
Unifying Classical and Intuitionistic Logics for Computational Control

Chuck Liang
Department of Computer Science

Hofstra University
Hempstead, NY, USA

Chuck.C.Liang@hofstra.edu

Dale Miller
INRIA-Saclay &

LIX, École Polytechnique
Palaiseau, France

Dale.Miller@inria.fr

Abstract—We show that control operators and other ex-
tensions of the Curry-Howard isomorphism can be achieved
without collapsing all of intuitionistic logic into classical logic.
For this purpose we introduce a unified propositional logic
using polarized formulas. We define a Kripke semantics for
this logic. Our proof system extends an intuitionistic system
that already allows multiple conclusions. This arrangement
reveals a greater range of computational possibilities, including
a form of dynamic scoping. We demonstrate the utility of
this logic by showing how it can improve the formulation of
exception handling in programming languages, including the
ability to distinguish between different kinds of exceptions and
constraining when an exception can be thrown, thus providing
more refined control over computation compared to classical
logic. We also describe some significant fragments of this logic
and discuss its extension to second-order logic.

I. INTRODUCTION

Since it became clear that the Curry-Howard isomorphism
can be extended to classical logic [1], several construc-
tive classical systems have been formulated, including λµ-
calculus [2] and its variants. However, the gap between
intuitionistic logic and classical logic is a large one. Col-
lapsing all of intuitionistic logic into classical logic in order
to obtain greater computational ability is not necessarily
the best approach. For example, we may wish to obtain
a computationally meaningful proof for a formula such as
(A→ B)∨A. In classical logic, there is no avoiding the fact
that this formula is an instance of the excluded middle, and
can be given a trivial proof. Such a situation can occur either
with an explicit ∨, or implicitly when there are multiple
conclusions in proofs. A λµ-term may be obtained, but it
does not compute anything meaningful. We wish to have a
logical way to constrain the interpretation of such a formula,
so that B must be computed, in the sense that it must be
the result of introductions and eliminations and not just the
result of weakening, at least not until certain conditions are
met.

Ideas from classical λµ-calculus have been used to for-
mulate, for example, exception handling in programming
languages. In particular, catch is represented by contrac-
tion, which saves a copy of the current continuation, and
throw/raise is represented by weakening, which discards
the current continuation and jumps back to the saved one

(see [3]). However, there remains a gap between this form
of exception handling and those of practical programming
languages such as Java. We list three such gaps below.

• The type of the exception is not identified. In Java,
for example, one specifies exceptions such as in catch
IOException, catch ArithmeticException, etc.

• Control over when an exception can be thrown is
lacking. One must declare int p(..) throws IOException
in Java if it is possible for p to throw this kind of
exception.

• Exception handling in languages such as Java and ML
are dynamically scoped, whereas the λµ-calculus has
the same variable capturing restrictions as λ-calculus.

We do not claim to have a system as rich as Java or ML
but will offer at least some progress in each of these areas.
We unify classical and intuitionistic propositional logics into
a new logic we call Polarized Control Logic (PCL). The
polarity of a formula determines the availability of certain
structural rules. Depending on the polarity of A and B,
(A→ B)∨A may be interpreted entirely classically, entirely
intuitionistically, or somewhere in between.

Such a use of polarization is not new, and much of
what we have just described may sound like LC [4] and
related work on focusing proofs [5]. In fact our system will
extend the polarization scheme of LC. It is based on the
preservation of intuitionistic implication, which LC does not
contain. PCL will contain not only intuitionistic and classical
logics but also other meaningful fragments, including an
intermediate logic that admits the law of excluded middle
A ∨ ¬A but not involutive negation ¬¬A→ A.

We will define a form of Kripke models to interpret polar-
ized formulas and cement PCL’s status as a new logic with
a sequent calculus and proofs of cut elimination, soundness,
and completeness. The main proof system for PCL will
be a natural deduction system with proof terms. Existing
constructive classical systems typically extend Gentzen-
style, single-conclusion intuitionistic systems with multiple
conclusions. In contrast, the proof system for PCL will
extend an intuitionistic system that already has multiple
conclusions. This approach will reveal a greater range of
computational capabilities, including a dynamically scoped

version of the µ binder, the operator of λµ-calculus that
enables a computationally meaningful form of contraction.

II. POLARIZATION AND SEMANTICS

We focus on propositional logic in this presentation.
Formulas of PCL are build from atomic formulas, the
connectives ∧, ∨ and →, and the constants 1, 0 and ⊥. The
two constants for false define two forms of negation. We use
the abbreviations ∼A = A→ 0, and ¬A = A→ ⊥.

A. Polarization

Atomic formulas are polarized red or green. Polarization
is extended to all formulas as follows:
• ⊥ is green; 0 and 1 are red.
• A ∧ B is green if A and B are green, otherwise, it is

red.
• A∨B is green if A or B is green, otherwise, it is red.
• A→ B is green if B is green, otherwise, it is red.

We use the symbol R exclusively to represent red formulas
and E to represent green formulas, with frequent reminders
of this convention.

The polarization of ∧ and ∨ mirrors that of the LC
system [4]. However, LC does not contain implication1. In
particular, the natural correspondence between polarization
and focusing (focalization) no longer holds with implication.
For these reasons we have named our polarities red and
green instead of “positive” and “negative.” We also do not
insist on an a priori relationship of duality between the
polarities. For example, ¬E is green even if E is green.

Conceptually, red means intuitionistic and green means
classical and we formalize this correspondence below.

B. Kripke Models

We consider only Kripke frames that are (finitely) rooted:
it is known that intuitionistic propositional models can also
be assumed to have this restriction. Such frames are the
basis of models of the form 〈W, r,�, |=〉, where � is a
transitive, reflexive ordering of the set of possible worlds
W and r ∈ W is the unique root such that r � u for all
u ∈W. The binary relation |= monotonically maps elements
of W to sets of atomic formulas. We add another stipulation:

If q is a world properly above r (r ≺ q), then
q |= e holds for all green atoms e.

The |= relation is extended to all formulas as follows. Here
we use u and v to represent arbitrary worlds.
• r 6|= ⊥
• q |= ⊥ for all q � r
• u |= 1; u 6|= 0
• u |= A ∧B iff u |= A and u |= B

1If A⊥ ∨B is used for implication in LC (where A⊥ is the De Morgan
dual of A), then it is positive only when A is negative and B is positive.
In PCL, only the head of the implication determines the polarity. This
treatment of intuitionistic implication is also different from LU and from
linear logic. PCL is not a fragment of these systems.

