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Abstract

Logic programming can be given a foundation in sequent calculus by
viewing computation as the process of building a cut-free sequent proof
bottom-up. The first accounts of logic programming as proof search
were given in classical and intuitionistic logic. Given that linear logic
allows richer sequents and richer dynamics in the rewriting of sequents
during proof search, it was inevitable that linear logic would be used
to design new and more expressive logic programming languages. We
overview how linear logic has been used to design such new languages
and describe briefly some applications and implementation issues for
them.

1.1 Introduction

It is now commonplace to recognize the important role of logic in the
foundations of computer science. When a major new advance is made in
our understanding of logic, we can thus expect to see that advance ripple
into many areas of computer science. Such rippling has been observed
during the years since the introduction of linear logic by Girard in 1987
[Gir87]. Since linear logic embraces computational themes directly in
its design, it often allows direct and declarative approaches to compu-
tational and resource sensitive specifications. Linear logic also provides
new insights into the many computational systems based on classical
and intuitionistic logics since it refines and extends these logics.

There are two broad approaches by which logic, via the theory of
proofs, is used to describe computation [Mil93]. One approach is the
proof reduction paradigm, which can be seen as a foundation for func-
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tional programming. Here, programs are viewed as natural deduction
or sequent calculus proofs and computation is modeled using proof nor-
malization. Sequents are used to type a functional program: a program
fragment is associated with the single-conclusion sequent ∆ −→ G if the
code has the type declared in G when all its free variables have types
declared for them in the set of type judgments ∆. Abramsky [Abr93]
has extended this interpretation of computation to multiple-conclusion
sequents of linear logic, ∆ −→ Γ, where ∆ and Γ are both multisets of
typing judgments. In that setting, cut-elimination can be seen as speci-
fying concurrent computations. See also [BS94, Laf89, Laf90] for related
uses of concurrency in proof normalization in linear logic. The more
expressive types made possible by linear logic have also been used to
provide static analysis of run-time garbage, aliases, reference counters,
and single-threadedness [GH90, MOTW99, O’H91, Wad90].

Another approach to using proof theory to specify computation is
the proof search paradigm, which can be seen as a foundation for logic
programming. In this paper (which is an update to [Mil95]), we first
provide an overview of the proof search paradigm and then outline the
impact that linear logic has made to the design and expressivity of new
logic programming languages.

1.2 Goal-directed proof search

When logic programming is considered abstractly, sequents directly en-
code the state of a computation and the changes that occur to sequents
during bottom-up search for cut-free proofs encode the dynamics of com-
putation. In particular, following the framework described in [MNPS91],
a logic programming language consists of two kinds of formulas: program
clauses describe the meaning of non-logical constants and goals are the
possible consequences considered from collections of program clauses. A
single-conclusion sequent ∆ −→ G represents the state of an idealized
logic programming interpreter in which the current logic program is ∆
(a set or multiset of formulas) and the goal is G. These two classes of
formulas are duals of each other in the sense that a negative subformula
of a goal is a program clause and a negative subformula of a program
clause is a goal formula.
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1.2.1 Uniform proofs

The constants that appear in logical formulas are of two kinds: logical
constants (connectives and quantifiers) and non-logical constants (pred-
icates and function symbols). The “search semantics” of the former is
fixed and independent of context: for example, the search for the proof
of a disjunction or universal quantifier should be the same no matter
what program is contained in the sequent for which a proof is required.
On the other hand, the instructions for proving a formula with a non-
logical constant head (that is, an atomic formula) are provided by the
logic program in the sequent.

This separation of constants into logical and non-logical yields two
different phases in proof search for a sequent. One phase is that of goal
reduction, in which the search for a proof of a non-atomic formula uses
the introduction rule for its top-level logical constant. The other phase
is backchaining, in which the meaning of an atomic formula is extracted
from the logic program part of the sequent.

The technical notion of uniform proofs is used to capture the notion
of goal-directed search. When sequents are single-conclusion, a uniform
proof is a cut-free proof in which every sequent with a non-atomic right-
hand side is the conclusion of a right-introduction rule [MNPS91]. An
interpreter attempting to find a uniform proof of a sequent would directly
reflect the logical structure of the right-hand side (the goal) into the
proof being constructed. As we shall see, left-introduction rules are used
only when the goal formula is atomic and as part of the backchaining
phase.

A specific notion of goal formula and program clause along with a
proof system is called an abstract logic programming language if a sequent
has a proof if and only if it has a uniform proof. As we shall illustrate
below, first-order and higher-order variants of Horn clauses paired with
classical provability [NM90] and hereditary Harrop formulas paired with
intuitionistic provability [MNPS91] are two examples of abstract logic
programming languages.

While backchaining is not part of the definition of uniform proofs, the
structure of backchaining is consistent across several abstract logic pro-
gramming languages. In particular, when proving an atomic goal, appli-
cations of left-introduction rules can be used in a coordinated decompo-
sition of a program clause that yields not only a matching atomic formula
occurrence to the atomic goal but also possibly new goals formulas for
which additional proofs must be attempted [NM90, MNPS91, HM91].
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1.2.2 Logic programming in classical and intuitionistic logics

In the beginning of the logic programming literature, there was one ex-
ample of logic programming, namely, the first-order classical theory of
Horn clauses, which was the logic basis of the popular programming
language Prolog. However, no general framework existed for connecting
logic and logic programming. The operational semantics of logic pro-
grams was presented as resolution [AvE82], an inference rule optimized
for classical reasoning. Miller and Nadathur [MN86, Mil86, NM90] were
probably the first to use the sequent calculus to examine design and cor-
rectness issues for logic programming languages. Moving to the sequent
calculus made it nature to consider logic programming in settings other
than just classical logic.

We first consider the design of logic programming languages within
classical and intuitionistic logic, where the logical constants are taken to
be true, ∧, ∨, ⊃, ∀, and ∃ (false and negation are not part of the first
logic programs we consider).

