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Abstract

Higher-order hereditary Harrop formulas, the underlying logical foundation of λProlog [20], are
more expressive than first-order Horn clauses, the logical foundation of Prolog. In particular,
various forms of scoping and abstraction are supported by the logic of higher-order hereditary
Harrop formulas while they are not supported by first-order Horn clauses. Various papers have
argued that the scoping and abstraction available in this richer logic can be used to provide for
modular programming [15], abstract data types [14], and state encapsulation [7]. None of these
papers, however, have dealt with the problems of programming-in-the-large, that is, the essentially
linguistic problems of putting together various different textual sources of code found, say, in
different files on a persistent store into one logic program. In this paper, I propose a module
system for λProlog and shall focus mostly on it static semantics. The dynamic aspects are covered
in various other papers: in particular, see the paper by Kwon, Nadathur, and Wilson [10] in these
proceedings.

1 Module syntax should be declarative

Several modern programming languages are built on declarative, formal languages: for example,
ML and Scheme are based on the λ-calculus and Prolog is based on Horn clauses. Initial work
on developing such languages was first concerned with programming-in-the-small: problems with
programming-in-the-large were attached later. At that point, a second language was often added
on top of the initial language. For example, parsing and compiler directives, such as use, import,
include, and local, were added. This second language generally had little connection with the
original declarative foundation of the initial language: its was born out of the necessity to build
large programs and its function was expediency. The meaning of the resulting hybrid language is
often complex since it loses some of its declarative purity.

Occasionally, programming design is inflicted with what we may call the “recreating the Turing
machine” syndrome. Turing machines were important because they were the first formal system
that obviously computed and were clearly easy to implement. They have not been considered
seriously as programming languages for several reasons, including the difficulty of understanding and
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reasoning about transition tables. Often the development of modular constructions in programming
languages follows a similar path: it is generally easy to develop a language for programming-in-
the-large that obviously separates and hides details and for which efficient implementations are
possible. Often, however, it is difficult to reason about the meaning of the resulting language.

In order to avoid this syndrome we should ask that any proposal for programming-in-the-large
have several high-level principles. For example, we should ask for such proposals to support several
of the following properties.

• There should be a non-trivial notion of the equivalence of modules that would guarantee that
a module can be replaced by an equivalent module with little to no impact on the behavior
of a larger program. This property is sometimes called representation independence (see
Section 3).

• Constructs for programming-in-the-large should not complicate the meaning of the underly-
ing, declarative language.

• Modules should support transitions from specification to implementation.

• Modular programming should work smoothly with higher-order programming. In Prolog, a
particular challenge is getting the semantics of the call/1 predicate correct.

• Rich forms of abstraction, hiding, and parametrization should be possible.

• Modules should allow a rich calculus of transformations. These should include partial evalu-
ation, fold/unfold, and even compilation.

• Important aspects of a module’s meaning should be available and verified without examining
the module in detail. Notions of interfaces often support this property.

• The additional syntax for programming-in-the-large should also be readable, natural, and
support separate compilation and re-usability.

The success of a proposal for modular programming should not be judged simply on its obvi-
ousness or easy of implementation: it should also be judged on its ability to support a large number
of properties such as these.

One approach: map module syntax directly to logic There are some logical systems that
can be used as a basis of logic programming and that contain natural notions of scope for program
clauses and constants. For example, the logic of hereditary Harrop formulas, parts of which were
developed independently by Gabbay and Reyle [4], McCarty [11, 12], and Miller [13, 15, 16], allows
for a simple stack-based structuring of the runtime program and set of constants. The modal
logic of Giordano, Martelli, and Rossi [5] provides an interesting variation on the simple “visibility
rules” effecting logic programs based on the intuitionistic theory of hereditary Harrop formulas. A
recent linear logic refinement of hereditary Harrop formulas by Hodas and Miller [8] modifies the
stacked-based discipline of programs by allowing some program clauses to be deleted once they are
used within a proof.
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One approach to developing a principled modular programming language is to reduce program-
ming-in-the-large to programming-in-the-small is such a way that modular programming can be
explained completely in terms on the logical connectives of the underlying language. That is, a
linked collection of modules would be mapped to a (possibly large) collection of (possibly large)
formulas. Furthermore, we would like the combinators for building modules to correspond closely
to logical connectives. The static semantics of a collection of modules is specified by describing
how such modules denote a collection of constants and program clauses. The dynamic semantics
of a collection of modules is specified by describing the collection of goal formulas that can be
proved from them. Given the richness of hereditary Harrop formulas and their variants, the main
challenge in specifying the static semantics of modules appears to be determining the scope and
types of constants.

