
A Multiple-Conclusion Meta-Logic

Dale Miller

Computer Science Department, University of Pennsylvania

Philadelphia, PA 19104-6389 USA

dale@saul.cis.upenn.edu

Abstract

The theory of cut-free sequent proofs has been used
to motivate and justify the design of a number of
logic programming languages. Two such languages,
λProlog and its linear logic refinement, Lolli [12], pro-
vide for various forms of abstraction (modules, ab-
stract data types, higher-order programming) but lack
primitives for concurrency. The logic programming
language, LO (Linear Objects) [2] provides for con-
currency but lacks abstraction mechanisms. In this
paper we present Forum, a logic programming pre-
sentation of all of linear logic that modularly extends
the languages λProlog, Lolli, and LO. Forum, there-
fore, allows specifications to incorporate both abstrac-
tions and concurrency. As a meta-language, Forum
greatly extends the expressiveness of these other logic
programming languages. To illustrate its expressive
strength, we specify in Forum a sequent calculus proof
system and the operational semantics of a functional
programming language that incorporates such non-
functional features as counters and references.

1 Introduction

In [17] a proof theoretic foundation for logic pro-
gramming was proposed in which logic programs are
collections of formulas used to specify the meaning
of non-logical constants and computation is identified
with goal-directed search for proofs. Using the sequent
calculus, this can be formalized by having the sequent
Σ; ∆ −→ G denote the state of an idealized logic pro-
gramming interpreter, where the current set of non-
logical constants (the signature) is Σ, the current logic
program is the set of formulas ∆, and the formula to
be established, called the query or goal, is G. All
the non-logical constants in G and the formulas in ∆
are contained in Σ. A goal-directed or uniform proof
is then a cut-free proof in which every occurrence of

a sequent whose right-hand side is non-atomic is the
conclusion of a right-introduction rule. The bottom-
up search for uniform proofs is goal-directed to the
extent that if the goal has a logical connective as its
head, that occurrence of that connective must be in-
troduced: the left-hand side of a sequent is only con-
sidered when the goal is atomic. A logic programming
language is then a logical system for which uniform
proofs are complete. The logics underlying λProlog
and Lolli [12] satisfy such a completeness result.

When extending this notion of goal-directed search
to multiple-conclusion sequents, the following problem
is encountered: if the right-hand side of a sequent con-
tains two or more non-atomic formulas, how should
the logical connectives at the head of those formu-
las be introduced? There seems to be two choices.
One choice simply requires that one of the possible in-
troductions be done [10]. This has the disadvantage
that there might be an interdependency between right-
introduction rules in that one may need to appear
lower in a proof than another, in which case, logical
connectives in the goal would not be reflected directly
and simply into the structure of the proof. A second
choice requires that all right-hand rules should be in-
troduced simultaneously. Although the sequent calcu-
lus cannot deal directly with simultaneous rule appli-
cation, reference to permutabilities of inference rules
[13] can indirectly address simultaneity. That is, we
can require that if two or more right-introduction rules
can be used to derive a given sequent, then all possible
orders of applying those right-introduction rules can,
in fact, be done and the resulting proofs are all equal
modulo permutations of right-introduction rules.

Using this second approach, we generalize the pre-
vious definition of uniform proof as follows: a cut-free
sequent proof Ξ is uniform if for every subproof Ξ′ of
Ξ and for every non-atomic formula occurrence B in
the right-hand side of the end-sequent of Ξ′, there is
a proof Ξ′′ that is equal to Ξ′ up to a permutation of
inference rules and is such that the last inference rule

1

in Ξ′′ introduces the top-level logical connective of B.
It is shown in [16] that the π-calculus [18] can be seen
as a particular logic program in this sense.

In this paper, we employ the logical connectives of
Girard [8] (typeset as in that paper) and the quantifi-
cation and term structures of Church’s Simple Theory
of Types [5]. A signature is a finite set of pairs, writ-
ten c: τ , where c is a token and τ is a simple type
(over some fixed set of base types). A closed, simply
typed λ-term t is a Σ-term if all the non-logical con-
stants in t are declared types in Σ. The base type
o is used to denote formulas, and the various logical
constants are given types over o. For example, the bi-
nary logical connectives have the type o → o → o and
the quantifiers ∀τ have the type (τ → o) → o. A Σ-
term B of type o is also called a Σ-formula. The infix
symbol ⇒ denotes intuitionistic implication; that is,
B ⇒ C is equivalent to ! B−◦C, and the infix symbol
◦− (which associates to the left) denotes the converse
of −◦. The expression B ≡ C abbreviates the formula
(B −◦ C) & (C −◦ B): if this formulas is provable in
linear logic, we say that B and C are logically equiva-
lent.

All of linear logic can be seen as a logic program-
ming language since there is a presentation of linear
logic for which uniform proofs are complete. To mo-
tivate the design of this presentation, which we call
Forum, we first describe the four logic programming
languages that it extends. Horn clauses, the logi-
cal foundation of Prolog, are formulas of the form
∀x̄(G ⇒ A) where G may contain occurrences of &
and >. (We shall use x̄ as a syntactic variable ranging
over a list of variables and A as a syntactic variables
ranging over atomic formulas.) In such clauses, oc-
currences of ⇒ and ∀ are restricted so that they do
not occur to the left of an implication. As a result of
this restriction, uniform proofs involving Horn clauses
do not contain right-introduction rules for ⇒ and ∀.
Hereditary Harrop formulas [17], the logical founda-
tion of λProlog, result from removing the restriction
on ⇒ and ∀ in Horn clauses: that is, such formulas
can be built freely from >, &, ⇒, and ∀. The logic
at the foundation of Lolli is the result of adding −◦
to the connectives present in hereditary Harrop for-
mulas: that is, Lolli programs are freely built from >,
&, −◦, ⇒, and ∀. (Some presentations of hereditary
Harrop formulas and Lolli allow certain occurrences of
disjunctions (⊕) and existential quantifiers: since such
occurrences can be defined within the logic program-
ming setting (as we shall see), they are not considered
directly here.) The formulas used in LO are of the
form ∀x̄(G−◦A1

...
............
.................................. · · · ...