• u |= A ∨B iff u |= A or u |= B
• u |= A→ B iff for all v � u, v |= A implies v |= B.

Except for green atoms and ⊥, the |= relation is the same
as in Kripke models for intuitionistic logic. The usual
monotonicity property holds: if u � v then u |= A implies
v |= A for all formulas A.

We shall refer to this version of Kripke models as r-
models. A formula is considered valid in an r-model if it
is valid in all its worlds. A formula is valid in PCL if it is
valid in all r-models.

The semantic characterization of green formulas is con-
sistent with that of ⊥ and green atoms: q |= E for all green
E and worlds q � r. The root r is the only classically
consistent world. Since all worlds above r force ¬A, we
have r |= A if and only if r 6|= ¬A, and thus A ∨ ¬A is
valid in all worlds.

If a formula A is purely red (all subformulas are red), then
A is valid if and only if it is intuitionistically valid. The
root world balances the classical inconsistency of all oth-
ers above. All worlds are intuitionistically consistent. This
means that a red subformula of a green formula will retain
its intuitionistic meaning, and vice versa. The r-models are
a restricted class of the models that we formulated in [6],
but PCL retains intuitionistic implication in a stronger way.

The following properties hold of this semantics.

• ⊥ → E is valid for green E, 0→ A is valid for all A.
• A ∨ ¬A is valid, but not ∼A ∨A nor ∼E ∨ E.
• ¬¬A→ A is NOT valid.
• ¬¬E→ E is valid for green E.
• ∼¬A→ A is valid for all A.
• If ¬¬A is valid then A is also valid.
• ¬(A ∧B)→ (¬A ∨ ¬B)
• ((P→ Q)→ P)→ P is valid if Q is green.

These properties show, respectively, that there are two levels
of consistency. The excluded middle is valid with ¬, but not
with ∼. The following countermodel disproves ¬¬A→ A:
let there be a single world q � r. For some red atom a,
define r 6|= a and q 6|= a. Then there is a world q above
r such that q |= ¬¬a but q 6|= a. However, two forms of
negation means four of double negation, and one of these
gives us the C control operator. The admissible rule stated
does not contradict the non-involution of ¬. The De Morgan
laws are valid with ¬. The version of Peirce’s formula
exemplifies how intuitionistic logic need not be crushed to
obtain new computational ability (in this case call/cc). If P
is red, then the innermost→ is a classical implication while
the other two stay intuitionistic.

The reader may have noticed, from the properties de-
scribed above, that red atoms have the characteristics of
universally quantified second order variables and that the
green atoms are existentially quantified. This is indeed true.
Although our main focus is on propositional logic, we
discuss this further in Section VII.

2

III. NATURAL DEDUCTION AND PROOF TERMS

The usual route of extending the Curry-Howard isomor-
phism is to start with a Gentzen-style, single-conclusion
intuitionistic system (LJ/NJ), allow multiple conclusions,
then add a stoup, i.e., some distinguished formula that
represents the current formula being deduced. Our approach,
which is used because one of our structural rules is context
sensitive, starts with the multiple-conclusioned version of
intuitionistic sequent calculus. This system is found in
various sources and is a mirror image of the Beth-Fitting
intuitionistic tableaux (and thus also simplifies the proof of
semantic completeness). Two inference rules in this system
stand out in contrast to Gentzen’s LJ, namely

A,Γ ` B
Γ ` A→ B,Θ

and
Γ ` A,B,Θ

Γ ` A ∨B,Θ
.

Contraction and weakening are also allowed on the right-
hand side. However, it is easy to see why (A→ ⊥)∨A is still
not provable with the scoping restriction on→ introduction.
We can form a natural deduction system from this sequent
calculus as follows.

1) Introduce a stoup on the right-hand side but also allow
formulas to freely enter and leave the stoup, so that
the new system is obviously equivalent to the stoupless
one. In particular, admissible cuts are preserved.

2) Apply cut-elimination to form the elimination rules.
The only extra difficulty, compared with the LJ-NJ
translation, is in the → introduction and ∨ elimination
cases. Fortunately, the invertibility of the multiplicative
∨-introduction rules (which can be proved by cut-
elimination) can be used to combine the right-hand side
into a single formula. Alternatively, we can just show
that the elimination rules are semantically sound.

We now extend this system with an extra context of
formulas on the right-hand side. Sequents of the proof
system NPC for PCL are of the form Γ ` S; Θ; [∆], where
the stoup S consists of zero or one formula. An empty stoup
means 0, which is intuitionistic false. The variables Γ, Θ
and ∆ range over sets of formulas and the expression A,Γ,
where Γ is any set of formulas, represents {A} ∪ Γ and
does not preclude the possibility that A ∈ Γ. Intuitively, Θ
is the intuitionistic multiple-conclusion context while [∆]
represents the “locked” context which is only accessible
once a green formula appears in Θ.

The semantic interpretation of the sequent Γ ` S; Θ; [∆]
is as for the formula (¬∆̌∧ Γ̂)→ (S∨Θ̌). Here, Γ̂ is the ∧-
conjunction of formulas in Γ, with an empty Γ representing
1, while Θ̌ (and ∆̌) is the ∨-disjunction of formulas in Θ,
with an empty Θ, and an empty stoup, representing 0.

Except for the stoup formula, all other formulas in a
sequent are indexed by variables. We assume that variables
indexing formulas in Γ (λ variables) are distinguishable from
those in Θ and ∆ (µ variables) and that the usual variable

conventions are applied. NPC is found in Figure 1. We prefer
to associate a proof term with an entire subproof, and not
just the stoup formula.

The following admissible rule indicates that contraction
and weakening are available in Γ, Θ and [∆]:

s : Cu, Cv,Γ ` F ;Ax, Ay,Θ; [Bd, Be,∆]

s[u/v, x/y, d/e] : Cu,ΓΓ′ ` F ;Ax,ΘΘ′; [Bd,∆∆′]

This is the uninteresting form of contraction and weakening
and we usually use them implicitly. With these structural
rules available, we are free to choose between multiplicative
and additive treatments of contexts. We prefer multiplicative
for its convenience when writing proofs.

