
H I G H E R - O R D E R L O G I C P R O G R A M M I N G

Dale A. Miller and Gopalan Nadathur
Computer and Information Science

University of Pennsylvania
Philadelphia PA 19104--6389 USA

Abstrac t : In this paper we consider the problem of extending Prolog to include predicate and
function variables and typed ,~-terms. For this purpose, we use a higher-order logic to describe a
generalization to first-order Horn clauses. We show that this extension possesses certain desirable
computational properties. Specifically, we show that the familiar operational and least fixpoint
semantics can be given to these clauses. A language, ~Prolog that is based on this generalization
is then presented, and several examples of its use are provided. We also discuss an interpreter
for this language in which new sources of branching and backtracking must he accommodated.
An experimental interpreter has been constructed for the language, and all the examples in this
paper have been tested using it.

Sec t i on 1: I n t r o d u c t i o n

The introduction of higher-order objects has been a major consideration in the realm of
functional programming, and indeed these have proved to be very valuable in languages such as
Lisp, Scheme, and ML. It is of interest therefore to consider the possibility of introducing such
objects into a logic programming language. We examine this issue in this paper.

It is our belief that any at tempt at providing a logic programming language like Prolog with
the ability to deal with higher-order objects must be based on an extension to the underlying logic.
Consider for example the facility Lisp provides for constructing lambda expressions which can be
passed as parameters and can, later, be used as programs. In the setting of logic programming this
corresponds to permitt ing predicate variables which may be instantiated by lambda expressions
and allowing goals to be expressions that need to be lambda normalized before they are invoked.
Given its logical basis, this feature is not directly available in Prolog. However, an argument

may be made (eg. [D. H. Warren, 1982]) that no extension to Prolog or to the underlying logic
is necessary by demonstrating how certain uses of this feature can be encoded in the first-order
language. In our opinion, such an argument is inappropriate. First of all, it is desirable to provide
for higher-order features such as the ones above in a natural and theoretically well understood
fashion and from this perspective the ability to encode certain uses of predicate variables in the
existing language is clearry not sufficient. Furthermore, the nature of objects in the paradigm of
logic programming is somewhat different from that in the paradigm of functional programming.
The question of what it means to have genuine higher-order objects in a logic programming
language, therefore, is itself open to examination, and it seems that a s tudy of this question
should rely on an underlying logic.

In this paper we present a logic programming language that permits functions and predicates
as objects. This language is based on a logic that uses the mechanism of the typed h-calculus for

This work has been supported by NSF grants MCS8219196-CER, MCS-82-07294, AI Center
grants NSF-MCS-83-05221, US Army Research office grant ARO-DAA29-84-9-0027, and DARPA
N000-14-85-K-0018.

449

constructing predicate and function terms and permits a quantification over such constructions.
Using this logic we find that we are able to describe a higher-order generalization of the first-order
Horn clauses which shares many computational properties with its first-order counterpart. These

clauses can be used to define a programming language that allows function and predicate variables

and whose term structure is now that of A-terms. One consequence of this is the provision of
Lisp-like features. However, extending the notion of terms also gives the language a much richer
set of data structures, and the operations of A-conversion and unification on these provides a

computational paradigm not found earlier in either logic or functional programming paradigms.

It must be pointed out that the features that are provided are higher-order in a strictly logical
sense. They do not include features popularized by, for example, the se to f and bagof constructs
[D. H. Warren, 1982]; these extensions are perhaps better classified as meta or control level
extensions since they involve endowing a logic programming language with an understanding of

its own ability to prove. We do not focus on these meta level aspects in this paper, but we note
that they may be added to our language in a manner analogous to their addition to Prolog.

The structure of this paper is as follows. In Section 2 we describe the higher-order logic that
we use as the basis of our language. Following this, in Section 3, we present our generalization
to Horn clauses and discuss their formal properties. We have designed a programming language
which includes not only these higher-order characteristics but also features like parametric poly-
morphic types and modules, that have already been found useful in other contexts (eg. ML and
[Mycroft and O'Keefe, 1985]). This language, called AProlog, is described in Section 4, where

several examples of its use are also presented. Finally, Section 5 discusses theorem-proving in the
context of our clauses, and then uses this to describe an interpreter for AProlog. An experimental
interpreter has been built along these lines, and all the examples in Section 4 and [Miller and
Nadathur, 1985] have been tested on it.