............
.................................. An) where n ≥ 1 and G may

contain occurrences of &, >, ...
............
.................................. , ⊥. Similar to the Horn

clause case, occurrences of −◦ and ∀ are restricted so
that they do not occur to the left of an implication.

The reason that Lolli does not include LO is the
presence of ...

............
.................................. and ⊥ in the latter. This suggests the

following definition for Forum: it is the linear logic
theory of the formulas freely generated from >, &, ...

............
.................................. ,

⊥, −◦, ⇒, and ∀. It is this definition that we study in
the rest of this paper.

Since the logics underlying Prolog, λProlog, Lolli,
LO, and Forum differ in what logical connectives are
allowed at what polarity, richer languages modularly
contain weaker languages. This is a direct result of
the cut-elimination theorem for linear logic. Thus a
Forum program that does not happen to use ⊥, ...

............
.................................. ,

and −◦ will, in fact, have the same uniform proofs
as are described for λProlog. Similarly, a program
containing just a few occurrences of these connectives
can be understood as a λProlog program that takes
a few exceptional steps, but otherwise behaves as a
λProlog program.

Forum is a presentation of all of linear logic since
it contains a complete set of connectives. The connec-
tives missing from Forum are directly definable using
the following logical equivalences.

B⊥ ≡ B −◦ ⊥ 0 ≡ >−◦ ⊥ 1 ≡ ⊥−◦ ⊥
! B ≡ (B ⇒ ⊥)−◦ ⊥ ?B ≡ (B −◦ ⊥) ⇒ ⊥

B ⊕ C ≡ (B⊥ & C⊥)⊥ B ⊗ C ≡ (B⊥ ...
............
.................................. C⊥)⊥

∃x.B ≡ (∀x.B⊥)⊥

The other logic programming languages we have men-
tioned can, of course, capture the expressiveness of
full logic by introducing non-logical constants and pro-
grams to describe their meaning. Felty in [6] uses a
meta-logical presentation to specify full logic at the
object-level. Andreoli [1] provides a “compilation-
like” translation of linear logic into LinLog (of which
LO is a subset). Forum has a more immediate relation-
ship to all of linear logic since no non-logical symbols
need to be used to provide complete coverage of linear
logic.

As a presentation of linear logic, Forum may appear
rather strange since it uses neither the cut rule (uni-
form proofs are cut-free) nor the dualities that follow
from uses of negation (since negation is not a primi-
tive). The execution of a Forum program (in the logic
programming sense of the search for a proof) makes
no use of cut or of the basic dualities. These aspects
of linear logic, however, are important in meta-level
arguments about specifications written in Forum. For
example, a specification of a sequent calculus proof
system for intuitionistic logic can be transformed into

2

a natural deduction proof system by a use of linear
logic’s negation (see Section 3). The choice of primi-
tives for this presentation makes it easy to keep close
to the usual computational significance of backchain-
ing, and the presence of the two implications, −◦ and
⇒, makes the specification of object-level inference
rules natural.

2 Proof Search

Inference rules in cut-free proofs over formulas con-
taining only the logical constants >, &, ...

............
.................................. , ⊥, −◦, ⇒,

and ∀ have numerous opportunities to be permuted
over each other. In particular, any two occurrences
of right-rules permute over each other, any two oc-
currences of left-rules permute over each other, and
any left rule occurring immediately below a right-rule
can be permuted up. These observations about per-
mutabilities can be integrated into a special proof
system, given in Figure 1. Here, two styles of se-
quents are considered. These sequents are written as
Σ : Ψ; ∆ −→ Γ and Σ : Ψ;∆ B−→ Γ, where Σ is a
signature, Ψ is a set of Σ-formulas, ∆ is a multiset
of Σ-formulas, Γ is a list of Σ-formulas, and B is a Σ-
formula. The intended meanings of these two sequents
in linear logic are ! Ψ,∆ −→ Γ and ! Ψ, ∆, B −→ Γ, re-
spectively. (Here, ! Ψ denotes the multiset that results
from placing ! on each of the formulas in the set Ψ.)
In the proof system of Figure 1, the only right rules
are those for sequents of the form Σ : Ψ;∆ −→ Γ.
In fact, the only formula in Γ that can be introduced
is the left-most, non-atomic formula in Γ. This style
of selection is specified by using the syntactic variable
A to denote a (possibly empty) list of atomic formu-
las. Thus, the right-hand side of a sequent matches
A, B &C, Γ if it contains a formulas that is a top-level
& for which only atomic formulas occur to its left.
Both A and Γ may be empty. Left rules are applied
only to the formula B that labels the sequent arrow
in Σ : Ψ; ∆ B−→ A. The notation A1 + A2 matches a
list A if A1 and A2 are lists that can be interleaved
to yield A: that is, the order of members in A1 and
A2 is as in A, and (ignoring the order of elements) A
denotes the multiset set union of the multisets repre-
sented by A1 and A2.

Notice that all the right-rules treat the context (Σ,
Ψ, Γ, and A) as black boxes: they either discard the
context (>-R), copy it (&-R), or retain it (all other
right-rules).