A formula A is provable if ` A; ; [] is provable.
The proof terms for Open and Esc are those found in

λµ-calculus. However, here they remain intuitionistic. The
µ-binder is still important since it allows for structural
reduction (rule (µd.s)t −→ µd.s{[d]wt/d[w]} remains
valid), but with µ alone the reduction would be shallow
since it cannot survive past a λ binder. Formulas can be
locked in the boxed context [∆] prior to an → introduction
(regarding proofs bottom-up), which can be unlocked only
if a green formula E is found outside of the box. In NPC
the separation between intuitionistic and non-intuitionistic
proofs is indicated by the presence of ?, without which !
would also be useless (with apologies to linear logic: there
is no direct connection). The ! operators replaces µ as the
most meaningful operator since Lock enables contraction
(Bx may persist in Θ) between two distinct contexts.
Lock and Unlock can be used to prove ¬A ∨ A: since

⊥ is green, it can unlock the copy of A saved inside []. A
proof of Peirce’s formula ((P → Q) → P) → P , where
Q is green and P is red, is found in Figure 2. Some steps
moving formulas in and out of the stoup were combined.

Choosing a multiple-conclusion intuitionistic proof sys-
tem as starting point does imply some non-determinism: the
formula in the stoup is not always computed by introductions
and eliminations. But this form of non-determinism does
not survive past a β-redex (it also does not survive a ∨-
elimination), so it is limited in form. It is still possible
to derive typed λ-terms from purely intuitionistic proofs
in NPC. In classical λµ calculus, the µ binder can be
considered as a constant of type ¬¬A → A, which has no
equivalent λ-term. However, when seen in an intuitionistic
context, µ has type (0 ∨A)→ A (and the contraction form
of µ would be A∨A→ A). It is ! that is non-intuitionistic.
Recall that formulas B inside [] has the meaning of ¬B
on the left-hand side. This means !, as a constant, has type
(¬B → B) → B (assuming Bx ∈ Θ), which is a version
of Peirce’s formula.

We can also translate classical λµ-terms into “λµ!-terms.”
Each instance of a classical µd.s translates to µd.!d.s, and
[d]s translates to ?d.[d]s. Classical λµ-terms thus translated
are typable in NPC because we can choose green formulas

3

s : Γ `;Ax,Θ; [∆]

µx.s : Γ ` A; Θ; [∆]
Open

s : Γ ` A; Θ; [∆]

[d]s : Γ `;Ad,Θ; [∆]
Esc

s : Γ ` F ; Θ; [Bx,∆]

!x.s : Γ ` F ; Θ, Bx; [∆]
Lock

s : Γ ` E; Θ, Bx; [∆]

?x.s : Γ ` E; Θ; [Bx,∆]
Unlock

s : Ax,Γ ` B; ; [∆]

λx.s : Γ ` A→ B; Θ; [∆]
→ I

s : Γ ` A→ B; Θ; [∆] t : Γ′ ` A; Θ′; [∆′]

(s t) : ΓΓ′ ` B; ΘΘ′; [∆∆′]
→ E

u : Γ ` A; Θ; [∆] v : Γ′ ` B; Θ′; [∆′]

(u, v) : ΓΓ′ ` A ∧B; ΘΘ′; [∆∆′]
∧I

s : Γ ` A ∧B; Θ; [∆]

π`(s) : Γ ` A; Θ; [∆]
∧E1

s : Γ ` A ∧B; Θ; [∆]

πr(s) : Γ ` B; Θ; [∆]
∧E2

s : Γ ` A;Bd,Θ; [∆]

ω`d.s : Γ ` A ∨B; Θ; [∆]
∨I1

s : Γ ` B;Ad,Θ; [∆]

ωrd.s : Γ ` A ∨B; Θ; [∆]
∨I2

s : Γ1 ` A ∨B; Θ; [∆1] u : Ax,Γ2 ` C; ; [∆2] v : By,Γ3 ` C; ; [∆3]

(λx.u, λy.v)s : Γ1Γ2Γ3 ` C; Θ; [∆1∆2∆3]
∨E

x : Ax,Γ ` A; Θ; [∆]
Id

s : Γ ` 0; Θ; [∆]

A(s) : Γ ` F ; Θ; [∆]
0 E

s : Γ ` ⊥; Θ; [∆]

B(s) : Γ ` E; Θ; [∆]
⊥E

exit : Γ ` 1; Θ; [∆]
1I

Figure 1. The Natural Deduction System NPC; E in Unlock and ⊥E must be green

x : ((P → Q)→ P)x ` (P → Q)→ P ; ; []
Id

y : ((P → Q)→ P)x, P y ` P ;Qe; []
Id

µe.[d]y : ((P → Q)→ P)x, P y ` Q;P d; []
Open, Esc

?d.µe.[d]y : ((P → Q)→ P)x, P y ` Q; ; [P d]
Unlock

λy.?d.µe.[d]y : ((P → Q)→ P)x ` P → Q;P d; [P d]
→ I

x (λy.?d.µe.[d]y) : ((P → Q)→ P)x ` P ;P d; [P d]
→ E

!d.(x (λy.?d.µe.[d]y)) : ((P → Q)→ P)x ` P ;P d; []
Lock

µd.[d]!d.(x (λy.?d.µe.[d]y)) : ((P → Q)→ P)x ` P ; ; []
Open, Esc

λx.µd.[d]!d.(x (λy.?d.µe.[d]y)) : ` ((P → Q)→ P)→ P ; ; []
→ I

Figure 2. NPC proof of Peirce’s formula with P red and Q green

to type them, such as ¬¬E → E2. Choosing only green
formulas renders the guard on Unlock meaningless, leaving
us with classical logic.

The ! operator is not a binder in the sense of λ and µ:
x remains free in !x.s (and in ?x.s). However, !x.s does
represent the start of a kind of scope, represented by s,
in which x can be considered to have been pushed on to
an alternate, global stack. Since x remains free, we would
obviously be able to emulate a form of capturing substitution
with respect to !. In particular, we may have !x.λy.s (typed
by A→ B in the stoup), and thus a valid reduction rule for
! is: (!x.s) t −→ !x.(s t). Such a rule will “capture” free
occurrences of x in t inside the scope of !. This is clearly
the behavior of dynamic scoping. Nested occurrences of !x
may not seem necessary when building a cut-free proof, but
they may certainly appear in proofs with cuts (β redexes),
which represent programs.

