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Historically speaking

Model checking was introduced in the early 1980’s as a way to
establish properties about (concurrent) computer programs that
were hard or impossible to do then using traditional, axiomatic
proof techniques of Floyd and Hoare.

If you cannot prove a property, at least you can get help looking
for counterexamples: eg, a path to a state where two processes are
both in their critical section.

| will argue that model checking can, in fact, be given an appealing
proof theoretical foundation.



Proof theoretical ingredients

Some historical high-points.

>

>

>

>

Gentzen's sequent calculus [1935]
Girard's linear logic [1987]
Andreoli's focused proof system for linear logic [1991]

Schroeder-Heister's and Girard's treatment of equality and
fixed points [1992]

Baelde, McDowell, M, and Tui developed proof theory for
least and greatest fixed points [1997-2012].

All these developments except for the first item come after the
start of model checking.



Why promote a proof theoretic framework?

The proof theory can suggest certificates for model checking.

It should be conceptually easier to integrate inductive theorem
provers and model checking since they operate in the same (or
similar) logics.

Generalization of model checking are natural to consider. For
example, Bedwyr generalized model checking by allowing linguistic
expressions including bindings within states.



Why promote a proof theoretic framework?

The proof theory can suggest certificates for model checking.

It should be conceptually easier to integrate inductive theorem
provers and model checking since they operate in the same (or
similar) logics.

Generalization of model checking are natural to consider. For
example, Bedwyr generalized model checking by allowing linguistic
expressions including bindings within states.

In 1986, a proof-theoretic framework for logic programming was
proposed. It has had some success.



Three ways to move beyond MALL

1. Girard [1987] added the exponentials to get linear logic.
2. Liang and M [2009] added classical and intuitionistic
connectives to get LKU. (Exponentials are behind this design.)

3. Baelde and M [2007] added fixed points to get uMALL.

A goal of this talk is to illustrate how (first-order) tMALL is better
suited for model checking and inductive/coinductive theorem
proving than linear logic.



Three ways to move beyond MALL

1. Girard [1987] added the exponentials to get linear logic.

2. Liang and M [2009] added classical and intuitionistic
connectives to get LKU. (Exponentials are behind this design.)

3. Baelde and M [2007] added fixed points to get uMALL.

A goal of this talk is to illustrate how (first-order) tMALL is better
suited for model checking and inductive/coinductive theorem
proving than linear logic.

Note:
» Fixed point unfolding resembles contraction: uBt = B(uB)t.

> In linear logic, it is the case that B = ! B when B is purely
positive. In linear logic, this is a trivial collection of formulas;
in uMALL, this is a rich collection of formulas.



What is an additive inference rule?

Truth is central to way the model checking is understood. The
notion of additive inference rules seem to be a treatment of truth.

» Linear logic provides examples of additive inference rules.

» Hintikka games provide another treatment: two player use a
board containing one formula.

» No comma is needed in a sequent, etc.

Instead of attempting a definition, we state four properties of a
class of additive connectives that seem desirable to maintain.



Additive connectives

Let A be the set of formulas built from the propositional
connectives {A, t,V, f} (no propositional constants included).

Consider the proof system given by the following one-sided sequent
calculus inference rules.

B, A+ By A - By, A - By, A
FBiABy, A Ft,A FBiVvB,A FBVB,A

Here, t is the unit of A, and f is the unit of V. Notice that V has
two introduction rules while f has none,

The de Morgan duals are t / A with f / V. By =B we mean the
de Morgan dual of all connectives in B.

The multiset A is provable if and only if there is a proof of - A
using these inference rules.



Some properties of additives

Let A, A1, A> be multisets of A-formulas and let B be an
A-formula.

Theorem (Strengthening)
If = A has a proof, then there is a B € A such that + B.

Theorem (Weakening & contraction admissibility)
If Ay C Ay and - Ay is provable then = A, is provable.

Theorem (Initial admissibility)
F B, B is provable.

Theorem (Cut admissibility)
If- B, Ay and - =B, Ay, then - Ay, As.



