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provable from a program P if the goal G is provable from the larger program P ∪ {D}.
This paper explores the qualitative nature of this extension to logic programming. For
example, if the formula D is the conjunction of universally quantified clauses, we interpret
the goal D ⊃ G as a request to load the code in D prior to attempting G and then unload
that code after G succeeds or fails. This extended use of implication provides a logical
explanation of parametric modules, some uses of Prolog’s assert predicate, and aspects
of abstract datatypes. Both a model theory and proof theory are presented for this logical
language. In particular, we show how to build a Kripke-like model for programs by a fixed
point construction and show that the operational meaning of implication mentioned above
is sound and complete for intuitionistic logic. We also examine a weak notion of negation
which is easily implemented in this language and show how database constraints can be
represented by it.
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A Logical Analysis of Modules 1. Implications as Goals

1. Implications as Goals
We shall assume that our logical language is a first-order language with denumerably

many constants, variables, functions symbols, and predicates (at all arities). This language
will contain the following logical constants as primitives: ∧ (conjunction), ∨ (disjunction),
and ⊃ (implication) are binary connectives, ∀ (for all) and ∃ (exists) are quantifiers, and
⊥ (falsehood) is a 0-ary logical constant. When we have the occasion to write negation,
∼B, we will assume that it defined as B ⊃ ⊥. This convention will be explained in Section
7 when negation is first considered. ⊥ is not an atomic formula.

Let A be a syntactic variable which ranges over atomic formulas. Let G range over a
class of formulas, called goal formulas, to be specified shortly. We shall assume, however,
that all atomic formulas are also goal formulas. Definite clauses, denoted by the syntactic
variable D, are defined recursively as:

D := A | G ⊃ A | ∀x D | D1 ∧ D2.

Definite clauses, as well as atomic and goal formulas, may contain free variables. P will be
a syntactic variable for sets of definite clauses. Such a set will often be called a program.
We shall always assume that a program is a finite set.

Let P be a set of definite clauses. Define [P] to be the smallest set of formulas
satisfying the following recursive conditions:
◦ P ⊆ [P].
◦ If D1 ∧D2 ∈ [P] then D1 ∈ [P] and D2 ∈ [P].
◦ If ∀x D ∈ [P] then [x/t]D ∈ [P] for all terms t.

Here [x/t]D denotes the result of substituting t for free occurrences of x in D.
In the case that G is a goal formula and P a set of definite clauses, we shall use the

expression P `O G to mean that G can be derived from P, or that G is an output of P. We
use the subscript O here to indicate that we are thinking about an operational definition of
derivation, i.e., one that captures an intuitive sense of computation. No a priori relation
between `O and other logical senses of derivation or validity are assumed.

We present six proof rules for `O below. The first two are related to the structure of
definite clauses.
(1) P `O A if A ∈ [P], and
(2) P `O A if there is a formula (G ⊃ A) ∈ [P] and P `O G.
These two proof rules provide the basic elements needed to define recursive procedures. A
clause of the form ∀x̄(G ⊃ A) (where ∀x̄ represents a list of universally quantified variables)
is treated as a specification of how a procedure, the name of which is the head of A, can
nondeterministically call other code, i.e., the formula G.

To complete the description of a logic programming language, we need to describe
the class of goal formulas and how non-atomic goals can be operationally proved from a
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A Logical Analysis of Modules 1. Implications as Goals

program. We can define a logic equivalent to positive Horn clauses by letting goal formulas
be defined as

G := A | G1 ∧G2 | G1 ∨G2 | ∃xG

and adding the following proof rules:
(3) P `O G1 ∨G2 if P `O G1 or P `O G2.
(4) P `O G1 ∧G2 if P `O G1 and P `O G2.
(5) P `O ∃xG if there is some term t such that P `O [x/t]G.
In this context, the logical connectives ∧ and ∨ provide for the specification of non-
deterministic and and or branches in the search for a derivation. The quantifier ∃ specifies
an infinite non-deterministic or branch where the disjuncts are parameterized by the set
of terms.

A program in this logic programming language is equivalent to a conjunction of posi-
tive Horn clauses. For example, the definite clause

∀z∀y [(∃x R(x, y) ∧ P (y, z)) ∨R(z, z) ⊃ P (z, y)]

is operationally equivalent to the definite clause

∀z∀y∀x [R(x, y) ∧ P (y, z) ⊃ P (z, y)] ∧
∀z∀y [R(z, z) ⊃ P (z, y)].

Since this normal form exists for this version of definite clauses, the literature concerning
the theoretical nature of positive Horn clauses generally does not present the syntax of
this logic in this more general setting. In Section 8 we generalize this normal form result
for programs.

In the rest of this paper, however, we shall assume that goal formulas have the following
more slightly complex syntax

G := A | G1 ∧G2 | G1 ∨G2 | ∃xG | D ⊃ G,

and that there is the additional proof rule
(6) P `O D ⊃ G if P ∪ {D} `O G.
The classes of goal formulas and definite clauses are now defined by mutual recursion.

The “proof rules” above are merely desired properties for the proof predicate `O. We
now formalize the meaning of `O by presenting a sequent-style proof system (see [9] and
[18]). A sequent is a pair, Γ −→ Θ, where both the antecedent Γ and the succedent Θ
are possibly empty sets of formulas. When a particular sequent is being displayed, we
often simply enumerate the elements of succedents and antecedents without including set
brackets. Furthermore, we will often write Γ, B and B, Γ to denote Γ ∪ {B}.
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A Logical Analysis of Modules 1. Implications as Goals

Each of the proof rules (2) — (6) can be written as inference figures in the following
manner:

P −→ G (2)
P −→ A

P −→ Gi (3)
P −→ G1 ∨G2

P −→ G1 P −→ G2 (4)
P −→ G1 ∧G2

P −→ [x/t]G
(5)

P −→ ∃x G

P, D −→ G
(6).

P −→ D ⊃ G

Here, of course, G ⊃ A ∈ [P], i = 1 or i = 2, and t is some term. In such inference
figures, the sequent(s) appearing above the horizonal line are the upper sequent(s), while
the sequent appearing below the line is the lower sequent.

An O-proof for P −→ G is a tree whose nodes are labeled with sequents such that
(i) the root node is labeled with P −→ G, (ii) the internal nodes are instances of one of
the above inference figures, and (iii) the leaf nodes are labeled with sequents representing
proof rule (1), i.e., with sequents of the form P −→ A where A ∈ [P]. Such sequents are
called initial sequents.

We shall picture proofs as growing up from their root node. The height of a proof is
the length of the longest path from the root to some leaf. The size of a proof is the number
of nodes in it.

Inference figures shall refer only to the syntactic objects used to build proofs while
proof rules shall refer to properties of the proof predicate `O. The formal meaning of `O

can now be given as: P `O G if there is an O-proof for P −→ G. The six proof rules
given above are now obvious conclusions. Our interests throughout most of this paper will
concern operational provability in its nondeterministic sense. That is, it will not matter if
there are several such O-proofs or if a depth-first theorem prover could never find such a
proof.

Let P1 := {q(a), p(b) ⊃ r(b, a), ∀x∀y [r(x, y) ∧ q(y) ⊃ q(f(x))]}. The following is an
O-proof of the goal ∃x [p(x) ⊃ q(f(x))] from P1.

P1, p(b) −→ p(b)
(2)

P1, p(b) −→ r(b, a) P1, p(b) −→ q(a)
(4)

P1, p(b) −→ r(b, a) ∧ q(a)
(2)

P1, p(b) −→ q(f(b))
(6)

P1 −→ [p(b) ⊃ q(f(b))]
(5)

P1 −→ ∃x [p(x) ⊃ q(f(x))]
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The size of this proof is 7 and its height is 6.
Although the operational notion of O-proof is intuitive enough, it is natural to ask

whether it is, in some sense, logical. Thus consider the following example. Let P2 :=
{p(a) ∧ p(b) ⊃ q}. Is there an O-proof of ∃x (p(x) ⊃ q) from P2? Consider the following
tree of sequents.

P2, p(a) −→ p(a) P2, p(a) −→ p(b)
(4)

P2, p(a) −→ p(a) ∧ p(b)
(2)

P2, p(a) −→ q
(6)

P2 −→ p(a) ⊃ q
(5)

P2 −→ ∃x (p(x) ⊃ q)

This is not a proof because P2, p(a) −→ p(b) is not an initial sequent. Regardless of
the term used to instantiate the quantifier ∃x in the root sequent, this tree cannot be
extended to an O-proof. While it seems reasonable enough that there is no such proof, it
is important to notice that the formula

(p(a) ∧ p(b) ⊃ q) ⊃ ∃x (p(x) ⊃ q)

is classically provable. (A classical proof of this formula will be presented in Section 6.)
Thus classical logic is not sound with respect to the our operational semantics. The actual
logical status of `O will be addressed more fully in Section 6. Until then, we shall simply
be concerned with how `O can be used to interpret programs.

In this paper we will not discuss the specifics of how one might actually implement
definite clauses into a Prolog-like language which incorporates such implementation mecha-
nisms as backtracking, logical variables, and unification. It is useful, however, to point out
two aspects of how such an implementation would need to differ from a more traditional
Prolog interpreter. First, explicit quantifiers need to be used in specifying programs. In
Prolog, quantifiers in Horn clauses are dropped since free variables in them can be thought
of as being universally quantified. Similarly, free variables in goals can be thought of as
being existentially quantified. This is not true, however, of definite clauses. For example,
only the second of the two goal formulas ∃x(∀y p(x, y) ⊃ q) and (∀x∀y p(x, y) ⊃ q) may be
derived from the definite clause p(a, c) ∧ p(b, c) ⊃ q. If explicit quantifiers were dropped,
there would be no way to differentiate correctly between these two goals.

