
A proof theory for model checking

Dale Miller

Inria Saclay & LIX, École Polytechnique
Palaiseau, France

Linearity 2016, Porto, Portugal, 25 June 2016

Linear Logic 2016, Lyon, 9 November 2016

Joint work with Quentin Heath. Extended draft available on web.

Historically speaking

Model checking was introduced in the early 1980’s as a way to
establish properties about (concurrent) computer programs that
were hard or impossible to do then using traditional, axiomatic
proof techniques of Floyd and Hoare.

If you cannot prove a property, at least you can get help looking
for counterexamples: eg, a path to a state where two processes are
both in their critical section.

I will argue that model checking can, in fact, be given an appealing
proof theoretical foundation.

Proof theoretical ingredients

Some historical high-points.

I Gentzen’s sequent calculus [1935]

I Girard’s linear logic [1987]

I Andreoli’s focused proof system for linear logic [1991]

I Schroeder-Heister’s and Girard’s treatment of equality and
fixed points [1992]

I Baelde, McDowell, M, and Tiu developed proof theory for
least and greatest fixed points [1997-2012].

All these developments except for the first item come after the
start of model checking.

Why promote a proof theoretic framework?

Proof theory can suggest certificates for model checking.

It should be conceptually easier to integrate inductive theorem
provers and model checking since they operate in the same (or
similar) logics.

Generalization of model checking are natural to consider. For
example, Bedwyr generalized model checking by allowing linguistic
expressions including bindings within states.

A proof-theoretic framework for logic programming was proposed
in 1986. This work extends that work.

Three ways to move beyond MALL

1. Girard [1987] added the exponentials to get linear logic.

2. Liang and M [2009] added classical and intuitionistic
connectives to get LKU. (Exponentials are behind this design.)

3. Baelde and M [2007] added fixed points to get µMALL.

A goal of this talk is to illustrate how (first-order) µMALL is better
suited for model checking and inductive/coinductive theorem
proving than linear logic.

Note:

I Fixed point unfolding resembles contraction: µBt̄ = B(µB)t̄.

I In linear logic, it is the case that B ≡ ! B when B is purely
positive. In linear logic, this is a trivial collection of formulas;
in µMALL, this is a rich collection of formulas.

Three ways to move beyond MALL

1. Girard [1987] added the exponentials to get linear logic.

2. Liang and M [2009] added classical and intuitionistic
connectives to get LKU. (Exponentials are behind this design.)

3. Baelde and M [2007] added fixed points to get µMALL.

A goal of this talk is to illustrate how (first-order) µMALL is better
suited for model checking and inductive/coinductive theorem
proving than linear logic.

Note:

I Fixed point unfolding resembles contraction: µBt̄ = B(µB)t̄.

I In linear logic, it is the case that B ≡ ! B when B is purely
positive. In linear logic, this is a trivial collection of formulas;
in µMALL, this is a rich collection of formulas.

What is an additive inference rule?

Truth is central to the way that model checking is understood. The
notion of additive inference rules seem to be a treatment of truth.

I Linear logic provides examples of additive inference rules.

I Hintikka games provide another treatment: two player use a
board containing one formula.

I No comma is needed in a sequent, etc.

Instead of attempting a definition, we state four properties of a
class of additive connectives that seem desirable to maintain.

Additive connectives

Let A be the set of formulas built from the propositional
connectives {∧, tt,∨, ff } (no propositional constants included).

Consider the proof system given by the following one-sided sequent
calculus inference rules.

` B1,∆ ` B2,∆

` B1 ∧ B2,∆ ` tt,∆

` B1,∆

` B1 ∨ B2,∆

` B2,∆

` B1 ∨ B2,∆

Here, tt is the unit of ∧, and ff is the unit of ∨. Notice that ∨ has
two introduction rules while ff has none,

The de Morgan duals are tt / ∧ with ff / ∨. By ¬B we mean the
de Morgan dual of all connectives in B.