Sec t ion 2: A H i g h e r - O r d e r Logic

The term "higher-order logic," as it is often understood, pertains to a logic whose language
admits function and predicate variables, and in which such variables are interpreted as ranging
over arbitrary functions and relations on any given domain. By virtue of GSdel's incompleteness
theorems, it is known that a logic of this kind is not recursively axiomatizable and that its
set of valid sentences is not effectively enumerable. Such a logic is not very interesting from our

viewpoint, since our purpose is to use theorem-proving as the method of computation. Fortunately
there is a higher-order logic that involves a weaker notion of quantification that can be recursively

axiomatized. The Simple Theory of Types, presented by Church in [Church, 1940], is a typed
A-calculus formulation of this logic. The higher-order logic, called T, that we use as the basis
of our programming language is derived from the Simple Theory of Types. In this section we
present a brief exposition of T. A detailed account of the logic and its proof-theoretic properties
are beyond the scope of this paper, and the interested reader is referred to IChurch, 1940] and
[Miller, 1983].

The language of T is a typed language in the sense that each well formed formula of the
system has associated with it a type symbol. We assume that we are given a set $ of sorts
or primitive types, a set 3) of type variables, and a set C of type constructors where each type
constructor has a unique positive arity. The types of T are then defined inductively by the
following rules:

450

(1) Each sor t and each type var iable is a type.

(2) If c is an n-a ry type cons t ruc to r and t l , . . . , t n are types, t hen (c Q . . . t,~) is a type.

(3) If t l and t2 are types, t hen t l ~ t2 is a type.

The set S mus t conta in the sorts o and i; o is in tended to be the type of proposi t ions and i is

the type of individuals . These are the only sorts t h a t are necessary in the logic, bu t we shall

assume here t h a t S also conta ins the sor t i n t for integer. %) mus t be a denumerab le set and we

assume t h a t a and fl are included amongs t its members . We also assume t h a t C contains the

type cons t ruc to r l is t of ar i ty 1. A type in which type var iables occur is in t ended to correspond

to the set of all its type ins tances t h a t do not conta in any type variables; a type t ' is said to be

a type instance of ano the r type t j u s t in case it is ob ta ined f rom t by replacing s imultaneously

some of the var iables in t wi th types. The type t i --~ t2 is also called a f unc t ion type. We adopt

the convent ion t h a t --~ is r ight associative, i.e. we read t l ~ t2 --~ t3 as t l ~ (t2 --* t3). A type

t l --+ t2 in which no type variables occur is in tended to be the type of func t ions whose domain is

of type t l and whose codomain is of type t2.

We now t u r n to the well formed formulas of T . Here we assume t h a t we are given a set of

cons tan t s and a denumerab le set of variables, and t h a t each e lement of these sets is specified wi th

a pa r t i cu la r type. The set of cons tan t s contains at least the following symbols t h a t are referred

to as the logical constants of T :

C o n s t a n t Type

A o ~ o ~ o

V 0 ~ 0 ~ 0

0 ~ 0 ~ 0

O ~ O

t rue o

n (~ ~ o) ~ o

(~ ~ o) ~ o

The remain ing cons tan t s are called the nonlogical constants. The following is a famil iar set

of such cons tan t s t h a t we shall find occasion to use in th is paper :

C o n s t a n t Type

cons a - - , (l ist a) --+ (list a)

nil (l ist a)

+ in t --+ in t --+ in t

- in t --+ in t --+ in t

* in t --+ in t --+ in t

The formulas of T , wi th the i r respect ive types, are defined induct ively by the following rules:

(1) A var iable of type t is a formula of type t.

(2) A cons tan t whose specified type is t is a formula of type t ' , for any t ' which is a type

ins tance of t. Thus cons is a formula of type in t --~ (l ist int) -+ (l is t int) as well as of

type (l ist 1~) --* (l ist (l is t ~)) ~ (l ist (l i s t /3)) .

(3) If f l is a formula of type t l --+ t2 and]'2 is a formula of type t l , t h e n the application

of f l to]'2, wr i t t en (f l f2) is a formula of type tz. We assume t h a t appl icat ion is left

451

associative, i.e. we read (f l]'2 f3) as ((f l f2)]'3)- Functions of many arguments are

represented here in a curried form.