The following theorem yields as an immediate corol-
lary that Forum is a logic programming language. We

shall use ` to denote provability in linear logic. In
particular, Σ : Ψ;∆ ` Γ means that the sequent
Σ : !Ψ,∆ −→ Γ has a proof (in linear logic); the no-
tation Σ : Ψ ` Γ means that the sequent Σ : ! Ψ −→ Γ
has a proof; and the notation Σ ` Γ means that the
sequent Σ :−→ Γ has a proof.

Theorem 1 Let Σ be a signature and let G be a Σ-
formula of linear logic all of whose logical connectives
are in the set {>,&,⊥,

...
............
.................................. ,−◦,⇒, ∀}. Then Σ ` G if

and only if the sequent Σ :;−→ G is provable in the
proof system in Figure 1.

Proof Soundness follows quickly from the encoding
described above of the two sequents used in Figure 1
into linear logic sequents. Completeness follows by
showing that any cut-free proof in linear logic over Fo-
rum’s connectives can be transformed via permutation
of inference rules into a proof that corresponds directly
to proofs built using the rules in Figure 1. Similar style
completeness proofs can be found in [12, 15].

The completeness result could also be proved us-
ing a result of Andreoli about “focusing” proofs. An-
dreoli considered one-sided sequents and classified all
the logical connectives of linear logic as being either
asynchronous or synchronous. In our setting, an oc-
currence of a connective on the right of a sequent ar-
row is asynchronous and on the left is synchronous.
As is shown in [1], asynchronous connectives can be
introduced in any order without reference to context
and with no need to backtrack. Here, this corre-
sponds to the fact that the right-hand side of a se-
quent can be decomposed until there are only atomic
formulas remaining on the right (we are, of course,
reading proof rules bottom-up). Also, since the or-
der of decomposition is not important, formulas on
the right can proceed in a left-to-right fashion. Syn-
chronous connectives can be introduced after all asyn-
chronous connectives have been introduced, and syn-
chronous subformulas of synchronous formulas can be
process immediately: that is, when processing a syn-
chronous formula, we can “focus” the processing on
its immediate synchronous subformulas. Processing
of synchronous formulas can in general require back-
tracking. It has been known that backchaining is a
“focused” event (for example, Pfenning has described
backchaining as “immediate implication”); Andreoli’s
results nicely formalizes and generalizes this observa-
tion. (The proof system in Figure 1 was motivated in
large part by a proof system in [1].)

An analogy exists between the embedding of all of
linear logic into Forum and the embedding of classical
logic into intuitionistic logic via the double negation

3

Σ : Ψ; ∆ −→ A,>, Γ
>-R

Σ : Ψ;∆ −→ A, B, Γ Σ : Ψ; ∆ −→ A, C, Γ
Σ : Ψ; ∆ −→ A, B & C, Γ

& -R

Σ : Ψ;∆ −→ A, Γ
Σ : Ψ; ∆ −→ A,⊥, Γ

⊥-R
Σ : Ψ;∆ −→ A, B,C, Γ

Σ : Ψ;∆ −→ A, B
...

............
.................................. C, Γ

...
............
.................................. -R

Σ : Ψ; B, ∆ −→ A, C, Γ
Σ : Ψ; ∆ −→ A, B −◦ C, Γ

−◦ -R
Σ : B, Ψ; ∆ −→ A, C, Γ

Σ : Ψ;∆ −→ A, B ⇒ C, Γ
⇒ -R

y: τ, Σ : Ψ;∆ −→ A, B[y/x], Γ
Σ : Ψ; ∆ −→ A, ∀τx.B, Γ

∀-R Σ : Ψ; ∆ B−→ A
Σ : Ψ; B, ∆ −→ A decide1

Σ : B, Ψ;∆ B−→ A
Σ : B, Ψ;∆ −→ A decide2

Σ : Ψ; A−→ A
initial

Σ : Ψ; ⊥−→
⊥-L

Σ : Ψ; ∆ B−→ A
Σ : Ψ;∆ B&C−→ A

& -L
Σ : Ψ;∆ C−→ A
Σ : Ψ; ∆ B&C−→ A

& -L

Σ : Ψ; ∆1
B−→ A1 Σ : Ψ; ∆2

C−→ A2

Σ : Ψ;∆1, ∆2
B

...
............
.................................. C−→ A1 +A2

...
............
.................................. -L

t is a Σ-term of type τ Σ : Ψ; ∆
B[t/x]−→ A

Σ : Ψ;∆ ∀τ x.B−→ A
∀-L

Σ : Ψ; ∆1 −→ B,A1 Σ : Ψ; ∆2
C−→ A2

Σ : Ψ;∆1, ∆2
B−◦C−→ A1 +A2

−◦ -L
Σ : Ψ;−→ B Σ : Ψ; ∆ C−→ A

Σ : Ψ; ∆ B⇒C−→ A
⇒ -L

Figure 1: The rule ∀-R has the proviso that y is not declared in the signature Σ.

translation. In classical logic, contraction and weak-
ening can be used on both the left and right of the
sequent arrow: in intuitionistic logic, they can only
be used on the left. The familiar double negation
translation of classical logic into intuitionistic logic
makes it possible for the formula B⊥⊥ on the right
to be moved to the left as B⊥, where contractions
and weakening can be applied to it, and then moved
back to the right as B. In this way, classical reasoning
can be regained indirectly. Similarly, in linear logic
when there are, for example, non-permutable right-
rules, one of the logical connectives involved can be
rewritten so that the non-permutability is transfer to
one between a left rule above a right rule (the only
kind of non-permutability in Forum proofs). For ex-
ample, the bottom-up construction of a proof of the
sequent −→ a ⊗ b, a⊥ ...

............
.................................. b⊥ must first introduce the

...
............
.................................. prior to the ⊗: the context splitting required by
⊗ must be delayed until after the ...

............
.................................. is introduced. If

this sequent is translated into Forum we would have
the sequent −→ (a⊥ ...