Horn clauses can be defined simply as those formulas built from true,
∧, ⊃, and ∀ with the proviso that no implication or universal quanti-
fier is to the left of an implication. A goal in this setting would then
be any negative subformula of a Horn clause: more specifically, they
would be either true or a conjunction of atomic formulas. It is shown in
[NM90] that a proof system similar to the one in Figure 1.1 is complete
for the classical logic theory of Horn clauses and their associated goal
formulas. It then follows immediately that Horn clauses are an abstract
logic programming language. (The syntactic variable A in Figure 1.1
denotes atomic formulas.) Notice that sequents in this and other proof
systems contain a signature Σ as its first element: this signature contains
type declarations for all the non-logical constants in the sequent. Notice
also that there are two different kinds of sequent judgments: one with
and one without a formula on top of the sequent arrow. The sequent
Σ : ∆ D−→ A denotes the sequent Σ : ∆, D −→ A but with the D

formula being distinguished (that is, marked for backchaining).
Inference rules in Figure 1.1, and those that we shall show in sub-

sequent proof systems, can be divided into four categories. The right-
introduction rules (goal-reduction) are those using the unlabeled sequent
arrow and in which the goal formula is non-atomic. The left-introduction
rules (backchaining) are those with sequent arrows labeled with a for-
mula and it is on that formula that introduction rules are applied. The
initial rule forms the third category and is the only rule with a repeated
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Σ : ∆ −→ true

Σ : ∆ −→ G1 Σ : ∆ −→ G2

Σ : ∆ −→ G1 ∧G2

Σ : ∆
D−→ A

Σ : ∆ −→ A
decide

Σ : ∆
A−→ A

initial
Σ : ∆

Di−→ A

Σ : ∆
D1∧D2−→ A

Σ : ∆ −→ G Σ : ∆
D−→ A

Σ : ∆
G⊃D−→ A

Σ : ∆
D[t/x]−→ A

Σ : ∆
∀τ x.D−→ A

Fig. 1.1. In the decide rule, D ∈ ∆; in the left rule for ∧, i ∈ {1, 2}; and in
the left rule for ∀, t is a Σ-term of type τ .

Σ : ∆, D −→ G

Σ : ∆ −→ D ⊃ G

Σ, c: τ : ∆ −→ G[c/x]

Σ : ∆ −→ ∀τx.G

Fig. 1.2. The rule for universal quantification has the proviso that c is not
declared in Σ.

occurrence of a schema variable in its conclusion. The decide rule forms
the forth and final category: this rule is responsible for moving a formula
from the logic program to above the sequent arrow.

In this proof system, left-introductions are now applied only on the
formula annotating the sequent arrow. The usual notion of backchaining
can be seen as an instance of a decide rule, which places a formula from
the program (the left-hand context) on top of the sequent arrow, and
then a sequence of left-introductions work on that distinguished formula.
Backchaining ultimately performs a linking between a goal formula and
a program clause via the repeated schema variable in the initial rule. In
Figure 1.1, there is one decide rule and one initial rule: in a subsequent
inference system, there are more of each category. Also, proofs in this
system involving Horn clauses have a simple structure: all sequents in a
given proof have identical left hand sides: signatures and programs are
fixed and global during the search for a proof. If changes in sequents are
meant to be used to encode dynamics of computation, then Horn clauses
provide a weak start: the only dynamics are changes in goals which
relegates such dynamics entirely to the non-logical domain of atomic
formulas. As we illustrate with an example in Section 1.6, if one can
use a logic programming language where sequents have more dynamics,
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then one can reason about some aspects of logic programs directly using
logical tools.

Hereditary Harrop formulas can be presented simply as those formu-
las built from true, ∧, ⊃, and ∀ with no restrictions. Goal formulas,
i.e., negative subformulas of such formulas, would thus have the same
structure. It is shown in [MNPS91] that a proof system similar to the
one formed by adding to the inference rules in Figure 1.1 the rules in
Figure 1.2 is complete for the intuitionistic logic theory of hereditary
Harrop formulas and their associated goal formulas. It then follows
immediately that hereditary Harrop formulas are an abstract logic pro-
gramming language. The classical logic theory of hereditary Harrop for-
mulas is not, however, an abstract logic programming language: Peirce’s
formula ((p ⊃ q) ⊃ p) ⊃ p, for example, is classically provable but has
no uniform proof. The original definition of hereditary Harrop formu-
las permitted disjunctions and existential quantifiers at the top-level of
goal formulas. Such an extension makes little change to the logic’s proof
theory properties but does help to justify its name since all positive
subformulas of program clauses are then Harrop formulas [Har60].

Notice that sequents in this new proof system have a slightly greater
ability to change during proof search: in particular, both signatures and
programs can increase as proof search moves upward. Thus, not all
constants and program clauses need to be available at the beginning of
a computation: instead they can be made available as search contin-
ues. For this reason, the hereditary Harrop formulas have been used to
provide logic programming with approaches to modular programming
[Mil89b] and abstract datatypes [Mil89a, NJK95].

1.2.3 Higher-order quantification and proof search

The impact of using higher-order quantification in proof search was
systematically studied in the contexts of Horn clauses [MN86, Nad87,
NM90] and hereditary Harrop formulas [MNPS91, NM98]. The higher-
order setting for these studies was done using the subset of Church’s
Simple Theory of Types [Chu40] in which the “mathematical axioms”
of extensionality, infinity, choice, etc, are not assumed.

Allowing quantification of variables of functional types only (that is,
not at predicate type) is not a challenge for the high-level treatment of
proof search. Such an extension to the first-order setting does make logic
programming much more expressive and more challenging to implement.
In particular, the presence of quantification at function types and of sim-
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ply typed λ-terms [Chu40] endowed logic programming with the encod-
ing technique called higher-order abstract syntax [MN87, HM88, PE88].
It was, in fact, the λProlog programming language [NM88] in which this
style programming was first supported.

Allowing quantification at predicate type does provide some significant
challenges to the proof theoretical analysis of proof search: we illustrate
two such issues here.

One issue with predicate quantification is that during proof search, the
careful restriction to having program clauses on the left of the sequent
arrow and goal formulas on the right might be broken via higher-order
instantiation with terms containing logical connectives. For example,
consider a logic program containing the following two clauses:

∀P [P a ⊃ q b] and ∀x[q x ⊃ r].

Here, the first clause is a higher-order Horn clause following the defini-
tion in [NM90]. If we take an instance of this logic program in which P

in the first clause is instantiated by λw.¬q w, we have clauses logically
equivalent to

[q a ∨ q b] and ∀x[q x ⊃ r].

Notice that with respect to this second logic program the atomic goal
r has a classical logic proof but does not have a uniform proof. Thus,
the instance of a higher-order Horn clause does not necessarily result
in another higher-order Horn clause. Fortunately, for both the theory
of higher-order Horn clauses and higher-order hereditary Harrop for-
mulas, it is possible to prove that the only higher-order instances that
are required during proof search are those that preserve the invariance
of the initial syntactic restriction to Horn clauses or hereditary Harrop
formulas [MNPS91, NM90].

A second issue is more related the operational reading of clauses: pro-
gram clauses are generally seen as contributing meaning to specific pred-
icates, such as those that, for example, define the relations of concate-
nation or sorting of lists. These predicate constants have occurrences at
strictly positive positions within program clauses: such a positive occur-
rence is called a head of a clause. If one allows predicate variables instead
of constants in such head positions, then in a sense, such program clauses
would be contributing meaning to any predicate. For this reason, head
symbols are generally restricted to be constants. If all head symbols
in a logic program are constant, it is also easy to show that that logic
program is consistent (that is, some formulas are not deducible from it).
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If certain mild restrictions are placed on the occurrences of logical
connectives within the scope of non-logical constants (that is, within
atoms), then higher-order variants of Horn clauses and hereditary Har-
rop formulas are known to be abstract logic programming languages
[NM90, MNPS91]. Higher-order quantification of predicates can pro-
vide logic programming specifications with direct and natural ways to
do higher-order programming, as is popular in functional programming
languages, as well as providing a means of lexically scoping and hiding
predicates [Mil89a].

