
Towards a broad spectrum proof certificate

Dale Miller

INRIA-Saclay & LIX, École Polytechnique
Palaiseau, France

MLPA, 15 July 2010

A talk full of speculations...

Outline

1. Dreaming

2. Sorting out some issues

3. Focused proof systems

Let’s do some dreaming....

Wouldn’t it be great to have anti-gravity devices?
• floating cities
• levitating cars and trains
• easy access to outer-space

Consider another dream, probably even more outlandish....

Wouldn’t it be great to have proof certificates that could be
written by a broad range of deductive systems and easily validated
by simple proof checkers.

Thus: any prover could trust a proof from any other prover.

Let’s do some dreaming....

Wouldn’t it be great to have anti-gravity devices?
• floating cities
• levitating cars and trains
• easy access to outer-space

Consider another dream, probably even more outlandish....

Wouldn’t it be great to have proof certificates that could be
written by a broad range of deductive systems and easily validated
by simple proof checkers.

Thus: any prover could trust a proof from any other prover.

Let’s do some dreaming....

Wouldn’t it be great to have anti-gravity devices?
• floating cities
• levitating cars and trains
• easy access to outer-space

Consider another dream, probably even more outlandish....

Wouldn’t it be great to have proof certificates that could be
written by a broad range of deductive systems and easily validated
by simple proof checkers.

Thus: any prover could trust a proof from any other prover.

Dream on: Need only ensure the correctness of the checker

The correctness of the prover is not a (central) issue.

There could be a plethora of provers in many styles:
specialized/general purpose, ad hoc/principled,
complete/incomplete, correct/buggy, etc.

We do not need to be unifying all theorem proving activity into
one framework, such as Isabelle/X or Coq.

Dream on: A marketplace for proofs

The ACME company needs a formal proof for its next generation
of controllers for airplanes, electric cars, medical equipment, etc.

ACME submit to the marketplace a proposed theorem: a proof
certificate with a “hole” in it.

Anyone who can prove that theorem (or provide a
counter-example) will get paid, provided that the alleged proof can
be checked by ACME.

This marketplace could be wide open: anyone using any
combination of deduction engines would be able to compete.

Dream on: Libraries for proofs

Once proofs have been written, they could be archived, searched,
and retrieved.

Since proofs are supported by declarative techniques, they should
have a life once checked and archived. One should be able to:
transform them, browse them, apply them, etc.

One might trust the authority behind the library or not: you can
check any retrieved proof yourself.

A library has strong motivations to be careful: accepting a
non-proof puts their entire library and accumulative trust at risk.
Such checking is in the public domain.

Which logic?

Classical or intuitionistic logic?

Imagine that these two logics fit together in one larger logic.
Following Gentzen (LK/LJ), Girard (LU) and, recently, Liang & M.

First-order or higher-order?

Higher-order (à la Church 1940) seems a good choice since it
includes propositional and first-order.

Modal, temporal, spatial?

I leave these out for now. One might incorporate modal operators
directly; or encode their semantics; or use a “two-level logic”
approach. There is likely to always be a frontier that does not fit...

Which proof system?

There are numerous, well studied proof systems: natural
deduction, sequent, tableaux, resolution, etc.

Many others are clearly proof-like: tables (in model checking),
winning strategies (in game playing), etc.

Other: certificates for primality, etc.

We wish to capture all of these proof objects.
• Pros: a deductive system does not need to transform its

internal proof representation to something else entirely (a
rather involved task).
• Cons: handling so many proof formats might make for a terribly

complex proof checker.

Proofs will likely always be big

We need an effective execution model for proof checkers.

Allowing inference rules to closely model “actions” or “steps” in a
given application domain should allow the engineer to provide
natural proofs that are tailored to a given topic.

One can allow for a trade-off between proof size and proof
reconstruction: a proof checker should be able to do some
computation as well as some search.

A framework for addressing some of these issues

Focused proof systems provide a rich way to take the micro-rules
of Gentzen’s sequent calculus and to organize them into a wide
range of macro-rules (all enjoying cut and initial elimination).

Linear logic can be used as a framework for the specification of
inference rules. Polarizing such specifications differently allows one
to simulate natural deduction, sequent calculus, tableaux, etc.

• Thus a simple interpreter for focused linear logic can be a proof
checker for all of those proof systems.