The multiset ∆ is provable if and only if there is a proof of ` ∆
using these inference rules.

Some properties of additives

Let ∆, ∆1, ∆2 be multisets of A-formulas and let B be an
A-formula.

Theorem (Strengthening)

If ` ∆ has a proof, then there is a B ∈ ∆ such that ` B.

Theorem (Weakening & contraction admissibility)

If ∆1 ⊆ ∆2 and ` ∆1 is provable then ` ∆2 is provable.

Theorem (Initial admissibility)

` B,¬B is provable.

Theorem (Cut admissibility)

If ` B,∆1 and ` ¬B,∆2, then ` ∆1,∆2.

Truth-tables evaluation

These properties allow the following definition.

Define v(·) : A −→ {tt, ff } such that

I v(B) = tt if ` B is provable and

I v(B) = ff if ` ¬B is provable.

Initial admissibility implies that v(·) is total.

Cut admissibility implies that v(·) is functional.

The introduction rules yield the truth table definition for v(·):

e.g., v(A ∧ B) is the truth-functional conjunction of v(A) and
v(B) (similarly for ∨).

Of course, the logic of A-formulas is essentially trivial. When we
build synthetic rules that must also be additive, we will arrange
that their provability is independent of their context.

Term equality and quantification

A ranked signature Σ associates to every constructor a natural
number indicating that constructor’s arity.

A Σ-term is a (closed) term built from only constructors in Σ and
obeying the rank restrictions.

For example, if Σ is {a/0, b/0, f /1, g/2}, then a, (f a), and
(g (f a) b) are all Σ-terms.

` t = t,∆ ` t 6= s,∆
t and s differ

Here, t and s are Σ-terms for some ranked signature Σ.

` B[t/x],∆

` ∃x .B,∆
∃

{ ` B[t/x],∆ | Σ-term t }
` ∀x .B,∆

∀-ext

All of these inference rules are additive but at the cost of using
infinitary proofs.

There is no algorithm here

Let Σ contain the ranked symbols z/0 and s/1. Abbreviate z ,
(s z), (s (s z)), (s (s (s z))), etc by 0, 1, 2, 3, etc.

Let A and B be the set of terms {0, 1} and {0, 1, 2}, respectively.
These sets can be encoded as the predicate expressions
λx . x = 0 ∨ x = 1 and λx . x = 0 ∨ x = 1 ∨ x = 2.

The fact that A is a subset of B can be denoted by the formula
∀x .¬(A x) ∨ B x or, equivalently, as

∀x .(x 6= 0 ∧ x 6= 1) ∨ x = 0 ∨ x = 1 ∨ x = 2

Proving this formula requires an infinite number of premises of the
form (t 6= 0 ∧ t 6= 1) ∨ t = 0 ∨ t = 1 ∨ t = 2.

Multiplicative connectives: implication and conjunction

Γ1 ` A,∆1 Γ2,B ` ∆2

Γ1, Γ2,A ⊃ B ` ∆1,∆2

Γ,A ` B,∆

Γ ` A ⊃ B,∆

The strengthening property is lost: ` (p ⊃ q), p.

Currying A⊃ B ⊃ C ≡ (A ∧ B)⊃ C yields a multiplicative
conjunction.

Γ,A,B ` ∆

Γ,A ∧+ B ` ∆

Γ1 ` A,∆1 Γ2 ` B,∆2

Γ1, Γ2 ` A ∧+ B,∆1,∆2

For symmetry, we rename ∧ as ∧− and tt to tt−.

In linear logic, one writes &, >, ⊗, 1 for ∧−, tt−, ∧+, tt+.

Similar, ⊃ corresponds to −◦ in linear logic. The multiplicative
disjunction plays no central role here. The multiplicative false ff −

exists as t 6= t (for closed term t).

Multiplicative connectives: quantifiers and eigenvariables

The multiplicative treatment of quantifiers employs eigenvariables.

Let the set X denote first-order variables.