(4) If x is a variable of type t l and f is a formula of type t2 then the abstraction of f by

x, wri t ten (Ax]'), is a formula of type t t --* t2; the abstract ion is said to bind x and its

scope is said to be f .

A formula in which no variables occur free is said to be a closed formula; an occurrence of

a variable, x, in a formula is a free occurrence if it is not in the scope of an abstract ion that

binds x. A type symbol is considered to occur in a formula if it occurs in the type of some

variable or constant of the formula. If a formula is the result of subst i tut ing types for some

of the type variables in another formula, then the former is said to be a type instance of the

latter. A formula in which type variables occur is to be interpreted as a scheme - it represents

the set of all its type instances in which no type variables occur. Type variables thus provide

a form of quantification over types. However, no explicit quantif ication is provided for, and the

implicit universal quantification of a type variable tha t occurs in a formula is obviously over

the whole formula. A stronger type system and a bet ter formalizat ion of the formulas that we

have presented here is perhaps obtained through the use of explicit type quantification as in the

second-order lambda calculus ([Reynolds, 1985], [Fortune, Leivant and O'Donnell , 1983]), but we

do not pursue this aspect in this paper. The use tha t we make of type variables does not add

anything to the logic, but it does provide a valuable form of polymorphism in the programming

language that we shall define. In that context type constructors conspire wi th type variables to

provide a form of parametric polymorphism. For instance, cor~s may be used to construct many

different kinds of lists, the elements of each such list being homogenous.

A-conversion plays an impor tant role in T . Let x be a variable and let t and A be terms. If

there is no abstract ion in A in whose scope x appears free and which also binds a free variable

of t then we say tha t t is free/or x in A. We write Air~x] to represent the result of replacing all

free occurrences of x in A by t; obviously this is a meaningful operat ion only if t and x have the

same type and t is free for x in A. The following three operat ions now comprise A-conversion.

a-conversion: Replacing (Ax A) with (Ay A[y/x]) provide y is free for x in A.

fl-conversion: Replacing (Ax A)t with Air~x] and vice versa provided t is free for x in A.

y-conversion: Replacing A with Az(Az) and vice versa if A has type a --~ ~ and z has type a,

provided z is not free in A.

A formula A is said to be convertible to another formula B if B can be obtained from A by

a sequence of A-conversions. Two formulas are considered equal if they are each convertible to

the other; further distinctions can be made between formulas in this sense by omit t ing the rule

for rl-conversion, but we feel that these are not impor tant in our context. We shall say here that

a formula is a A-normal formula if it has the form

Axl ...Ax,~ (h t l . . . tin) where n , m > 0,

where h is a constant or variable, (h t~ . . . trn) does not have a function type, and, for 1 < i < m,

ti also has the same form. We call the list of variables x l , . • •, x,~ the binder, h the head and the

formulas t l , . . . , t in the arguments of such a formula. It is known tha t every formula, A, can be

converted to a A-normal formula that is unique upto a-conversions. We call such a formula a

A-normal form of A and we use Anorrn(A) to denote any of these alphabetic variants.

452

The type o plays a special role in T . A formula wi th a function type of the form t l --~

. . . --* t,, --* o is also classified as a predicate of n arguments whose i th argument must be of

type ti. Predicates are use to denote sets and relations. For example, predicates of type int --+ o

represent sets of integers, predicates of type (int ~ o) --~ o represent sets of sets of integers, and

predicates of the type a --* (list ~) --* o represent binary relations between objects of any type a

in which no type variables occur and the corresponding type (list a). Formulas of type o are called

propositions; notice that these formulas must have an empty binder. The logical constants A, V,

and D correspond to the familiar propositional connectives, and we shall adopt the customary infix

nota t ion for these. The symbols II and E are used in conjunct ion with the abstraction operation

to represent universal and existential quantification over propositions: Vx f is an abbreviation for

II()~x f) and 3x f is an abbreviat ion for ~ (~x f) . Derivabili ty in T , denoted by F~-, is a notion

tha t pertains to propositions and is an extension of the not ion for first-order logic. The axioms

of T are the subst i tut ion instances of the propositional tautologies, the formula Vx B x D Bt, and

the formula Vx (Px A Q) D Vx P x A Q. The rules of inference of the system are Modus Ponens,
Universal Generalization, Substitution, and)~-conversion. h-conversion is essentially the only rule

in T that is not in first-order logic, but combined with the richer syntax of formulas in T it makes

more complex inferences possible. T , unlike the Simple Theory of Types, is a logic that is not

extensional; i.e. given two 1-ary predicates P and Q it may be possible to prove Vx (Px =- Qx)

in T wi thout being able to prove that P and Q are equal.

