
Property-Based Testing via Proof Reconstruction
Work-in-progress

Roberto Blanco
Dale Miller

INRIA Saclay — Île-de-France & LIX/École polytechnique
Palaiseau, France

roberto.blanco,dale.miller@inria.fr

Alberto Momigliano
DI, Università degli Studi di Milano, Italy

momigliano@di.unimi.it

ABSTRACT
Property-based testing is a technique for validating code against
an executable specification by automatically generating test-data.
From its original use in programming languages, this technique
has now spread to most major proof assistants to complement the-
orem proving with a preliminary phase of conjecture testing. We
present a proof theoretical reconstruction of this style of testing
for relational specifications (such as those used in the semantics
of programming languages) and employ the Foundational Proof
Certificate framework to aid in describing test generators. We do
this by presenting certain kinds of “proof outlines” that can be used
to describe the shape and size of the generators for the conditional
part of a proposed property. Then the testing phase is reduced to
standard logic programming search. After illustrating our tech-
niques on simple, first-order (algebraic) data structures, we lift it
to data structures containing bindings using λ-tree syntax. The
λProlog programming language is capable of performing both the
generation and checking of tests. We validate this approach by
tackling benchmarks in the metatheory of programming languages
coming from related tools such as PLT-Redex.

1 INTRODUCTION
In this brief paper, we examine property-based testing (PBT) from
a proof theory point-of-view and explore some of the advantages
that result from exploiting this perspective.

1.1 Generate-and-test as bipoles
Imagine that wewish to write a relational specification for reversing
lists. There are, of course, many ways to write such a specification
but in every case, the formula

∀L : (list int) ∀R : (list int) [rev L R ⊃ rev R L]

stating that rev is idempotent should be a theorem. In fact, we might
wish to prove a number of formulas of the form∀x : τ [P (x) ⊃ Q (x)]
where both P andQ are formulae over given relational specifications
and a single variable (for brevity). Occasionally, it can be important
in this setting to move the type judgment x : τ into the logic by
turning the type into a predicate:∀x[(τ (x)∧P (x)) ⊃ Q (x)]. Proving
such formulas can often be difficult since their proof may involve
the clever invention of prior lemmas and induction invariants. In
many practical settings, such formulas are, in fact, not theorems
since the relational specifications in P and/or Q can contain errors.
It can be therefore valuable to first attempt to find counterexamples

LFMTP 2017, September 2017, Oxford, UK

to such formulas prior to pursue a proof. That is, we might try to
prove formulas of the form ∃x[(τ (x) ∧ P (x)) ∧ ¬Q (x)] instead. If
a term t of type τ can be discovered such that P (t) holds while
Q (t) does not, then one can return to the specifications in P and
Q and revise them using the concrete evidence in t about how
the specifications are wrong. The process of writing and revising
relational specifications could be aided if such counterexamples are
discovered quickly and automatically.

The literature contains at least two ways to view Horn clause-
style relational specifications in proof-theoretic terms. For example,
specifications such as
nat z. lst nl.
nat (s N) :- nat N. lst (cns N Ns) :- nat N, lst Ns.

app nl Xs Xs.
app (cns X Xs) Ys (cns X Zs) :- app Xs Ys Zs.

can be viewed as a set of first-order Horn clauses: one of these
formulas would be the universal closure of

[app Xs Ys Zs ⊃ app (cns X Xs) Ys (cns X Zs)].

The proof search approach to encoding Horn clause computation re-
sults in the structuring of proofs with repeated switchings between
a goal-reduction phase and a backchaining phase [19]. The notion
of focused proof systems generalizes this view of proof construction
in the sense that goal-reduction corresponds to the negative phase:
during this phase, the conclusion-to-premise construction of proofs
proceeds without needing to make any choices (no backtracking).
At the same time, the backchaining phase corresponds to the posi-
tive phase: during this phase, proof construction generally needs
to consume some information from, say, an oracle or to allow for
some nondeterminism. The combination of a positive phase and a
negative phase is called a bipole. In this view of logic programming,
proof search involves proofs with arbitrary numbers of bipoles.
Comprehensive focusing systems exist for linear, intuitionistic and
classical logics [15].