To be fair, it is also possible to give such an interpretation
to ?x.s, and even to [d]s. At least the following special cases

2Not all versions of classical λµ calculus can be translated: the original
λµ allowed proofs of theorems to contain free variables, which is not
possible in NPC.

of µ also do not need to bind their variables:

s : Γ `;Ad,Θ; [∆]

µ′d.s : Γ ` A;Ad,Θ; [∆]

s : Γ `;Ad,Θ; [Ad,∆]

µ′′d.s : Γ ` A; Θ; [Ad,∆]

The µ′ operator is not needed in classical λµ-calculus
because it can be replaced by weakening, but it is a possible
interpretation of µ, which also leads to some dynamic bind-
ing behavior. However, µ′ cannot implement contraction,
and therefore does not have the computational power of !. In
contrast, since Bx ∈ Θ is possible in the Lock rule, ! can be
interpreted as a dynamic binder and implements contraction.
It is also not just the kind of contraction that renames
variables. This comparison shows that the dynamic behavior
of ! is not just the result of a fortuitous interpretation. The
multiple-conclusion intuitionistic context, when paired with
the [] context, thus revealed a new computational capability.

Since µ′ and µ′′ can extend the effectiveness of ! as a
dynamic binder, we shall admit them as well.

A. An Abstract Machine

We do not give a complete set of reduction/rewrite rules
for NPC proof terms because an effective computational

4

interpretation of these terms requires a specific evaluation
strategy. In the original λµ calculus, certain valid reductions
were also excluded to preserve confluence. The problem
is exacerbated by the non-binding behavior of !: a specific
reduction strategy is required for determinism and for type
soundness (there are situations where at most one of several
possible reductions may take place). We define such a
strategy in the form of an abstract machine. This machine is
not the only way to evaluate NPC terms but it demonstrates
their computational effectiveness.

Krivine’s machine for λ-terms, which computes weak
head normal forms, was extended to λµ by adding an
additional environment for saved continuations [7], [8]. We
also require a global environment to realize the dynamic
binding behavior of !. Most of the following definitions are
inherited from the λµ machine. A machine state is defined
inductively as St; [GE], where St is a stack that consists
of a list of closures. A closure 〈t, CE,LE〉 consists of a
λµ!-term t, a closure environment CE, and a (local) stack
environment LE. A closure environment consists of a list
of bindings (x,C) where x is a (λ) variable and C is a
closure. A stack environment consists of a list of bindings
(d, S) where d is a (µ) variable and S is a stack. [GE] is the
global stack environment. Conceptually, a stack represents
a sequence of cuts. A closure represents a subproof with
pending cuts suspended in closure and stack environments.
Each transition of the machine represents a cut reduction
step.

We use nil for the empty list, :: for Cons, and assume
that CE(x), LE(x) and GE(x) return the first (from left
to right) closure or stack bound to x in a closure or stack
environment. The transitions of the machine are found in
Figure 3. Only the implicational fragment is shown.

The highlighted rules represent divergence from classical
λµ. The machine interprets µ as the non-binding µ′′ when
possible, which means that all nested !x will behave dynam-
ically. Only the outermost µx will bind statically.

B. Multiplicative Disjunction

It is quite natural to represent a multiplicative ∨-
introduction, in the presence of a stoup, using binders:
here, ω` and ωr. Additive disjunction is subsumed in this
representation by ω`/rd.s where d is not free is s. In such a
case ω`/r naturally degrade to the usual injection operators.
But non-vacuous multiplicative disjunction has the potential
for greater computational content. In the ∨-elimination rule,
both implicit λ-terms are needed in the reduction. The
principal reduction rules associated with ∨-elimination are

(u, v) (ω`d.t) −→ µd.[d](u t{[d](v w)/[d]w})
(u, v) (ωrd.t) −→ µd.[d](v t{[d](u w)/[d]w})

Both u and v are involved in the reduction. In the termi-
nology of λµ-calculus, one is logical while the other one is
structural, and is applied to subproofs where the alternate

disjunct enters the stoup. Since both u and v are required, an
extra copy of C will be found in the conclusion, and thus a
contraction, represented by µd.[d] . . . is required at the end.

The abstract machine can be generalized to accommodate
∨-elimination with stack environment entries of the form
(d, (C, S)) where C is an extra closure, which is placed in
front of the closure for t in the rule for [d]t.

Our ω`/r-binders are similar to the ones of [9]. While their
∨-introduction rule is also multiplicative, their ∨-elimination
is entirely different from ours.

IV. EXTENDING NPC FOR EXCEPTION HANDLING

We choose exception handling as the main example of the
enriched computations that PCL can formulate because it is a
subject that has been studied in the literature on λµ calculus
and related systems. The use of multiple-conclusion proofs
to represent exception handling was formulated in [10], and
further studied in [3], [11], where µd.[d]s is interpreted
as catch, and µz.[d]w where z is free in w is considered
throw (or raise). Our goal here is not to resolve every
issue associated with exception handling but to demonstrate
the additional expressiveness that PCL can contribute to
formulating this kind of computation.

In λµ calculus, µ has the same variable capturing con-
straints as λ, which means that it implements statically
scoped exception handling. However, exceptions are handled
dynamically in practical programming languages. The ! oper-
ator represents contraction and binds dynamically. However,
it does not always save the current continuation. We can
designate the special instance of Lock that should represent
catch as follows

s : Γ ` A; Θ; [Ad,∆]

!d.s : Γ ` A; Θ, Ad; [∆]
catch

Even when not in the restricted form above, ! can still serve
as a kind of exception handler if one is willing to stretch
the meaning of “current continuation.” The catch must take
place in the context of an outer µ binder, but it need not be
a trivial context. When the context is trivial, i.e., in the form
µd.[d]!d.s, then the catch becomes a static one. Without !,
µ alone would only implement a shallow form of catch.

A dynamically scoped catch can also be implemented
using a µ′′d in conjunction with !:

s : Γ ` A; Θ, Ad; [Ad,∆]

µ′′d.[d]!d.s : Γ ` A; Θ; [Ad,∆]
catch

When this catch is executed on the abstract machine of
Figure 3, which interprets µ as µ′′ when possible, any pre-
viously saved continuation with label d will be overridden.

The representation of throw can only be explained along-
side other refinements. These refinements can be applied to
both the static and the dynamic versions of catch.