Truth-tables evaluation

These properties allow the following definition.
Define v(-) : A — {t, f} such that

» v(B) =t if - B is provable and

» v(B) =f if - =B is provable.
Initial admissibility implies that v(-) is total.
Cut admissibility implies that v(-) is functional.

The introduction rules yield the truth table definition for v(-):

e.g., V(A A B) is the truth-functional conjunction of v(A) and
v(B) (similarly for V).

Of course, the logic of A-formulas is essentially trivial. When we
build synthetic rules that must also be additive, we will arrange
that their provability is independent of their context.



Term equality and quantification

A ranked signature ¥ associates to every constructor a natural
number indicating that constructor’s arity.

A Y -term is a (closed) term built from only constructors in X and
obeying the rank restrictions.

For example, if X is {a/0,b/0,f/1,g/2}, then a, (f a), and
(g (f a) b) are all X-terms.

m m t and s differ

Here, t and s are X-terms for some ranked signature .

F B[t/x], A { F B[t/x],A | X-termt }
F3x.B,A FVx.B.A v-ext

All of these inference rules are additive but at the cost of using
infinitary proofs.



There is no algorithm here

Let X contain the ranked symbols z/0 and s/1. Abbreviate z,
(s 2), (s (s 2)), (s (s (s z))), etcby 0, 1, 2, 3, etc.

Let A and B be the set of terms {0,1} and {0, 1,2}, respectively.
These sets can be encoded as the predicate expressions
MMx=0Vx=1land A xx=0vx=1Vx=2.

The fact that A is a subset of B can be denoted by the formula
Vx.—(Ax) V B x or, equivalently, as

Vx.(x#O0Ax#1)Vx=0Vx=1Vx=2

Proving this formula requires an infinite number of premises of the
form (t#O0ANt#1)Vt=0Vt=1Vit=2



Multiplicative connectives: implication and conjunctive

MEAA; M2, BF Ay NAFBA
M,My,AD BF A1, Ay rN-A>B,A

The strengthening property is lost: - (p D q), p.

Currying AD BD = (AA B) D C yields a multiplicative conjunction.

A BFA MEAA Tk B,A
LAATBF A [1,T2 - AAT B, Aq, Ay

For symmetry, we rename A as A~ and t to t.

In linear logic, one writes &, T, ®, 1 for A=, t—, AT, tT.
Similar, D corresponds to —o in linear logic. We do not need the
multiplicative disjunction. The multiplicative false f~ exists as

t # t (for closed term t).



Multiplicative connectives: quantifiers and eigenvariables

The multiplicative treatment of quantifiers employs eigenvariables.
Let the set X denote first-order variables.

Let X(X) denote all terms built from constructors in ¥ and from
the variables X’: variables act as constructors of arity 0.

Sequents are now written as X' ; ' = A: the variables in X" are
bound over the formulas in I and A: formulas in I and A are
Y (&X)-formulas.

X, TEB[t/x],A X,y; T Bly/x],A
X;+3x.B,A X; TFVYx.B,A

where t is a X(X)-term and y ¢ . Dually, for the left
introduction rules.



Equality with open terms

When t and s are not unifiable,

X:T,t=sFA X;TFt#£sA
Otherwise, set § = mgu(t, s):

OX ; 0T - OA 0X; 0T - 0A
X:T,t=sF-A X;TFt#sA

This treatment of equality was developed independently by
Schroeder-Heister and Girard in [1991/92]. It has been extended to
include simply typed A-terms in Bedwyr and Abella.

Unification is a black box attached to sequent calculus.



Return to subset example

Let > and the sets A and B be
MXxx=0Vx=1 and Mxx=0Vvx=1Vvx=2.

To prove that A is a subset of B requires proving the formula
Vx.Ax D Bx is provable.

-F0=0v0=1v0=2 o F1=0Vvl1=1Vv1=2
X; x=0Fx=0vVx=1Vx=2 x;x=1Fkx=0vx=1vx=2
x:x=0Vx=1Fx=0Vvx=1Vvx=2
G oEYx(x=0vx=1)D(x=0vx=1Vvx=2)

This proof accounts for reachability: we only consider checking
membership in set B for those elements “reached” in A.