A different approach to the proof theory of Horn clauses in-
volves encoding them as fixed points. For example, the Prolog-style
specifications above of nat and app can be written instead as the
following fixed point definitions.

nat =µλNλn (n = z ∨ ∃n′(n = s n′ ∧+ N n′))

app =µλAλxsλysλzs ((xs = nl ∧+ ys = zs) ∨

∃x ′∃xs ′∃zs ′(xs = cns x ′ xs ′ ∧+ zs = cns x ′ zs ′ ∧+ A xs ′ ys zs ′))

When using a focused proof system for logic extended with fixed
points, such as is employed in Bedwyr [2] and described in [1, 13],
proofs of formulas such as ∃x : τ [P (x)∧+¬Q (x)] are a single bipole:

LFMTP 2017, September 2017, Oxford, UK Roberto Blanco, Dale Miller, and Alberto Momigliano

when reading a proof bottom up, a positive phase is followed on all
its premises by a single negative phase that completes the proof. In
particular, the positive phase corresponds to the generation phase
and the negative phase corresponds to the testing phase. From
this description, it is conceptionally easy (as one would expect) to
construct an implementation of the testing phase while it can be
difficult to steer the generation phase through a (possibly) great deal
of nondeterminism. For example, the blind exhaustive enumeration
of possible counterexamples is generally known to be ineffective.
Significant sophistication may go into crafting generators and as-
sembling them.

1.2 Flexible test case generation via proof
reconstruction

The foundational proof certificate (FPC) framework was proposed
in [9] as a means of defining proof structures used in a range of
different theorem provers (e.g., resolution refutations, Herbrand
disjuncts, tableaux, etc). The FPC framework was designed using
focused proof systems as a kind of protocol: during the construc-
tion of a positive phase, the proof checker could request specific
information from a proof certificate. In the general setting, proof
certificates do not need to contain all the details required to com-
plete a formal proof. In those cases, a proof checker would need
to perform proof reconstruction. For example, FPCs can be used as
proof outlines [5] since they can describe some of the general shape
of a proof: e.g., apply the obvious induction invariant and complete
the proof via the enumeration of all remaining cases. The proof
checker would attempt to fill in the missing details, either obtaining
a proof of the described shape or failing to do so.

In this paper, we propose to use FPCs as a language for describing
generators. We have experimented with writing proof checkers in
both OCaml (as an extension to Abella [3]) and λProlog, which
could be used to check proof certificates and in the process steer
the proof of the expression P (x), and the corresponding typing
expression, say, τ (x).

As we shall illustrate, we have defined certificates that describe
families of proofs that are limited either by the number of inference
rules that they contain, by their height, or by both. Using similar
techniques, it is possible to define FPCs that target specific types
for specific treatment: for example, when generating integers, only
(user-defined) small integers would be produced. Using a proof
reconstructing checker (such as is easy to do with a logic program-
ming system), the search space of proofs that a FPC describes for a
specific formula of the form ∃x [τ (x) ∧+ P (x) ∧+ ¬Q (x)] can be di-
rectly translated into a description of the range of possible witness
terms for this quantifier.

1.3 Lifting PBT to treat λ-tree syntax
Describing a computational task using proof theory often allows
researchers to lift descriptions based on first-order (algebraic) terms
to descriptions based on λ-tree syntax (a specific approach to higher-
order abstract syntax). For example, once logic programming was
given a proof search description, it was natural to generalize the
usual approaches to logic programming from the manipulation of
first-order terms (Prolog) to the manipulation of λ-terms (λProlog)
[17]. Similarly, once certain model checking and inductive theorem

provers were presented using sequent calculus in a first-order logic
with fixed points [1, 13], it was possible to incorporate λ-terms
syntax in generalizations of model checkers, as in the Bedwyr
system [2], and of theorem provers, as in Abella [3].