In designing a type system for a programming language,
we can use red types for data values (integers, strings,

5

〈x,CE,LE〉 :: S; [GE] −→ CE(x) :: S; [GE]

〈(u v), CE,LE〉 :: S; [GE] −→ 〈u,CE,LE〉 :: 〈v, CE,LE〉 :: S; [GE]

〈λx.t,CE,LE〉 :: C :: S; [GE] −→ 〈t, (x,C) :: CE,nil〉 :: S; [GE]

〈µd.t, CE,LE〉 :: S; [GE] −→ 〈t, CE, (d, S) :: LE〉 :: S; [GE]

〈[d]t, CE,LE〉 :: S; [GE] −→ 〈t, CE,LE〉 :: LE(d); [GE]

〈!d.t,CE,LE〉 :: S; [GE] −→ 〈t,CE,LE〉 :: S; [(d,LE(d)) :: GE]

〈?d.t,CE,LE〉 :: S; [GE] −→ 〈t,CE, (d,GE(d)) :: LE〉 :: S; [GE]

Figure 3. An Abstract Machine For λµ!

etc), while green types will represent errors. In existing
formulations of exception handling using classical logic, a
throw can occur at any point in the program and different
types of exceptions are not distinguished. We wish to enforce
stronger constraints for exception raising. PCL has the
capability to implement this kind of constraint, but in NPC
as given, all locked formulas are placed inside the same box.
Under this interpretation, any error can trigger any kind of
exception. We need to modify NPC as follows.

First, enumerate all green formulas as E0, E1, E2, . . .,
with E0 = ⊥.

Next, sequents are now Γ ` F ; Θ; [∆i1]i1 . . . [∆in]in ,
where i1 . . . in are distinct non-negative integers. The boxes
are considered unordered (placed inside a set of boxes). The
new versions of Lock and Unlock are found in Figure 4.
The restricted form of the right premise of Unlocki suffices
for our purposes. The introduction rules are adjusted in the
obvious way: the contents of each []i that appears in a
premise are merged in the conclusion.

The meaning of a formula A inside []i is now A → Ei

on the left-hand side. The semantics easily assure us that
these rules remain sound (because (B → Ei) ∨B is valid).
They are also complete since we can still choose to lock
all formulas in []0. Sequents are still finite since only a
finite number of boxes would be needed in a proof. When
interpreted as a constant, !i (in the form that implements
contraction) would be of type ((P → Ei) → P) → P
(the proof of this formula is an η-expansion of !i if !i is
interpreted as a constant: this is to be expected.)

We shall refer to this version of NPC as NPCn.
A procedure that could throw an exception will have a

type of the form B → (R ∨∼∼Ei) where Ei is the type of
the exception. The double intuitionistic negation is used so
that the disjunction is red, and so the implication remain red,
i.e., intuitionistic, without which it would be possible for Ei

to escape scope just as in a classical logic setting. Using an
explicit ∨ to represent an exception type may seem contrary
to the very idea of exception handling, in which errors need
not be handled locally. However, our ∨ is multiplicative, with
an introduction rule that is also invertible. The following
term can be used to invert any A∨ ∼∼Ei to leave only A
in the stoup, which then can be cut with an A→ B without

interference from ∼∼Ei:

λx.(λu.u, λv.µz.[d]v)x :` (A ∨B)→ A;Bd; .

In this context, the sequence of rules that constitutes throw-
ing an exception is as follows (with some details elided):

x :∼Ex
i `∼Ei; ;

s : Γ ` A,Ee
i , A

d; [∆]i . . .

Γ ` Ei;A
d; [∆]i . . .

Γ ` Ei; ; [Ad,∆]i . . .
Unlock

∼Ex
i ,Γ ` 0; [Ad,∆]i . . .

→ Ei

Γ `∼∼Ei;R
z,Θ; [Ad,∆]i . . .

→ I

Γ ` R;∼∼Ey
i ,Θ; [Ad,∆]i . . .

Here, x and e are vacuous in s (weakened) and catch is
similarly extended to catchi. The abstract machine of Figure
3 can be modified by tagging each entry in [GE] with
an index (i.e., with dynamic type information). Figure 5
illustrates the execution of an exception throwing procedure,
along with the integral throwi rule. Note that the procedure
labeled g cannot throw an Ei-type exception because of the
scoping constraint of intuitionistic → introduction.

Another refinement to note: in terms of Java, E0 = ⊥ is
the superclass Exception of all exceptions. Other exceptions
can be represented by green atoms and superclasses by
conjunctions of green atoms. Thus a catch IOException can
also catch a SocketIOException, etc.

To be fair to classical logic, we should note that it is also
possible to give a logical interpretation to the boxes []i.
Reserve a set of of unique atoms q1, q2, . . . The meaning of a
formula P inside []i would be P → qi on the left-hand side
(but []0 for ⊥ cannot be emulated). Then Lock is admissible
because ((P → qi)→ P)→ P is classically provable, and
Unlock becomes → elimination, which is possible when
qi appears on the right-hand side. However, what cannot
be changed is that classical implication is equivalent to a
disjunction. A sequent with (A→ B ∨ q1), (C → D ∨ q2)
is equivalent to (A→ B∨q1∨q2), (C → D∨q1), q2 along
with numerous other possible interpretations. Thus, such an
effort in classical logic is bound to be fruitless.

This example illustrates the value of retaining intuitionis-
tic implication while allowing for classical reasoning. PCL

6

s : Γ ` F ; Θ; [Bx,∆]i . . .

!ix.s : Γ ` F ; Θ, Bx; [∆]i . . .
Locki

s : Γ ` A; Θ, Bd; [∆]i . . . t : Γ′ ` Ei → A; ;

?ix.(t s) : ΓΓ′ ` A; Θ; [Bd,∆]i . . .
Unlocki

Figure 4. Lock and Unlock with multiple boxes

s : Γ ` A;Ee
i , A

d; [∆]i . . .

µz.[y]λx.(x ?d.µe.[d]s) : Γ ` R;∼∼Ey
i ,Θ; [Ad,∆]i . . .

throwi

C,Γ ` A; ; [Kd]i

g : Γ ` C → A;∼∼Ex
i ; [Kd]i

→ I
Γ ` K;Ex

i ,K
d; []i

Γ ` C;∼∼Ex
i ; [Kd]i

throwi

Γ ` A;∼∼Ex
i ; [Kd]i

→ E

Γ ` A∨ ∼∼Ei; ; [Kd]i
∨I

Figure 5. throw Ei and sample usage with saved continuation K

is not a strengthening of intuitionistic logic or weakening of
classical logic: it is a unified logic.