If unification and logical variables are used in the standard way to delay and determine
substitutions, then a second difference with traditional Prolog systems is forced, namely,
that program clauses as well as goals can contain logical variables. For example, consider
a goal of the form ∃x (D(x) ⊃ G(x)), i.e., an existentially quantified implication in which
the quantified variable can be free on both sides of the implication. If this quantifier is
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A Logical Analysis of Modules 2. Storing Successful Goals

replaced with a logical (free) variable, say X, then the code D(X) must be added to the
current program clauses before attempting to prove G(X). When unification provides
substitutions for X, both program clauses and goals must be updated accordingly.

2. Storing Successful Goals
Before we examine how our extended use of implication can be used to implement

modules, we first show how implications can be used to provide a scoped and temporary
assert mechanism. We illustrate this mechanism by considering how to implement a form
of memoization.

Notice that if A is atomic, P `O A ∧ G if and only if P `O A ∧ [A ⊃ G]. The proof
of this statement in the forward direction is trivial. The proof of the converse is slightly
more difficult and is given below. It should be quite clear that the size of an O-proof of the
second formula can at times be much smaller than for the first formula. With the second
formula, A does not need to be reproved each time it is needed in the proof of G.

Consider the following Prolog program for computing Fibonacci numbers. In general,
we shall use the syntax of [20] to represent example programs.

fib(0,0).

fib(1,1).

fib(N,F) :- N1 is N-1, N2 is N-2, fib(N1,F1),

fib(N2,F2), F is F1+F2.

For this example, if n is the integer value of the arithmetic expression t then the sequent
Γ −→ n is t, for any set Γ, will be permitted as an initial sequent. If fn denotes the nth

Fibonacci number then the size of the only O-proof of the goal fib(n, fn) is exponential
in n.

Consider, however, the following program which employs implicational goals to store
previously computed Fibonacci numbers. Here, we have introduced the symbol => to
represent implication (:- is the converse of =>).

fib(N,M) :- memo(0,0) => memo(1,1) => fiba(N,M,2).

fiba(N,M,I) :- memo(N,M).

fiba(N,M,I) :- N1 is I-1, N2 is I-2, memo(N1,F1),

memo(N2,F2), F is F1+F2, I1 is I+1,

memo(I,F) => fiba(N,M,I1).

In this last program, there exists only one proof of fib(n, fn) and that proof has a size
proportional to n.

We now return to the formal justification of this approach to memoization.
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Theorem 1. If A is atomic, Γ `O A ∧G if and only if Γ `O A ∧ [A ⊃ G].
Proof. This is trivial in the forward direction. For the proof in the reverse direction,
assume that Γ `O A ∧ [A ⊃ G]. Thus Γ `O A and Γ, A `O G. Let T1 and T2 be O-
proofs for Γ −→ A and Γ, A −→ G, respectively. We need to construct an O-proof for
Γ −→ G. If A ∈ Γ then Γ = Γ ∪ {A} `O G, so T2 is an O-proof for Γ −→ G. Assume
that A /∈ Γ. Build a tree, T3, by removing A from all the antecedents of sequents in T2.
This tree may not be a proof for Γ −→ G because there may have been initial sequents
of the form Γ′, A −→ A in T2 which are now of the form Γ′ −→ A. These, of course,
may no longer be initial sequents. Since Γ ⊆ Γ′, adding the definite clauses Γ′ − Γ to all
the antecedents of sequents in the proof T1, we can get an O-proof for Γ′ −→ A. Thus,
if we add to the top of all such non-initial leaves of T3 the appropriate augmented version
of T1, we will have an O-proof of Γ −→ G. Hence, Γ `O A ∧G.

After we prove the equivalence of `O to intuitutionistic logic in Section 6, this theorem
is easily proven by just noting that A∧G is intuitutionistically equivalent to A∧ (A ⊃ G).

The set of formulas which can be memoized in this fashion is slightly larger than the
set of atomic formulas. Such a formula must have the structure of a definite clause and
of a goal formula. Let M be a syntactic variable which ranges over the set of formulas
described by

M := A | M ⊃ A | M1 ∧M2.

It is easy to show that a formula is a definite clause and a goal formula if and only if it
belongs to the class of formulas satisfying this recursive definition. Notice, for example,
that all propositional, positive Horn clauses are such formulas.

3. Implementing Modules
Consider now how we might reimplement Prolog’s consult predicate with implica-

tional goals. Let classify, scanner, and misc be the names of files containing Prolog
code. When these names appear within formulas, assume that they refer to the conjunc-
tion of universally quantified definite clauses contained in those files. Now consider the
following goal.

`O misc ⊃ ((classify ⊃ G1) ∧ (scanner ⊃ G2) ∧G3)

This goal will cause each of the three goals G1, G2, and G3 to be attempted with different
programs. In particular, this single goal will cause the following goals to be attempted:

misc, classify `O G1

misc, scanner `O G2

misc `O G3.
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Implicational goals can, therefore, be used to structure the runtime environment of a
program. For example, the code present in classify is essentially hidden during the
evaluation of goal G2. This is, of course, very desirable if it had been the case that classify
and scanner were written by different people. This mechanism ensures that there will be
no conflict between the predicates in these two programs. Current implementations of
logic programs generally require that all code be loaded into one area before it can be
used. Such a lack of modularity is certainly a weakness of such implementations.

The previous discussion suggests that it would be possible to design a notion of mod-
ules for logic programming which is based entirely on the logical meaning of implications.
To this end, we will introduce modules as named collections of clauses. For example, the
following is a module containing some list manipulation programs.

module lists.

append([],X,X).

append([U|L],X,[U|M]) :- append(L,X,M).

member(X,[X|L]) :- !.

member(X,[Y|L]) :- member(X,L).

memb(X,[X|L]).
memb(X,[Y|L]) :- memb(X,L).

The theory of definite clauses we are considering in this paper does not encompass the cut
! operation. We shall assume, however, that in our examples it will play the same role in
controlling backtracking as it does in Prolog.

According to our definitions, a goal could be of the form ∃x [D(x) ⊃ G(x)], where
the variable x is free in either or both D(x) and G(x). This suggests that the definite
clauses defining a module can contain free variables. Thus a kind of parametric module is
possible. Consider the following parametric module:

module sort(Order).

bsort(L1,L2) :-

append(Sorted,[Big,Small|Rest],L1),
Order(Small,Big), !,

append(Sorted,[Small,Big|Rest],BetterL1),
bsort(BetterL1,L2).

bsort(L1,L1).

This example, as well as others presented later, is technically not first-order because we
have a variable which is acting as a predicate. This could be alternatively implemented
using such extra-logical tricks as replacing the atom Order(Small,Big) with the two
goals G =.. [Order,Small,Big], call(G). There is also a more direct and logical way
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to provide Prolog with predicate variables by placing it in a higher-order logic [14, 15].
Either approach could be used to give a meaning to this module.

Consider using the sort module to sort the list [2,3,1] in ascending order. Since
bsort uses the append predicate, the lists module must be used along with the sort

module. The answer substitution for x in the following goal would provide the desired
sorted list.

`O lists ∧ sort(<) ⊃ ∃x bsort([2, 3, 1], x)

It is unfortunate that in order to use the sort module it was necessary to explicitly reference
the lists module, which sort needed to execute successfully. It should be possible for the
author of the sort module to import those modules which are needed in the sort module.
Implications can again be used to provide this importing mechanism. For example, we
could rewrite the sort module as:

module sort(Order).

bsort(L1,L2) :-

(lists =>

(append(Sorted,[Big,Small|Rest],L1),
Order(Small,Big), !,

append(Sorted,[Small,Big|Rest],BetterL1),
bsort(BetterL1,L2)

)).

bsort(L1,L1).

Now we would be able to sort our list with the simple goal

`O sort(<) ⊃ ∃x bsort([2, 3, 1], x)

When the body of bsort is attempted as a goal, it will come with the module lists as
a hypothesis. Notice that the scope of the lists module in the first bsort clause is over
the entire body of that clause. Clearly, its scope could be restricted to just cover the two
append goals. This is desirable especially because, as the code is written above, the lists

module is imported for each recursive call to bsort. For the purpose of this paper, we will
assume that importing code which is already imported will have no cost. This is sensible
from our theoretical viewpoint because the sequent Γ, D −→ D ⊃ G is provable from the
sequent Γ, D −→ G.

For the convenience of later examples, we introduce the following definitions. Let
the notation P(x̄) denote a finite set of definite clauses all of whose free variables are in
the variable list x̄. Let the symbols M, M1, M2, M3 be the names of modules. These
symbols, just like function and predicate symbols, have an arity and take arguments. The
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arguments of a module name are used to designate the formal parameters of that module.
For our purposes here, the meaning of a module, say M(x̄), is some set of definite clauses
P(x̄). This association between module names and definite clauses can be established by
the following syntactic specifications:

module M1 module M2(x) module M3(y, z)
import M1,M2(f(y))

P1 P2(x) P3(z)

The first module is not parametric because the clauses in P1 contain no free variables.
M1 will simply be shorthand for the conjunction of the clauses in P1. The second module
is parametric and the clauses P2 can contain various free occurrences of the variable x.
Finally the third module is both parametric and explicitly imports M1 and an instance
of M2. The new syntax for importing modules is only a shorthand for writing certain
embedded implications. In the sort module above, if bsort had required several clauses,
each one of them may have required the lists module as a hypothesis. To save writing
this hypothesis for the body of every clause, we introduce this syntax for imports. The
intended meaning of module M3 is the following: For each clause of the form

∀w̄(G ⊃ A)

in P3 replace it with one of the form

∀w̄((M1 ∧M2(f(y)) ⊃ G) ⊃ A),

that is, the body of all clauses in M3 are relativized by the imported modules. The resulting
clauses are then associated with the module name M3. Of course, variable capture must
be avoided here. If y is a member of the list w̄, the bound variables would need to be
changed before forming this new clause.