............
.................................. b⊥)−◦⊥, a⊥ ...

............
.................................. b⊥. In this case,

−◦ and ...
............
.................................. can be introduced in any order, giving rise

to the sequent a⊥ ...
............
.................................. b⊥ −→ a⊥, b⊥. Introducing the

...
............
.................................. now causes the context to be split, but this occurs

after the right-introduction of ...
............
.................................. . Thus, the encoding

of some of the linear logic connectives into the set used
by Forum essentially amounts to moving any “offend-
ing” non-permutabilities to where they are allowed.

Using various linear logic equivalences, all formulas

in Forum are logically equivalent to formulas of the
form C1 & · · · & Cn (n ≥ 0) where each Ci is of the
form

∀ȳ(G1 ↪→ · · · ↪→ Gm ↪→ (A1
...

............
.................................. · · · ...

............
.................................. Ap)) (m, p ≥ 0).

Here, occurrences of ↪→ are either occurrences of −◦
or ⇒. An empty & is written as > and an empty ...

............
..................................

is written as ⊥. Formulas of this form will be called
clauses. Given that the formulas in the Ψ portion of
the sequents in Figure 1 are implicitly !’ed and given
the linear logic equivalence !(A & B) ≡ ! A ⊗ !B, we
can further assume that all formulas in Ψ are clauses.

Certain occurrences of logical connectives that are
not primitive to Forum can be removed from clauses
using the following linear logic equivalences.

(A⊗B)−◦ C ≡ A−◦B −◦ C A⊥ −◦B ≡ A
...

............
.................................. B

(A⊕B)−◦ C ≡ (A−◦ C) & (B −◦ C)
(∃x.A(x))−◦B ≡ ∀x.(A(x)−◦B)
! A−◦B ≡ A ⇒ B 1−◦B ≡ B

These equivalences can be used at times to avoid us-
ing the indirect equivalences mentioned earlier that
employ negation.

We shall not discuss here practical considerations
of how search for proofs using the inference rules in
Figure 1 can be done, except to note a problem in us-
ing clauses with an empty head (a head that is ⊥).
For example, consider attempting to prove a sequent
with right-hand side A and with the clause ∀x̄(G−◦ ⊥)

4

on the left-hand side. This clause can be used in a
backchaining step, regardless of A’s structure, yield-
ing the new right-hand side θG,A, for some substi-
tution θ over the variables x̄. Such a clause provides
no overt clues as to when it can be effectively used to
prove a given goal. See [15] for a discussion of a simi-
lar problem when negated clauses are allowed in logic
programming based on minimal or intuitionistic logic.
As we shall see below, the specification of the cut rule
for an object-level logic employs just such a clause: the
well known problems of searching for proofs involving
cut thus apply equally well to the search for uniform
proofs involving such clauses.

3 Specifying object-level provability

Given the proof-theoretic motivations of Forum and
its inclusion of quantification at higher-order types, it
is not surprising that it can be used to specify proof
systems for various object-level logics. Below we il-
lustrate how a sequent calculus proof system can be
specified, and show how properties of linear logic can
be used to infer properties of the object-level proof
systems.

Provability in intuitionistic logic has well known
presentations using sequent calculus and natural de-
duction, both of which were given by Gentzen in [7]
as proof systems LJ and NJ, respectively. The LJ se-
quent B1, . . . , Bn −→ B0 (n ≥ 0) can be represented
by the meta-level formula

? left B1
...

............
.................................. · · · ...

............
.................................. ? left Bn

...
............
.................................. right B0,

where left and right are two meta-level predicates. To
capture object-level contraction and weakening on the
left-hand side, we employ the ? modal. Since no struc-
tural rules are available on the right-hand side of LJ
sequents, no modal is used to encode that formula.
Figure 2 is a specification of Gentzen’s LJ calculus.
(Expressions displayed as they are in Figure 2 are ab-
breviations for closed formulas: the intended formulas
are those that result by applying ! to their universal
closure.) The operational reading of these clauses is
quite natural. For example, the first clause in Figure 2
encodes the right-introduction of ⊃: operationally an
occurrence of A ⊃ B on the right is removed and re-
placed with an occurrence of B on the right and a
(modalized) occurrence of A on the left (reading the
right-introduction rule for ⊃ from the bottom). Notice
that all occurrences of the left predicate in Figure 2
are in the scope of ?. If occurrences of such modals in

right (A ⊃ B) ◦− (?(left A) ...
............
.................................. right B).

?(left (A ⊃ B)) ◦− right A ◦− ?(left B).
right (A ∧B) ◦− right A & right B.

?(left (A ∧B)) ◦− ?(left A).
?(left (A ∧B)) ◦− ?(left B).
right (B ∨ C) ◦− right B.
right (B ∨ C) ◦− right C.

?(left (B ∨ C)) ...
............
.................................. right E ◦− (?(left B) ...

............
.................................. right E)

◦− (?(left C) ...
............
.................................. right E).

right B
...

............
.................................. ?(left B).

⊥ ◦− ?(left B) ◦− right B.

Figure 2: Specification of LJ: sequent calculus

the heads of clauses were dropped, it would be possi-
ble to prove meta-level goals that do not correspond
to any LJ sequent: such goals could contain left-atoms
that are not prefixed with the ? modal. (Of course,
the actual Forum clauses result from replacing ? by its
definition: this example and some others suggest that
there are advantages to allowing ? as an additional
primitive.)

Notice that with the left-introduction of ∨, the for-
mula on the right (here E) must be copied: since such
formulas are not under a ? modal, the inference rule
must explicitly copy the right-hand formula. This is
done by “synchronizing” (with a multiple-conclusion
clause) both the disjunction that is being introduced
and the right-hand formula, and then explicitly copy-
ing the right-hand formula within the rule (hence the
two copies of right E on the right-side of that clause).