Fixed points

The least fixed point  and greatest fixed point v are actually a
series of operators depending on the arity of the relationship they
define. We leave this arity implicit.

uBty ...ty = B(uB)ty ... t, vBty ...ty =BWwB)ty...t,
Here, v and v have type (i —» -+ > i —0) —>i— - —i—o0

X TEB@EBLA o Xi[,ST-A XX BSX SX
X TFuBt,a M X T, uBtr A K

X;T,B(vB)t- A X, TESt,A x; Sx+ BSx
X:T,vBtFAa 7 X: T+ uBt A

v

Rules for p-unfolding on the left and v-unfolding on the right are
admissible. Also, u is positive and v is negative.



Horn clauses yield least fixed points

Horn clauses (Prolog) can be encoded as purely positive fixed
point expressions. For example, for specifying a (tiny) graph and
its transitive closure:

step a b. step b c. step c b.

path X Z :- step X Z.

path X Z :- step X Y, path Y Z.

Translate step as the binary predicate - — - defined by

pAAMNY. (x =aAt y =b)V(x=bATy =c)V(x=cA"y=0b))

Likewise, path can be encoded as the relation path(-,-):
PAAXXAZ. x — zV (By. x — y AT Ay 2)).

These expressions use only positive connectives and no non-logical
predicates.



Proofs with fixed points

There is no proof that there is a step from a to c.

fail

Fa=aAntc=b)V(a=bAtc=c)V(a=cAt c=b)

Fa—c

There is a proof that there is a path from a to c.

Fa— b F pathbc
Fa— bAT pathbc
F3y.a— y AT pathy c
Fa— cV(Jy.a— y A" pathyc)
+ path(a, c)




Proof with fixed points

Below is a proof that the node a is not adjacent to c.

a=ac=btF- a=b,c=ct- a=c,c=blk-
a=aANc=bl- a=bANc=ck- a=cANc=bF-
(a=anfc=b)V(a=bATc=c)V(a=cAtc=b)F-
a—chk-

In general, proofs by negation-as-finite-failures yield sequent
calculus proofs in this setting.



More examples

Definitions of relations for natural numbers, addition, less-than.

nat =pANAn(n =z VvV 3In'(n=s n AT N n'))
plus =pAPAnAmAp ((n = z At m = p)v
I3 (n=sn ANt p=sp At Pn mp))
It =p LAy ((x = z AT Y’y = sy/)Vv
A3y x=sx' ATy =sy/ AT L X' y))

while the following formula requires induction to be proved
VYnVmVp.nat n D nat m D plus n m p D plus m n p,
the following formula can be proved by a model checker.

VnVYm¥p(It n 10 D It m 10 D plus n m p D plus m n p)



Synthetic connectives via focusing

Sequents in the focused proof system come in three styles.
» asynchronous sequents: Y: Nt T'H A { P.
» left-synchronous sequent: ¥: N || B+ P.
» right-synchronous sequent: ¥: N'F B || P.

The zone marked by A is a multiset of negative formulas
The zone marked by P is a multiset of positive formulas

However, both A and I are /ists of formulas.

Y is a signature as we have seen before.



A focused proof system: negative rules

SO: NOATOFAO PO TO:NOA -+ -4 PO
TNfs=tTFAYP T:Nf-Fs#tftP T Nos=tTFAQRP
NAg-FT4AP NAt-F-fAP
NAt-FAs#tAP N#-FtHTHAP  NAf-F-ff AP
NA-FALTHAP N -F AT AP
N -FAV AT AP
NA-F-fALP NA-F-ft AP
Nkt AN A, P

N -FALATHAP  NAo-FA A ALA,P
N4 -FANATHAP N -F-YADAAP NA4-FfTHAP
S,y Nt Cy,TEAQP S,y Nt-ECytP
Nt-F- At , AP T NAIXCx,TFARP T N{ FYx.CxQP
N1 -F B(uB)L,T 4+ A,P N1k BwB)t,A, P
N1 -FuBET AP NA-k-fvBt AP




A focused proof system: positive and structural rules

NIt#£tEP NEt=t|P NIFf P NEtT P
MUIAEPT Ml AEP, MIFALPT Mo A P

N, N2 L AL D Ak P, Pe N, N2 U AL AT Az L Pr, P2
NIAEP NFEA P
NUAl/\iAzl—'P Nl‘Al\/AglL'P
NycCtkP NECtyP

NUVx.CxkP NEIx.Cx|P
N | BwB)t+-P  NFBuB)t|P

NUvBt+HP NEuBt | P
store release decide
N, NATHFAQNP NAPE- 9P NINEP

NANTEARP NUPFP NN -F-{P
N{-FARP,P NA-FNA4P NEPLP
NAt-FP,AQNP NENLJP Nt -F-4PP




Synthetic connectives

Sequents of the form X: N { -k - ) P are border sequents.