There are two facts that are important to point out about this development of modules.
Firstly, this notion of modules is a by-product of our definite clauses. It has not been added
as a separate syntactic feature that an interpreter for O-proofs would need to understand.
The meaning and use of modules could be reduced to uses of embedded implications.
Of course, in practice this reduction would not be done so literally. A structure-sharing
mechanism for modules would need to be considered. Secondly, the operational behavior of
implications presented earlier is enough to guarantee that whenever a module is imported
into another module, the imported module is only used privately. No additional safeguards
need to be added to force private usage. In other words, if a module does not explicitly
import a given module, it does not have direct access to the code in that module.

To illustrate this fact, consider the two modules M1 which contains just the definite
clause p and M2 which contains the definite clause q ⊃ p. Clearly, there is no O-proof of
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M2⊃ p because there is no way to prove q within M2. If M2 were to import M1, there
would still be no proof of q in M2. Thus, if M2

′ is the module which contains q ⊃ p

and imports M1, there should be no O-proof of p from M2
′. This is in fact the case.

The formula represented by M2
′ is (p ⊃ q) ⊃ p, and it is easy to check that the goal

((p ⊃ q) ⊃ p) ⊃ p has no O-proof. Thus, even though M2
′ imports a module which claims

that p is true, it is not possible to prove p from that module. That is, M1 is used privately
within M2

′. It is worthwhile noting that the formula ((p ⊃ q) ⊃ p) ⊃ p is often called
Peirce’s formula and is well known as a classically true but intuitionistically false formula.
The restricted nature of implication in intuitionistic logic is precisely the restriction needed
to support private usage of modules when they are imported. In Section 6, we will discuss
more about the connections between intuitionistic logic and `O.

As a final example, we give an example of how implication can be used to provide
a block structured approach to writing code. The following single definite clause is a
definition of the list reverse program.

rev(L,K) :- (all K rev1([],K,K),

all X all L all K (rev1([X|L],K,ACC) :-

rev1(L,K,[X|ACC])))
=> rev1(L,K,[]).

Our syntax for this definite clause cannot, of course, conform to the syntax of [20] because
we need to embed quantified expressions in the body of definite clauses. Instead, we used
the expression all X P is correspond to the logical notation ∀x P . The only time the code
for the rev1 predicate is accessible is during the evaluation of the rev predicate.

4. Modules as Interfaces
Modules can also be used to explicitly export and hide program code in other modules.

For example, let module M1 contain clauses for the binary predicates p and s and for the
trinary predicate r. Consider the following module.

module M2.

import M1.

q(X,Y) :- p(X,Y).

t(X,Y) :- r(f(Y),[],X).

Let M0 be some module which imports M2. M0 will have access to the code for predicate p
but only through the name q. M0 will not, however, have access to the code for predicate
s since this is not mentioned in M2. Also, only a certain instance of the code for the
predicate r is provided by the predicate t. Such an interfacing module is very similar in
spirit to what O’Keefe’s called a breeze brick [17].
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In this example, we have chosen to export the predicate p in M1 as the predicate q.
We could have exported p as p. For example, let M3 be identical to M2, except that we
replace the define clause q(X,Y) :- p(X,Y) with p(X,Y) :- p(X,Y). These clauses are,
of course, simply shorthand for the definite clauses ∀x∀y ((M1 ⊃ p(x, y)) ⊃ q(x, y)) and
∀x∀y ((M1 ⊃ p(x, y)) ⊃ p(x, y)). From an abstract point-of-view, this choice is immaterial;
that is, we have the following equalities:

{〈t, s〉 | M1 `O p(t, s)} = {〈t, s〉 | M2 `O q(t, s)} = {〈t, s〉 | M3 `O p(t, s)}.

Proofs for M3 −→ p(t, s) can be, however, different from those for M2 −→ p(t, s). For
example, consider the following tree of sequents:

∀x∀y ((M1 ⊃ p(x, y)) ⊃ p(x, y)),M1 −→ p(t, s)
(6)

∀x∀y ((M1 ⊃ p(x, y)) ⊃ p(x, y)) −→ M1 ⊃ p(t, s)
(2).

∀x∀y ((M1 ⊃ p(x, y)) ⊃ p(x, y)) −→ p(t, s)

The search for an O-proof of p(t, s) from M3 gives rise to the search of a proof for p(t, s)
from M3 and M1. Since M3 does not affect the extension of p, this is, in the abstract sense,
the same as proving p(t, s) from M1. An interpreter for O-proofs could, however, loop
infinitely often by repeatedly using the M3 code instead of using the M1 code. Exporting
p as q is one way to get around this problem. Consider the following tree of sequents:

∀x∀y ((M1 ⊃ p(x, y)) ⊃ q(x, y)),M1 −→ p(t, s)
(6)

∀x∀y ((M1 ⊃ p(x, y)) ⊃ q(x, y)) −→ M1 ⊃ p(t, s)
(2).

∀x∀y ((M1 ⊃ p(x, y)) ⊃ q(x, y)) −→ q(t, s)

In this case, an interpreter is forced to examine the code in M1.
Returning to our first example in this section: if p was implemented in M1 with calls

to the predicate s, only p, exported as q, will be available from M2, not s. Hence, it is
possible to hide some aspects of the actual implementation of programs. This is an essential
feature in supporting the usual software engineering notion of an abstract datatype.

To illustrate this more directly, consider implementing binary trees which are labeled
with integers in such a way that integers labeling the nodes to the left (resp. right) of a
given node are smaller (larger) than the label of the given node. The following module
represents a particular implementation of inserting and traversing such trees.

module btree_internal.

import lists.

insert_btree(N,bt(N,T1,T2)).
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insert_btree(N,bt(M,T,_)) :-

N < M, insert_btree(N,T).

insert_btree(N,bt(M,_,T)) :-

N > M, insert_btree(N,T).

traverse_btree(leaf,[]).

traverse_btree(bt(N,L,R), SortedList) :-

traverse_btree(L,Left), traverse_btree(R, Right),

append(Left,[N|Right],SortedList).

Here a particular structuring of binary trees is chosen: the term bt(N,T1,T2) represents
a non-terminal node labeled with N and which has left-subtree T1 and right-subtree T2.
Leaf nodes are represented by the constant leaf.

Such a representation is, of course, largely arbitrary and probably of little significance
to the rest of the program using this module. In such a case, it would be desirable to
hide the actual implementation of such binary trees. We can do this with the following
interfacing module.

module btree.

make_btree(TreeName,Goal) :-

btree(TreeName,T) => Goal.

insert(TreeName,N) :-

btree_internal => (btree(TreeName,T),

insert_btree(N,T)).

traverse(TreeName,L) :-

btree_internal => (btree(TreeName,T),

traverse_btree(T,L)).

build(TreeName,[]).

build(TreeName,[X|L]) :-

insert(TreeName,X), build(TreeName,L).

This module associates binary trees with user supplied names; this association is stored
as a “temporary assert” using atomic facts of the form btree(TreeName,Tree). It also
provides the basic manipulations (insertions and traversals) for such named trees. The goal
make_btree(TreeName,Goal) will call the goal Goal in an environment where TreeName is
associated with some unspecified binary tree. This tree is initialized as a logical variable.
Successive calls to insert are used to add integer labels to this tree. The action of inserting
such labels does not produce new copies of the binary tree; the logical variables within
the tree are simply specified further. In a sense, this datatype represents monotone binary
trees: such trees can grow at the leaves, but once a node is labeled with a value, no change
can be made to it. When a binary tree is traversed, all the logical variables in the tree are
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instantiated to the constant leaf and no further insertions can be made.
The following module describes a sorting procedure which uses the btree datatype.

module btree_sort.

import btree.

binsort(L,K) :- make_btree(sort,(build(sort,L),

traverse(sort,K))).

The name sort is the name of a binary tree, and all access to that tree is made through
that name. This code is independent of the actual implementation of binary trees. For
example, if btree_internal attempted to balance binary trees on certain insertions, the
meaning of the above code would not change. A user who imports btree_sort will only
have access to the binary predicate binsort. No other code is made available.

The module btree does not explicitly import the module btree_internal: it was
imported only locally in two of its three clauses. If btree_internal had been imported
over all three clauses, then the goal Goal in make_btree(TreeName,Goal) would have been
given access to the internal representation of binary trees. This would defeat the hiding
mechanism. The import declaration often provides imported modules with too broad a
scope. Explicit uses of => can provide for more selective scoping.

Although this development of abstract datatypes seems to capture many of the stan-
dard software engineering notion of abstract datatypes, it does not capture all of them. For
example, modules do not provide a perfect hiding mechanism. It is always possible to get
at the internal structure of data objects by guessing at their implementation. For example,
some module could reimplement the code within btree_internal and thus gain access to
the representation of binary trees. Also, by simply issuing the goal btree(Name,Tree) in
the right context, a user could get access to all the stored binary trees. Of course, this
user would need to know the fact that they were stored in this fashion. It would seem
that supporting a greater degree of security for abstract datatypes would require further
extensions to either the logic or control primitives of the programming language we are in-
vestigating. In [15] we present a further extension to definite clauses, namely the addition
of universally quantified goals, which can be used to hide access to term constructors in
datatypes. A discussion of this mechanism is beyond the scope of this paper.