The full treatment of λ-tree syntax in a logic with fixed points is
usually accommodated with the addition of the∇-quantifier [12, 18].
While the ∇-quantifier has had significant impact in several rea-
soning tasks (for example, in the formalized metatheory of the
π -calculus and λ-calculus) an important result about ∇ is the fol-
lowing: if fixed point definitions do not contain implications and
negations, then exchanging occurrences of ∀ and ∇ does not affect
what atomic formulas are proved [18, Section 7.2]. Since we shall be
limiting ourselves to Horn-like recursive definitions, the λProlog
implementation of ∀ will also implement ∇.

This direct treatment of λ-terms within the PBT setting allows
us to apply property-based testing to a number of metaprogram-
ming tasks. After describing some more details of how PBT can
be encoded in proof theory (and logic programming) in the next
section, we discuss in Section 3 the treatment of metaprogramming.

2 BASIC APPROACH
The setup follows [16]; we introduce a simple specification logic,
which drives the derivation of our object logic. In this case it is
basically the usual Prolog vanilla meta-interpreter, save for inter-
preting ∇ as Π; the “program” is represented as Horn-like clauses
by a two-place predicate prog relating heads and bodies, built out of
object-level logical constants (tt, or, and, nabla) and user-defined
constructors for predicates. For example, to generate lists of as
and bs and compute the reverse a list, we have the following prog
clauses, where we omit the code for append:
prog (is_elt a) tt.
prog (is_elt b) tt.
prog (is_eltlist nl) tt.
prog (is_eltlist (cns X Xs))

(and (is_elt X) (is_eltlist Xs)).
prog (rev nl nl) tt.
prog (rev (cns X Xs) Rs)

(and (rev Xs Sx) (append Sx (cns X nl) Rs)).

Suppose we want to falsify the assertion that the reverse of a list
is equal to itself. The generation phase is steered by the predicate
check, which uses a certificate (its first argument) to produce candi-
date lists up to a certain bound, in this case the height of a proof of
being a list. The testing phase performs deterministic computation
with the meta-interpreter interp and then negates the conclusion
using negation-as-failure (NAF):
cexrev Xs Ys :- check (qgen (qheight 3)) (is_eltlist Xs),

interp (rev Xs Ys), not (Xs = Ys).

Note that the call to NAF is safe since, by the totality of rev, Ys
will be ground.

The FPC kernel is presented in Figure 1. Each object-level connec-
tive is interpreted as λProlog code, and user-defined constructors
are looked up in prog and unfolded. This is driven by the meta-
interpreter interp (omitted). To it, check adds a certificate term
and calls to expert predicates on said term (except nabla, which is
transparent to the experts). Experts decide when the computation
proceeds — producing certificates for the continuations — and when

Property-Based Testing via Proof Reconstruction LFMTP 2017, September 2017, Oxford, UK

check Cert tt :- tt_expert Cert.
check Cert (and G1 G2) :- and_expert Cert Cert1 Cert2, check Cert1 G1, check Cert2 G2.
check Cert (or G1 G2) :- or_expert Cert Cert' LR, ((LR = left, check Cert' G1); (LR = right, check Cert' G2)).
check Cert (nabla G) :- pi x\ check Cert (G x).
check Cert A :- unfold_expert Cert Cert', prog A G, check Cert' G.

tt_expert (qgen (qsize In In)).
tt_expert (qgen (qheight _)).
or_expert (qgen (qsize In Out)) (qgen (qsize In Out)) _.
or_expert (qgen (qheight H)) (qgen (qheight H)) _.
and_expert (qgen (qsize In Out)) (qgen (qsize In Mid)) (qgen (qsize Mid Out)).
and_expert (qgen (qheight H)) (qgen (qheight H)) (qgen (qheight H)).
unfold_expert (qgen (qsize In Out)) (qgen (qsize In' Out)) :- In > 0, In' is In - 1.
unfold_expert (qgen (qheight H)) (qgen (qheight H')) :- H > 0, H' is H - 1.