V. SEQUENT CALCULUS, CUT ELIMINATION,
SOUNDNESS, AND COMPLETENESS

In this section, we establish some basic properties so that
PCL can be called logic.

We begin with a sequent calculus, LPC, with the sub-
formula property and is suitable for proving completeness.
Sequents are of the form Γ ` Θ; [∆]. The stoup is folded
into the right-side context as there are no proof terms. In
Figure 6, e represents ⊥ or a green atom, a represents an
arbitrary atom, and A, B represent arbitrary formulas.

From the subformula property of this sequent calculus, it
is plainly obvious that if a formula is purely red, then it can
only have an intuitionistic proof: even a failed partial proof
would be intuitionistic once useless Locks are discarded.

A formula with green subformulas may still have an
intuitionistic proof if only intuitionistic rules are applied.
This particular proof system reveals an important property.

Proposition 1: If a formula A is provable with an atom
b colored red, then A is also provable with b colored green.
Clearly this holds since the presence of a green atom can
only lead to more proofs.

The correctness of other proof systems for PCL follow
from the correctness of LPC once the following properties
are established.

A. Cut Elimination

In a polarized system, it is important to understand the
effect of polarization on cut elimination. The restriction to
a green atom or ⊥ in the LPC Unlock rule (and the ⊥L
rule) can, in fact, be relaxed to allow all green formulas.
We used the restriction for two reasons. First, technically
speaking, “sequent calculus” rules should only depend on the
top-level structure of formulas. The second reason concerns
cut elimination. Consider the following scenario involving

the relaxed form of Unlock, labeled here as Unlock′:
Γ ` E,Θ, B; [∆]

Γ ` E,Θ; [B,∆]
Unlock′

E,Γ ` R,Θ; [∆]

Γ ` R,Θ; [B,∆]
cut

Here, E is an arbitrary green formula and R is a red formula.
The Unlock′ rule is also semantically sound and should
not destroy cut-elimination. In a natural deduction setting,
the above situation is normalized by simple substitution.
However, cut-elimination in sequent calculus requires us to
permute the cut upwards, until E in both subproofs are intro-
duced, forming a “key case.” But if we permuted the cut up
to the premise of Unlock′, we would get Γ ` R,Θ, B; [∆].
Since R is red, the Unlock′ may not be applicable beneath.
By restricting to a green atom or ⊥, we can permute the
cut upwards until the right subproof reaches Id at which
point the cut is reduced by substitution just as in natural
deduction. If the cut formula is ⊥, we similarly permute the
cut up the right subproof until it reaches ⊥L, at which point
the formula on the right-hand side of the conclusion of ⊥L
is green, which means we can now permute the cut above
the Unlock′.

This is an example of how polarity information is used
to control cut elimination, in a manner not unlike what is
found in focused proof systems. However, that is not the
principal use of polarization in PCL.

The relaxed form of Unlock is used in NPC proofs, so
we establish its equivalence with the restricted version.

Lemma 2: In a cut-free proof, every instance of Unlock′

can be replaced by Unlock.
The proof consists of permutation arguments, depending

on the rule above Unlock′.
Cut elimination is proved for LPC in two forms:

Γ ` A,Θ; [∆] A,Γ′ ` Θ′; [∆′]

ΓΓ′ ` ΘΘ′; [∆∆′]
cut

Γ ` Θ; [A,∆] A,Γ′ ` B,Θ′; [∆′]

ΓΓ′ ` ΘΘ′; [B,∆∆′]
cut2

7

Γ ` Θ; [B,∆]

Γ ` Θ, B; [∆]
Lock

Γ ` e,Θ, B; [∆]

Γ ` e,Θ; [B,∆]
Unlock

A,Γ ` B; [∆]

Γ ` A→ B,Θ; [∆]
→ R

Γ ` A,B,Θ; [∆]

Γ ` A ∨B,Θ; [∆]
∨R

Γ ` A,Θ; [∆] Γ ` B,Θ; [∆]

Γ ` A ∧B,Θ; [∆]
∧R

Γ ` A,Θ; [∆] B,Γ ` Θ; [∆]

A→ B,Γ ` Θ; [∆]
→ L

A,Γ ` Θ; [∆] B,Γ ` Θ; [∆]

A ∨B,Γ ` Θ; [∆]
∨L

A,B,Γ ` Θ; [∆]

A ∧B,Γ ` Θ; [∆]
∧L

0,Γ ` Θ; [∆]
0L ⊥,Γ ` e,Θ; [∆]

⊥L
Γ ` 1,Θ; [∆]

1R
a,Γ ` a,Θ; [∆]

Id

Figure 6. Sequent Calculus LPC; (e is a green atom or ⊥)

Instances of cut2 reduce to cut; they represent structural
reduction. A crucial case of cut elimination occurs when
cut is permuted above Lock, which can be a contraction:
here cut2 is applied to the copy of the cut formula inside
[]. The inductive measure of the proof is the lexicographical
ordering consisting of the size of the cut formula, followed
by the number of Lock rules above the cut, then the heights
of subproofs. The rest of the proof is fairly standard.

Theorem 3: Both cut and cut2 are admissible in LPC.

B. Soundness and Completeness

Soundness of LPC is proved by induction on proofs.
Most important are the three non-intuitionistic rules. Lock
is sound because ¬A∨A is always valid, while Unlock and
⊥L are sound because ⊥ → E is valid for green E. The
other rules are all intuitionistically valid.

Completeness is proved by following the traditional strat-
egy of Kripke, Smullyan and Fitting (especially the presen-
tation of Fitting [12].) A sequent is considered consistent if
it is not provable. Given an unprovable formula A, we can
show, using cut elimination, that A ∨ ⊥ is also unprovable.
We then construct a countermodel as a saturated tableau of
consistent sequents starting with ` A,⊥; []. All sequents
will have the characteristics of Hintikka sets. However, the
root sequent will also be maximally consistent with respect
to ⊥ (Γ ` ⊥; [] is not provable): enumerate all subformulas
B of A and their negations ¬B and insert each into Γ ([] is
absorbed into Γ because of its semantic meaning) if it keeps
the sequent consistent with respect to both A and ⊥. Since
B ∨ ¬B is provable, by the admissibility of cut it follows
that exactly one of B or ¬B will be inserted into Γ in any
such saturation. Thus whenever another formula is properly
added to Γ by → R, forming a new possible world, it will
always become ⊥-inconsistent. All such worlds force ⊥, but
not Γ, which represents the root.