2 A specific module proposal

We shall now turn to a specific proposal for modules for λProlog. Since the underlying logic of
λProlog is that of the intuitionistic (actually minimal) theory of hereditary Harrop formulas, we
shall consider how modules can be mapped into such formulas. It would be interesting to consider
a similar mapping into either the modal or linear logic variants of these formulas mentioned above.
We shall not, however, consider these other variations here.

2.1 General comments

λProlog extends first-order Horn clauses in several ways. As it turns out, much of the scoping
primitives for the module facility proposed here do not come from the higher-order quantification
available in λProlog. In fact, the propositional logic fragment of λProlog supports the stacked-based
treatment of programming clauses. Higher-order quantification is important, however, in providing
scope for predicate and function symbols as well as in providing for higher-order programming (an
important abstraction separate from the module proposal here.

Both the proof theoretic and model theoretic treatments of λProlog’s foundation treats a pro-
gram as a pair containing a signature and set of clauses. For example, the proof theoretic treatment
of λProlog given in [16] uses sequents of the form Σ;P −→ G, where Σ is a signature (a collection of
typed constants) and P is a set of Σ-formulas (closed formulas all of whose non-logical constants are
contained in Σ). Similarly, a canonical model for a large fragment of the logic underlying λProlog
can be given as a Kripke model where possible worlds are pairs 〈Σ,P〉, where Σ is a signature and
P is a set of Σ-formulas [17]. Thus it will not be surprising that the module proposal presented
here will make extensive use of signatures. Even if λProlog was not a typed language signatures
would be important since the set of constants available to a computation changes, and describing
how that set of constants change would make use of a notion of signature similar to that used here.
Gunter [6] also makes use of signatures in developing a module calculus for λProlog.

Finally, it is important to say that what follows is just the draft of a proposal. Much of
what follows has not be debated by those currently using implementations of λProlog. Also, most
experience with λProlog has been with small programs. Few people have yet had experience with
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large λProlog programs. This proposal is hopefully another step in determining a viable solution
to programming-in-the-large in this logic programming setting.

2.2 Persistent store

Interacting with a persistent store, such as the Unix file system, is problematic within our logic
programming setting: some non-logical predicates are required at the core of our module facility.
In particular, the predicate

type load string -> o

predicate performs a side-effect: it is used to reflect some of the persistent store into the space of
meaningful λProlog objects. As edits are done on files, new calls to load are needed to update
these objects. An attempt to prove the atom load name takes the string name as a reference to an
actual file. The resolution of this string into a file can be done in possibly many ways. The method
used in LP2.7 [18] was to maintain a list of Unix path names and to search in them for a file whose
name is name augmented with “.mod”. If such a file is found, then it is parsed and type checked.
Other methods to resolve the string name with a file are possible.

2.3 Kinds and types

In order to allow useful types, we admit type constructors. There is only one of these built into
λProlog, namely the infix “function space” constructor ->. Other type constructors can be declared
via the KIND declaration. (Keywords will be capitalized for readability: in most implementations
of λProlog, keywords appear in lowercase letters.) For example,

KIND bool type.
KIND list type -> type.
KIND pair type -> type -> type.

As this example show, the only kind that can be associated with a type constructor is any “first-
order kind” involving only type and ->. Qualifying a type constructor with a non-negative integer
(0 instead of type, 1 instead of type -> type, etc.) could also have worked here.

Types will be used to qualify constants. Types are any first-order term structure built from
type variables and type constructors. The presence of types variables will provide λProlog with
a degree of polymorphism. Type variables are tokens within type expressions that have an initial
uppercase letter. The following are some type declarations.

TYPE nil list A.
TYPE :: A -> list A -> list A.
TYPE append list A -> list A -> list A -> o.
TYPE memb A -> list A -> o.