We are interested in T because it possesses several properties that make it a suitable basis

for the kind of programming language tha t we desire. It provides a mechanism for constructing

function and predicate terms and for permit t ing variables to range over such constructions, and

this was our main reason for looking for a higher-order logic. Fur ther the proof-theory for T

bears a close resemblance to tha t of first-order logic; for instance there is a generalization to

Herbrand 's Theorem [Miller, 1983] that holds for T . This proper ty shall be of importance when

we consider the task of designing an interpreter for our language. Finally there is a sublogic

of T tha t generalizes the definite clauses of first-order logic while preserving several of their

computat ional properties. It is this sublogic that we examine in the next section, and that we

use later to define our programming language.

S e c t i o n 3: H i g h e r - O r d e r D e f i n i t e C l a u s e s a n d t h e i r P r o p e r t i e s

We shall henceforth assume that we have a fixed set K of nonlogical constants. The positive
Herbrand Universe is identified in this context to be the set of all the A-normal formulas that

can be constructed using the nonlogical constants in K and no logical constants other than true,
A, V and]E. We use the symbol ~/+ to denote this set. Proposit ions in this set are of special

interest to us. We shall use, perhaps with subscripts, the symbol G to denote an arbitrary such

proposit ion throughout this paper. Notice that the head of such a formula is either a predicate

constant or variable or one of the constants true, A, V, and ~. Of these formulas we single out

those tha t have nonlogical constants as their heads. We shall call such formulas atoms, and we

use the symbol A uniformly to denote an atom.

A (higher-order) definite clause is defined to be the universal closure of a formula of the form

G D A, i.e. the formula V~ (G D A) where ~ is an arbitrary lis~ing of all the free variables in G and

A. These clauses are our generalization of the Horn clauses af first-order logic. There are certain

relationships between these that should be pointed out. Firs t-order Horn clauses are contained

453

in our definite clauses under an implicit encoding. This encoding essentially assigns types to

the first-order terms and predicates: variables and constants (i.e. 0-ary function symbols) are

assigned the type i, function symbols of arity n > 0 are assigned the type i --* . . . --* i --~ i, with

n + 1 occurrences of i, and n-ary predicate symbols are assigned the type i --, . . . --* i --, o, with

n occurrences of i. Looked at differently, our definite clauses contain wi th in t h e m a polymorphic

many-sor ted version of first-order Horn clauses. The formula on the left of the D in a higher-order

definite clause may contain nested disjunctions and existential connectives. This generalization

may be dispensed with in the first-order case because of the existence of appropriate normal

forms. For the higher-order case, it is more natura l to retain the embedded disjunctions and

existential quantifications since substi tut ions have the potent ia l for reintroducing them. Finally

A-terms may occur in the higher-order clauses and the quantifications in these clauses may involve

function and predicate variables. This is a genuine extension provided by our clauses, and is the

very reason why we study them.

Parallel to the first-order case, we wish to accord a computa t ional in terpreta t ion to our

definite clauses. Let P be a set of definite clauses, and let G have no type variables in it. We want

to think of P as a program and of G as query or a goal. The computa t ion involved is then to be

that of answering the query. The sense in which the query is to be answered may be made precise

as follows. Let us define a subst i tut ion to be a finite sequence of pairs, ~ = ((x l , Q) , . . . , (xn, tn)),

where the x~'s are distinct variables, and, for each i, t~ is a formula of the same type as x~; ~ is said

to be a subst i tut ion for x l , . . . , x,~ and its range is the set { t l , . . . , t~}. The application of ~ to a

formula B , wr i t ten as ~ B , is defined to be ,~norm([,~x~ . . . ,~xn B] t ~ . . . tn). Let fl be an arbi t rary

listing of all the variables free in G. Now, we want the query G to be answered affirmatively if

P ~-r 3~ G and we also want an affirmative answer to be accompanied by a subst i tut ion for

such that P F-T ~oG.