The code in two different modules might overlap, i.e., they could both provide defi-
nitions for a common predicate. For example, assume modules M1 and M2 both contain
clauses for the binary predicate p. There are occasions when the desired meaning for p is
simply the union of the clauses in M1 and M2. This would be the case if these modules
were parts of a database of facts and we wished to do a simple accumulation of these fact.
This could be done with the following query:

`O M1 ∧M2 ⊃ ∃x∃y p(x, y).
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Another way to bring these modules together is to view each one as being different versions
of some program. We might then wish to find solutions to p with respect to the version in
M1 and then with respect to the version in M2. This could be done by first building the
module:

module M3.

q(X,Y) :- M1 => p(X,Y).

q(X,Y) :- M2 => p(X,Y).

and then using the query:
`O M3 ⊃ ∃x∃y q(x, y).

When a program is placed in a module, it is often the case that we would like to
think of that program as being completely defined within that module. That is, in all
environments, that module should always have the same meaning. As our one example
above showed, it is possible for a second module to be used along with a given module in
such a way that the clauses in the two modules accummulate. For some programs, such
an addition of foreign clauses could greatly change the original program’s meaning. When
this is not desired, it is possible to add control primitives which specify that programs in
modules cannot be extended. This could be done by explicitly using a !, fail combination
in an interfacing module. For example, consider the following module:

module closedsort(Order).

import sort(Order).

binsort(L1,L2) :- bsort(L1,L2); !, fail.

This small module defines a version of bubble sort which cannot be extended with foreign
clauses: a depth-first interpreter could never access them.

There are numerous other observations which could be made about how this notion of
module could be used to structure programs and search. We shall now, however, turn away
from such concerns to study some of the formal aspects of definite clauses and O-proofs.

5. Model Theory
In this section we shall present an alternative description of operational derivability.

We shall do this by constructing a set-theoretic structure, i.e., a kind of model, such that
P `O G if and only if G is satisfied in that model. The main challenge to the construction
of such a model is the fact that a program may grow during its “execution.” That is, when
trying to determine that P `O G holds, it might be necessary to determine that P ′ `O G′

holds, where P ′ is some extension of P. From the model theory perspective, this means that
an interpretation of P would depend on interpretations associated with larger programs.
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We therefore use an approach to semantics which is inspired by possible-worlds or Kripke
models: we attempt to interpret all programs simultaneously by using a single large Kripke-
like interpretation. It is then possible to inductively build a single interpretation which
can then be viewed as interpreting all programs. This single interpretation will be the
least fixed point of a suitable operator. The references [5] and [19] contain more on Kripke
models.

We shall assume that we have chosen a fixed set of non-logical constant, function,
and predicate symbols. Let U denote the set of all closed terms (the Herbrand universe)
and let H denote the set of all closed, atomic formulas (the Herbrand base). Let W be
the set of all programs and let any function I : W → powerset(H) such that ∀w1, w2 ∈
W[w1 ⊆ w2⊃ I(w1) ⊆ I(w2)] be called an interpretation. An interpretation is simply
a mapping which associates to every program a set of “true” atomic formulas which is
internally “monotone,” i.e., if a program gets larger, the set of associated true atoms
cannot decrease.

We now define each of the following for interpretations I1 and I2.

I1 v I2 := ∀w ∈ W[I1(w) ⊆ I2(w)]

(I1 t I2)(w) := I1(w) ∪ I2(w)

(I1 u I2)(w) := I1(w) ∩ I2(w)

It follows quickly from the fact that the powerset of H is a complete lattice that the set of
all interpretations is also a complete lattice under v. In this lattice, t is the join operator
and u is the meet operator. The smallest interpretation, I⊥, is given by setting I⊥(w) := ∅
for all w ∈ W.

We next define a notion of satisfiability, I, w |=|= G, for closed goal formula G in an
interpretation I at a program w.

◦ I, w |=|= A if and only if A ∈ I(w).

◦ I, w |=|= G1 ∨G2 if and only if I, w |=|= G1 or I, w |=|= G2.

◦ I, w |=|= G1 ∧G2 if and only if I, w |=|= G1 and I, w |=|= G2.

◦ I, w |=|= ∃x G if and only if I, w |=|= [x/t]G for some t ∈ U .

◦ I, w |=|= D ⊃ G if and only if I, w ∪ {D} |=|= G.

An interpretation can be thought of as a large collection of models which is indexed
by programs. Thus, I, w |=|= G means that G is true in the model located in I at program
w. The truth of the goal D ⊃ G in the model located at w is given by the truth of the
goal G in the model located at w ∪ {D}. This is how the growth of programs is captured.

We now wish to build a single interpretation I such that P `O G if and only if
I,P |=|= G. Such an interpretation will be the result of building a least fixed point. To this
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end, let T be a function from interpretations to interpretations defined as follows:

T (I)(w) := {A | A ∈ [w] or

there is a closed clause G ⊃ A ∈ [w] such that I, w |=|= G}.

It is easy to show that T (I) is an interpretation whenever I is an interpretation.
We first state two lemmas concerning the predicate |=|=. Both these lemmas are proved

using induction on the structure of goal formulas. We present the proof for only the second
lemma. The proof of the first is similar and simpler.

Lemma 2. If I1 v I2 then I1, w |=|= G implies I2, w |=|= G for all w ∈ W.

Lemma 3. Let I1 v I2 v I3 v . . . be a sequence of interpretations. If G is a goal, w ∈ W,

and
⊔∞

i=1 Ii, w |=|= G then there exists a k ≥ 1 such that Ik, w |=|= G.

Proof. The proof is by induction on the structure of G. If G is atomic, then
⊔∞

i=1 Ii, w |=|= G

implies that G ∈ (
⊔∞

i=1 Ii)(w) =
⋃∞

i=1 Ii(w). Thus there is a k ≥ 1 such that G ∈ Ik(w).
Hence, Ik, w |=|= G. Now assume that for all increasing sequences of interpretations and all
w ∈ W, the lemma is true for all goal formulas with a given bounded size. We need to
consider the following four cases.
Case 1: G = G1 ∧ G2. Since

⊔∞
i=1 Ii, w |=|= G1 ∧ G2, we have

⊔∞
i=1 Ii, w |=|= G1 and⊔∞

i=1 Ii, w |=|= G2. By the inductive hypothesis, there are two positive integers l and j such
that Il, w |=|= G1 and Ij , w |=|= G2. Let k be the maximum of l and j. By Lemma 2, we
have Ik, w |=|= G1 and Ik, w |=|= G2, and therefore Ik, w |=|= G1 ∧G2.
Case 2: G = G1 ∨ G2. Since

⊔∞
i=1 Ii, w |=|= G1 ∨ G2, we have

⊔∞
i=1 Ii, w |=|= Gj for some

j = 1, 2. By the inductive hypothesis, there is a positive integer k such that Ik, w |=|= Gj .
Thus Ik, w |=|= G1 ∨G2.
Case 3: G = ∃x G′. Since

⊔∞
i=1 Ii, w |=|= ∃x G′, we have

⊔∞
i=1 Ii, w |=|= [x/t]G′ for some

t ∈ U . By the inductive hypothesis, there is a positive integer k such that Ik, w |=|= [x/t]G′.
Thus Ik, w |=|= ∃x G′.
Case 4: G = D ⊃ G′. Since

⊔∞
i=1 Ii, w |=|= D ⊃ G′, we have

⊔∞
i=1 Ii, w ∪ {D} |=|= G′. By

the inductive hypothesis, there is a positive integer k such that Ik, w ∪ {D} |=|= G′. Thus
Ik, w |=|= D ⊃ G′.

Notice that I⊥,P |=|= G holds for no P and G, and that T (I⊥),P |=|= G holds if and
only if G is atomic and G ∈ [P]. We now show that T is a monotone and continuous
function on the lattice of interpretations.

Lemma 4. T is monotone; that is, if I1 v I2 then T (I1) v T (I2).
Proof. Assume that I1 v I2 and let w ∈ W and A ∈ T (I1)(w). Thus either A ∈ [w], in
which case A ∈ T (I2)(w), or there is a closed clause G ⊃ A ∈ [w] such that I1, w |=|= G.
By Lemma 2, I2, w |=|= G so A ∈ T (I2)(w). Since w and A were arbitrary, we can conclude
that T (I1) v T (I2).
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Lemma 5. T is continuous; that is, if I1 v I2 v I3 v . . . is a sequence of interpretations,

then ∞⊔

i=1

T (Ii) = T (
∞⊔

i=1

Ii).

Proof. To prove this equality, we prove inclusion in two directions.
Since Ij v

⊔∞
i=1 Ii for any j, j ≥ 1, we can apply Lemma 4 to get T (Ij) v T (

⊔∞
i=1 Ii).

Since j was arbitrary, we have
⊔∞

i=1 T (Ii) v T (
⊔∞

i=1 Ii).
Let w ∈ W and A ∈ T (

⊔∞
i=1 Ii)(w). If A ∈ [w] then A ∈ T (Ij)(w) for any j, j ≥ 1

and, clearly, A ∈ (
⊔∞

i=1 T (Ii))(w). Otherwise, there is a closed clause G ⊃ A ∈ [w]
such that

⊔∞
i=1 Ii, w |=|= G. By Lemma 3, there is a k such that k ≥ 1 and Ik, w |=|= G.

Thus A ∈ T (Ik)(w) ⊆ (
⊔∞

i=1 T (Ii))(w). Since w and A are arbitrary, we conclude that
T (

⊔∞
i=1 Ii) v

⊔∞
i=1 T (Ii).

This theorem and proof would remain true if we lifted the restriction that programs
were finite. Making programs infinite will not harm the continuity of T .

By the Knaster-Tarski theorem [1], the least fixed point of T is given by the equation

T∞(I⊥) := T (I⊥) t T 2(I⊥) t T 3(I⊥) t . . . .

The following theorem can now be proved.