Allowing higher-order head positions does have, at least, a theoreti-
cal interest. Full first-order intuitionistic logic is not an abstract logic
programming language since both ∨ and ∃ can cause incompleteness of
uniform proofs. For example, both

p ∨ q −→ q ∨ p and ∃x.B −→ ∃x.B

have intuitionistic proofs but neither sequent has a uniform proof. As
we have seen above, eliminating disjunction and existential quantifi-
cation yields immediately abstract logic programming languages (at
least within intuitionistic logic). As is well known, higher-order quan-
tification allows one to define the intuitionistic disjunction B ∨ C as
∀p((B ⊃ p) ⊃ (C ⊃ p) ⊃ p) and the existential quantifier ∃x.Bx as
∀p((∀x.Bx ⊃ p) ⊃ p). Both of these formulas have the predicate vari-
able p in a head position. Notice that if the two sequents displayed
above are rewritten using these two definitions, the resulting sequents
would have uniform proofs. Felty has shown that higher-order intuition-
istic logic based on true, ∧, ⊃, and ∀ for all higher-order types (with
no restriction of predicate variable occurrences) is an abstract logic pro-
gramming language [Fel93].

1.2.4 Uniform proofs with multiple conclusion sequents

In the multiple-conclusion setting, goal-reduction should continue to be
independent not only from the logic program but also from other goals,
i.e., multiple goals should be reducible simultaneously. Although the
sequent calculus does not directly allow for simultaneous rule applica-
tion, it can be simulated easily by referring to permutations of inference
rules [Kle52]. In particular, we can require that if two or more right-
introduction rules can be used to derive a given sequent, then all possible
orders of applying those right-introduction rules can be obtained from
any other order simply by permuting right-introduction inferences. It is
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easy to see that the following definition of uniform proofs for multiple-
conclusion sequents generalizes that for single-conclusion sequents: a
cut-free, sequent proof Ξ is uniform if for every subproof Ψ of Ξ and
for every non-atomic formula occurrence B in the right-hand side of
the end-sequent of Ψ, there is a proof Ψ′ that is equal to Ψ up to per-
mutation of inference rules and is such that the last inference rule in Ψ′

introduces the top-level logical connective occurring in B [Mil93, Mil96].
The notion of abstract logic programming language can be extended to
the case where this extended notion of uniform proof is complete. As
evidence of the usefulness of this definition, Miller in [Mil93] used it to
specify a π-calculus-like process calculus in linear logic and showed that
it was an abstract logic programming language in this new sense.

Given this definition of uniform proofs for multiple conclusion sequent
calculus, an interesting next step would be to turn to linear logic and
start to identify subsets for which goal directed search is complete and
to identify backchaining rules. Fortunately and surprisingly, the work
of Andreoli in his PhD thesis [And90] on focused proof search for linear
logic provides a complete analysis along these lines for all of linear logic.

1.3 Linear logic and focused proofs

As we have seen, the goal-directed proof search analysis of logic pro-
gramming in classical and intuitionistic logic revealed three general ob-
servations: (1) Two sets of formulas can be identified for use as goals
and as program clauses. (2) These two classes are duals of each other,
at least in the sense that a negative subformula of a formula in one class
is a formula in the other class. (3) Goal formulas are processed imme-
diately by a sequence of invertible right-rules and program clauses are
used via a focused application of left-rules know as backchaining.

Andreoli analyzed the structure of proof search in linear logic using
the notion of focused proof [And90, And92]. His analysis made it pos-
sible to extend the above three observations to all of linear logic and
to provide a deep and elegant explanation for why they hold. Andreoli
classified the logical connectives into two sets of connectives. Asyn-
chronous connectives are those whose right-introduction rule is invertible
and synchronous connectives are those whose right-introduction is not
invertible; that is, the success of applying a right-introduction rule for
a synchronous connective required information from the context. (We
say that a formula is asynchronous or synchronous depending on the
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top-level connective of the formula.) He also observed that these two
classes of connectives are de Morgan duals of each other.

Given these distinctions between formulas, Andreoli showed that a
complete bottom-up proof search procedure for cut-free proofs in linear
logic (using one-sided sequents) can be described roughly as follows: first
decompose all asynchronous formulas and when none remain, pick some
synchronous formula, introduce its top-level connective and then con-
tinue decomposing all synchronous subformulas that might arise. Thus
interleaving between asynchronous reductions and synchronous reduc-
tions yields a highly normalized proof search mechanism. Proofs built
in this fashion are called focused proofs.

A consequence of this completeness of focused proofs is that all of
linear logic can be seen as logic programming, at least once we choose
the proper presentation of linear logic. In such a presentation, focused
proofs capture the notion of uniform proofs and backchaining at the
same time. Since all of linear logic can be seen as logic programming,
we delay presenting more details about focused proofs until the next
section where we present several linear logic programming languages.

1.4 Linear logic programming languages

We now present the designs of some linear logic programming languages.
Our first language, Forum, provides a basis for considering all of linear
logic as logic programming. We shall also look at certain subsets of
Forum since they will allow us to focus on particular structural features
of proof search and particular application areas.

1.4.1 The Forum presentation of linear logic

The logic programming languages based on classical and intuitionistic
logics considered earlier used the connectives true, ∧, ⊃, and ∀. We
shall now consider a presentation of linear logic using the corresponding
connectives, namely, >, &, ⇒, and ∀, along with the distinctly linear
connectives −◦, ⊥, .................................................

............
.................................. , and ?. Together, this collection of connectives

yields a presentation of all of linear logic since the missing connectives
are directly definable using the following logical equivalences.

B⊥ ≡ B −◦ ⊥ 0 ≡ >−◦ ⊥ 1 ≡ ⊥−◦ ⊥ ∃x.B ≡ (∀x.B⊥)⊥

!B ≡ (B ⇒ ⊥)−◦⊥ B⊕C ≡ (B⊥&C⊥)⊥ B⊗C ≡ (B⊥ .................................................
............
.................................. C⊥)⊥
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This collection of connectives is not minimal: for example, ? and .................................................
............
.................................. , can

be defined in terms of the remaining connectives

? B ≡ (B −◦ ⊥) ⇒ ⊥ and B
.................................................

............
.................................. C ≡ (B −◦ ⊥)−◦ C.