Let Σ(X) denote all terms built from constructors in Σ and from
the variables X : variables act as constructors of arity 0.

Sequents are now written as X ; Γ ` ∆: the variables in X are
bound over the formulas in Γ and ∆: formulas in Γ and ∆ are
Σ(X)-formulas.

X ; Γ ` B[t/x],∆

X ; Γ ` ∃x .B,∆
∃

X , y ; Γ ` B[y/x],∆

X ; Γ ` ∀x .B,∆
∀

where t is a Σ(X)-term and y 6∈ Σ. Dually, for the left
introduction rules.

Equality with open terms

When t and s are not unifiable,

X ; Γ, t = s ` ∆ X ; Γ ` t 6= s,∆

Otherwise, set θ = mgu(t, s):

θX ; θΓ ` θ∆
X ; Γ, t = s ` ∆

θX ; θΓ ` θ∆
X ; Γ ` t 6= s,∆

Here, θX is the result of removing from X variables in the domain
of θ and then adding the variables free in the codomain of θ.

This treatment of equality was developed independently by
Schroeder-Heister and Girard in [1991/92]. It has been extended to
include simply typed λ-terms in Bedwyr and Abella.

Unification is a black box attached to sequent calculus.

Return to subset example

Let Σ and the sets A and B be

λx . x = 0 ∨ x = 1 and λx . x = 0 ∨ x = 1 ∨ x = 2.

To prove that A is a subset of B requires proving the formula
∀x .Ax ⊃ Bx is provable.

· ; · ` 0 = 0

· ; · ` 0 = 0 ∨ 0 = 1 ∨ 0 = 2
x ; x = 0 ` x = 0 ∨ x = 1 ∨ x = 2

· ; · ` 1 = 1

· ; · ` 1 = 0 ∨ 1 = 1 ∨ 1 = 2
x ; x = 1 ` x = 0 ∨ x = 1 ∨ x = 2

x ; x = 0 ∨ x = 1 ` x = 0 ∨ x = 1 ∨ x = 2

· ; · ` ∀x .(x = 0 ∨ x = 1)⊃ (x = 0 ∨ x = 1 ∨ x = 2)

This proof accounts for reachability: we only consider checking
membership in set B for those elements “reached” in A.

Fixed points

The least fixed point µ and greatest fixed point ν are actually a
series of operators depending on the arity of the relationship they
define. We leave this arity implicit. Unfolding µBt1 . . . tn and
νBt1 . . . tn yields

B(µB)t1 . . . tn and B(νB)t1 . . . tn, respectively.

Here, µ and ν have type (i → · · · → i → o)→ i → · · · → i → o

X ; Γ ` B(µB)t̄,∆

X ; Γ ` µBt̄,∆
µR

X ; Γ,St̄ ` ∆ X , x̄ ; BSx̄ ` Sx̄

X ; Γ, µBt̄ ` ∆
µL

X ; Γ,B(νB)t̄ ` ∆

X ; Γ, νBt̄ ` ∆
νL

X ; Γ ` St̄,∆ x̄ ; Sx̄ ` BSx̄

X ; Γ ` νBt̄,∆
νR

Rules for µ-unfolding on the left and ν-unfolding on the right are
admissible. Also, µ is positive and ν is negative.

Horn clauses yield least fixed points

Horn clauses (Prolog) can be encoded as purely positive fixed
point expressions. For example, for specifying a (tiny) graph and
its transitive closure:

step a b. step b c. step c b.

path X Z :- step X Z.

path X Z :- step X Y, path Y Z.

Write the step as the least fixed point expression

µ(λAλxλy . (x = a ∧+ y = b)∨(x = b ∧+ y = c) ∨ (x = c ∧+ y = b))

Likewise, path can be encoded as the relation path(·, ·):

µ(λAλxλz . step x z ∨ (∃y . step x y ∧+ A y z)).

These expressions use only positive connectives and no non-logical
predicates.