Theorem 6. If P is a closed program and G is a closed goal formula, then P `O G if and

only if T∞(I⊥),P |=|= G.

Proof. First we show that P `O G implies T∞(I⊥),P |=|= G. We do this by showing
by induction on k that for all programs P and all closed goal formulas G, if the sequent
P −→ G has a O-proof of height k then T∞(I⊥),P |=|= G.

Base case: k = 1. G must be atomic and G ∈ [P]. Thus, G ∈ T 1(I⊥)(P) ⊆ T∞(I⊥)(P)
and T∞(I⊥),P |=|= G.

Inductive case: k ≥ 1. We need to consider the cases where the last inference in the
O-proof of Γ −→ G is an instance of inference figure (2) — (6). We present only the cases
corresponding to inference figures (2) and (6). The other three cases are straightforward.

Assume that the last inference figure was (2). Then G is atomic and there is a
G′ ⊃ G ∈ [P] such that P −→ G′ has an O-proof of height k − 1. By the inductive
hypothesis, T∞(I⊥),P |=|= G′. By the definition of T , G ∈ T (T∞(I⊥))(P) = T∞(I⊥)(P).
Hence, T∞(I⊥),P |=|= G.

Assume that the last inference figure was (6). Thus G is of the form D ⊃ G′ and
P, D −→ G′ has an O-proof of height k − 1. By the inductive hypothesis, T∞(I⊥),P ∪
{D} |=|= G′. Hence, T∞(I⊥),P |=|= D ⊃ G′.

We now prove the converse. Let P and G be such that T k(I⊥),P |=|= G for some k ≥ 1
and assume that this is the smallest such value for k. If G contains n ≥ 0 occurrences of
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logical connectives and quantifiers, we then attach to the pair P, G the ordinal measure
ω · (k − 1) + n. We now prove by induction on this measure that for all programs P and
all closed goal formulas G, if the measure of the pair P, G is α then P `O G.

Base case: the measure of P, G is 0 (= ω · 0 + 0). G is, therefore, atomic and
T 1(I⊥),P |=|= G. But then G ∈ [P] and P `O G.

Inductive case: the measure of P, G is ω · α + β > 0. This case must be divided
between the case where this ordinal is a limit ordinal or not, i.e., β = 0 or β > 0.

Subcase β = 0. Hence, α > 0 and G is atomic. Thus Tα+1(I⊥),P |=|= G and
G ∈ Tα+1(I⊥)(P). By the definition of T , either G ∈ [P], in which case P `O G is
immediate, or there is a closed G′ ⊃ G ∈ [P] such that Tα(I⊥),P |=|= G′. In the second
case, the ordinal ω · (α − 1) + β′, where β′ is the number of logical connectives in G′, is
smaller than ω · α + β. By the inductive hypothesis, P `O G′ has an O-proof, so P `O G

has an O-proof by proof rule (2).
Subcase β > 0. In this case, G is not atomic. This part of the proof, therefore, breaks

into four cases, one for each possible top-level connective of G. The proof of each of these
cases is straigthforward and omitted here.

Finally, if T∞(I⊥),P |=|= G, by Lemma 3, there is a k ≥ 1 such that T k(I⊥),P |=|= G.
Hence, the pair P, G has a measure and by the preceding inductive proof, this implies that
P `O G.

A similar theorem for the classical theory of positive Horn clauses is given in [1]. The
fixed point result in that paper can be viewed as a special case of Theorem 6.

6. Proof Theory
At this point, we would like to know if our programming language represents a new

logical system or if it is an instance of some other known logical system. The purpose of
this section is to address this question.

It is worthwhile noting that our emphasis here is different than what is generally
found in theoretical discussions of logic programming. The more common approach starts
with a specific logic, namely classical first-order logic, and then examines the programming
language significance of that logic’s meta-theory. Our approach in this paper is the reverse,
that is, we first fixed a natural and interesting programming language and then looked for
a logic whose meta-theory includes its operational semantics. This step of looking for such
a logic is not meant to justify the programming language — it is justified to the extent
that it has formal properties and implements important programming features. We wish
instead to discover if our logic has been studied previously in the logic literature.

We have already mentioned that if `O represents a provability relation in some logic,
that logic cannot be classical logic. For another illustration of this, consider the goal
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formula G1 ∨ (D ⊃ G2). Our operational semantics interprets this goal as one which will
succeed if either G1 succeeds or if G2 succeeds given the program in D. The scope of D is
clearly over only G2. Classical logic, however, does not support this interpretation of this
goal. For example, in classical logic, the following equivalences are tautologous:

G1 ∨ (D ⊃ G2) ≡ G1 ∨ ∼D ∨G2

≡ ∼D ∨G1 ∨G2

≡ (D ⊃ G1) ∨G2

≡ (D ⊃ G1) ∨ (D ⊃ G2)

The classical equivalence of p ⊃ q with ∼p ∨ q undermines the intended meaning of im-
plication as providing an environment building mechanism. We will show how two weaker
logics, minimal logic and intuitionistic logic, can be used to provide a justification for our
intended interpretation of the logical connectives.

We now present a different set of inference figures for sequents than those introduced
in Section 1. This proof system is taken from [18].

Γ −→ ∆, B Γ −→ ∆, C ∧-R
Γ −→ ∆, B ∧ C

B, C, ∆ −→ Θ ∧-L
B ∧ C, ∆ −→ Θ

B, ∆ −→ Θ C, ∆ −→ Θ ∨-L
B ∨ C, ∆ −→ Θ

Γ −→ ∆, B ∨-R
Γ −→ ∆, B ∨ C

Γ −→ ∆, C ∨-R
Γ −→ ∆, B ∨ C

Γ −→ Θ, B C, Γ −→ ∆ ⊃-L
B ⊃ C, Γ −→ ∆ ∪Θ

B, Γ −→ Θ, C ⊃-R
Γ −→ Θ, B ⊃ C

Γ, [x/t]P −→ Θ ∀-L
Γ,∀x P −→ Θ

Γ −→ Θ, [x/t]P ∃-R
Γ −→ Θ, ∃x P

Γ, [x/y]P −→ Θ ∃-L
Γ,∃x P −→ Θ

Γ −→ Θ, [x/y]P ∀-R
Γ −→ Θ, ∀x P

Γ −→ Θ,⊥ ⊥-R
Γ −→ Θ, B

The proviso that the variable y is not free in any formula of the lower sequent is also
assumed for the ∃-L and ∀-R figures.
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A proof for the sequent Γ −→ Θ is a finite tree constructed using these inference
figures and such that the root is labeled with Γ −→ Θ and the leaves are labeled with
initial sequents, i.e., sequents Γ −→ Θ such that the intersection Γ∩Θ contains either ⊥
or an atomic formula.

Sequent systems of this kind generally have three structural figures which we have
not listed. Two such figures, interchange and contraction, are not necessary here because
the antecedents and succedents of sequents are sets instead of lists. Hence, the order and
multiplicity of formulas in sequents are not made explicit. If an antecedent is of the form
Γ, B, it may be the case that B ∈ Γ; that is, a formula in an antecedent or succedent
has an arbitrary multiplicity. The third common structural inference figure is that of
thinning: from a given sequent one may add any additional formulas to the succedent and
antecedent. The following lemma, which can be proved easily by induction, establishes a
form of antecedent thinning which we will find useful. We will not, however, introduce
thinning as a separate inference figure.

Lemma 7. Let Ξ be a proof of Γ −→ Θ and let Γ′ be a set of formulas. Let Ξ + Γ′ be

the tree of sequents obtained by adding Γ′ to the antecedent of all sequents in Ξ. Then

Ξ + Γ′ is a proof for Γ ∪ Γ′ −→ Θ.

We define the following three kinds of proofs. Any proof will also be called a C-
proof. Any C-proof such that every sequent in it has a singleton set for it succedent is
also called an I-proof. Furthermore, an I-proof in which no instance of the ⊥-R inference
figure appears is also called an M-proof. Sequent proofs in classical C, intuitionistic I, and
minimal M logics are represented by, respectively, by C-proofs, I-proofs, and M-proofs.
Finally, we write Γ `C B, Γ `I B, and Γ `M B, if the sequent Γ −→ B has, respectively,
a C-proof, I-proof, or M-proof. It follows immediately that Γ `M B implies Γ `I B

implies Γ `C B. If the set Γ is empty, it will be dropped entirely from the left side of these
three predicates. See [5, 9, 18, 21] for more on intuitionistic and minimal logics.

The following is a C-proof for a formula we considered in Section 1.

p(a), p(b) −→ p(a) p(a), p(b) −→ p(b) ∧-R
p(a), p(b) −→ p(a) ∧ p(b) p(a), p(b), q −→ q ⊃-L

p(a) ∧ p(b) ⊃ q, p(a), p(b) −→ q ⊃-R
p(a) ∧ p(b) ⊃ q, p(a) −→ q, p(b) ⊃ q ⊃-R
p(a) ∧ p(b) ⊃ q −→ p(a) ⊃ q, p(b) ⊃ q ∃-R

p(a) ∧ p(b) ⊃ q −→ p(a) ⊃ q, ∃x (p(x) ⊃ q) ∃-R.
p(a) ∧ p(b) ⊃ q −→ ∃x (p(x) ⊃ q)
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Similarly, the following is a C-proof of Peirce’s formula, mentioned at the end of Sec-
tion 3.

p −→ p, q ⊃-R
−→ p, p ⊃ q p −→ p ⊃-L

(p ⊃ q) ⊃ p −→ p ⊃-R.
−→ ((p ⊃ q) ⊃ p) ⊃ p

Neither of these formulas have I-proofs.
In classical proofs, there may be more than one formula in the succedent, and the

“processing” of any one of these formulas may interact with the others in the succedent.
This is very clear if we return to the goal formula, G1 ∨ (D ⊃ G2), presented earlier.
Consider the following tree of sequents:

D −→ G1, G2 ⊃-R
−→ G1, D ⊃ G2 ∨-R

−→ G1, G1 ∨ (D ⊃ G2) ∨-R
−→ G1 ∨ (D ⊃ G2)

This reduction of the root sequent to D −→ G1, G2 loses the scoping restriction of D

over G2. Permitting more than one formula on the right works against our intented
interpretation of the logical connectives.