Figure 1: Kernel for expert-driven term generation

it fails. The first argument of an expert, e.g., and_expert, refers to
the conclusion of the corresponding rule and the remaining ones, if
any, to the premises. Here the complexity of generated candidates is
bound by limiting unfoldings, either by height (qheight, producing
shallow terms), number of constructors (qsize, producing small
terms), or both by pairing (not shown here, but see [6]).

3 PBT FOR METAPROGRAMMING
To showcase the ease with which we handle searching for coun-
terexamples in binding signatures, we encode a simply-typed λ-
calculus augmented with constructors for integers and lists, follow-
ing the PLT-Redex benchmark from http://docs.racket-lang.org/
redex/benchmark.html. The language is as follows:

Types A,B ::= int | ilist | A→ B
Terms M ::= x | λx :A. M | M1 M2 | c | err
Constants c ::= n | plus | nil | cons | hd | tl
Values V ::= c | λx :A. M | plus V

| cons V | cons V1 V2

The rules for the dynamic and static semantics are given in Fig-
ure 2, where the latter assumes a signature Σ with the obvious type
declarations for constants. Rules for plus are omitted for brevity.

The encoding in λProlog is pretty standard and also omitted:
we declare constructors for terms, constants and types, while we
carve out values via an appropriate predicate. A similar predicate
characterizes the threading in the operational semantics of the err
expression, used to model run time errors such as taking the head
of an empty list. We follow this up (see the bottom of Figure 2)
with the static semantics (predicate wt), where constants are typed
via a table tcc. Note that we have chosen an explicitly context-
ed encoding of typing as opposed to one based on hypothetical
judgments such as in [16]: this choice avoids using implications
in the body of the typing predicate and, as a result, allows us to
use λProlog’s universal quantifier to implement the reasoning level
∇-quantifier.

Now, this calculus enjoys the usual property of subject reduction
and progress, where the latter means “being either a value, an error,
or able to make a step.” And in fact we can fairly easily prove
those results in a theorem prover such as Abella. However, the
case distinction in the progress theorem does require some care:

were it to be unprovable given a mistake in the specification, it
would not be immediate to localize where the problem may be. On
the other hand, one could wonder whether our calculus enjoys
the subject expansion property — the alert reader will undoubtedly
realize that this is highly unlikely, but rather than wasting time in
a proof attempt, we search for a counterexample and find:
cexsexp M M' A :- check (qgen (qsize 8 _)) (step M M'),

interp (wt null M' A),
not (interp (wt null M A)).

A = listTy
M' = c nl
M = app (c hd) (app (app (c cns) (c nl)) (c _))

Other queries we can ask: are there untypable terms, or terms that
do not converge to a value?

As a more comprehensive validation we addressed the nine mu-
tations proposed by the PLT-Redex benchmark, to be spotted as
a violation of either the preservation or progress properties. For
example, the first mutation introduces a bug in the typing rule for
application, matching the range of the function type to the type of
the argument:

Γ ⊢Σ M1 : A→ B Γ ⊢Σ M2 : B
Γ ⊢Σ M1 M2 : B

T-APP-B1

The given mutation makes both properties fail:
cexprog M A :- check (qgen (qsize 6 _)) (wt null M A),

not (interp (progress M)).
A = intTy
M = app (c hd) (c (toInt zero))

cexpres M M' A :- check (qgen (qsize 8 _)) (wt null M A),
interp (step M M'),
not (interp (wt null M' A)).