The penultimate clause in Figure 2 specifies the ini-
tial sequent rule while the final clause specifies the cut
rule. The well known problems of searching for proofs
containing cut rules are transferred to the meta-level
as problems of using a clause with ⊥ for a head within
the search for cut-free proofs (see Section 2).

Let LJ be the set of clauses displayed in Figure 2
and let Σ1 be the set of constants of the object-logic
along with the two predicates left and right.

Proposition 2 (Correctness of LJ) The sequent
B1, . . . , Bn −→ B0 (n ≥ 0) has an LJ proof if and
only if Σ1 : LJ ` ? left B1

...
............
.................................. · · · ...

............
.................................. ? left Bn

...
............
.................................. right B0.

Proof For the forward direction, an LJ proof can
be converted into a uniform proof of the correspond-
ing meta-level formula by mapping the sequence of
inference rules in the LJ proof to the sequence of
clauses used in backchaining. Additionally, right-
introductions for ...

............
.................................. and & and weakening, contrac-

5

right (A ⊃ B) ◦− (right A ⇒ right B).
right B ◦− right A ◦− right (A ⊃ B).

right (A ∧B) ◦− right A & right B.
right A ◦− right (A ∧B).
right B ◦− right (A ∧B).

right (B ∨ C) ◦− right B.
right (B ∨ C) ◦− right C.

right E ◦− right (B ∨ C)
◦− (right B ⇒ right E)
◦− (right C ⇒ right E).

Figure 3: Specification of NJ: natural deduction

tion, and dereliction for ? will need to be inserted in a
straightforward fashion. The converse direction is as
simple: the sequence of backchaining steps determines
the application of inference rules in a corresponding LJ
proof. In the process of establishing this correspon-
dence, it is important to observe how occurrences of
atoms with the predicate right appear within uniform
proofs: a simple induction on uniform proofs shows
that if a multiple-conclusion goal is provable from LJ,
that goal contains exactly one occurrence of right.

So far we have only discussed the operational in-
terpretation of the specification in Figure 2. It is de-
lightful, however, to note that this specification has
some meta-logical properties that go beyond its op-
erational reading. In particular, the specifications
for the initial and cut inference rules together are
logically equivalent to the proposition (right B)⊥ ≡
?(left B). This equivalence implies the equivalence
(right B) ≡ !(right B). That is, we have the (not too
surprising) fact that left and right are essentially du-
als, and that this is guaranteed by reference only to
the specifications for the initial and cut rules. If we
replace some occurrences of ?(left B) in Figure 2 with
right B and replace other occurrences with the equiva-
lent !(right B), and rewrite the resulting clauses using
linear logic equivalences, we get the clauses in Fig-
ure 3. Since the results of rewriting the last two clauses
of in Figure 2 are linear tautologies, they are dropped.
Figure 3 contains a specification of Gentzen’s natural
deduction system NJ. This specification is similar to
those given using intuitionistic meta-logics [6, 19] and
dependent typed calculi [11, 3]. Let NJ be the set of
clauses displayed in Figure 3.

Proposition 3 (Correctness of NJ) The formula
B0 has an NJ proof from the assumptions B1, . . . , Bn

(n ≥ 0) if and only if

Σ1 : NJ, right B1, . . . , right Bn ` right B0.

A proof of this Proposition can be done similar
to the proof of Proposition 2. The discussion of the
derivation of the natural deduction proof system from
the sequent calculus proof system provides a proof of
the following Proposition. For convenience, if Γ is a
finite, non-empty set of formulas, let ⊗Γ denote the
formula that is the tensor of all the formula in Γ in
some fixed but arbitrary order.

Proposition 4 Let Eq be the tensor of the last two
formulas in Figure 2. Then Σ1 ` (⊗LJ) ≡ (⊗NJ) ⊗
Eq.

The following theorem, first proved by Gentzen in
[7], is an almost immediate consequence of the preced-
ing propositions.

Theorem 5 The sequent B1, . . . , Bn −→ B0 has an
LJ proof if and only if B0 has an NJ proof from the
assumptions B1, . . . , Bn (n ≥ 0).

Proof If B0 has an NJ proof from the assumptions
B1, . . . , Bn, then by Proposition 3,

Σ1 : NJ, right B1, . . . , right Bn ` right B0.

Using Proposition 4 and cut, we have

Σ1 : LJ, right B1, . . . , right Bn ` right B0.

Since Eq follows from LJ and since Eq implies
the equivalences ∀B.(right B)⊥ ≡ ?(left B) and
∀B.(right B) ≡ !(right B), additional uses of cut at
the meta-level yield a proof of Σ1 : LJ ` ? left B1

...
............
..................................

. . .
...

............
.................................. ? left Bn

...
............
.................................. right B0. Thus, by Proposition 2, it

follows that the sequent B1, . . . , Bn −→ B0 has an LJ
proof.

For the converse assume that B1, . . . , Bn −→ B0

has an LJ proof. Thus,

Σ1 : LJ ` ? left B1
...

............
.................................. . . .

...
............
.................................. ? left Bn

...
............
.................................. right B0

and using cut and Proposition 4, we have

Σ1 : NJ, Eq ` ? left B1
...

............
.................................. . . .

...
............
.................................. ? left Bn

...
............
.................................. right B0

and Σ1 : NJ, Eq, right B1, . . . , right Bn ` right B0.
The additional assumption of Eq stops us from using
Proposition 3 immediately. It is straightforward to
show, however, that any uniform proof that uses this
additional assumption can be converted to a uniform

6

proof that does not use that assumption. As as result,
we can conclude that

Σ1 : NJ, right B1, . . . , right Bn ` right B0,

and by Proposition 3, that B0 has an NJ proof from
the assumptions B1, . . . , Bn.