Theorem 8. Let P be a set of definite clauses and let G be a goal formula. If P `O G,

then P `M G, P `I G, and P `C G.

Proof. Each of the inference figures (2) through (6) are derivable in M in the following
way. Figure (2) is a combination of ∀-L, ∧-L, ⊃-L, and an initial sequent; figure (3) is ∨-R;
figure (4) is ∧-R; figure (5) is ∃-R; figure (6) is ⊃-R. An initial sequent of `O is derivable
from ∀-L, ∧-L, and an initial sequents of this system. Since all these inference figures are
derivable in the weakest system, M, they are also derivable in I and C.

The proofs of the next two lemmas are straightforward inductions on the height of
proofs.

Lemma 9. Let P be a set of definite clauses and Θ be a set of goal formulas. Any proof

of a sequent P −→ Θ contains no instances of the inference figures ∨-L, ∃-L, and ∀-R.

Lemma 10. Let P be a set of definite clauses. There is no I-proof of the sequent

P −→ ⊥.

From Lemma 10 it follows that any I-proof of P −→ Θ cannot contain any instances
of the ⊥-R inference figure. Hence, for a set of definite clauses P and a goal formula G,
P `I G if and only if P `M G.
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We now wish to show that if P −→ G is intuitionistically provable, it is then op-
erationally provable. There are several overlaps between the O and I proof systems, but
there are two substantial differences. First, there are no O-proof inference figures which
correspond to ∀-L and ∧-L. This difference is compensated by the use of [P] instead of P
in proof rules (1) and (2). Secondly, and more importantly, the match between inference
figures (2) and ⊃-L is not direct. Given the sequent G′ ⊃ A,P −→ G, (2) is applicable
only if G = A while ⊃-L has no such restriction. In fact, ⊃-L generates an entire subproof
for A,P −→ G which is not present in instances of inference figure (2). As a result of
this difference, we need to make the following definitions and observations.

Instances of ⊃-L in a proof are at the root of two smaller proofs. These two proofs
are called the left subproof and right subproof of this instance of ⊃-L. An instance of ⊃-L
in a proof is simple if its right subproof has height 1. Otherwise, the instance is complex.
A proof in which all instances of ⊃-L are simple is a simple proof. It is simple instances
of ⊃-L which correspond to uses of inference figure (2). Lemma 12 establishes that simple
I-proofs are sufficient. First, however, we need to prove the following lemma.

Lemma 11. Assume that Ξ is an I-proof of the form

Ξ1

P −→ G′
Ξ2

A,P −→ G ⊃-L,
G′ ⊃ A,P −→ G

where Ξ1 and Ξ2 are simple I-proofs. There exists a simple I-proof for

G′ ⊃ A,P −→ G.

Proof. Our proof shows how a complex instance of ⊃-L can be converted to simple in-
stances by moving it backwards through the inference figures in Ξ2. To do this, we need to
show that ⊃-L “commutes” with all inference figures in which Ξ2 can terminate. Formally,
the proof is by induction on the height of Ξ2. If the height is 1, then the instance of ⊃-L
above is simple and we are finished. Assume that the height of Ξ2 is greater than 1. We
now show that this complex instance of ⊃-L commutes with the last inference figure in Ξ2.
We consider the cases for each such inference figure.

Cases ∧-R, ⊃-R, ∨-R, and ∃-R: Assume that the root inference figure in Ξ2 is ∧-R.
Hence, Ξ is of the form

Ξ1

P −→ G′

Ξ′2
A,P −→ G1

Ξ′′2
A,P −→ G2 ∧-R

A,P −→ G1 ∧G2 ⊃-L.
G′ ⊃ A,P −→ G1 ∧G2
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Consider the following I-proof:

Ξ1

P −→ G′
Ξ′2

A,P −→ G1 ⊃-L
G′ ⊃ A,P −→ G1

Ξ1

P −→ G′
Ξ′′2

A,P −→ G2 ⊃-L
G′ ⊃ A,P −→ G2 ∧-R.

G′ ⊃ A,P −→ G1 ∧G2

The two instances of ⊃-L above both have left and right subproofs which are simple and
are such that their right subproofs are shorter than Ξ2. The inductive hypothesis can be
applied to each subproof to finish this case. The case when the last inference figure of Ξ2

is either ⊃-R, ∨-R, or ∃-R is similar.
Cases ∀-L and ∧-L: Assume that the root inference figure in Ξ2 is ∀-L. Hence, Ξ is of

the form

Ξ1

∀x D,P ′ −→ G′

Ξ′2
A, [x/t]D,P ′ −→ G ∀-L
A, ∀x D,P ′ −→ G ⊃-L,

G′ ⊃ A, ∀x D,P ′ −→ G

where P = P ′ ∪ {∀x D}. Consider the following I-proof:

Ξ1 + {[x/t]D}
[x/t]D, ∀x D,P ′ −→ G′

Ξ′2 + {∀x D}
A, [x/t]D,∀x D,P ′ −→ G ⊃-L

G′ ⊃ A,∀x D, [x/t]D,P ′ −→ G ∀-L.
G′ ⊃ A, ∀x D,P ′ −→ G

The instance of ⊃-L above has left and right subproofs which are simple and is such that
its right subproof is shorter than Ξ2. The inductive hypothesis can be applied to this
instance of ⊃-L to finish this case. The case when the last inference figure of Ξ2 is ∧-L is
similar.

Case ⊃-L: For our final case, assume that the last inference figure of Ξ2 is ⊃-L. Ξ is
then of the form

Ξ1

G1 ⊃ A1,P ′ −→ G′

Ξ′2
A,P ′ −→ G1 A,A1,P ′ −→ G ⊃-L

A, G1 ⊃ A1,P ′ −→ G ⊃-L,
G′ ⊃ A,G1 ⊃ A1,P ′ −→ G
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where P = {G1 ⊃ A1} ∪ P ′. Since, the upper most instance of ⊃-L is simple, the sequent
A,A1,P ′ −→ G is initial. Hence, either G ∈ P ′, G = A, or G = A1. If G ∈ P ′ then a
simple I-proof for the sequent

G′ ⊃ A,G1 ⊃ A1,P ′ −→ G

is the one node proof labeled with just this sequent. If G = A, then a simple I-proof for
this sequent would be

Ξ1

G1 ⊃ A1,P ′ −→ G′ A, G1 ⊃ A1,P ′ −→ G ⊃-L.
G′ ⊃ A,G1 ⊃ A1,P ′ −→ G

Finally, if G = A1, then consider the following I-proof:

Ξ1

G1 ⊃ A1,P ′ −→ G′
Ξ′2 + {G1 ⊃ A1}

A,G1 ⊃ A1,P ′ −→ G1 ⊃-L
G′ ⊃ A,G1 ⊃ A1,P ′ −→ G1 A1, G

′ ⊃ A,P ′ −→ G ⊃-L.
G′ ⊃ A,G1 ⊃ A1,P ′ −→ G

The lower instance of ⊃-L is simple while the upper instance is not necessarily simple.
Since that instance’s right subproof is shorter than Ξ2, the inductive hypothesis can be
used to complete this case.

Lemma 12. Let P be a set of definite clauses and let G be a goal formula. If P −→ G

has an I-proof, it has a simple I-proof.

Proof. This follows by induction on the number of complex instances of ⊃-L in an I-
proof of P −→ G. If the number of such instances is greater than 0, choose one which
has only simple left and right subproofs. Using the preceding lemma, that instance can
be removed. The resulting I-proof has one fewer complex instances. In this fashion, all
complex instances can be removed.

Theorem 13. Let P be a set of definite clauses and let G be a goal formula. P `O G if

and only if P `M G if and only if P `I G.

Proof. We need only show one remaining implication, namely, if P `I G then P `O G. We
first prove by induction on the height of Ξ that if Ξ is a simple I-proof for P ′ −→ G and
[P ′] ⊆ [P], then there exists an O-proof for P −→ G. We may assume that no internal
sequents in Ξ are instances of initial sequents, since if there was such a sequent, the proof
could be simplified by removing the subproofs above it. If the height of Ξ is one, i.e., it is
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simply an initial sequent, then G is atomic and G ∈ [P ′]. Hence, G ∈ [P], and P −→ G

is an initial sequent for `O. This single sequent is the desired O-proof.
Now assume that the height of Ξ is greater than 1, and let Ξ1 and, if necessary Ξ2, be

the I-proofs which arise from deleting the last inference figure of Ξ. We need to consider
the following 7 cases — one for each inference figure in which Ξ can terminate.

Cases ∨-R, ∧-R, ∃-R: Let the last inference figure of Ξ be ∧-R. Here, G is G1 ∧G2; so
Ξ1 is a proof of P ′ −→ G1 and Ξ2 is a proof of P ′ −→ G2. By the inductive hypothesis,
let T1 and T2 be O-proofs for, respectively, P −→ G1 and P −→ G2. The necessary
O-proof for P −→ G1 ∧G2 results from appending the inference figure (4) to the trees
T1 and T2. The cases for ∨-R and ∃-R are similar. These cases use inference figures (3)
and (5), respectively, instead of (4).