λProlog has numerous build-in types, including type o, the type of λProlog formulas.
The subsumption relation on types is that familiar from first order logic: a type is subsumed

by another type if the first is a substitution instance of the second.
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2.4 Static semantics for types and terms

I will assume that types are property formed (they respect kind declarations) and that formulas
and terms are well typed. See [21] for a fuller discussion of this aspect of static semantics.

2.5 Signatures

Signatures are lists of tokens assigned kinds and types, and are denoted by the syntactic variable
Σ. The same token can be given a type and a kind. Op-declarations are also stored as members of
signatures. The following is an example of a signature.

OP 150 :: xfy.
KIND list type -> type.
TYPE :: A -> list A -> list A.
TYPE nil list A.
TYPE memb, member A -> list A -> o.
TYPE append, join list A -> list A -> list A -> o.

A formula is a Σ-formula if it is a correctly typed, closed formula all of whose non-logical constants
are from Σ. Since modules are collections of formulas, we shall use signatures to qualify (type)
modules.

It will be useful to have signature descriptions to represent possibly long lists of constants. For
this, we shall use the keywords SIGNATURE, TYPE, KIND, OP, ACCUMULATE, LOCAL, and LOCALKIND.
The keyword SIGNATURE is used to name a signature and the keywords TYPE, KIND, and OP are used
simply to enumerate the members of a signature. ACCUMULATE takes a list of signatures: its intended
meaning is to merge in the listed signatures. The two keywords LOCAL and LOCALKIND are used to
limit the scope of types and kinds so that they are actually not part of this signature. The LOCAL
keyword can take a type declaration as an optional third argument; similarly with LOCALKIND. The
following are two signature descriptions.

SIGNATURE lists.
OP 150 :: xfy.
KIND list type -> type.
TYPE :: A -> list A -> list A.
TYPE nil list A.
TYPE memb,member A -> list A -> o.
TYPE append, join list A -> list A -> list A -> o.

SIGNATURE rev.
ACCUMULATE lists.
TYPE reverse list A -> list A -> o.
LOCAL revaux list A -> list A -> list A -> o.
LOCAL join.
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Constants can be given multiple types within the same module or within ACCUMULATEing chains of
modules. It is an error if these types are not comparable via subsumption. Otherwise, the type
assumed is the least general of those types.

Signature descriptions are elaborated into signatures using the following rules. First, eliminate
all ACCUMULATE keywords by replacing them with the signatures they name. In doing this, if a
constant is given two op-declarations, then it is an error if those two declarations are not identical.
Second, LOCAL can be dropped by deleting it and any constant of the same name in the accumulated
signature. If LOCALKIND is present, then first check to see if there are constants in the signature
that have a type containing this type constructor. If so, produce an error. Otherwise, simply drop
this declaration.

The notion of signature containment is given simply as follows: Σ1 is contained in Σ2 if

• for every constant in Σ1 given a kind, that constant is given the same kind in Σ2,

• for every constant in Σ1 given a type τ , that constant is given a type in Σ2 that subsumes τ ,
and

• for every constant in Σ1 given an op-declaration, that constant is given the identical op-
declaration in Σ2.

This notion of signature containment will be needed for defining equal signatures and for a certain
kind of dynamic qualification of modules (see subsection 2.10).

We shall assume that there is a special system signature that contains declarations for all logical
and built-in constants of a given λProlog system.

2.6 Module syntax

Modules will be built from kinds, types, and program clauses using the following keywords: TYPE,
KIND, OP, LOCAL, LOCALKIND, MODULE, ACCUMULATE, and IMPORT. The meaning of TYPE, KIND, and
OP are as they were for signature descriptions. The keyword MODULE names a module (similar to
the keyword SIGNATURE). The keywords LOCAL and LOCALKIND provide scope to constants within a
module: the dynamic semantics of LOCAL will be interpreted as an existential quantifier, as described
in [14]. The keywords ACCUMULATE and IMPORT will be described further below.

Although only the keyword MODULE must appear at the front of a module, for the convenience
of parsing and reading modules, we assume that it is an error if a declaration of a constant appears
after the first occurrence of that constant. All declarations are global in a module. Figure 1 contains
two examples of modules.