The lat ter may not always be possible if P is any arbi t rary set of formulas. However, the

following theorem assures us that it is indeed possible for a collection of definite clauses. Here

and in the rest of the paper we reserve the terms pos/t/ve subst i tut ion for one whose range is a

subset of ~ + , and closed substi tut ion for one whose range consists of closed formulas. We also

use the symbol P uniformly to denote a (possibly empty) set of definite clauses, and we write [P]

to denote the set of formulas of the form ~o(G D A) where V~ (G D A) is a type instance of a

formula of P which contains no free type variables, and ~o is a positive, closed subst i tut ion for ~.

T h e o r e m 1: Let G E ~+ be a closed proposit ion tha t has no type variables in it. Then the
following are true:

(1) If G is G1 A G2 then P I-1" G if and only if P FT G1 and P FT G2.

(2) If G is G1 V G2 then P F r G if and only if P F ' r G1 or P FT G2.

(3) If G is ~ B then P FT G if and only if there is a closed formula t E ~'+ such that

P ~-r ~norrn(Bt) .

(4) If G is an a tom then P F- r G if and only if there is a formula G~ D G E [P] such that

P FT G1.

The proof of this and the other theorems in this paper may be obtained from the results in

[Miller and Nadathur , 1986]. As a consequence of this theorem we may a t t r ibu te a procedural

in terpreta t ion to a clause. Consider the definite clause V~(G D A). G may ei ther be true or

a compound formula containing conjunctions, disjunctions, and existential quantifiers. If G is

true, then the clause is logically equivalent to V~A, and is to be interpreted as a fact. Otherwise

454

we interpret it as a procedure declaration, where the non-logical head of A is the name of the

procedure being defined, and G is the procedure body which is to be used to compute it. Note

tha t by vir tue of this theorem we need only consider posit ive subst i tut ions in order to establish a

goal f rom a set of definite clauses. This fact, in conjunction with the observation that a positive

subst i tut ion when applied to an element in h '+ produces another element in ~/+, enables us to

define, even in the presence of predicate variables, a theorem-prover for this sublogic that is based

on this procedural interpretat ion of clauses. We shall consider such a theorem-prover shortly.

It is possible to explicate the meaning of a set of definite clauses in a more direct manner

by associating with it a set of atoms. The idea is similar to that used in the first-order case (see

[Apt and van Emden, 1982] and [van Emden and Kowalski, 1976]) and may be made precise in

the following manner . Let us define an interpretation to be any set of closed atoms in which no

type variables occur. Relative to an interpretat ion I we may define a derivation sequence to be a

finite sequence Go, G I , . . •, G~ of closed propositions in ~/+ in which no type variables occur and

for each i _< n,

(1) a~ is true, or

(2) Gi is an a tom and Gi A-converts to some member of I , or

(3) a l is G~ V a~ and there is a j < i such that G i is C~ or a i is C~, or

(4) Gi is G~ A G~ and there are j , k < i such that G j is G~ and Gk is G~, or

(5) G~ is EG and there is a closed formula t E ~'+ and a j < i such that G~. is Anorm(Gt).
If G is the last element of such a sequence, we say that I satisfies G and we denote this relation
by _/" ~ : a .

Given a set of definite clauses P, we associate with it a mapping T;0 from interpretations

to interpretat ions which is such that A E Tp(I) if and only if there is a formula G D A E [P]

such tha t I ~ : G. It is not difficult to see that Tp is monotone and continuous on the set of all

interpretat ions. Tp therefore has a least fixed point which is given by T~ ° (0) : U,~°°__ 0 T~(0). It is

this subset of ~+ tha t we think of as being determined by P, and we call it the denotation of v .

The computa t ion tha t is involved in answering a query G may be viewed as that of determining

whether there is a closed subst i tut ion instance of G that is satisfied in the denotat ion of P. The

consistency of this view with the earlier operational view is the content of the following theorem:

T h e o r e m 2: Let G be a closed formula with no type variables. Then T~° (0) ~ : G if and only if

P F T G .

S e c t i o n 4: T h e A P r o l o g l a n g u a g e

Our programming language, AProlog, is based on higher-order definite clauses. Since their

underlying logics are similar, we find it convenient to adopt several features of the syntax of

Prolog in AProlog. Symbols tha t begin with capital letters, both in clause definitions and in type

definitions, are t reated as variables. All other symbols represent constants. The symbols ,, ;, and

• - are used for A, V and D respectively, and clauses are wri t ten backwards. Variables occuring

in clauses are assumed to be implicitly universally quantified.