Unlike many treatments of linear logic, we shall treat B ⇒ C as a logical
connective (which corresponds to ! B−◦C). From the proof search point-
of-view, the four intuitionistic connectives true, ∧, ⊃, and ∀ correspond
naturally with the four linear logic connectives >, &, ⇒, and ∀ (in fact,
the correspondence is so strong for the quantifiers that we write them
the same in both settings). We shall call this particular presentation of
linear logic the Forum presentation of linear logic or simply Forum.

Notice that all the logical connectives used in Forum are asynchronous:
that is, their right-introduction rules are invertible. Since we are using
two sided sequents, asynchronous formulas have a synchronous behavior
when they are introduced on the left of the sequent arrow. Thus, goal
reduction correspondences to the reduction of asynchronous connectives
and backchaining correspondences to the focused decomposition of syn-
chronous connectives (via left-introduction rules).

The proof systems in Figures 1.1 and 1.2 that describe logic program-
ming in classical and intuitionistic logic used two styles of sequents:
Σ : ∆ −→ G and Σ : ∆ D−→ A, where ∆ is a set of formulas. These
sequent judgments are generalized here to Σ : Ψ; ∆ −→ Γ;Υ (for goal-
reduction) and Σ : Ψ; ∆ D−→ A; Υ (for backchaining), where Ψ and Υ
are sets of formulas (classical maintenance), ∆ and Γ are multisets of
formulas (linear maintenance), A is a multiset of atomic formulas, and
D is a formula. Notice that placement of the linear context next to the
sequent arrow and classical context away from the arrow is standard no-
tation in the literature of linear logic programming, but is the opposite
convention used by Girard in his LU proof system [Gir93].

The focusing result of Andreoli [And92] can be formulated [Mil96] as
the completeness of the proof system for linear logic using the proof
system in Figure 1.3. This proof system appears rather complicated
at first glance, so it is worth noting the following organization of these
inference rules: there are 8 right-introduction rules, 7 left-introduction
rules, 2 initial rules, and 3 decide rules. Notice that 2 of the decide rules
place a formula on the sequent arrow while the third copies of formula
from the classically maintained right context to the linear maintained
right context. This third decide rule is a combination of contraction and
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Σ : Ψ;∆ −→ >, Γ; Υ

Σ : Ψ;∆ −→ B, Γ;Υ Σ : Ψ; ∆ −→ C, Γ;Υ

Σ : Ψ;∆ −→ B & C, Γ;Υ

Σ : Ψ;∆ −→ Γ; Υ

Σ : Ψ;∆ −→ ⊥, Γ;Υ

Σ : Ψ;∆ −→ B, C, Γ;Υ

Σ : Ψ; ∆ −→ B
.................................................

............
.................................. C, Γ;Υ

Σ : Ψ; B, ∆ −→ C, Γ;Υ

Σ : Ψ;∆ −→ B −◦ C, Γ;Υ

Σ : B, Ψ;∆ −→ C, Γ;Υ

Σ : Ψ;∆ −→ B ⇒ C, Γ;Υ

y: τ, Σ : Ψ; ∆ −→ B[y/x], Γ;Υ

Σ : Ψ; ∆ −→ ∀τx.B, Γ;Υ

Σ : Ψ;∆ −→ Γ; B, Υ

Σ : Ψ; ∆ −→ ? B, Γ;Υ

Σ : B, Ψ;∆
B−→ A; Υ

Σ : B, Ψ;∆ −→ A; Υ

Σ : Ψ; ∆
B−→ A; Υ

Σ : Ψ; B, ∆ −→ A; Υ

Σ : Ψ;∆ −→ A, B; B, Υ

Σ : Ψ;∆ −→ A; B, Υ

Σ : Ψ; · A−→ A; Υ Σ : Ψ; · A−→ ·; A, Υ

Σ : Ψ; · ⊥−→ ·; Υ
Σ : Ψ;∆

Gi−→ A; Υ

Σ : Ψ;∆
G1&G2−→ A; Υ

Σ : Ψ; B −→ ·; Υ
Σ : Ψ; · ? B−→ ·; Υ

Σ : Ψ;∆1
B−→ A1; Υ Σ : Ψ;∆2

C−→ A2; Υ

Σ : Ψ; ∆1, ∆2
B

.................................................
............
.................................. C−→ A1,A2; Υ

Σ : Ψ; ∆
B[t/x]−→ A; Υ

Σ : Ψ;∆
∀τ x.B−→ A; Υ

Σ : Ψ; ∆1 −→ A1, B; Υ Σ : Ψ;∆2
C−→ A2; Υ

Σ : Ψ;∆1, ∆2
B−◦C−→ A1,A2; Υ

Σ : Ψ; · −→ B; Υ Σ : Ψ;∆
C−→ A; Υ

Σ : Ψ;∆
B⇒C−→ A; Υ

Fig. 1.3. A proof system for the Forum presentation of linear logic. The right-
introduction rule for ∀ has the proviso that y is not declared in the signature
Σ, and the left-introduction rule for ∀ has the proviso that t is a Σ-term of
type τ . In left-introduction rule for &, i ∈ {1, 2}.

dereliction rule for ? and is used to “decide” on a new goal formula on
which to do reductions.

Because linear logic can be seen as the logic behind classical and in-
tuitionistic logic, it is possible to see both Horn clauses and hereditary
Harrop formulas as subsets of Forum. It is a simple matter to see that
the proof systems in Figures 1.1 and 1.2 result from restricting the proof
system for Forum in Figure 1.3 to Horn clauses and to hereditary Har-
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Σ : Ψ;∆ −→ >
Σ : Ψ;∆ −→ G1 Σ : Ψ;∆ −→ G2

Σ : Ψ;∆ −→ G1 & G2

Σ : Ψ, G1;∆ −→ G2

Σ : Ψ; ∆ −→ G1 ⇒ G2

Σ : Ψ;∆, G1 −→ G2

Σ : Ψ; ∆ −→ G1 −◦G2

y : τ, Σ : Ψ;∆ −→ B[y/x]

Σ : Ψ;∆ −→ ∀τx.B

Σ : Ψ, D;∆
D−→ A

Σ : Ψ, D;∆ −→ A

Σ : Ψ;∆
D−→ A

Σ : Ψ;∆, D −→ A Σ : Ψ; · A−→ A

Σ : Ψ;∆
Di−→ A

Σ : Ψ;∆
D1∧D2−→ A

Σ : Ψ; · −→ G Σ : Ψ;∆
D−→ A

Σ : Ψ; ∆
G⇒D−→ A

Σ : Ψ;∆1 −→ G Σ : Ψ; ∆2
D−→ A

Σ : Ψ; ∆1, ∆2
G−◦D−→ A

Σ : Ψ; ∆
D[t/x]−→ A

Σ : Ψ;∆
∀τ x.D−→ A

Fig. 1.4. The proof system for Lolli. The rule for universal quantification has
the proviso that y is not in Σ. In the ∀-left rule, t is a Σ-term of type τ .

rop formulas. Below we overview various other subsets of linear logic
that have been proposed as specification languages and as abstract logic
programming languages.