2.7 Static semantics for modules

The static semantics of modules is used to determine which signature and formulas are intended by
the module. Since we are attempting to reduce modules to formulas, recursion between modules is
not allowed: that is, if mod1 imports or accumulates mod2 then mod2 can not import or accumulate
mod1.

A signature description is built from a module as follows.
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MODULE lists.

OP 150 :: xfy.
KIND list type -> type.

TYPE :: A -> list A -> list A.
TYPE nil list A.
TYPE memb,member A -> list A -> o.
TYPE append, join list A -> list A -> list A -> o.

memb X (X::L).
memb X (Y::L) :- memb X L.

member X (X::L) :- !.
member X (Y::L) :- member X L.

append nil K K.
append (X::L) K (X::M) :- append L K M.

join nil K K.
join (X::L) K M :- memb X K, !, join L K M.
join (X::L) K (X::M) :- join L K M.

MODULE rev.

ACCUMULATE lists.
TYPE reverse list A -> list A -> o.
LOCAL rev list A -> list A -> list A -> o.

reverse L K :- rev L K nil.

rev nil K K.
rev (X::L) K (X::Acc) :- rev L K ACC.

Figure 1: The lists and rev modules.
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• TYPE and KIND declarations stay TYPE and KIND declarations.

• All IMPORTed, ACCUMULATEd, and module implication (==>) modules have their signatures
ACCUMULATEd.

• If the qualified module importing (===> mod sig) G is used, then the signature sig is
ACCUMULATEd (see Section 2.10 for a description of ===>).

• LOCAL and LOCALKIND become LOCAL and LOCALKIND.

Notice that it is possible for LOCAL and LOCALKIND to provide scope to a constant that is IMPORTed
or ACCUMULATEd. If IMPORT or ACCUMULATE is used in a module and there is no corresponding
module with the correct name, then look for a signature with that name. Thus modules without
clauses can simply be written as signatures.

The static semantics of the IMPORT keyword construction is a bit complicated, although it does
follow closely the lines described in [15] and implemented in LP2.7 and eLP [3]. If a module mod1
contains the line

IMPORT mod2 mod3.

then the modules mod2 and mod3 are made available (via implications) during the search for proofs
of the body of clauses listed in mod1. Thus, if the formulas E2 and E3 are associated with mod2
and mod3, then a clause G ⊃ A listed in mod1 is elaborated to the clause ((E2 ∧ E3) ⊃ G) ⊃ A.

Notice that a module denotes both a set of program clauses and a signature. The signature
that is inferred from a module can be used as an interface: when parsing and compiling modules,
it should only be necessary for the signature of an accumulated or imported module to be read.

2.8 Environment support

The process of parsing a module will also be accompanied with type checking and type inference.
In particular, a file containing a module may not attribute a type to all constants. In this case, the
programming environment must be able to infer a reasonable type for the undeclared constants.
Type inference can be done much as it is in ML: see [21] for more discussion on type inference for
λProlog.

Signature checking and inference will also need to be done by the environment. Checking
involves making certain that when modules are accumulated and imported, constants are not given
incomparable types and declarations.

2.9 Dynamic semantics for modules

I shall assume that the reader is already familiar with the operational (dynamic) semantics of
hereditary Harrop formulas, in particular, with the meaning of implications and universal quantifiers
in goals.
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The ACCUMULATE keyword. Although the meaning of this keyword is simple, it is not
present in either LP2.7 or eLP. It is similar to the use directive of Prolog/Mali. If a module mod1
contains the line

ACCUMULATE mod2 mod3.

then is intended that the program clauses in mod2 and mod3 are available at the end of the list of
program clauses listed explicitly in mod1.

The IMPORT keyword. Proof search based on clauses obtained by importing a module into
another module can benefit from some recent work on provability in intuitionistic logic. For exam-
ple, both Hudelmaier [9] and Dyckhoff [2] have demonstrated that the implication-left rule can be
improved (with respect to proof search). For example, the implication-left rule can be split into
several cases depending of the form of the implication. The following is one of these rules.

Σ;P, E, G ⊃ D −→ G Σ;P, D −→ G′

Σ;P, (E ⊃ G) ⊃ D −→ G′

Consider the case when the formulas D and G′ are the same atomic formula A.