Proofs with fixed points

There is no proof that there is a step from a to c .

fail
` (a = a ∧+ c = b) ∨ (a = b ∧+ c = c) ∨ (a = c ∧+ c = b)

` step a c

There is a proof that there is a path from a to c .

` step a b ` path b c

` step a b ∧+ path b c

` ∃y . step a y ∧+ path y c

` step a c ∨ (∃y . step a y ∧+ path y c)

` path(a, c)

Proof with fixed points

Below is a proof that the node a is not adjacent to c .

a = a, c = b ` ·
a = a ∧+ c = b ` ·

a = b, c = c ` ·
a = b ∧+ c = c ` ·

a = c , c = b ` ·
a = c ∧+ c = b ` ·

(a = a ∧+ c = b) ∨ (a = b ∧+ c = c) ∨ (a = c ∧+ c = b) ` ·
step a c ` ·

In general, proofs by negation-as-finite-failures yield sequent
calculus proofs in this setting.

More examples

Definitions of relations for natural numbers, addition, less-than.

nat =µλNλn(n = z ∨ ∃n′(n = s n′ ∧+ N n′))

plus =µλPλnλmλp ((n = z ∧+ m = p)∨
∃n′∃p′(n = s n′ ∧+ p = s p′ ∧+ P n′ m p′))

lt =µλLλxλy((x = z ∧+ ∃y ′.y = sy ′)∨
(∃x ′∃y ′.x = sx ′ ∧+ y = sy ′ ∧+ L x ′ y ′))

while the following formula requires induction to be proved

∀n∀m∀p.nat n ⊃ nat m ⊃ plus n m p ⊃ plus m n p,

the following formula can be proved by a model checker.

∀n∀m∀p(lt n 10 ⊃ lt m 10 ⊃ plus n m p ⊃ plus m n p)

Synthetic inference rules via focusing

Sequents in the focused proof system come in three styles.

I up-arrow sequents: Σ: N ⇑ Γ `̀̀ ∆ ⇑ P.

I left-down-arrow sequent: Σ: N ⇓ B `̀̀ P.

I right-down-arrow sequent: Σ: N `̀̀ B ⇓ P.

The zone marked by N is a multiset of negative formulas
The zone marked by P is a multiset of positive formulas

However, both ∆ and Γ are lists of formulas.

Σ is a signature as we have seen before.