1.4.2 Lolli

The connectives ⊥, .................................................
............
.................................. , and ? force the genuinely classical feel of linear

logic. (In fact, using the two linear logic equivalences ? B ≡ (B−◦⊥) ⇒
⊥ and B

.................................................
............
.................................. C ≡ (B −◦ ⊥) −◦ C we see that we only need to add ⊥ to

a system with the two implication −◦ and ⇒ to get full classical linear
logic.) Without these three connectives, the multiple-conclusion sequent
calculus given for Forum in Figure 1.3 can be replaced by one with only
single-conclusion sequents.

The collection of connectives one gets from dropping these three con-
nectives from Forum, namely >, &, ⇒, −◦, and ∀, form the Lolli logic
programming language. Presenting a sequent calculus for Lolli is a sim-
ple matter. First, remove any inference rule in Figure 1.3 involving
⊥, .................................................

............
.................................. , and ?. Second, abbreviate the sequents Σ : Ψ; ∆ −→ G; · and

Σ : Ψ; ∆ D−→ A; · as Σ : Ψ; ∆ −→ G and Σ : Ψ; ∆ D−→ A. The result-
ing proof system for Lolli is given in Figure 1.4. The completeness of
this proof system for Lolli was given directly by Hodas and Miller in
[HM94], although it follows directly from the completeness of focused
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proofs [And92], at least once focused proofs are written as the Forum
proof system.

1.4.3 Uncurrying program clauses

Frequently it is convenient to view a program clause, such as

∀x̄[G1 ⇒ G2 −◦A],

which contains two goals, as a program clause containing one goal: the
formula

∀x̄[(! G1 ⊗G2)−◦A].

is logically equivalent to the formula above and brings the two goals into
the one expression ! G1⊗G2. Such a rewriting of a formula to a logically
equivalent formula is essentially the uncurrying of the formula, where
uncurrying is the rewriting of formulas using the following equivalences
in the forward direction.

H ≡ 1−◦H

B −◦ C −◦H ≡ (B ⊗ C)−◦H

B ⇒ H ≡ ! B −◦H

(B −◦H) & (C −◦H) ≡ (B ⊕ C)−◦H

∀x.(B(x)−◦H) ≡ (∃x.B(x))−◦H

(The last equivalence assumes that x is not free in H.) Allowing oc-
currences of 1, ⊗, !, ⊕, and ∃ into goals does not cause any problems
with the completeness of uniform provability and some presentations of
linear logic programming language [HM94, Mil96, PH94] allow for such
occurrences.

1.4.4 Other subsets of Forum

Although all of linear logic can be seen as abstract logic programming, it
is still of interest to examine subsets of linear logic for use as specification
languages or as programming languages. These subsets are often moti-
vated by picking a small subset of linear logic that is expressive enough
to specify problems of a certain application domain. Below we list some
subsets of linear logic that have been identified in the literature.

If one maps true to >, ∧ to &, and ⊃ to ⇒, then both Horn clauses
and hereditary Harrop formulas can be identified with linear logic for-
mulas. Proofs given for these two sets of formulas in Figures 1.1 and 1.2
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are essentially the same as those for the corresponding proofs in Fig-
ure 1.4. Thus, viewing these two classes of formulas as being based on
linear instead of intuitionistic logic does not change their expressive-
ness. In this sense, Lolli can be identified as being hereditary Harrop
formulas extended with linear implication. When one is only interested
in cut-free proofs, a second translation of Horn clauses and hereditary
Harrop formulas into linear logic is possible. In particular, if negative
occurrences of true, ∧, and ⊃ are translated to 1, ⊗, and −◦, respec-
tively, while positive occurrences of true, ∧, and ⊃ are translated to >,
&, and ⇒, respectively, then the resulting proofs in Figure 1.4 of the
linear logic formulas yield proofs similar to those in Figures 1.1 and 1.2
[HM94]. (The notion here of positive and negative occurrences are with
respect to occurrences within a cut-free proof: for example, a positive
occurrence in a formula on the left of a sequent arrow is judged to be a
negative occurrence for this translation.) Thus, if the formula

∀x̄[(A1 ∧ (A2 ⊃ A3) ∧A4) ⊃ A0]

appears on the left of the sequent arrow, it is translated as

∀x̄[(A1 ⊗ (A2 ⇒ A3)⊗A4)−◦A0]

and if it appears on the right of the sequent arrow, it is translated as

∀x̄[(A1 & (A2 −◦A3) & A4) ⇒ A0].

Historically speaking, the first proposal for a linear logic programming
language was LO (Linear Objects) by Andreoli and Pareschi [AP91a,
AP91b]. LO is an extension to the Horn clause paradigm in which atomic
formulas are generalized to multisets of atomic formulas connected by
.................................................

............
.................................. . In LO, backchaining is again multiset rewriting, which was used to

specify object-oriented programming and the coordination of processes.
LO is a subset of the LinLog [And90, And92], where formulas are of the
form

∀ȳ(G1 ↪→ · · · ↪→ Gm ↪→ (A1
.................................................

............
.................................. · · · .................................................

............
.................................. Ap)).

Here p > 0 and m ≥ 0; occurrences of ↪→ are either occurrences of −◦
or ⇒; G1, . . . Gm are built from ⊥, .................................................

............
.................................. , ?, >, &, and ∀; and A1, . . . Am

are atomic formulas. In other words, these are formula in Forum where
the “head” of the formula is not empty (i.e., p > 0) and where the goals
G1, . . . Gm do not contain implications. Andreoli argues that arbitrary
linear logic formulas can be “skolemize” (by introducing new non-logical
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constants) to yield only LinLog formulas, such that proof search involv-
ing the original and the skolemize formulas are isomorphic. By applying
uncurrying, the displayed formula above can be written in the form

∀ȳ(G−◦ (A1
.................................................

............
.................................. · · · .................................................

............
.................................. Ap))

where G is composed of the top-level synchronous connectives and of
the subformulas G1, . . . , Gm, which are all composed of asynchronous
connectives. In LinLog, goal formulas have no synchronous connective
in the scope an asynchronous connective.

1.4.5 Other language designs

Another linear logic programming language that has been proposed is
the Lygon system of Harland and Pym [HPW96]. They based their
design on notions of goal-directed proof and multiple conclusion uniform
proofs [PH94] that unfortunately differ from those presented here. The
operational semantics for proof search that they developed is different
and more complex than the alternation of asynchronous and synchronous
search that is used for, say, Forum.

Let G and H be formulas composed of ⊥, .................................................
............
.................................. , and ∀. Closed formulas of

the form ∀x̄[G−◦H] where H is not (logically equivalent to) ⊥ have been
called process clauses in [Mil93] and are used there to encode a calculus
similar to the π-calculus: the universal quantifier in goals are used to
encode name restriction. These clauses written in the contrapositive
(replacing, for example, .................................................

