where a binder of value 0 points. If we
were to compile the syntax (r @ X) as simply meaning that that
top-level constant is stripped away, then a binder of value 0 in the
resulting term would automatically point (move) to being bound
by the new X binder. While such a treatment of binder mobility
without doing substitution is possible in many of our examples, it
does not cover all cases. In general, a more involved scheme for
implementing binder mobility must be considered. This kind of
analysis and implementation of binder mobility is used in the ELPI
implementation of λProlog [12].

6 FUTUREWORK

There is clearly much more work to do. While the examples pre-
sented in this paper illustrate that the new features in MLTS can
provide elegant and direct support for computing with binding
structures, we plan to develop many more examples centered on
the general area of implementing theorem provers and compiler
construction. A more effective implementation is also something
we wish to target soon. It seems likely that we will need to consider
extensions to the usual abstract machine models for functional
programming in order to get such a direct implementation. A first

step in this direction would be to first design a small-step (SOS)
semantics equivalent of our natural semantics.

The cost of basic operations inMLTS must also be understood
better. As we noted in Section 2.2, we could design pattern matching
in clauses in such a way that they might require the recursive
descent of entire terms in order to know if a match was successful.
The language could also be designed so that such a costly check is
never performed during pattern matching: for example, one could
insist that every pattern variable is @-applied to a list of all nominal
abstractions that are in the scope of the binding for that pattern
variable. In that case, a recursive descent of terms is not needed.

Given the additional expressivity ofMLTS, the usual static checks
used to produce warnings for non-exhaustive matchings are miss-
ing cases that we should add. As mentioned in Section 5, still other
static checks are needed to help a future compiler avoid making
costly checks. Finally, adding polymorphic typing should be possi-
ble following the pattern already established by OCaml.

It is also interesting to see to what extent binders interact with
a range of non-functional features, such as references. A natural
starting point to explore the possible interaction of effectful features
would be to use a natural semantics treatment based on linear logic
(see, for example, [7, 34]): the logical features of G should also work
well in a linear logic setting.

Finally, the treatment of syntax with bindings generally leads
to the need to manipulate contexts and association lists that relate
bindings to other bindings, to types, or to bits of code. We have
already seen association lists used in Figure 4. It seems likely that
more sophisticatedMLTS examples will require singling out con-
texts for special treatment. Although the current design ofMLTS
does not commit to any special treatment of context, we are inter-
ested to see what kind of treatment will actually prove useful in a
range of applications.

7 RELATEDWORK

The term higher-order abstract syntax (HOAS)was introduced in [45]
to describe an encoding technique available in λProlog. A subse-
quent paper identified HOAS as a technique “whereby variables
of an object language are mapped to variables in the metalan-
guage” [46]. When applied to functional programming, this de-
scription implies the mapping of bindings in syntax to the bindings
that create functions. Unfortunately, such encoding technique often
lacks adequacy (since “exotic terms” can appear [11]), and structural
recursion can slip away [15]. The terms λ-tree syntax [36, 38] and
binder mobility [35] were later introduced to describe the different
and more syntactic approach that we have used here.

7.1 Systems with two arrow type constructors

The MLλ [31] extension to ML is similar to MLTS in that it also
contains two different arrow type constructors (-> and =>) and
pattern matching was extended to allow for pattern variables to be
applied to a list of distinct bound variables. The new operator of
MLTS could be emulated by using the backslash operator and the
“discharge” function ofMLλ . Critically missing from that language
was anything similar to the nab binding of MLTS. Also, no formal
specification and no implementation were ever offered. Licata &
Harper [29] have used the universe feature of Agda 2 to provide an
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implementation of bindings in data structures that also relies on
supporting two different implications-as-types.

Nominals and nominal abstraction, in the sense used in this
paper, were first conceived, studied, and implemented as part of
the Abella theorem prover [3]. While Abella only has one arrow
type constructor, that arrow type maps to the => ofMLTS: this is
possible in Abella since computation is performed at the level of
relations and not functions. As a result, the function type arrow ->
ofMLTS and OCaml is not needed. Thus the distinction mentioned
in [29] between an arrow for computation and an arrow for binding
is, in fact, also present in Abella, although computations are not
represented functionally.