There are, however, a few differences. We need to represent A-terms and the symbol \ is

reserved for this purpose: AX A is wri t ten in AProlog as X \ A. The constant s igma is reserved for

E. A curried nota t ion is adopted since it is especially convenient in our context, and application is

represented by juxtaposi t ion. Types must be associated with every (term) constant and variable

and this is achieved via a type declaration that has the format t y p e t o k e n l o g i c a l type .

455

We have found it useful to organise declarations into modules and have introduced this notion

as a structuring concept in AProlog. Modules are, in our context, named environments within
which operator and type declarations may be associated with tokens, and defining clauses may
be presented for predicate constants. The following is an illustration of this structure:

module tiny.

op 258 xfx :-.

op 40 xfx =.

type :- o -> o -> o.

type = A -> A -> o.

onep X :- X = I.

identity_fun F :- (X\ X) = F.

Operator declarations override the default prefix application precedence, and are similar to those
in Prolog: op 225 xfx : - corresponds to op(225,xfx,:-) in Decl0 Prolog syntax. Type and
operator declarations are considered attributes of a module and are not side effects. In general,
very little type information needs to be given, since most of it can be inferred from the context.

The rules for inferring types are essentially those used in ML [Milner, 1978]. In performing such
an inference, we assume that all occurrences of a bound variable within the scope of its abstraction
and all occurrences of a constant in a module have the same type. As an instance of such a type
determination, the types of the constants onep and i d e n t i t y _ f u n can be inferred to be i n t -> o
and (A -> A) -> o, respectively. Our module parser is able to perform such a type determination,
and in this case it assumes that these are also part of the type declarations in the module. The
module t i n y also associates defining clauses with the predicates onep and i d e n t i t y _ f u n . This
module, thus, defines eight associations: two operator specifications, four type declarations (two

explicit, two inferred), and two predicates with their definite clauses.

A module may also import several other modules. The effect of this operation is to make
available the operator and type declarations and the definite clauses of the imported modules in

the module being defined. The precise logical characterization of this operation with regard to

the clauses depends on an assimilation of implication into the body of definite clauses, and an
attempt in this direction may be found in [Miller, 1986].

We assume, in the rest of this section, that the module b a s i c s contains all type and operator

declarations for many standard Prolog logical constructions. The following module, which imports
basics, then provides an illustration in AProlog of some standard list manipulation programs.

module &ists.

import basics.

type cons A -> (list A) -> (list A).

type nil (list A).

append nil K K.

append (cons X L) K (cons X M) :- append L K M.

memb X (cons X L).

memb X (cons Y L) :- memb X L.

member X (cons X L) :- !.

member X (cons Y L) :- member X L.

456

Here, cut (!) is intended to have the same operational meaning as it does in Prolog, i.e. it removes
all backtracking points. The following type information is inferred and is also assumed to be a
part of this module's definition.

type append (llst A) -> (llst A) -> (list A) -> o.

type memb (llst A) -> (llst A) -> o.

type member (list A) -> (list A) -> o.

One ofthe novelties of AProlog is the provision of predicate variables. The followingmodule

offers an illustration ofthis facet:

module age.

import basics lists.

type age i -> int -> o.

type have_property (A -> o) -> (list A) -> (list A) -> o.

have_property P (cons X L) (cons X K) :- P X. have_property P L K.

have_property P (cons X L) K :- have_property P L K.

have_property P nll nil.

mappred P (cone X L) (cons Y K) :- P X Y. mappred P L K.

mappred P nil nil.

have_age L K :- have_property (Z\(eigma X\(age Z X))) L K.

same_age L K :- have_property (Z\(age Z A)) L K.

age sue 24.

age bob 23.

This module defines the predicate have_proper ty whose first argument must be a predicate and
is such that (have_property P L K) is true if K is some sublist of L and all the members in K
satisfy the property expressed by the predicate P. Using have proper ty the predicate h a v e a g e

is defined such that (have_age L K) is true if K is a sublist of the objects in L which have an age.