Adding fixed points and equality allows one to build computation
and model-checking into inference rules.

Focused proof systems

Invertible introduction inference rules:

Γ,B1,B2 ` ∆

Γ,B1 ∧ B2 ` ∆

Γ ` ∆,B[y/x]

Γ ` ∆, ∀xB

The introduction rules for the de Morgan duals:

Γ,B[t/x] ` ∆

Γ,∀xB ` ∆

Γ1 ` ∆1,B1 Γ2 ` ∆2,B2

Γ1, Γ2 ` ∆1,∆2,B1 ∧ B2

Focused proofs are built in two phases: one with only invertible
rules (the “negative” or “asynchronous” phase); one with duals to
the invertible rules (the “positive” or “synchronous” phase).

LKF : focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,A ` Θ ⇑ Γ,B

` Θ ⇑ Γ,A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,A,B

` Θ ⇑ Γ,A ∨− B

` Θ ⇑ Γ,A[y/x]

` Θ ⇑ Γ, ∀xA

` Θ ⇓ t+

` Θ ⇓ A ` Θ ⇓ B

` Θ ⇓ A ∧+ B

` Θ ⇓ Ai

` Θ ⇓ A1 ∨+ A2

` Θ ⇓ A[t/x]

` Θ ⇓ ∃xA

Init

` ¬P,Θ ⇓ P

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N

` Θ ⇓ N

Decide

` P,Θ ⇓ P

` P,Θ ⇑ ·

P positive; N negative; C positive or negative literal

LKF : focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,A ` Θ ⇑ Γ,B

` Θ ⇑ Γ,A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,A,B

` Θ ⇑ Γ,A ∨− B

` Θ ⇑ Γ,A[y/x]

` Θ ⇑ Γ, ∀xA

` Θ ⇓ t+

` Θ ⇓ A ` Θ ⇓ B

` Θ ⇓ A ∧+ B

` Θ ⇓ Ai

` Θ ⇓ A1 ∨+ A2

` Θ ⇓ A[t/x]

` Θ ⇓ ∃xA

Init

` ¬P,Θ ⇓ P

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N

` Θ ⇓ N

Decide

` P,Θ ⇓ P

` P,Θ ⇑ ·

P positive; N negative; C positive or negative literal

LKF : focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,A ` Θ ⇑ Γ,B

` Θ ⇑ Γ,A ∧− B

` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,A,B

` Θ ⇑ Γ,A ∨− B

` Θ ⇑ Γ,A[y/x]

` Θ ⇑ Γ, ∀xA

` Θ ⇓ t+

` Θ ⇓ A ` Θ ⇓ B

` Θ ⇓ A ∧+ B

` Θ ⇓ Ai

` Θ ⇓ A1 ∨+ A2

` Θ ⇓ A[t/x]

` Θ ⇓ ∃xA

Init

` ¬P,Θ ⇓ P

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N

` Θ ⇓ N

Decide

` P,Θ ⇓ P

` P,Θ ⇑ ·

P positive; N negative; C positive or negative literal

An example

Assume that Θ contains the formula a ∧+ b ∧+ ¬c and that we
have a derivation that Decides on this formula.

` Θ ⇓ a
Init ` Θ ⇓ b

Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c

` Θ ⇓ ¬c
Release

` Θ ⇓ a ∧+ b ∧+ ¬c
and

` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus,
the “macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·

Two certificates for propositional logic: negative

Use ∧− and ∨−. Their introduction rules are invertible. The initial
“macro-rule” is huge, having all the clauses in the conjunctive
normal form of B as premises.

. . .

` L1, . . . , Ln ⇓ Li
Init

` L1, . . . , Ln ⇑ · Decide
. . .

...

` · ⇑ B

The proof certificate can specify the complementary literals for
each premise or it can ask the checker to search for them.

Proof certificates can be tiny but require exponential time for
checking.

Two certificates for propositional logic: positive

Use ∧+ and ∨+. Sequents are of the form ` B,L ⇑ · and
` B,L ⇓ P, where B is the original formula to prove, P is positive,
and L is a set of negative literals.

Macro rules are in one-to-one correspondence with φ ∈ DNF (B).
Divide φ into φ− (negative literals) and φ+ (positive literals).