A = funTy listTy intTy
M' = lam (x\ c hd) listTy
M = app (lam (x\ lam (y\ x) listTy) intTy) (c hd)

Table 1 reports the tests, performed under Ubuntu 16.04 on a Intel
Core i7-870 CPU, 2.93GHz with 8GB RAM. We time-out the compu-
tation when it exceeds 300 seconds. We list the results obtained by
λProlog (λP) under Teyjus [20], the counterexample found, and a
brief description of the bug together with Redex’s difficulty rating
(shallow,medium, unnatural). The columnαC lists the time taken by
αCheck [7] using NAF, which is not always the best technique [8],

http://docs.racket-lang.org/redex/benchmark.html
http://docs.racket-lang.org/redex/benchmark.html

LFMTP 2017, September 2017, Oxford, UK Roberto Blanco, Dale Miller, and Alberto Momigliano

hd (cons M1 M2) −→ M1
E-HD

t l (cons M1 M2) −→ M2
E-TL

λx : A. M V −→ [x 7→ V]M E-ABS
M1 −→ M ′1

M1 M2 −→ M ′1 M2
E-APP1

M −→ M ′

V M −→ V M ′
E-APP2

⊢Σ err : A T-ER
Σ(c) = A
⊢Σ c : A T-K

x : A ∈ Γ
Γ ⊢Σ x : A T-VAR

Γ, x : A ⊢Σ M : B
Γ ⊢Σ λx : A. M : A→ B

T-ABS
Γ ⊢Σ M1 : A→ B Γ ⊢Σ M2 : A

Γ ⊢Σ M1 M2 : B
T-APP

. .
prog (wt _ err _) tt.
prog (wt _ (c M) A) (tcc M A).
prog (wt Gamma M A) (memb (bind M A) Gamma).
prog (wt Gamma (lam M Ax) (funTy Ax A)) (nabla x\ wt (cons (bind x Ax) Gamma) (M x) A).
prog (wt Gamma (app M N) A) (and (wt Gamma M (funTy B A)) (wt Ga N B)).

Figure 2: Static and dynamic semantics of the Stlc language.

bug check αC λP cex Description/Rating

1 preservation 0.3 0.05 (λx :int . λy:ilist . x) hd range of function in app rule
progress 0.1 0.02 hd 0 matched to the arg. (S)

2 progress 0.27 0.06 (cons 0) nil value (cons v) v omitted (M)
3 preservation 0.04 0.01 (λx :int . cons) cons order of types swapped

progress 0.1 0.04 hd 0 in function pos of app (S)
4 progress t.o. 207.3 (plus 0) ((cons 0) nil) the type of cons return int (S)
5 preservation t.o. 0.67 tl ((cons 0) nil) tail reduction returns the head (S)
6 progress 24.8 0.4 hd ((cons 0) nil) hd reduction on part. applied cons (M)
7 progress 1.04 0.1 hd ((λx :ilist . err) nil) no eval for argument of app (M)
8 preservation 0.02 0.01 (λx :ilist . x) nil lookup always returns int (U)
9 preservation 0.1 0.02 (λx :ilist . cons) nil vars do not match in lookup (S)

Table 1: Stlc benchmark

but it corresponds very closely to the architecture of the present
paper. Of course, αCheck sits on top of an interpreted (prototype)
language, whereas Teyjus is a compiler: however, one can argue
that the two level themselves out, since we use meta-interpretation
for test generation. The results are essentially indistinguishable,
save for bugs 4, 5 and 6: in the first, which is surprisingly hard to
find, αCheck times out, while we comfortably beat the time limit.
αCheck flunks number 5, which is immediate for us. Finally in bug
6 αCheck’s fixed integrative deepening strategy needs to explore
the search space up to level 11, while we can leverage the FPC
ability to use the qsize metric.