............
.................................. with ⊗) have been called linear Horn clauses

by Kanovich and have been used to model computation via multiset
rewriting [Kan94].

Various other specification logics have also been developed, often de-
signed directly to deal with particular application areas. In particular,
the language ACL by Kobayashi and Yonezawa [KY93, KY94] captures
simple notions of asynchronous communication by identifying the send
and read primitives with two complementary linear logic connectives.
Lincoln and Saraswat have developed a linear logic version of concurrent
constraint programming [LS93, Sar93] and Fages, Ruet, and Soliman
have analyzed similar extensions to the concurrent constraint paradigm
[FRS98, RF97].

Some aspects of dependent typed λ-calculi overlap with notions of ab-
stract logic programming languages. Within the setting of intuitionistic,
single-side sequents, uniform proofs are similar to βη-long normal forms
in natural deduction and typed λ-calculus. The LF logical framework
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[HHP93] can be mapped naturally [Fel91] into a higher-order extension
of hereditary Harrop formulas [MNPS91]. Inspired such a connection
and by the design of Lolli, Cervesato and Pfenning developed a linear
extension to LF called Linear LF [CP96, CP02].

1.5 Applications of linear logic programming

One theme that occurs often in applications of linear logic programming
is that of multiset rewriting: a simple paradigm that has wide applica-
tions in computational specifications. To see how such rewriting can be
captured in proof search, consider the rewriting rule

a, a, b ⇒ c, d, e,

which specifies that a multiset can be rewritten by first removing two
occurrences of a and one occurrence of b and then have one occurrence
each of c, d, and e added. Since the left-hand of sequents in Figure 1.4
and the left- and right-hand sides of sequents in Figure 1.3 have multisets
of formulas, it is an easy matter to write clauses in linear logic which
can rewrite multisets when they are used in backchaining.

To rewrite the right-hand multiset of a sequent using the rule above,
simply backchain over the clause c

.................................................
............
.................................. d

.................................................
............
.................................. e −◦ a

.................................................
............
.................................. a

.................................................
............
.................................. b. To illustrate

such rewriting directly via Forum, consider the sequent Σ : Ψ; ∆ −→
a, a, b,Γ;Υ where the above clause is a member of Ψ. A proof for this
sequent can then look like the following (where the signature Σ is not
displayed).

Ψ;∆ −→ c, d, e, Γ; Υ
Ψ;∆ −→ c

.................................................
............
.................................. d

.................................................
............
.................................. e,Γ;Υ

Ψ; · a−→ a; Υ Ψ; · a−→ a; Υ Ψ; · b−→ b; Υ

Ψ; · a
.................................................

............
.................................. a

.................................................
............
.................................. b−−−−−−→ a, a, b; Υ

Ψ;∆ c
.................................................

............
.................................. d
.................................................

............
.................................. e−◦a.................................................

............
.................................. a

.................................................
............
.................................. b−−−−−−−−−−−→ a, a, b,Γ;Υ

Ψ;∆ −→ a, a, b, Γ;Υ

We can interpret this fragment of a proof as a rewriting of the multiset
a, a, b,Γ to the multiset c, d, e, Γ using the rule displayed above.

To rewrite the left-hand context instead, a clause such as

a−◦ a−◦ b−◦ (c−◦ d−◦ e−◦A1)−◦A0

or (using the uncurried form)

(a⊗ a⊗ b)⊗ ((c⊗ d⊗ e)−◦A1)−◦A0
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can be used in backchaining. Operationally this clause means that to
prove the atomic goal A0, first remove two occurrence of a and one of b

from the left-hand multiset, then add one occurrence each of c, d, and
e, and then proceed to attempt a proof of A1.

Of course, there are additional features of linear logic than can be used
to enhance this primitive notion of multiset rewriting. For examples, the
? modal on the right and the ! modal on the left can be used to place
items in multisets than cannot be deleted and the additive conjunction
& can be used to copy multisets.

Listed below are some application areas where proof search and linear
logic have been used. A few representative references for each area are
listed.

Object-oriented programming Capturing inheritance was a goal of
the early LO system [AP91b] and modeling state encapsulation was a
motivation [HM90] for the design of Lolli. State encapsulation was also
addressed using Forum in [DM95, Mil94].

Concurrency Linear logic is often been considered a promising declar-
ative foundation for concurrency primitives in specification languages
and programming languages. Via reductions to multiset rewriting, sev-
eral people have found encodings of Petri nets into linear logic [GG90,
AFG90, BG90, EW90]. The specification logic ACL of Kobayashi and
Yonezawa is an asynchronous calculus in which the send and read prim-
itives are identified with two complementary linear logic connectives
[KY93, KY94]. Miller [Mil93] described how features of the π-calculus
[MPW92] can be modeled in linear logic and Bruscoli and Guglielmi
[BG96] showed how specifications in the Gamma language [BLM96] can
be related to linear logic.

Operational semantics Forum has been used to specify the opera-
tional semantics of the imperative features in Algol [Mil94] and ML
[Chi95] and the concurrency features of Concurrent ML [Mil96]. Fo-
rum was used by Chirimar to specify the operational semantics of a
pipe-lined, RISC processor [Chi95] and by Chakravarty to specify the
operational semantics of a parallel programming language that combines
functional and logic programming paradigms [Cha97]. Linear logic has
also been used to express and to reason about the operational seman-
tics of security protocols [CDL+99, Mil03]. A similar approach to using
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linear logic was also applied to specifying real-time finite-state systems
[KOS98].

Object-logic proof systems Intuitionistic based systems, such as the
LF dependent type system and hereditary Harrop formulas, are pop-
ular choices for the specification of natural deduction proof systems
[HHP93, FM88]. The linear logic aspects of both Lolli and Linear LF
have been used to specify natural deduction systems for a wider collec-
tion of object-logics than are possible with these non-linear logic frame-
works [HM94, CP96]. By admitting full linear logic and multiple con-
clusion sequents, Forum provides a natural setting for the specification
of object-level sequent calculus proof systems. In classical linear logic,
the duality between left and rule introduction rules and between the cut
and initial rules is easily explained using the meta-level linear negation.
Some examples of specifying object-level sequent proof systems in Forum
are given in [Mil94, MP02, Ric98].

Natural language parsing Lambek’s precursor to linear logic [Lam58]
was motivated in part to deal with natural language syntax. An early use
of Lolli was to provide a simple and declarative approach to gap thread-
ing and island constraints within English relative clauses [HM94, Hod92]
that built on an approach first proposed by Pareschi using intuitionistic
logic [Par89, PM90]. Researchers in natural language syntax are gener-
ally quick to look closely at most advances in proof theory, and linear
logic has not been an exception: for a few additional references, see
[DLPS95, Mor95, Moo96].