Case ⊃-R: Let the last inference figure of Ξ be ⊃-R. Here, G is D ⊃ G1; so Ξ1 is a proof
of P ′, D −→ G1. By the inductive hypothesis, let T1 be an O-proof for P, D −→ G1.
We may apply the inductive hypothesis since [P ′] ⊆ [P] implies [P ′, D] ⊆ [P, D]. The
necessary O-proof for P −→ D ⊃ G1 results from appending the inference figure (6) to
T1.

Cases ∀-L and ∧-L: Let the last inference figure of Ξ be ∀-L. Hence, P ′ = {∀x D}∪P ′′,
for some set P ′′, and Ξ1 is a proof of P ′′, [x/t]D −→ G, for some term t. The inductive
hypothesis immediately supplies the necessary O-proof for P −→ G. We may apply the
inductive hypothesis since [P ′] ⊆ [P] implies [P ′′, [x/t]D] ⊆ [P]. The case for inference
figure ∧-L is similar.

Case ⊃-L: Let the last inference figure of Ξ be ⊃-L. Hence, P ′ = {G′ ⊃ A} ∪ P ′′ for
some P ′′. Ξ must then be of the form:

Ξ1

P ′′ −→ G′
Ξ2

A,P ′′ −→ G ⊃-L.
G′ ⊃ A,P ′′ −→ G

Since Ξ is simple, A,P ′ −→ G must be an initial sequent. This forces G = A, since
otherwise G ∈ P ′′ and the root sequent of Ξ would be an initial sequent, contradicting our
assumption about Ξ. By the inductive hypothesis, let T1 be an O-proof for P −→ G′. We
may apply the inductive hypothesis since [P ′] ⊆ [P] implies [P ′′] ⊆ [P]. Since G′ ⊃ A ∈ P ′,
G′ ⊃ A ∈ [P] and the necessary O-proof results from appending an instance of the inference
figure (2) to T1.

Finally, let P `I G. Then P −→ G has a simple I-proof. By the proof above and
since [P] ⊆ [P], P −→ G has an O-proof and P `O G.

Throughout this section, the differences between minimal logic and intuitionistic logic
proofs were not evident. This is because goal formulas and definite clauses contain no
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instances of negations or ⊥. In the next section, we introduce negation to our program-
ming logic. As we shall see, there are two natural interpretation of this negation; one
interpretation is equivalent to minimal logic and the other to intuitionistic logic.

7. Minimal Logic Negation
Let us now permit the logical constant ⊥ to occur in both goals and definite clauses as

if it were considered an atomic formula. More precisely, for this section, consider definite
clauses and goal formulas to be defined by the following mutually recursive definition:

D := ⊥ | A | G ⊃ A | G ⊃ ⊥ | ∀x D | D1 ∧ D2,

G := ⊥ | A | G1 ∧G2 | G1 ∨G2 | ∃xG | D ⊃ G.

Formulas of the form B ⊃ ⊥ will be abbreviated as ∼B. Thus, the negation of a goal
formula is a definite clause, and the negation of a definite clause is a goal formula. Op-
erationally, let us treat ⊥ just as if it was an atomic formula. Hence, with this simple or
“minimal” view of ⊥, we can easily add the following two proof rules to handle the case
where ⊥ is a goal.
(7) P `O ⊥ if ⊥ ∈ [P].
(8) P `O ⊥ if there is a formula (G ⊃ ⊥) ∈ [P] and P `O G.
We need to add to the O-proof system two inference figures corresponding to (7) and (8).
This extension, however, is really not an extension at all. A reasonable implementation of
rules (1) — (8) would, in fact, treat ⊥ as a non-logical predicate symbol and simply use
rules (1) — (6).

Proof rule (8) asserts that ⊥ follows from P if there is a formula G for which both
∼G ∈ [P] and G follows from P. For this reason, we shall say that P is inconsistent if
P `O ⊥. If P is not inconsistent, it is consistent.

The inconsistency of a set of definite clauses P does not necessarily mean that P O-
proves all (goal) formulas. For example, It is very easy to show that p ∧∼p `O ⊥ while it
is not the case that p∧∼p `O q. Hence, inconsistencies are essentially “local.” As the next
theorem shows, this view of negation is that of minimal logic and not that of intuitionistic
logic.

Theorem 14. P `O G if and only if P `M G. There are goals, for example (p∧∼p) ⊃ q,

which are intuitionistically provable but not provable in O.

Proof. Let Ξ be an O-proof for P −→ G. Let Ξ′,P ′, and G′ be the result of replacing
every instance of ⊥ in Ξ,P, and G by some 0-ary predicate symbol, say F , which does not
occur in Ξ. Clearly, Ξ′ is an O-proof of the sequent P ′ −→ G′. By Theorem 13, there is
an M-proof, T for this same sequent. Finally, if we replace all the occurrences of F with ⊥
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in T to get T ′, then T ′ is an M-proof for P −→ G. The proof of the converse is similar.

It is a simple matter to strengthen the proof system O so that ⊥ and negation are
equivalent to that of intuitionistic logic. This is done by adding a proof rule which encodes
the ⊥-R inference figure. That is, we need to add the rule which says that any goal formula
is provable if ⊥ is provable. Let O′ be the proof system which is the result of adding the
following proof rule to those of O.
(9) P `O′ G if P `O′ ⊥.
It is easy to see, in fact, that p,∼p `O′ q. In fact, we have the following theorem.

Theorem 15. P `O′ G if and only if P `I G.

Proof. The proofs for Lemmas 11 and 12 and for Theorem 13 can be extended to deal
with I-proofs which contain the inference figure ⊥-R. These extended lemmas and theorem
prove this theorem because proof rule (9) corresponds exactly to ⊥-R for I-proofs.

The choice of which interpretation of ⊥ and negation that is made would seem to
depend very much on what applications are written in this language. In an application
where it is very important to know whenever a program becomes inconsistent, the mini-
mal logic interpretation is probably the most appropriate. In such a case, it might seem
meaningless to be deriving all goal formulas from a program which is inconsistent. Such
an application would probably be more concerned with dealing with the inconsistency it-
self than with continuing to do inferencing with it. On the other hand, if there are some
reasoning processes which involve many instances of assuming hypotheses during a single
process, then the intuitionistic interpretation might be more natural. This is because the
construction of nested proofs often makes use of contradictions to help draw conclusions.
For example, the goal formula

((∼p ⊃ r) ⊃ q) ⊃ (p ⊃ q)

has an I-proof but no M-proof. The proof of this goal contains a subproof which proves a
contradiction. That contradiction does not, however, reflect on the environment in which
the query is initially asked.

For the rest of this paper, we shall assume that we are using the minimal logic inter-
pretation of ⊥.

One way to model negation in a logic programming system is through a meta-logical
principle called negation-by-failure. This principle states that a closed atom can be taken
as being false if there is no proof of it. While the negation-by-failure principle is much
stronger than either the minimal logic or intuitionistic logic interpretation of negation,
we can make a useful partial connection between them. If P is consistent and P `O ∼A

then there can be no proof of A from P. In a consistent program, therefore, P `O ∼A
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implies not(A) (negation-by-failure). This suggests the possibility of replacing certain
forms of negation-by-failure with the search for proofs of negations. Negation-by-failure
is not completely removed from this consideration because determining that a program
is consistent requires determining that there is no proof of ⊥. The following example
demonstrates these two negation principles.

Let us consider a very simple database program. Facts within our database will be
simple, closed atomic formulas. Definite clauses of the form G ⊃ ⊥ will be used to represent
constraints. For example, consider the following few clauses.

enrolled(jane,102).

enrolled(bill,100).

⊥ :- enrolled(X,101),enrolled(X,102).

This tiny database asserts that Jane and Bill are/have been enrolled in 102 and 100,
respectively. There is also a constraint that states that it is inconsistent for the same
person to be enrolled in both 101 and 102. Now consider the following simple database
program.

db :- read(Command), do(Command), db.

do(enter(Fact)) :- Fact => db.

do(retract) :- fail.

do(commit) :- repeat.

do(check(Query)) :-

(Query, write(yes),nl,!;

Query => ⊥,write(no),nl,!;
write(’no, but it could be true’),nl).

do(consis) :- (not ⊥, write(yes),!; write(no)), nl.

Here, db represents a looping database query and updating program. Providing the com-
mand enter(Fact) to db makes an update to the current database by calling db after it
has made Fact a hypothesis. It is possible to retract such updates by using the retract

command. This command simply fails. All updates will be undone backwards to the
point of the last commit command. The commit command will always re-succeed (given,
of course, a depth-first interpreter).

It is the check command which is most interesting here. It has a three-valued behavior.
Assume that the database is consistent. The command check(Query) will first look for a
proof of Query, and if one is found, prints “yes”. Otherwise, a proof for the negation of
Query, i.e., Query => ⊥ is searched for. (This goal means: “if Query were true, do we have
an inconsistency?”) If a proof is found, then “no” is printed. If neither the positive nor
negative form of Query can be proved, then the database does not contain Query although
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it is consistent for Query to be a fact in some extension of that database. If the current
database is inconsistent, the conclusions drawn by the check command could be wrong.
With respect to the above database, the three commands

check(enrolled(jane,102))

check(enrolled(jane,101))

check(enrolled(bill,101))

would print the answers “yes,” “no,” and “no, but it could be true,” respectively.

The consis command uses negation-by-failure to determine if the current database
is consistent. The use of not here is meta-logical and not accounted for by the theory we
have presented.