Most logical or type-theoretic systems that have
been used for meta-level specifications of proof sys-
tems have been based on intuitionistic principles (for
example, λProlog, Isabelle, LF). Although these sys-
tems have been successful at specifying numerous log-
ical systems, they have important limitations. For ex-
ample, while they can often provide elegant specifi-
cations of natural deduction proof systems, specifica-
tions of sequent calculus proofs are often unachievable
without the addition of various non-logical constants
for the sequent arrow and for forming lists of formulas
(see, for example, [6]). Furthermore, these systems of-
ten have problems capturing substructural logics, such
as linear logic, that do not contain the usual comple-
ment of structural rules. It should be clear from the
above example that Forum allows for both the natural
specification of sequent calculus and the possibility of
handling substructural object-logics.

4 Operational Semantics Examples

Evaluation of pure functional programs has been
successfully specified in intuitionistic meta-logics [9]
and type theories [4, 20] using structured operational
semantics and natural semantics. These specification
systems are less successful at providing natural speci-
fications of languages that incorporate references, con-
trol operators, and concurrency. We now consider how
evaluation incorporating references can be specified in
Forum.

Consider the presentation of call-by-value evalua-
tion given by the following inference rules (in natural
semantics style).

M ⇓ (abs R) N ⇓ U (R U) ⇓ V

(app M N) ⇓ V

(abs R) ⇓ (abs R)

Here, we assume that there is a type tm representing
the domain of object-level, untyped λ-terms and that
app and abs denote application (at type tm → tm →
tm) and abstraction (at type (tm → tm) → tm).
Object-level substitution is achieved at the meta-level
by β-reduction of the meta-level application (R U) in

E1 = ∃r[(r 0)⊥ ⊗
! ∀K, V (eval read V K

...
............
.................................. r V ◦− K

...
............
.................................. r V))⊗

! ∀K, V (eval inc V K
...

............
.................................. r V ◦− K

...
............
.................................. r (V + 1))]

E2 = ∃r[(r 0)⊥ ⊗
!∀K, V (eval read (−V) K

...
............
.................................. r V ◦− K

...
............
.................................. r V)⊗

!∀K, V (eval inc (−V) K
...

............
.................................. r V ◦− K

...
............
.................................. r (V − 1))]

E3 = ∃r[(r 0)⊗
! ∀K,V (eval read V K ◦− r V ⊗ (r V −◦K))⊗
! ∀K,V (eval inc V K ◦− r V ⊗ (r (V + 1)−◦K)]

Figure 4: Three specifications of a global counter.

the above clause. A familiar way to represent these
inference rules in meta-logic is to encode them as the
following two clauses using the predicate eval of type
tm → tm → o (see, for example, [9]).

eval (app M N) V ◦− eval M (abs R)
◦− eval N U ◦− eval (R U) V.

eval (abs R) (abs R).

In order to add side-effecting features, this specifica-
tion must be made more explicit: in particular, the
exact order in which M , N , and (R U) are evaluated
must be specified. Using a “continuation-passing”
technique from logic programming [21], this order-
ing can be made more explicit using the following
two clauses, this time using the predicate eval at type
tm → tm → o → o.

eval (app M N) V K ◦−
eval M (abs R) (eval N U (eval (R U) V K)).

eval (abs R) (abs R) K ◦− K.

From these clauses, the goal (eval M V >) is prov-
able if and only if V is the call-by-value value of M .
It is this “single-threaded” specification of evaluation
that we shall modularly extend with a couple of non-
functional features.

Consider adding to this specification a single global
counter that can be read and incremented. To specify
such a counter we add the integers to type tm, sev-
eral simple functions over the integers, and the two
symbols read and inc of type tm. The intended mean-
ing of these constants is that evaluating the first re-
turns the current value of the counter and evaluating
the second increments the counter’s value and returns
the counter’s old value. We also assume that inte-
gers are values: that is, for every integer i the clause
∀k(eval i i k ◦− k) is part of the evaluator’s specifica-
tion.

7

Figure 4 contains three specifications, E1, E2, and
E3, of such a counter: all three specifications store the
counter’s value in a atomic formula as the argument
of the predicate r. In these three specifications, the
predicate r is existentially quantified over the specifi-
cation in which it is used so that the atomic formula
that stores the counter’s value is itself local to the
counter’s specification (such existential quantification
of predicates is a familiar technique for implement-
ing abstract data types in logic programming [14]).
The first two specifications store the counter’s value
on the right of the sequent arrow, and reading and
incrementing a counter occur via a synchronization
between evaluation and the atom storing the counter.
In the third specification, the counter is stored as a
linear assumption on the left of the sequent arrow,
and synchronization is not used: instead, the linear
assumption is “destructively” read and then rewritten
in order to specify the read and inc functions (coun-
ters such as these are described in [12]). Finally, in
the first and third specifications, evaluating the inc
symbol causes 1 to be added to the counter’s value.
In the second specification, evaluation the inc symbol
causes 1 to be subtracted from the counter’s value: to
compensate for this unusual choice, reading a counter
in the second specification returns the minus of the
current counter’s value.

The use of ⊗, !, ∃, and negation in Figure 4, all of
which are not primitive connectives of Forum, is for
convenience in displaying these abstract data types.
The equivalence

∃r(R⊥1 ⊗ !R2 ⊗ !R3)−◦G ≡ ∀r(R2 ⇒ R3 ⇒ G
...

............
.................................. R1)

directly converts a use of such a specification into a
formula of Forum (given α-conversion, we may assume
that r is not free in G).