Theorem 4: A formula is valid in PCL if and only if it is
provable in LPC.

Another basic property we can establish from cut elim-
ination is that (propositional) PCL is decidable, following
traditional arguments.

VI. CORE FRAGMENTS OF PCL

It is easy to identify the purely intuitionistic and purely
classical fragments of PCL.

Intuitionistic Logic: Color all atoms red, and do not
use ⊥. All formulas are red.

Classical Logic: Color all atoms green, and use ⊥
instead of 0. In this extreme, ¬ becomes involutive.

LC-style classical logic: Color all atoms red, but use
⊥ instead of 0. Furthermore, restrict all uses of → to ¬a
where a is atomic. All formulas are in negation normal form.
Define a syntactic-level operation (i.e, not a new connective)
A⊥ that represents the De Morgan dual of A: 1⊥ = ⊥,
⊥⊥ = 1, a⊥ = ¬a, (¬a)⊥ = a, (A ∨ B)⊥ = A⊥ ∧ B⊥,
and (A ∧ B)⊥ = A⊥ ∨ B⊥. Then A⊥⊥ is syntactically
identical to A. Red formulas are “positive” and green ones
are “negative.” Notice that A and A⊥ are always of different
polarities. In fact, it is valid to consider 1 as either green or
red; we designated it red to preserve this LC-type duality.
It is possible to construct a fully focused proof system that
takes advantage of the perfect dualities of this fragment, but
that has already been done [13].

Intuitionistic Control Logic: The purpose of PCL was
far more than to support intuitionistic and classical logics as
independent fragments. If we colored all atoms red, but do
not use 0, we get an intermediate logic with the excluded
middle A ∨ ¬A but without involutive negation ¬¬A→ A.
If we further allowed the use of both ⊥ and 0, then we get a
more expressive logic where both call/cc and the C control
operators can be obtained. We regard this as an important
fragment of PCL, and refer to it as intuitionistic control logic
(ICL).

In the ICL fragment, formulas need not be considered
polarized. Rather, the formula ⊥ is given unique treatment.
Key to the validity of the unpolarized interpretation is
Lemma 2, which showed that only green atoms and ⊥ need
to be given a special role in proofs, in which case the polarity
of non-atomic formulas lose their significance.

We further distill ICL down to its implicational fragment
to present a compact natural deduction system NJC with
terms (Figure 7). NJC sequents are of the form Γ ` A; [∆],
so it extends the single conclusioned NJ.

The stoup is always non-empty in NJC. The Esc rule
of NJC combines the roles of Esc and Unlock in LPC.
The rule Con (for contraction) and the γ binder replaces µ.
However, Con keeps the stoup locked. The formula inside
the stoup must be computed by intuitionistic introductions
and eliminations, at least until ⊥ appears. NJC preserves NJ-

8

t : Ax,Γ ` B; [∆]

(λx.t) : Γ ` A→ B; [∆]
→I

t : Γ ` A→ B; [∆] s : Γ′ ` A; [∆′]

(t s) : ΓΓ′ ` B; [∆∆′]
→E

s : Γ ` 0; [∆]

abort s : Γ ` A; [∆]
0E

exit : Γ ` 1; [∆]
>I

x : Ax,Γ ` A; [∆]
Id

t : Γ ` A; [∆]

[d]t : Γ ` ⊥; [Ad,∆]
Esc

u : Γ ` A; [Ad,∆]

γd.u : Γ ` A; [∆]
Con

Figure 7. NJC Proof System for Intuitionistic Control Logic

style intuitionistic provability as much as possible. Weaken-
ing is only present as a result of 0-elimination, which is
intuitionistically valid.

The normalization rules of “λγ-calculus” consist of three
reduction rules followed by three renaming rules:

(λx.s)t −→ s[t/x]

(γd.s)t −→ γd.(s{[d](wt)/[d]w}t)
abort(s)t −→ abort(s)

γa.s −→ s, when a is not free in s
γa.γb.s −→ γa.s[a/b]

[d]γa.s −→ [d]s[d/a].

We have proved that this system is confluent and strongly
normalizing following traditional techniques. Of course, as
in λµ calculus, confluence is possible because certain other
reduction rules were excluded.

The following NJC proof shows that the C control operator
[14] can be obtained.

x :∼¬Ax `∼¬A; []

y :∼¬Ax, Ay ` A; []
Id

[d]y :∼¬Ax, Ay ` ⊥; [Ad]
Esc

λy.[d]y :∼¬Ax ` ¬A; [Ad]
→ I

x λy.[d]y :∼¬Ax ` 0; [Ad]
→ E

abort (x λy.[d]y) :∼¬Ax ` A; [Ad]
0E

γd.abort (x λy.[d]y) :∼¬Ax ` A; []
Con

C = λx.γd.abort (x λy.[d]y) : ` ∼¬A→ A; []
→ I

Compared to the original λµ calculus, there is no free vari-
able in the C operator. A similar proof, of (¬P → P)→ P ,
derives the call/cc operator as λx.γd.(x λy.[d]y). Thus, NJC
already captures the essential computational capabilities of
λµ-calculus without destroying intuitionistic logic.

There is no known translation of PCL to intuitionistic
logic, or to linear logic. We have reasons to consider such
translations unlikely. Any double negation translation of
PCL must allow A ∨ ¬A but deny ¬¬A → A. Linear
logic also includes both classical and intuitionistic logics,
but not every intermediate logic. One might be tempted
to equate green formulas with linear logic formulas ?A:
but consider Peirce’s formula ((P → Q) → P) → P
translated as !(!(!P−◦?Q) −◦ P) −◦ P . This formula is

still not provable. The challenge is to provide a translation
that preserves provability while keeping at least the outer
implication intuitionistic (equivalent to !A−◦B)3. However,
it is simple to translate PCL into ICL: for each green PCL
atom e, reserve a unique ICL atom e′, and translate e as ¬e′.
For example, ¬¬e → e becomes ¬¬¬e′ → ¬e′, which is
minimally valid. Thus, ICL forms a core fragment of PCL.