7.2 Systems with one arrow type constructor

The Delphin design is probably the closest to MLTS, in particu-
lar [56] introduced a programming-language version of the ∇ quan-
tifier from [39], whose usage is related to the∇ ofMLTS. In Delphin,
∇ introduces normal term variables (there is no separate class of
nominal constants), while MLTS presents nominals as closer to
datatype constructors, with a natural usage in pattern-matching.

Delphin makes nominal-escape errors impossible at runtime by
imposing a static discipline to prevent them, while MLTS allows
runtime failure in order to allow for more experimentation. The
original proposal in [56] uses a type modality that imposes a strict
FIFO discipline on free variables. This discipline was found too con-
straining; [50] completely eschews a new construct (its νx . e binder
actually corresponds to nominal abstraction X\e inMLTS), and [51]
uses a type-based restriction (type subordination), only allowing to
introduce a fresh nominal in expressions whose return types only
contains values that cannot contain this nominal. This discipline ac-
cepts some examples from our paper, for example size in Figure 1
and id in Figure 4, but rejects other (safe) programs, such as the
second and third one-liner examples of Section 2.3. Richer static
disciplines have been proposed for FreshML [49, 53], but they add
complexity, and interact poorly with the introduction of mutable
state;MLTS is an experimental design aiming for expressivity, so
we decided to allow dynamic escape failures instead.

Beluga [47] allows the programmer to use both dependent types
and recursive definitions as well as an integrated notion of context
(along with a method to describe certain invariants using context
schema). Static checks of Beluga programs can be used to prove
the formal correctness of Beluga programs (commonly by proving
that a given piece of program code is, in fact, a total function).
As a result, a checked Beluga program is often a formal proof.
Since a wide range of formal systems can be encoded naturally
using dependently typed λ-terms [1, 24], Beluga programs can be
used for both programming with and reasoning about the meta-
theory of those formal systems. Since bindings and contexts are part
of the vocabulary of Beluga, these formal proofs can capture the
metatheory of logical and computational systems (such as natural
deduction proof systems and the operational semantics of rich
programming languages). The goal of MLTS is intended only to
support programming and not directly reasoning: the intent of the
new features ofMLTS is only to support the manipulation of syntax
containing bindings. A possibly interesting comparison between
MLTS and Beluga might be explored by using typing and contexts

in the latter in a mostly trivial way. It is likely that Beluga could
code mostMLTS programs although using different primitives.

7.3 Systems using nominal logic

The FreshML [59] and CαML [52] functional programming lan-
guages provide an approach to names based on nominal logic [48].
These two programming languages provide for an abstract treat-
ment of names and naming. Once naming is available, binding
structures can also be implemented. In a sense, the design of these
two ML-variants are also more ambitious than the design goal in-
tended for MLTS: in the latter, we were not focused on naming but
just bindings.

The recent paper [14] introduces a syntactic framework that
treats bindings as primitives. That framework is then integrated
with various tools and with the framework of contextual types
(similar to that found in Beluga) in order to provide a programmer
of, say, OCaml with sophisticated tools for the manipulation of
syntax and binders. A possible future target forMLTS could be to
provide such tools more directly in the language itself.

7.4 Challenge problems and benchmarks

Genuine comparisons between different programming languages
are generally hard to achieve. For example, in the area of logical
frameworks and related theorem provers, there are also a number
of formal systems and computer implementations. In order to un-
derstand the relative merits of these different systems, challenge
problems and benchmarks [2, 13] have been proposed to help peo-
ple sort out specific merits and challenges of one system relative
to another. In depth comparisons of the programming languages
described above will probably require similar in-depth comparisons
on representative programming tasks.

8 CONCLUSION

While the λ-tree syntax approach to computing with syntax con-
taining bindings has been successfully developed within the logic
programming setting (in particular, in λProlog and Twelf), we pro-
vide in this paper another example of how binding can be captured
in a functional programming language. Most of the expressiveness
ofMLTS arises from its increased use of program-level binding. The
sophistication needed to correctly exploit binders and quantifiers in
MLTS is a skill most people have learned from using quantification
in, for example, predicate logic.

We have presented a number of MLTS programs and we note
that they are both natural and unencumbered by concerns about
managing bound variable names. We have also presented a typing
discipline forMLTS as well as a formal specification of its natural
semantics: this latter task was aided by being able to directly exploit
a rich logic, called G, that allows capturing both λ-tree syntax and
binder mobility. Finally, the natural semantics specification and the
typing system were directly implementable in λProlog. A prototype
implementation is available for helping to judge the expressiveness
ofMLTS programs.
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