Although these three specifications of a global
counter are different, they should be equivalent in
the sense that evaluation cannot tell them apart. Al-
though there are several ways that the equivalence of
such counters can be proved (for example, operational
equivalence), the specifications of these counters are,
in fact, logically equivalent.

Proposition 6 Let Σ2 be the signature containing
eval, along with the constants of the object-level pro-
gramming language, namely, app, abs, inc, read, the
integers, and the various integer operations. We then
have the following three entailments:

Σ2 : E1 ` E2, Σ2 : E2 ` E3, and Σ2 : E3 ` E1.

Proof The proof of each of these entailments pro-
ceeds (in a bottom-up fashion) by choosing an eigen-

variable to instantiate the existential quantifier on the
left-hand specification and then by instantiating the
right-hand existential quantifier with some term in-
volving that eigenvariable. Assume that in all three
cases, the eigenvariable selected is the predicate sys-
tem s. The the first entailment is proved by instanti-
ating the right-hand existential with λx.s (−x); the
second entailment is proved using the substitution
λx.(s (−x))⊥; and the third entailment is proved us-
ing the substitution λx.(s x)⊥. The proof of the first
two entailments must also use the equations

{−0 = 0,−(x + 1) = −x− 1,−(x− 1) = −x + 1}.

The proof of the third entailment requires no such
equations.

Clearly, logical equivalence is a strong equivalence:
it immediately implies that evaluation cannot tell the
difference between any of these different specifica-
tions of a counter. For example, assume Σ2 : E1 `
eval M V >. Then by cut and the above proposition,
we immediately have Σ2 : E2 ` eval M V >.

It is possible to specify a more general notion of ref-
erences from which a counter such as that described
above can be built. Consider the specification in Fig-
ure 5. Here, the type loc is introduced to denote the lo-
cation of references, and three constructors have been
added to the object-level λ-calculus to manipulate ref-
erences: one for reading a reference (read), one for set-
ting a reference (set), and one for introducing a new
reference within a particular lexical scope (new). For
example, let m and n be expressions of type tm that
do not contain free occurrences of r, and let F1 be the
expression

(new (λr(set r (app m (read r)))) n).

This expression represents the program that first eval-
uates n; then allocates a new, scoped reference cell,
which is initialized with n’s value; then overwrites this
new reference cell with the result of applying m to the
value currently stored in that cell. Since m does not
contain a reference to r, it should be the case that
this expression has the same operational behavior as
the expression F2 defined as

(app (abs λx(app m x)) n).

Below we illustrate the use of meta-level properties of
linear logic to prove the fact that F1 and F2 have the
same operational behaviors.

Let Ev be the set of formulas from Figure 5 plus the
two formulas displayed above for the evaluation of app
and abs, and let Σ3 be the set of constants occurring in

8

read : loc → tm
set : loc → tm → tm

new : (loc → tm) → tm → tm
assign : loc → tm → o → o

ref : loc → tm → o

eval (set L N) V K ◦− eval N V (assign L V K).
eval (new R E) V K ◦−

eval E U (∀h(ref h U
...

............
.................................. eval (R h) V K)).

eval (read L) V K
...

............
.................................. ref L V ◦− K

...
............
.................................. ref L V.

assign L V K
...

............
.................................. ref L U ◦− K

...
............
.................................. ref L V.

Figure 5: Specification of references.

Σ2 and in Ev. An object-level program may have both
a value and the side-effect of changing a store. Let S
be a syntactic variable for a store, that is, a formula
of the form ref h1 u1

...
............
.................................. . . .

...
............
.................................. ref hn un (n ≥ 0),

where all the constants h1, . . . , hn are distinct. Of
course, we can think of a store as a finite function that
maps locations to values stored in those locations. The
domain of a store is the set of locations it assigns: in
the above case, the domain of S is {h1, . . . , hn}. A
garbaged state is a formula of the form ∀h̄.S, where
S is a state and ∀h̄ is the universal quantification of
all the variables in the domain of S. Consider, for
example, the program expression F3 given as

(new λr(read r) 5).

This program has the value 5 and the side-effect of
leaving behind a garbaged store. More precisely, the
evaluation of a program M in a store S yields a value V
and new store S′ and garbaged store G if the formula

∀k[k ...
............
.................................. S′ ...

............
.................................. G−◦ eval M V k

...
............
.................................. S]

is provable from the clauses in Ev and the signa-
ture Σ3 extended with the domain of S. An imme-
diate consequence of this forumula is that the formula
eval M V > ...

............
.................................. S is provable: that is, the value of M

is V if the store is initially S. The references speci-
fied here obey a block structured discipline: that is,
the domains of S and S′ are the same and any new
references that are created in the evaluation of M are
collected in the garbaged store G. For example, a con-
sequence of the formulas in Ev is the formula

∀k[k ...
............
.................................. ∀h(ref h 5)−◦ eval F3 5 k].

That is, evaluating expression F3 yields the value 5
and the garbaged store ∀h(ref h 5). An immediate
consequence of this formula is the formula

∀k[k ...
............
.................................. S

...
............
.................................. ∀h(ref h 5)−◦ eval F3 5 k

...
............
.................................. S];

that is, this expression can be evaluated in any store
without changing it. Because of their quantification,
garbaged stores are inexcessible: operationally (but
not logically) ∀h(ref h 5) can be considered the same
as ⊥ in a manner similar to the identification of (x)x̄y
with the null process in the π-calculus [18].