Synthetic inference rules have border sequents as conclusion and as
premises.

A border sequent ¥: A 1} - - f P where P UN is a singleton
multiset is called a singleton border sequent.

Such a sequent is of the form
Y:Nf-F-ft- or Z:-ft-F-9P

These sequent represent proving =N (for a negative formula N) or
proving P for a positive formula P.

Only the decide rules can have such a sequent as its conclusion
and there is only one choice for the focus.



Additive synthetic connectives

In order to build on additive synthetic connectives, we need to
restrict occurrence of the multiplicative connectives O and AT.

A uMALL™ formula is switchable if

» whenever a subformula C AT D occurs negatively (under an
odd number of implications), either C or D is purely positive;

» whenever a subformula C D D occurs positively (under an
even number of implications), either C is purely positive or D
is purely negative.

Note: purely positive formulas and purely negative formulas are
switchable.

An occurrence of a formula B in a sequent is switchable if it
appears on the right-hand side (resp. left-hand side) and B (resp.
B D f7) is switchable.



Example: simulation

A .
Let P — @ be a labeled transition system between processes and
actions and that it is defined as a purely positive expression.

If p,g € P and a € A then both Pi>Qand (Pi>Q)3f* are
switchable formulas.

The following two greatest fixed point expressions define
simulation and bisimulation for this label transition systems.

v(ASApAG.VaVp'.p —5 p' 53¢ .q =5 ¢ AT Sp' ()
v(ABApAg. (Vavp'.p -2 p'D3¢.q 25 ¢ AT Bp q)
AN (Va¥q'.q =5 ¢ D3p.p - p AT B4 p'))

These are switchable formulas. Note that bisimulation has both
conjunctions.



Switchable formulas yield additive synthetic rules

The following theorem is proved by a simple induction on the
structure of uMALL™ proofs.

Theorem (switchability)

Let Tl be a uMALLF~ derivation of either ¥: A{ -+ -1} - or

>: -1 -F -1 A where the occurrence of A is switchable. Also
assume that every invariant S is purely positive. Then every
sequent in I that is the conclusion of a rule that switches phases
(either a decide or a release rule) contains exactly one occurrence
of a formula and that occurrence is switchable.



An example of a synthetic inference rules

< b sim(pi, gi) -
-k sim(pi,qi) 4 -
ok 3Q g 25 QAT sim(pi, Q") | -
b 3Q g0 =5 @AY sim(p;, Q')
- F3Q g0 =5 QAT sim(pi, Q) 1 -
P A F pop 25 P UL 3Q g0 2 Q' AT sim(P, Q)
-1+ A -+ sim(po, qo) 1 -

A contain introduction rules for V and D.

B consists asynchronous rules that generates all a; and p; such
that pg N pi.

C is a sequence of synchronous rules that prove that gg — g;.
Finally, the top-most inference rule is a release rule.

B




Some applications

The model checker Bedwyr, built before the designing of uMALL,
is now understood as proof search in uMALL.

The interactive theorem prover Abella is based on a similar logic
but emphasizes induction and coinduction.

With Rob Blanco and Quentin Health, we are looking at means to
develop proof certificates for model checking. In that way, Abella
could check a Bedwyr proof and vice versus.

Producing certificates for model checking seems rather difficult in
general. But we have shown that
» That a path in a graph can be proof certificate for reachability.

» Connected components can be a proof certificate for
non-reachability.

» A bisimulation can be a proof certificate for bisimilarity.

» A Hennessy-Milner modal formula can be a proof certificate
for non-bisimilarity.



Thank you