Σ;P, E, G ⊃ A −→ G

Σ;P, (E ⊃ G) ⊃ A −→ A

Notice that the formula (E ⊃ G) ⊃ A could be the result of importing a module E into a module
listing the clause G ⊃ A. Notice that backchaining on a clause in this module provides an opera-
tional reading of importing: the imported module is added to the current clauses along with the
un-elaborated clauses from the initial module.

A generalization of this inference rule would be the following:

Σ;P, E,∧n
i=1(Gi ⊃ Ai) −→ Gj

Σ;P,∧n
i=1((E ⊃ Gi) ⊃ Ai) −→ A

where Aj is equal to A, for some j = 1, . . . , n. An argument for the completeness for this rule can
be found in [10].

In the above inference rule, assume that the formula E is of the form ∃x̄.D where the list of
typed, bound variables x̄ are not in the signature Σ. This inference rule could then be modified to
be

Σ, x̄;P, D,∧n
i=1(Gi ⊃ Ai) −→ Gj

Σ;P,∧n
i=1((E ⊃ Gi) ⊃ Ai) −→ A

.

Thus, backchaining into a module which imports a module containing local constants essentially
loads its local constants into the current signature and loads it’s code (the formula D) into the
current program.

Another important aspect of the dynamic semantics of modules is presented in [10] where the
AUGMENT search rule is modified to be the AUGMENT’ search rule. This new rule is used only
for modules and not formulas thus forcing an operational (but not declarative) distinction between
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programming-in-the-large and small. The AUGMENT’ rule essentially says that if the current
program space already contains a module, that module should not be assumed again: that is, there
should be at most one copy of a module in the current program space at a time. The goal mod ==>
mod ==> G is operationally the same as mod ==> G. Such an optimization is unlikely at the level
of formulas because of the following example. Consider a goal of the form (p a) => (p X) => G,
where X is a logical variable. If we checked to see if (p X) in the context, it would seem that we
should allow the unification of X with a. It would be easy to construct examples where the order of
instantiating variables would yield two different answers to this computation, an undesirable effect.

2.10 Questions and additional features

I list below some questions and possible additional features that could be incorporated in the
module system sketched above.

Parametric modules When a module is defined using the MODULE keyword, it might be possible
to also add to it a signature over which that module is parametric. An example could be given as
follows.

MODULE {quicksort KIND Atype type.
TYPE Order Atype -> Atype -> o}.

TYPE qsort list Atype -> list Atype -> o.
LOCAL split Atype -> list Atype -> list Atype -> list Atype -> o.
IMPORT lists.

qsort nil nil.
qsort (X::L) K :- split X L Low High, qsort Low R,

qsort High S, append R (X::S) K.

split X (Y::L) (Y::K) M :- Order X Y, !, split X L K M.
split X (Y::L) K (Y::M) :- split X L K M.

The argument signature is described using only the KIND and TYPE keywords and the order in which
items are listed in this signature is important. The corresponding signature should probably be
written as

SIGNATURE {quicksort KIND Atype type.
TYPE Order Atype -> Atype -> o}.

TYPE qsort list Atype -> list Atype -> o.
ACCUMULATE lists.

A use of such a module can be given as

?- {quicksort int <} ==> qsort (2::3::4::nil) L.



Dale Miller 11

Parsing this “module implication” ==> is a bit different from parsing other terms, in particular, the
subexpression {quicksort int <} should be treated by the parser as a subterm over the signature

KIND int type.
TYPE > int -> int -> o.
TYPE qsort int list -> int list -> o.

plus the signature items in lists (and the system module, where < is given an op-declaration).

Using constants to denote modules and signatures. The names for modules and signatures
should be converted to constants that are given types, say modname and signame, and declarations
for these names need to be added (destructively) to the system module. In this way, they will be
available globally. Thus, ==> and ===> (this second arrow is described below) would have the types

KIND modname, signame type.
TYPE ==> modname -> o -> o.
TYPE ===> modname -> signame -> o -> o.