A focused proof system: negative rules

Σθ : N θ ⇑ Γθ `̀̀ ∆θ ⇑ Pθ
Σ: N ⇑ s = t, Γ `̀̀ ∆ ⇑ P

†
Σθ : N θ ⇑ · `̀̀ · ⇑ Pθ
Σ: N ⇑ · `̀̀ s 6= t ⇑ P

†
Σ: N ⇑ s = t, Γ `̀̀ ∆ ⇑ P

‡

N ⇑ · `̀̀ · ⇑ s 6= t,∆,P
‡

N ⇑ Γ `̀̀ ∆ ⇑ P
N ⇑ tt+, Γ `̀̀ ∆ ⇑ P

N ⇑ · `̀̀ ∆ ⇑ P
N ⇑ · `̀̀ ff −,∆ ⇑ P

N ⇑ A1, Γ `̀̀ ∆ ⇑ P N ⇑ A2, Γ `̀̀ ∆ ⇑ P
N ⇑ A1 ∨ A2, Γ `̀̀ ∆ ⇑ P

N ⇑ · `̀̀ A1 ⇑ P N ⇑ · `̀̀ A2 ⇑ P
N ⇑ · `̀̀ A1 ∧− A2 ⇑ P

N ⇑ A1,A2, Γ `̀̀ ∆ ⇑ P
N ⇑ A1 ∧+ A2, Γ `̀̀ ∆ ⇑ P

N ⇑ A1 `̀̀ A2,∆ ⇑ P
N ⇑ · `̀̀ A1 ⊃ A2,∆ ⇑ P N ⇑ ff +, Γ `̀̀ ∆ ⇑ P

N ⇑ · `̀̀ tt−,∆ ⇑ P
Σ, y : N ⇑ C y , Γ `̀̀ ∆ ⇑ P
Σ: N ⇑ ∃x .C x , Γ `̀̀ ∆ ⇑ P

Σ, y : N ⇑ · `̀̀ C y ,∆ ⇑ P
Σ: N ⇑ · `̀̀ ∀x .C x ,∆ ⇑ P

N ⇑ B(µB)t̄, Γ `̀̀ ∆ ⇑ P
N ⇑ µB t̄, Γ `̀̀ ∆ ⇑ P

N ⇑ · `̀̀ B(νB)t̄,∆ ⇑ P
N ⇑ · `̀̀ νB t̄,∆ ⇑ P

Proviso †: θ = mgu(s, t) and ‡: s and t not unifiable.

A focused proof system: positive and structural rules

N ⇓ t 6= t `̀̀ P N `̀̀ t = t ⇓ P N ⇓ ff − `̀̀ P N `̀̀ tt+ ⇓ P

N1· `̀̀ A1 ⇓ P1 N2 ⇓ A2 `̀̀ P2

N1,N2 ⇓ A1 ⊃ A2 `̀̀ P1,P2

N1 `̀̀ A1 ⇓ P1 N2 `̀̀ A2 ⇓ P2

N1,N2 `̀̀ A1 ∧+ A2 ⇓ P1,P2

N ⇓ Ai `̀̀ P
N ⇓ A1 ∧− A2 `̀̀ P

N `̀̀ Ai ⇓ P
N `̀̀ A1 ∨ A2 ⇓ P

N ⇓ C t `̀̀ P
N ⇓ ∀x .C x `̀̀ P

N `̀̀ C t ⇓ P
N `̀̀ ∃x .C x ⇓ P

N ⇓ B(νB)t̄ `̀̀ P
N ⇓ νB t̄ `̀̀ P

N `̀̀ B(µB)t̄ ⇓ P
N `̀̀ µB t̄ ⇓ P

store release decide

N ,N ⇑ Γ `̀̀ ∆ ⇑ P
N ⇑ N, Γ `̀̀ ∆ ⇑ P

N ⇑ P `̀̀ · ⇑ P
N ⇓ P `̀̀ P

N ⇓ N `̀̀ P
N ,N ⇑ · `̀̀ · ⇑ P

N ⇑ · `̀̀ ∆ ⇑ P,P
N ⇑ · `̀̀ P,∆ ⇑ P

N ⇑ · `̀̀ N ⇑ P
N `̀̀ N ⇓ P

N `̀̀ P ⇓ P
N ⇑ · `̀̀ · ⇑ P,P

Here, unfolding replaces induction and coinduction.

Synthetic inference rules

Sequents of the form Σ: N ⇑ · `̀̀ · ⇑ P are border sequents.

Synthetic inference rules have border sequents as conclusion and as
premises.

A border sequent Σ: N ⇑ · `̀̀ · ⇑ P where P ∪N is a singleton
multiset is called a singleton border sequent.

Such a sequent is of the form

Σ: N ⇑ · `̀̀ · ⇑ · or Σ: · ⇑ · `̀̀ · ⇑ P

These sequent represent proving ¬N (for a negative formula N) or
proving P for a positive formula P.

Only the decide rules can have such a sequent as its conclusion
and there is only one choice for the focus.

Synthetic inference rules: purely positive formulas

P := tt+ | t = s | µλAλx̄ .P | P ∧+ P | P ∨ P | ∃x .P

Consider a border sequent with a purely positive P on the right.

Ξ

Σ: · `̀̀ P ⇓ ·
Σ: · ⇑ · `̀̀ · ⇑ P

If a complete proof Ξ exists, it is entirely one (positive) phase. An
entire (non-deterministic) computation is placed into one synthetic
inference rule.

For example, Prolog-like computations can be forced into one
phase. Obviously, checking such synthetic inference rules is
undecidable in general.