The model presented in Section 5 is rich enough to model this three valued behavior.
Let P be a consistent program and let A be a closed atom. Clearly we have either A ∈
T∞(I⊥)(P) or A /∈ T∞(I⊥)(P). The first case is true when check(A) prints “yes.”
The later case, however, can be broken into two additional cases. Clearly, there is some
program larger than P in which A is true (P ∪{A}, for example). Given our classification
of worlds into consistent and inconsistent, we can make further distinctions: Either the
only extensions of the world P which contain A are inconsistent, or this is not so. The
first case is true when check(A) prints “no,” and the later case is true when check(A)

prints “no, but it could be true.”

8. Removing Disjunctions From Programs

In this section, we show that disjunctions are not needed in writing programs. That
is, for every program there is a second program, generally much larger, which proves the
same atomic formulas and which contains no occurrences of disjunctions. This is true for
simple Horn clauses as well as definite clauses.

We define two functions, dnf which maps goal formulas to sets of goal formulas, and
dfnf which maps definite clauses to sets of definite clauses, by mutual recursion. The
expressions

∧B and
∨B denote, respectively, the conjunction and disjunction of the for-

mulas in B in some fixed but arbitrary order. The two acronyms, dnf and dfnf, stand for
the disjunctive normal form and the disjunction-free normal form, respectively. These are
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defined as follows:

dnf(A) = dfnf(A) = {A}
dnf(G1 ∨G2) = dnf(G1) ∪ dnf(G2)

dnf(G1 ∧G2) ={G′ ∧G′′ | G′ ∈ dnf(G1), G′′ ∈ dnf(G2)}
dnf(∃x G) ={∃x G′ | G′ ∈ dnf(G)}

dnf(D ⊃ G) ={(
∧

dfnf(D)) ⊃ G′ | G′ ∈ dnf(G)}
dfnf(G ⊃ A) ={G′ ⊃ A | G′ ∈ dnf(G)}

dfnf(D1 ∧D2) = dfnf(D1) ∪ dfnf(D2)

dfnf(∀x D) ={∀x D′ | D′ ∈ dfnf(D)}
If P is a set of definite clauses, then we shall also write dfnf(P) =

⋃{dfnf(D) | D ∈ P}.
It is easy to see that the formulas in the sets dnf(G) and dfnf(P) contain no occurrences
of disjunctions. The following Lemma has a straightforward proof which is omitted.

Lemma 16. Let P be a set of definite clauses. Then each of the following is true.

(1) A ∈ [P] if and only if A ∈ [dfnf(P)].
(2) G ⊃ A ∈ [P] if and only if G′ ⊃ A ∈ [dfnf(P)] for each G′ ∈ dnf(G).
(3) G′ ∈ dnf([x/t]G) if and only if there is a ∃x G′′ ∈ dnf(∃x G) such that G′ = [x/t]G′′.

The main result concerning dnf and dfnf is given by the following theorem.

Theorem 17. P −→ G has an O-proof if and only if for some G′ ∈ dnf(G), dfnf(P) −→ G′

has an O-proof.

Proof. Let Ξ be an O-proof for P −→ G. We proceed by induction on the height of Ξ.
Case: Ξ is an initial sequent. In that case, G is atomic and G ∈ [P]. By Lemma 16,

G ∈ [dfnf(P)] and dfnf(P) −→ G is also an initial sequent.
Case: Ξ ends in inference figure (2). Thus, G is atomic and there is a G′ ⊃ G ∈ [P]

such that P −→ G′ has a shorter O-proof. By the inductive hypothesis, there is a G′′ ∈
dnf(G′), such that dfnf(P) −→ G′′ has an O-proof. Again, by Lemma 16, G′′ ⊃ G ∈
[dfnf(P)], so dfnf(P) −→ G has an O-proof.

Case: Ξ ends in inference figure (3). Thus, G is a disjunction, G1∨G2, and for i = 1 or
i = 2, P −→ Gi has a shorter O-proof. Hence, for some G′ ∈ dnf(Gi), dfnf(P) −→ G′

has an O-proof. Since G′ ∈ dnf(G), we are finished.
Case: Ξ ends in inference figure (4). Thus, G is a conjunction, G1 ∧ G2, and for

i = 1 and i = 2, P −→ Gi has a shorter proof than Ξ. By the inductive hypothesis,
there are formulas G′1 ∈ dnf(G1) and G′2 ∈ dnf(G2) such that dfnf(P) −→ G′1 and
dfnf(P) −→ G′2 have O-proofs. Thus, dfnf(P) −→ G′1 ∧G′2 also has an O-proof. Since
G′1 ∧G′2 ∈ dnf(G), we are finished.

Case: Ξ ends in inference figure (5). Thus, G is an existentially quantified formula,
∃x G0, and for some term t, P −→ [x/t]G0 has a shorter O-proof. Hence, for some
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G′ ∈ dnf([x/t]G0), dfnf(P) −→ G′ has an O-proof. By Lemma 16, G′ is of the form
[x/t]G′′, where ∃x G′′ ∈ dnf(∃x G0). This completes this case.

Case: Ξ ends in inference figure (6). Thus, G is an implication, say D ⊃ G0. Since
P, D −→ G0 has a smaller O-proof, there is a G′ ∈ dnf(G0) such that dfnf(P, D) −→ G′

has an O-proof. Since dfnf(P, D) = dfnf(P)∪dfnf(D), the sequent dfnf(P),
∧

dfnf(D) −→ G′

has an O-proof. By applying an instance of inference figure (6) to this proof, we have an
O-proof for dfnf(P) −→ [

∧
dfnf(D)] ⊃ G′. Since [

∧
dfnf(D)] ⊃ G′ ∈ dnf(G), we have

completed this case.
The proof of the converse is similar and is omitted.

A simply corollary of this Theorem is that the two programs P and dfnf(P) prove the
same atomic formulas.

9. Related Work
Many of the results in this paper were first presented in [12]. The papers [13] and

[15] are direct extensions of the logic presented in this paper. In particular, they introduce
a class of formulas, call hereditary Harrop formulas, which properly contains both Horn
clauses and the logic of this paper. Hereditary Harrop formulas can be defined for both
first-order and higher-order logic.

Gabbay and Reyle in [7] have described a logical language very similar to the one pre-
sented here. Their motivation for selecting this logic was largely based on the observation
that this language captures more of its own metatheory. For example, the demo predicate
of [2] could be encoded directly using implication. That is, the goal, demo(D,G), which
should succeed if the goal G is provable from D, is equivalent to the goal D ⊃ G.

Warren in [22] investigated a simpler version of this logic as a basis of a “pure” im-
plementation of a database updating program, such as the one in Section 7. He essentially
used implications within goals only when the hypothesis of that implication is atomic. His
“modal” operator assume(A)@G notation could be approximated within our language as
A ⊃ G. Warren also provides a semantics for this operator using possible worlds semantics.

A stronger logical language, which includes full intuitionistic negation and goals which
are universally quantified, is investigated by McCarty in [11]. McCarty uses this logic not
in a programming language context but as the basis for building knowledge representation
and common sense reasoning programs. He also presents a fixed point construction and a
tableau proof procedure for his logic.

Several papers have dealt with designing modules for logic programming languages.
For example, Bowen and Weinberg in [3] have extend the work of Bowen and Kowalski
in [2] and presented several very interesting programs using a notion similar to modules.
Chomicki and Minsky in [4] have shown the importance of introducing modularity into
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Prolog programs and developed a rule-based security system for controlling access among
various fragments of code. Neither of these papers, however, provided a logical analysis of
their respective notions of modules. The theoretical results in this paper should provide a
basis for such an analysis.

O’Keefe in [17] presents a formal approach to developing modules for Prolog. Much
of what he presents in that paper can be captured by the theory presented in this paper.
See, for example, our earlier discussion in Section 4 regarding breeze bricks. Nait Abdallah
in [16] presents a logical approach to introducing module-like procedures. His approach
is to base logic programming within a fragment of second-order logic and to use second-
order quantifiers as an abstraction mechanism for procedures (predicates). This approach
is quite different from our development here and to our other work on higher-order logic
programming [14].

Goguen and Meseguer in [10] presented a notion of module for a sorted theory of Horn
clauses with equality. Their modules have associated with them Horn clauses, and they
provided a mechanism of module importing called enriching. Their notion of importing
is one of accumulation; that is, if module M1 imports M2, the clauses associated with
M2 are also associated with M1. Hence, modules are not imported for simply private
use. Instead, modules form a use hierarchy which shows which modules are parts of other
modules. With the accumulation approach, searching for a clause whose head matches
a given atomic goal requires searching through all modules which are reachable in the
use hierarchy from the current module no matter how remote such modules are. Using
the more restrictive approach of this paper, only those explicitly imported modules are
searched. Such a search can, of course, be more constrained.

Several researchers have investigated extensions of positive Horn theories in an entirely
classical logic setting. The resulting operational and model-theoretic semantics are quite
different from those investigated here. For example, the HORNLOG system of Gallier and
Raatz [8] permits programs to be general Horn clauses; that is, programs can contain any
number of negative clauses. As such, the database constraints described in Section 7 can
be written directly as negative Horn clauses. Queries asked of such a system, however,
may have “disjunctive” answer substitutions. For example, if HORNLOG were given the
query

∼(p(a) ∧ p(b)) ⊃ ∃x ∼p(x),

it would succeed and provide the disjunctive answer substitution claiming that x would
get either a or b. The corresponding query in the logic presented here would be written as

(p(a) ∧ p(b) ⊃ ⊥) ⊃ ∃x (p(x) ⊃ ⊥)

and would not be provable because there is no “simple” answer substitution. Fitting
in [6] used classical logic to investigate an extension of Horn clauses which contained
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negations within the body of clauses. His model theory for such clauses used partial
models (also attributed to Kripke). The operator used in building partial models as fixed
points, however, is not continuous. Weakening logic from classical to intuitionistic is one
way to preserve both simple answer substitutions and continuous fixed point operators in
extensions to Horn clause logic.
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