1.6 Examples of reasoning about a linear logic program

One of the reasons to use logic as the source code for a programming lan-
guages is that the actual artifact that is the program should be amenable
to direct manipulation and analysis in ways that might be hard or im-
possible in more conventional programming languages. One method
for reasoning directly on logic programming involves the cut rule (via
modus ponens) and cut-elimination. We consider here two examples of
how the meta-theory of linear logic can be used to prove properties of
logic programs.

While much of the motivation for designing logic programming lan-
guages based on linear logic has been to add expressiveness to such
languages, linear logic can also help shed some light on conventional
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programs. In this section we consider the linear logic specification for
the reverse of lists and formally show it is symmetric.

Let the constants nil and (· :: ·) denote the two constructors for lists.
Consider specifying the binary relation reverse that relates two lists if
one is the reverse of the other. To specify the computation of reversing
a list, consider making two piles on a table. Initialize one pile to the
list you wish to reverse and initialize the other pile to be empty. Next,
repeatedly move the top element from the first pile to the top of the
second pile. When the first pile is empty, the second pile is the reverse
of the original list. For example, the following is a trace of such a
computation.

(a :: b :: c :: nil) nil

(b :: c :: nil) (a :: nil)

(c :: nil) (b :: a :: nil)

nil (c :: b :: a :: nil)

In more general terms: first pick a binary relation rv to denote the
pairing of lists above (this predicate will be an auxiliary predicate to
reverse). If we wish to reverse the list L to get K, then start with the
atomic formula (rv L nil) and do a series of backchaining over the clause

∀X∀P∀Q(rv P (X ::Q)−◦ rv (X :: P ) Q)

to get to the formula (rv nil K). Once this is done, K is the result of
reversing L. The entire specification of reverse can be written as the
following single formula.

∀L∀K[ ∀rv ((∀X∀P∀Q(rv P (X :: Q)−◦ rv (X ::P ) Q)) ⇒
rv nil K −◦ rv L nil)−◦ reverse L K ]

Notice that the clause used for repeatedly moving the top elements of
lists is to the left of an intuitionistic implication (so it can be used any
number of times) while the formula representing the base case of the
recursion, namely (rv nil K), is to the left of a linear implication (thus
it must be used exactly once).

Consider proving that reverse is symmetric: that is, if (reverse L K)
is proved from the above clause, then so is (reverse K L). The informal
proof of this is simple: in the trace table above, flip the rows and the
columns. What is left is a correct computation of reversing again, but
the start and final lists have exchanged roles. This informal proof is
easily made formal by exploiting the meta-theory of linear logic. A
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more formal proof proceeds as follows. Assume that (reverse L K) can
be proved. There is only one way to prove this (backchaining on the
above clause for reverse). Thus the formula

∀rv((∀X∀P∀Q(rv P (X :: Q)−◦ rv (X ::P ) Q)) ⇒ rv nil K −◦ rv L nil)

is provable. Since we are using logic, we can instantiate this quantifier
with any binary predicate expression and the result is still provable. So
we choose to instantiate it with the λ-expression λxλy(rv y x)⊥. The
resulting formula

(∀X∀P∀Q(rv (X :: Q) P )⊥ −◦ (rv Q (X ::P )⊥)) ⇒
(rv K nil)⊥ −◦ (rv nil L)⊥

can be simplified by using the contrapositive rule for negation and linear
implication, and hence yields

(∀X∀P∀Q(rv Q (X :: P )−◦ rv (X :: Q) P ) ⇒ rv nil L−◦ rv K nil)

If we now universally generalize on rv we again have proved the body
of the reverse clause, but this time with L and K switched. Notice that
we have succeeded in proving this fact about reverse without explicit
reference to induction.

For another example of using linear logic’s meta-theory to reason di-
rectly on specifications, consider the problem of adding a global counter
to a functional programming language that already has primitives for,
say conditionals, application, abstraction, etc [Mil96]. Now add get

and inc expressions: evaluation of get causes the counter’s value to be
returned while evaluation of inc causes the counter’s value to be incre-
mented. Figure 1.5 contains three specifications, E1, E2, and E3, of such
a counter: all three specifications store the counter’s value in an atomic
formula as the argument of the predicate r. In these three specifications,
the predicate r is existentially quantified over the specification in which
it is used so that the atomic formula that stores the counter’s value is it-
self local to the counter’s specification (such existential quantification of
predicates is a familiar technique for implementing abstract datatypes
in logic programming [Mil89a]). The first two specifications store the
counter’s value on the right of the sequent arrow, and reading and incre-
menting the counter occurs via a synchronization between the eval-atom
and the r-atom. In the third specification, the counter is stored as a lin-
ear assumption on the left of the sequent arrow, and synchronization
is not used: instead, the linear assumption is “destructively” read and
then rewritten in order to specify get and inc (counters such as these
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E1 = ∃r[ (r 0)⊥ ⊗
! ∀K∀V (eval get V K

.................................................
............
.................................. r V ◦− eval K

.................................................
............
.................................. r V ))⊗

! ∀K∀V (eval inc V K
.................................................

............
.................................. r V ◦− K

.................................................
............
.................................. r (V + 1))]

E2 = ∃r[ (r 0)⊥ ⊗
! ∀K∀V (eval get (−V ) K

.................................................
............
.................................. r V ◦− K

.................................................
............
.................................. r V )⊗

! ∀K∀V (eval inc (−V ) K
.................................................

............
.................................. r V ◦− K

.................................................
............
.................................. r (V − 1))]

E3 = ∃r[ (r 0)⊗
!∀K∀V (eval get V K ◦− r V ⊗ (r V −◦K))⊗
!∀K∀V (eval inc V K ◦− r V ⊗ (r (V + 1)−◦K))]

Fig. 1.5. Three specifications of a global counter.

are described in [HM94]). Finally, in the first and third specifications,
evaluating the inc symbol causes 1 to be added to the counter’s value.
In the second specification, evaluating the inc symbol causes 1 to be
subtracted from the counter’s value: to compensate for this unusual im-
plementation of inc, reading a counter in the second specification returns
the negative of the counter’s value.

The use of ⊗, !, ∃, and negation in Figure 1.5 is for convenience in
displaying these abstract datatypes. The curry/uncurry equivalence

∃r(R⊥1 ⊗ !R2 ⊗ !R3)−◦G ≡ ∀r(R2 ⇒ R3 ⇒ G
.................................................

............
.................................. R1)

directly converts a use of such a specification into a formula of Forum
(given α-conversion, we may assume that r is not free in G).