Nevertheless, PCL is significantly more expressive. It
embeds classical logic more clearly than ICL. Having green
formulas other than ⊥ means more expressive type systems.
It also means that restricting the context outside of []
to a single formula becomes impractical. The combination
of Lock and Open into a single Con rule in NJC hides
potential computational capabilities.

VII. CONTINUING WORK: SECOND ORDER PCL
One problem that has faced polarized logics has been how

to assign polarities to second order formulas, specifically to
propositional variables that are bound by ∀ and ∃. One might
consider two versions of each quantifier, which restricts also
the polarity of formulas that can instantiate them. Another
approach might be to keep bound variables unpolarized.
None of these approaches seem satisfactory. Proposition 1,
however, shows that provability is preserved if some red
atoms were colored green instead. In PCL, one can prove
a formula such as b → b with b considered red, so of
course b can be replaced by any formula, red or green. On
the other hand, one can show that there exists a formula
¬¬b→ b that is provable only if b is considered green. The
following important attributes form the basis of a second
order propositional PCL:
• In ∀X.P , the free occurrences of X in P are red;
• In ∃X.P , the free occurrences of X in P are green.
• ∀X.P is green if P is green, otherwise it is red.
• ∃X.P is green if P is green, otherwise, it is red.

The inference rules for ∀ and ∃, in the context of LPC,
are as follows
Γ ` A[B/X],Θ; [∆]

Γ ` ∃X.A,Θ; [∆]
∃R

A,Γ ` Θ; [∆]

∃Y.A,Γ ` Θ; [∆]
∃L, Y green

Γ ` A; [∆]

Γ ` ∀Y.A,Θ; [∆]
∀R, Y red

A[B/X],Γ ` Θ; [∆]

∀X.A,Γ ` Θ; [∆]
∀L

3Furthermore, the translation should define valid synthetic connectives
(i.e., preserve focus in the introduction rules).

9

The usual restrictions on variable occurrences apply. Note
that just because ∃-quantified variables are green does not
mean that they cannot be instantiated with red formulas in
∃R. If one can find an existential witness that is red, then so
much the better. We can still universally quantify over green
formulas using ∀X.(⊥ → X)→ P : although ⊥ → X is not
technically green, it implies equivalence with green formu-
las. No complementary form exists, however, to restrict ∃ to
quantify over only red formulas. That would mean requiring
something to be anything: a self-contradiction.

Polarization has been used elsewhere as a reflection of
duality. The polarities of PCL, however, define two levels of
provability. Nevertheless, a duality between the second-order
∀ and ∃ introduction rules is revealed. The natural role of
polarization in second order PCL is possible because we did
not insist on enforcing dualities when assigning polarities to
formulas, because we did not insist on an involutive form
of negation for all formulas.

VIII. CONCLUSION

The computational content of classical logic depends
on how classical proofs are structured. PCL can still be
considered classical logic in that every PCL proof is also
a classical proof and, with the right polarity assignments,
every classically provable formula has a PCL proof.

There are multiple approaches to controlling classical
proofs. By the manner that polarities are assigned to for-
mulas, PCL appears similar to LC. The similarity hides a
much deeper distinction. The polarization of LC corresponds
to dualities found in linear logic. This notion of polarization
is principally concerned with the structure of proofs, with
how it controls cut elimination. Focused proofs further
advance this use of polarization, and we have contributed to
focusing in some of our own work. Although polarization
in PCL also impacts cut elimination as we have shown, it
is mainly concerned not with the structure of proofs, but
with provability. It is characterized by when a formula can
be considered valid. Focusing in PCL is an issue that is
orthogonal to its polarization.

In contrast to LC and focusing, the PCL approach to
controlling proofs use restrictions on inference rules that are
required for soundness, relative to a semantics of validity.
The two approaches are not necessarily incompatible, and
we hope to combine them in future work.

Acknowledgments. The authors wish to thank Stéphane
Lengrand and the anonymous reviewers for helpful com-
ments.

REFERENCES

[1] T. Griffin, “The formulae-as-types notion of control,” in
17th Annual ACM Symp. on Principles of Programming
Languages, 1990, pp. 47–57.

[2] M. Parigot, “λµ-calculus: An algorithmic interpretation of
classical natural deduction,” in LPAR: Logic Programming
and Automated Reasoning, International Conference, ser.
LNCS, vol. 624. Springer, 1992, pp. 190–201.

[3] T. Crolard, “A confluent lambda-calculus with a catch/throw
mechanism,” Journal of Functional Programming, vol. 9,
no. 6, pp. 625–647, 1999.

[4] J.-Y. Girard, “A new constructive logic: classical logic,” Math.
Structures in Comp. Science, vol. 1, pp. 255–296, 1991.

[5] J.-M. Andreoli, “Logic programming with focusing proofs in
linear logic,” J. of Logic and Computation, vol. 2, no. 3, pp.
297–347, 1992.

[6] C. Liang and D. Miller, “Kripke semantics and proof systems
for combining intuitionistic logic and classical logic,” Annals
of Pure and Applied Logic, vol. 164, no. 2, pp. 86–111, Feb.
2013.

[7] P. de Groote, “An environment machine for the lambda-
mu calculus,” Mathematical Structures in Computer Science,
vol. 8, pp. 637–669, 1998.

[8] T. Streicher and B. Reus, “Classical logic, continuation
semantics and abstract machines,” Journal of Functional
Programming, vol. 8, no. 6, pp. 543–572, 1998.

[9] E. Ritter, D. Pym, and L. Wallen, “Proof-terms for classical
and intuitionistic resolution,” Journal of Logic and Computa-
tion, vol. 10, no. 2, pp. 173–207, 2000.

[10] H. Nakano, “A constructive formalization of the catch and
throw mechanism,” in Symposium on Logic in Computer
Science. IEEE, 1992, pp. 82–89.

[11] H. Herbelin, “An intuitionistic logic that proves Markov’s
principle,” in Symposium on Logic in Computer Science.
IEEE, 2010, pp. 50–56.

[12] M. C. Fitting, Intuitionistic Logic Model Theory and Forcing.
North-Holland, 1969.

[13] C. Liang and D. Miller, “Focusing and polarization in linear,
intuitionistic, and classical logics,” Theoretical Computer
Science, vol. 410, no. 46, pp. 4747–4768, 2009.

[14] M. Felleisen, D. Friedman, E. Kohlbecker, and B. Duba, “A
syntactic theory of sequential control,” Theoretical Computer
Science, vol. 52, no. 3, pp. 205–237, 1987.

10