4 RELATEDWORK
Property-based testing is a technique for validating code against
an executable specification by automatically generating test-data,
typically in a random and/or exhaustive fashion. From its original
use in programming languages [10], this technique has now spread
to most major proof assistants [4, 22] to complement theorem prov-
ing with a preliminary phase of conjecture testing. We do not have
the space for a comprehensive review, for which we refer to [7],
but we mention two of the main players w.r.t. metatheory model
checking: PLT-Redex [11] is an executable DSL for mechanizing
semantic models built on top of DrRacket with support for random

testing à la QuickCheck; its usefulness has been demonstrated in
several impressive case studies [14]. However, Redex has limited
support for relational specifications and none whatsoever for bind-
ing signature. This is where αCheck [7] comes in. The tool adds on
top of the nominal logic programming language αProlog a checker
for relational specifications as we do here. One of the implemen-
tation techniques is based as well on NAF, as far as testing of the
conclusion is concerned. The generation phase is instead “wired in”
via iterative-deepening search, based on derivation height. In this
sense αCheck is less flexible than the FPC-based architecture that
we propose here, since it can be seen as a fixed choice of experts.

Finally, more distant cousins in the logic programming world are
declarative debugging [21] and the Logic-Based Model Checking
project at Stony Brook (http://www.cs.sunysb.edu/~lmc).

5 CONCLUSION AND FUTUREWORK
We have described some work-in-progress that uses standard logic
programming techniques and some recent developments in proof
theory to design a flexible framework for PBT. Given its proof
theoretic pedigree, it was immediate to extend PBT to the metapro-
gramming setting.

http://www.cs.sunysb.edu/~lmc

Property-Based Testing via Proof Reconstruction LFMTP 2017, September 2017, Oxford, UK

Figure 1 specifies only two certificate formats: one that limits the
size and one that limits the height of a proof. We have also imple-
mented another certificate format that implements both restrictions
at the same time. It is easy to code other certificates: by reading
random bits from an external source of entropy, certificates can
describe randomly organized proofs (and, hence, witness terms).
Certificates can also be organized to consider only allowing small
proofs for one type but random for another type: thus, one could
easily design a certificate that would explore randomly generated
lists containing just, say, the integers 0 and 1.

While λProlog is used here to discover counterexamples, one
does not actually need to trust the logical soundness of λProlog
(negation-as-failure makes this a complex issue). Any counterex-
ample that is discovered can be output and used within, say, Abella
to formally prove that it is indeed a counterexample. In fact, we
plan to integrate our take on PBT in Abella, in order to support
both proofs and disproofs.

Acknowledgments The work of Blanco and Miller was funded by
the ERC Advanced Grant ProofCert.

REFERENCES
[1] D. Baelde. Least and greatest fixed points in linear logic. ACM Trans. on Compu-

tational Logic, 13(1), Apr. 2012.
[2] D. Baelde, A. Gacek, D. Miller, G. Nadathur, and A. Tiu. The Bedwyr system for

model checking over syntactic expressions. In F. Pfenning, editor, 21th Conf. on
Automated Deduction (CADE), number 4603 in LNAI, pages 391–397, New York,
2007. Springer.

[3] D. Baelde, K. Chaudhuri, A. Gacek, D. Miller, G. Nadathur, A. Tiu, and Y. Wang.
Abella: A system for reasoning about relational specifications. Journal of Formal-
ized Reasoning, 7(2), 2014.

[4] J. C. Blanchette, L. Bulwahn, and T. Nipkow. Automatic proof and disproof in
Isabelle/HOL. In C. Tinelli and V. Sofronie-Stokkermans, editors, FroCoS, volume
6989 of Lecture Notes in Computer Science, pages 12–27. Springer, 2011.

[5] R. Blanco and D. Miller. Proof outlines as proof certificates: a system description.
In I. Cervesato and C. Schürmann, editors, Proceedings First International Work-
shop on Focusing, volume 197 of Electronic Proceedings in Theoretical Computer
Science, pages 7–14. Open Publishing Association, Nov. 2015.