We can now return to the problem of establishing
how the programs F1 and F2 are related. They both
contain the program phrases m and n, so we first as-
sume that if n is evaluated in store S0 it yields value
v and mutates the store into S1, leaving the garbaged
store G1. Similarly, assume that if m is evaluated in
store S1 it yields value (abs u) and mutates the store
into S2 with garbaged store G2. That is, assume the
formulas

∀k[k ...
............
.................................. S1

...
............
.................................. G1 −◦ eval n v k

...
............
.................................. S0] and

∀k[k ...
............
.................................. S2

...
............
.................................. G2 −◦ eval m (abs u) k

...
............
.................................. S1].

From these formulas and those in Ev, we can infer that

∀W∀k[eval (u v) W k
...

............
.................................. S2

...
............
.................................. G1

...
............
.................................. G2

...
............
.................................. ∀h(ref h v)

−◦ eval F1 W k
...

............
.................................. S0] and

∀W∀k[eval (u v) W k
...

............
.................................. S2

...
............
.................................. G1

...
............
.................................. G2

−◦ eval F2 W k
...

............
.................................. S0].

That is, if the expression (u v) has value W in store S2

then both expressions F1 and F2 yield value W in store
S1. Clearly resolution at the meta-level can be used to
compose the meaning of different program fragments
into the meaning of larger fragments. Hopefully, such
a compositional approach to program meaning can be
used to aid the analysis of programs using references.

5 Conclusions

We have given a presentation of linear logic whose
proof theory modularly extends the proof theory of
several known logic programming languages. The re-
sulting specification language, named Forum, provides
the abstract syntax and higher-order judgments avail-
able in intuitionistic-based meta-logics as well as prim-
itives for synchronization and communications. We
have specify directly various tasks in proof theory and
the operational semantics of programming languages.
Since the resulting specifications are natural and sim-
ple, properties of the meta-logic can be meaningful
employed to provide interesting properties about the
specified object-languages.

Acknowledgements. I benefited greatly from dis-
cussions with Jawahar Chirimar and Bob Harper and

9

from comments of the conference reviewers and Eva
Ma. The author has been funded in part by ONR
N00014-93-1-1324, NSF CCR-91-02753, NSF CCR-92-
09224, and DARPA N00014-85-K-0018.

References

[1] J.-M. Andreoli. Logic programming with focusing
proofs in linear logic. J. of Logic and Computa-
tion, 2(3), 1992.

[2] J.-M. Andreoli and R. Pareschi. Linear objects:
Logical processes with built-in inheritance. New
Generation Computing, 9:3-4, 1991.

[3] A. Avron, F. Honsell, I. A. Mason, and R. Pol-
lack. Using typed lambda calculus to implement
formal systems on a machine. J. of Automated
Reasoning, 9:309-354, 1992.

[4] R. Burstall and F. Honsell. A natural deduc-
tion treatment of operational semantics. In Foun-
dations of Software Technology and Theoretical
Computer Science, pp. 250-269. Springer-Verlag
LNCS 338, 1988.

[5] A. Church. A formulation of the simple theory of
types. J. of Symbolic Logic, 5:56-68, 1940.

[6] A. Felty. Implementing tactics and tacticals in a
higher-order logic programming language. J. of
Automated Reasoning, 11(1):43-81, 1993.

[7] G. Gentzen. Investigations into logical deduc-
tions, 1935. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pp. 68-131. North-
Holland Publishing Co., Amsterdam, 1969.

[8] Jean-Yves Girard. Linear logic. Theoretical Com-
puter Science, 50:1-102, 1987.

[9] J. Hannan. Extended natural semantics. J. of
Functional Programming, 3(2):123-152, 1993.

[10] J. Harland and D. Pym. On Goal-directed Prov-
ability in Classical Logic. Technical report 92/16,
Dept. of Computer Science, Univ. of Melbourne,
1992.

[11] R. Harper, F. Honsell, and G. Plotkin. A frame-
work for defining logics. J. of the ACM, 40(1):143-
184, 1993.

[12] J. Hodas and D. Miller. Logic programming in a
fragment of intuitionistic linear logic. J. of Infor-
mation and Computation, 1994. (To appear).

[13] S. C. Kleene. Permutabilities of inferences in
Gentzen’s calculi LK and LJ. Memoirs of the
American Mathematical Society, 10, 1952.

[14] D. Miller. Lexical scoping as universal quantifi-
cation. In Sixth International Logic Programming
Conference, pp. 268-283, Lisbon, Portugal, June
1989. MIT Press.

[15] D. Miller. A logical analysis of modules in logic
programming. J. of Logic Programming, 6(1-
2):79-108, 1989.

[16] D. Miller. The π-calculus as a theory in linear
logic: Preliminary results. In E. Lamma and
P. Mello, editors, Proc. of the 1992 Workshop
on Extensions to Logic Programming, Springer-
Verlag LNCS 660, pp. 242-265. 1993.

[17] D. Miller, G. Nadathur, F. Pfenning, and A. Sce-
drov. Uniform proofs as a foundation for logic
programming. Annals of Pure and Applied Logic,
51:125-157, 1991.

[18] R. Milner, J. Parrow, and D. Walker. A calcu-
lus of mobile processes, Part I. Information and
Computation, pp. 1-40, September 1992.

[19] L. C. Paulson. The foundation of a generic the-
orem prover. J. of Automated Reasoning, 5:363-
397, September 1989.

[20] F. Pfenning. Elf: A language for logic definition
and verified metaprogramming. In LICS 1989,
pp. 313-321, Monterey, CA.

[21] P. Tarau. Program transformations and WAM-
support for the compilation of definite metapro-
grams. In Logic Programming: Proc. of the First
and Second Russian Conferences on Logic Pro-
gramming, Springer-Verlag LNAI 592, pp. 462-
473, 1992.

Papers by Miller are available via anonymous ftp from
ftp.cis.upenn.edu in pub/papers/miller or using
WWW at http://www.cis.upenn.edu/~dale.

10