Although these three specifications of a global counter are different,
they should be equivalent in the sense that evaluation cannot tell them
apart. Although there are several ways that the equivalence of such
counters can be proved (for example, operational equivalence), the spec-
ifications of these counters are, in fact, logically equivalent. In particu-
lar, the three entailments E1 ` E2, E2 ` E3, and E3 ` E1 are provable
in linear logic. The proof of each of these entailments proceeds (in a
bottom-up fashion) by choosing an eigenvariable to instantiate the ex-
istential quantifier on the left-hand specification and then instantiating
the right-hand existential quantifier with some term involving that eigen-
variable. Assume that in all three cases, the eigenvariable selected is the
predicate symbol s. Then the first entailment is proved by instantiat-
ing the right-hand existential with λx.s (−x); the second entailment is
proved using the substitution λx.(s (−x))⊥; and the third entailment
is proved using the substitution λx.(s x)⊥. The proof of the first two
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entailments must also use the equations

{−0 = 0,−(x + 1) = −x− 1,−(x− 1) = −x + 1}.
The proof of the third entailment requires no such equations.

Clearly, logical equivalence is a strong equivalence: it immediately im-
plies that evaluation cannot tell the difference between any of these dif-
ferent specifications of a counter. For example, assume E1 ` eval M V >.
Then by cut and the above entailments, we have E2 ` eval M V >.

1.7 Effective implementations of proof search

There are several challenges facing the implementers of linear logic pro-
gramming languages. One problem is how to split multiset contexts
when proving a tensor or backchaining over linear implications. If the
multiset contexts of a sequent have n ≥ 0 formulas in them, then can be
as many as 2n ways that a context can be partitioned into two multisets.
Often, however, very few of these splits will lead to a successful proof. An
obvious approach to address the problem of splitting context would be
to do the split lazily. One approach to such lazy splitting was presented
in [HM94] where proof search was seen to be a kind of input/output
process. When proving one part of a tensor, all formulas are given to
that attempt. If the proof process is successful, any formulas remaining
would then be output from that attempt and handed to the remaining
part of the tensor. A rather simple interpreter for such a model of re-
source consumption and its Prolog implementation is given in [HM94].
Experience with this interpreter showed that the presence of the addi-
tive connectives – > and & – caused significant problems with efficient
interpretation. Several researchers have developed significant variations
to the model of lazy splitting. See for example, [CHP96, Hod94, LP97].
Similar implementation issues concerning the Lygon logic programming
language are described in [WH95]. More recent approaches to account-
ing for resource consumption in linear logic programming uses constraint
solving to treat the different aspects of resources sharing and consump-
tion in different parts of the search for a proof [And01, HP03].

Based on such approaches to lazy splitting, various interpreters of
linear logic programming languages have been implemented. To date,
however, only one compiling effort has been made. Tamura and Kaneda
[TK96] have developed an extension to the Warren abstract machine (a
commonly used machine model for logic programming) and a compiler
for a subset of Lolli. This compiler was shown in [HT01] to perform
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surprisingly well for a certain theorem proving application where linear
logic provided a particularly elegant specification.

1.8 Research in sequent calculus proof search

Since the majority of linear logic programming is described using sequent
calculus proof systems, a great deal of the work in understanding and
implementing these languages has focused on properties of the sequent
calculus. Besides the work mentioned already concerning refinements
to proof search, there is the related work of Galmiche, Boudinet, and
Perrier [GB94, GP94], Tammet [Tam94], and Guglielmi [Gug96], and
Gabbay and Olivetti [GO00]. And, of course, there is the recent work
of Girard on Locus solum [Gir01].

Below is briefly described three areas certainly deserving additional
consideration and which should significantly expand our understanding
and application of proof search and logic programming.

1.8.1 Polarity and proof search.

Andreoli observed the critical role of polarity in proof search: the no-
tion of asynchronous behavior (goal-reduction) and synchronous behav-
ior (backchaining) are de Morgan duals of each other. There have been
other uses of polarity in proof systems and proof search. In [Gir93],
Girard introduced the LU system in which classical, intuitionistic, and
linear logics share a common proof system. Central to their abilities to
live together is a notion of polarity: positive, negative, and neutral. As
we have shown in this paper, linear logic enhances the expressiveness
of logic programming languages presented in classical and intuitionistic
logic, but this comparison is made after they have been translated into
linear logic. It would be interesting to see if there is one logic program-
ming language that contains, for example, a classical, intuitionistic, and
linear implication.

1.8.2 Non-commutativity.

Having a non-commutative conjunction or disjunction within a logic
programming language should significantly enhance the expressiveness
of the language. Lambek’s early calculus [Lam58] was non-commutative
but it was also weak in that it did not have modals and additive con-
nectives. In recent years, a number of different proposals for non-
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commutative versions of linear logic have been considered. Abrusci
[Abr91] and later Ruet and Abruzzi [AR99, Rue00] have developed one
such approach. Remi Baudot [Bau00] and Andreoli and Maieli [AM99]
developed focusing strategies for this logic and have designed abstract
logic programming languages based on the proposal of Abrusci and
Ruet. Alessio Guglielmi has proposed a new approach to representing
proofs via the calculus of structures and presents a non-commutative
connective which is self-dual [GS01]. Paola Bruscoli has shown how
that non-commutative connective can be used to code sequencing in
the CCS specification language [Bru02]. Christian Retoré has also pro-
posed a non-commutative, self dual connective within the context of
proof nets [Ret97, Ret99]. Finally, Pfenning and Polakow have devel-
oped a non-commutative version of intuitionistic linear logic with a se-
quential operator and have demonstrated its uses in several applications
[Pol01, PY01, PP99a, PP99b]. Currently, non-commutativity has the
appearance of being rather complicated and no single proposal seems to
be canonical at this point.

1.8.3 Reasoning about specifications.

One of the reasons for using logic to make specifications in the first place
must surely be that the meta-theory of logic should help in establish-
ing properties of logic programs: cut and cut-elimination will have a
central role here. While this was illustrated in Section 1.6, very little
of this kind of reasoning has been done for logic programs written in
logics programming languages more expressive than Horn clauses. The
examples in Section 1.6 are also not typical: most reasoning about logic
specifications will certainly involve induction. Also, many properties of
computational specifications involve being able to reason about all paths
that a computation may take: simulation and bisimulation are exam-
ples of such properties [Mil89c]. The proof theoretical notion of fixpoint
[Gir92] and of definition [HSH91, MMP03, SH93] has been used to help
capture such notions. See, for example, the work on integrating induc-
tions and definitions into intuitionistic logic [MM97, MM00, MM02].
Extending such work to incorporate co-induction and to embrace logics
other than intuitionistic logic should certainly be considered.

Of course, there are many other avenues that work in proof search
and logic programming design can take. For example, one can inves-
tigate rather different logics, for example, the logic of bunched impli-
cations [OP99, Pym99], for their suitability as logic programming lan-
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guages. Model theoretic semantics suitable for reasoning about linear
logic specification would certainly be desirable, especially if they can
provide simple, natural, and compositional notions of meaning. Also,
several application areas of linear logic programming seems convincing
enough that work on improving the effectiveness of interpreters and com-
pilers certainly seems appropriate.
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