Additive synthetic connectives

In order to build on additive synthetic connectives, we need to
restrict occurrence of the multiplicative connectives ⊃ and ∧+.

A µMALL= formula is switchable if

I whenever a subformula C ∧+ D occurs negatively (under an
odd number of implications), either C or D is purely positive;

I whenever a subformula C ⊃ D occurs positively (under an
even number of implications), either C is purely positive or D
is purely negative.

Note: purely positive formulas and purely negative formulas are
switchable.

An occurrence of a formula B in a sequent is switchable if it
appears on the right-hand side (resp. left-hand side) and B (resp.
B ⊃ ff −) is switchable.

Example: simulation

Let P
A−→ Q be a labeled transition system between processes and

actions and that it is defined as a purely positive expression.

If p, q ∈ P and a ∈ A then both P
A−→ Q and (P

A−→ Q)⊃ ff −

are switchable formulas.

The following two greatest fixed point expressions define
simulation and bisimulation for this label transition systems.

ν
(
λSλpλq. ∀a∀p′. p

a−→ p′ ⊃ ∃q′. q
a−→ q′ ∧+ S p′ q′

)
ν(λBλpλq. (∀a∀p′. p

a−→ p′ ⊃ ∃q′. q
a−→ q′ ∧+ B p′ q′)

∧− (∀a∀q′. q
a−→ q′ ⊃ ∃p′. p

a−→ p′ ∧+ B q′ p′))

These are switchable formulas. Note that bisimulation has both
conjunctions.

Switchable formulas yield additive synthetic rules

The following theorem is proved by a simple induction on the
structure of µMALL= proofs.

Theorem (switchability)

Let Π be a µMALLF= derivation of either Σ: A ⇑ · `̀̀ · ⇑ · or
Σ: · ⇑ · `̀̀ · ⇑ A where the occurrence of A is switchable. Also
assume that every invariant S is purely positive. Then every
sequent in Π that is the conclusion of a rule that switches phases
(either a decide or a release rule) contains exactly one occurrence
of a formula and that occurrence is switchable.

An example of a synthetic inference rules

· · ·

· : · ⇑ · `̀̀ sim(pi , qi) ⇑ ·
· : · `̀̀ sim(pi , qi) ⇓ ·

· : · `̀̀ ∃Q ′.q0
ai−→ Q ′ ∧+ sim(pi ,Q

′) ⇓ ·
C

· : · ⇑ · `̀̀ · ⇑ ∃Q ′.q0
ai−→ Q ′ ∧+ sim(pi ,Q

′)

· : · ⇑ · `̀̀ ∃Q ′.q0
ai−→ Q ′ ∧+ sim(pi ,Q

′) ⇑ · · · ·

P ′,A : p0
A−→ P ′ ⇑ ∃Q ′.q0

A−→ Q ′ ∧+ sim(P ′,Q ′) `̀̀ · ⇑
B

· : · ⇑ · `̀̀ sim(p0, q0) ⇑ · A

A contain introduction rules for ∀ and ⊃.

B consists of ⇑ rules that generates all ai and pi such that
p0

ai−→ pi .

C is a sequence of ⇓ rules that prove that q0
ai−→ qi .

Finally, the top-most inference rule is a release rule.

Some applications

The model checker Bedwyr, built before the designing of µMALL,
is now understood as proof search in µMALL.
The interactive theorem prover Abella is based on a similar logic
but emphasizes induction and coinduction.
With Rob Blanco and Quentin Health, we are looking at means to
develop proof certificates for model checking. In that way, Abella
could check a Bedwyr proof and vice versus.

Producing certificates for model checking seems rather difficult in
general. We have shown the following.

I That a path in a graph can be proof certificate for reachability.

I Connected components can be a proof certificate for
non-reachability.

I A bisimulation can be a proof certificate for bisimilarity.

I A Hennessy-Milner modal formula can be a proof certificate
for non-bisimilarity.

Thank you