The current convention in LP2.7 and eLP is that there is one module per file and that the file’s name
is built from the module’s name. This approach has the advantage that by mentioning a module
name in one of these interpreters, it is possible for the system to find the file containing that module.
It may be an advantage, however, to drop this linkage, in which case, files, possibly containing a
number of modules and signatures, are loaded by using entire path names. For the purposes of
compilation and parsing, once a file is parsed and checked, a second, parallel file containing only
signatures might be generated from the one that is just parsed. It should only be this second
file that is needed during parsing and compiling of other modules. The aux files generated by
Prolog/Mali [1] are essentially signatures that parallel modules.

Quantification over module names. It may be possible to permit variables to range over
modules if we are willing to admit runtime signature checking of modules. For example, consider
a goal of the form (===> mod sig G). Here mod is a module whose signature is contained in that
given by sig: this check would be done when this goal is attempted. Thus, in determining the
static properties of a goal with this syntax, simply use the signature sig instead of attempting to
determine the one for mod, which may be a variable. Thus, a goal of the form

?- memb M (mod1::mod2::mod3::nil), ===> M sig G.

would search for a module that can be used to establish the goal G. If all the modules mod1, mod2,
and mod3 have a signature contained in the signature sig, then no runtime error is generated by
this goal. The syntax (===> M sig G) is essentially the same as (M ==> G) except that M must
be restricted by the signature sig. Notice that it will not be possible to quantify over signature
names.
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Other declarations. Other declarations besides those for op might also be allowed. For ex-
ample, certain types could be specified as being open or closed and certain predicates could have
declarations describing how atomic goals could be suspended if certain argument positions are
unbound.

Relationship to other aspects of an interpreter. The interaction of the module system with
input/output and with the top-level of an interpreter must also be considered carefully.

3 Formal aspects of this proposal

The design of λProlog has been motivated in part by the desire to make logic play as large a
role as possible in efforts to extend the expressiveness of logic programming. There are many
reasons for this emphasis on logic: the resulting language remains declarative and programs can be
given meaning using such deep meta-theoretic properties as cut-elimination and model theoretic
semantics. Thus, analyzing programming-in-the-small within “pure” λProlog can be attached using
these deep principles. We can hope that the language for describing modules will also have such
principles.

As an example of such principles, consider the problem of representation independence for
abstract data types. If we follow the line of argument given in [14] (and above) for coding abstract
data types, representation independence follows directly. For example, consider the following two
existentially quantified formulas, E1 and E2, which provide different implementations of queues. (I
shall use the syntactic variable E to range over possibly existentially quantified definite formulas.)

sigma qu\(sigma f\(
pi L\ ( empty (qu L L) ),

pi X\(pi L\(pi K\( enter X (qu L (f X K)) (qu L K) ))),
pi X\(pi L\(pi K\( remove X (qu (f X L) K) (qu L K) ))) )).

sigma emp\(sigma g\(
( empty emp ),

pi X\(pi L\ ( enter X L (g X L) )),
pi X\ ( remove X (g X emp) emp ),
pi X\(pi L\(pi K\( remove X (g Y L) (g Y K) :- remove X L K ))) )).

Let ` be intuitionistic provability and let `+ be an enrichment of ` that is conservative over ` and
that also makes it possible to reason about data structures (that is, induction must be incorporated).
Then if we show that E1 and E2 are equivalent in `+, that is, E1 `+ E2 and E2 `+ E1, then the
following argument is immediate: if Γ, E1 ` G then Γ, E1 `+ G since `+ enriches `; by cut-
elimination (assumed also for `+), Γ, E2 `+ G; finally, by conservative extension, Γ, E2 ` G. Thus,
if a goal G is provable using E1, it is provable using E2 (the converse is similar). The fact that
abstractions are based on logic made this argument particularly direct.
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Since the higher-order theory of hereditary Harrop formulas has been worked out in [19], there
should be little problem getting this module facility to work smoothly with higher-order program-
ming. Numerous other formal aspects of this module proposal must also be explored.

4 Conclusion

I have described a possible approach to programming-in-the-large for λProlog. This proposal is
designed to ensure that the module constructions are declarative and this was done by making
certain that the module syntax can be replaced in a very natural way by logical connectives.

This proposal is just a draft: many details have been left out. A subsequent version of this
proposal will hopefully correct this shortcoming.
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