[6] R. Blanco, Z. Chihani, and D. Miller. Translating between implicit and explicit
versions of proof. In L. de Moura, editor, Automated Deduction - CADE 26 - 26th
International Conference on Automated Deduction, volume 10395 of LNCS, pages
255–273. Springer, 2017.

[7] J. Cheney and A. Momigliano. αCheck: A mechanized metatheory model checker.
Theory and Practice of Logic Programming, 17(3):311âĂŞ352, 2017.

[8] J. Cheney, A. Momigliano, and M. Pessina. Advances in property-based testing
for αProlog. In B. K. Aichernig and C. A. Furia, editors, Tests and Proofs - 10th
International Conference, TAP 2016, Vienna, Austria, July 5-7, 2016, Proceedings,
volume 9762 of Lecture Notes in Computer Science, pages 37–56. Springer, 2016.

[9] Z. Chihani, D. Miller, and F. Renaud. A semantic framework for proof evidence.
J. of Automated Reasoning, 2016.

[10] K. Claessen and J. Hughes. QuickCheck: a lightweight tool for random testing
of Haskell programs. In Proceedings of the 2000 ACM SIGPLAN International
Conference on Functional Programming (ICFP 2000), pages 268–279. ACM, 2000.

[11] M. Felleisen, R. B. Findler, and M. Flatt. Semantics Engineering with PLT Redex.
The MIT Press, 2009.

[12] A. Gacek, D. Miller, and G. Nadathur. Combining generic judgments with recur-
sive definitions. In F. Pfenning, editor, 23th Symp. on Logic in Computer Science,
pages 33–44. IEEE Computer Society Press, 2008.

[13] Q. Heath and D. Miller. A proof theory for model checking: An extended ab-
stract. In I. Cervesato and M. Fernández, editors, Proceedings Fourth International
Workshop on Linearity (LINEARITY 2016), volume 238 of EPTCS, Jan. 2017.

[14] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A. Mc-
Carthy, J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler. Run your research: on
the effectiveness of lightweight mechanization. In Proceedings of the 39th annual
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL
’12, pages 285–296, New York, NY, USA, 2012. ACM.

[15] C. Liang and D. Miller. Focusing and polarization in linear, intuitionistic, and
classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009.

[16] R. McDowell and D. Miller. Reasoning with higher-order abstract syntax in a
logical framework. ACM Trans. on Computational Logic, 3(1):80–136, 2002.

[17] D. Miller and G. Nadathur. Programming with Higher-Order Logic. Cambridge
University Press, June 2012.

[18] D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans. on
Computational Logic, 6(4):749–783, Oct. 2005.

[19] D. Miller, G. Nadathur, F. Pfenning, and A. Scedrov. Uniform proofs as a foun-
dation for logic programming. Annals of Pure and Applied Logic, 51:125–157,
1991.

[20] G. Nadathur and D. J. Mitchell. System description: Teyjus — A compiler and
abstract machine based implementation of λProlog. In H. Ganzinger, editor, 16th
Conf. on Automated Deduction (CADE), number 1632 in LNAI, pages 287–291,
Trento, 1999. Springer.

[21] L. Naish. A declarative debugging scheme. Journal of Functional and Logic
Programming, 1997(3), 1997.

[22] Z. Paraskevopoulou, C. Hritcu, M. Dénès, L. Lampropoulos, and B. C. Pierce.
Foundational property-based testing. In C. Urban and X. Zhang, editors, Interac-
tive Theorem Proving - 6th International Conference, ITP 2015, Proceedings, volume
9236 of Lecture Notes in Computer Science, pages 325–343. Springer, 2015.

	Abstract
	1 Introduction
	1.1 Generate-and-test as bipoles
	1.2 Flexible test case generation via proof reconstruction
	1.3 Lifting PBT to treat -tree syntax

	2 Basic approach
	3 PBT for metaprogramming
	4 Related work
	5 Conclusion and future work
	References