{` B,L,N ⇑ · | N ∈ φ−}
` B,L ⇓ B

provided ¬φ+ ∈ L

` B,L ⇑ · Decide

Proof certificates are sequences of members of DNF (B). Size and
processing time can be reduced (in response to “cleverness”).

Equality and Fixed Points as connectives

` Θ ⇓ t = t ` Θ ⇑ Γ, s 6= t
‡ ` Θσ ⇑ Γσ

` Θ ⇑ Γ, s 6= t
†

‡ s and t are not unifiable.
† s and t to be unifiable and σ to be their mgu

` Θ ⇑ Γ,B(µB)t̄

` Θ ⇑ Γ, µBt̄

` Θ ⇓ B(µB)t̄

` Θ ⇓ µBt̄

B is a formula with n ≥ 0 variables abstracted; t̄ is a list of n
terms.

Here, µ denotes neither the least nor the greatest fixed point.
That distinction arises if we add induction and co-induction.

Equality and Fixed Points as connectives

` Θ ⇓ t = t ` Θ ⇑ Γ, s 6= t
‡ ` Θσ ⇑ Γσ

` Θ ⇑ Γ, s 6= t
†

‡ s and t are not unifiable.
† s and t to be unifiable and σ to be their mgu

` Θ ⇑ Γ,B(µB)t̄

` Θ ⇑ Γ, µBt̄

` Θ ⇓ B(µB)t̄

` Θ ⇓ µBt̄

B is a formula with n ≥ 0 variables abstracted; t̄ is a list of n
terms.

Here, µ denotes neither the least nor the greatest fixed point.
That distinction arises if we add induction and co-induction.

Examples of fixed points

Natural numbers: terms over 0 for zero and s for successor. Two
ways to define predicates over numbers.

nat 0 :- true.

nat (s X) :- nat X .

leq 0 Y :- true.

leq (s X) (s Y) :- leq X Y .

Above, as a logic program and below, as fixed points.

nat = µ(λpλx .(x = 0) ∨+ ∃y .(s y) = x ∧+ p y)

leq = µ(λqλxλy .(x = 0)∨+∃u∃v .(s u) = x ∧+ (s v) = y ∧+ q u v).

Horn clauses can be made into fixed point specifications (mutual
recursions requires standard encoding techniques).

The engineering of proof systems

Consider proving the positive focused sequent

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2),

where m, n are natural numbers and N1,N2 are negative formulas.
There are exactly two possible macro rules:

` Θ ⇓ N1

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for m ≤ n

` Θ ⇓ N2

` Θ ⇓ (leq m n ∧+ N1) ∨+ (leq n m ∧+ N2)
for n ≤ m

A macro inference rule can contain an entire Prolog-style
computation.

The engineering of proof systems (cont)

Consider proofs involving simulation.

sim P Q ≡ ∀P ′∀A[P
A−→ P ′ ⊃ ∃Q ′ [Q

A−→ Q ′ ∧ sim P ′ Q ′]].

Typically, P
A−→ P ′ is given as a table or as a recursion on syntax

(e.g., CCS): hence, as a fixed point.
The body of this expression is exactly two “macro connectives”.

• ∀P ′∀A[P
A−→ P ′ ⊃ ·] is a negative “macro connective”. There

are no choices in expanding this macro rule.

• ∃Q ′[Q
A−→ Q ′ ∧+ ·] is a positive “macro connective”. There

can be choices for continuation Q ′.
These macro-rules now match exactly the sense of simulation.

Some references

[1] Jean-Marc Andreoli. Logic programming with focusing proofs
in linear logic. J. of Logic and Computation, 2(3):297–347, 1992.

[2] Chuck Liang and Dale Miller. Focusing and polarization in
linear, intuitionistic, and classical logics. Theoretical Computer
Science, 410(46):4747–4768, 2009.

[3] Dale Miller and Vivek Nigam. Incorporating tables into proofs.
In J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer
Science Logic, volume 4646 of LNCS, pages 466–480. Springer,
2007.

[4] Vivek Nigam and Dale Miller. Focusing in linear meta-logic. In
Proceedings of IJCAR: International Joint Conference on
Automated Reasoning, volume 5195 of LNAI, pages 507–522.
Springer, 2008.

The papers with Miller as a co-author are on his web page.

	1. Dreaming
	2. Sorting out some issues
	3. Focused proof systems