Notice that there is an explicit quantifier imbedded in the predicate used to define have_age.
The predicate (Z\(eigma X\(age Z X))), which may be written in logic as Az3x age(z,x), is
true of an individual if that individual has an age. The predicate same_age whose definition is

obtained by dropping that quantifier defines a slightly different property; (same age L K) is true

only when the objects in K have, in addition, the same age.

In the cases considered above, predicate variables that appeared as the heads of goals were
fully instantiated before the goal was invoked. This kind of use of predicate variables is similar
to the use of apply and lambda terms in Lisp; the A-contraction followed by the goal invocation

essentially simulates the apply operation. However, the variable head of a goal need not always
be fully instantiated, and in such cases there is a question concerning what substitution should
be returned. Consider for example the query (P bob 23). One value that may be returned for P
is X\Y\ (age X Y). But there are many more substitutions which also satisfy this goal; XkY\ (X =

bob, Y = 23), X\Y\(Y = 23), X\Y\(age sue 24), etc. are all terms that could also be picked.

Clearly there are too many such substitutions to pick from and then backtrack over. Our

decision is to use only the substitution that corresponds to the largest "extension" in such cases;

in the above case, for example, the term X\Y\true would be picked. It is possible to make such

a choice without adding to the incompleteness of an interpreter, and we comment on this issue

in Section 5. For the moment we note that this decision does not trivialize the use of predicate

457

variables. Assume for instance that a predicate concept of type (i -> o) -> o has been defined.
Then the query concept P, P t would still be a meaningful one. This query would entail looking
for a predicate term which is a concept, and then asking if t is in its extension.

As we noted, the addition of predicate variables is a little like adding Lisp's notions of
apply and lambda expressions to Prolog. The additions of function variables and higher-order
unification, however, are in an entirely new direction. Consider adding the following definite
clauses at the the end of the module l i s t s .

• mapfun F (cons X L) (cons (F X) K) :- mapfun F L K.

mapfun F nil nil.

The type for mapfun would be inferred to be (A -> B) -> (list A) -> (list B) -> o. Given

the goal (mapfun (X\(g X X)) (cons a (cons b nil)) L), our interpreter would return the

list (cons (g a a) (cons (g b b) nil)) as the answer substitution for L. In other words, if the

first two arguments are instantiated then the list that results from applying the first argument

to each element of the second would be returned as the value of the third argument. Notice that

mapping a function over a list is quite different from mapping a predicate over a list as in the

mappred procedure defined earlier. In the latter case the idea of applying a predicate, say P, to an

argument, say X, entails creating a new goal - the),-normal form of (P X Y) for some variable Y.

The value placed in the list is an instance of Y that enables this goal to be derived. In mapping a
function over a list, no new goals are constructed. The function is simply applied to the argument

and the resulting ,~-normal form is the value entered into the list. Since mapping a function is
weaker than mapping a predicate, the problem of discovering functions which successfully map a
list into another list is better defined and does not always permit trivial solutions. For example,
consider the goal,

(mapfun F (cons a (cons b n i l)} (cons (g a a) (cons (g a b) n i l))) .

Here there is exactly one substitution for F which satisfies this goal, namely F gets X\ (g a X).

Notice that backtracking may occur on unifying substitutions as well. In searching for an answer
substitution a depth-first interpreter would first consider unifying (F a) with (g a a). There
are four possible substitutions for F that are unifiers:

x\(g x x) x\(g a x) x\(g x a) x\(g a a).

If any of these other than the second is picked, the interpreter would fail in matching (F b) with

(g a b), and would therefore have to backtrack.
)`-terms obviously provide much richer data structures than those afforded by simple first-

order terms, and there are situations in which this richness in)`Prolog can be exploited. Examples
of its use in the realms of knowledge representation and natural language semantics may he found
in [Miller and Nadathur, 1985] and [D. S. Warren, 1983]. Another realm in which it is useful is

that of program transformations. [Huet and Lang, 1978] indicates how program transformation
algorithms may be written rather directly by encoding program structures using)`-terms, and

then using higher-order unification. The following module presents a program that may be used

to do the unfolding transformation.

458

type if (env -> bool) -> A -> A -> A.

type while (env -> boo1) -> (env -> env) -> (env -> env).

type unfold (A -> (env -> env)) -> (A -> (env -> env)) -> o.

unfold (X\(while (Cond X) (Pros X)))

(X\(if (Cond X)

(E\(while (Cond X) (Pros X) (Pros X E)))

(F\F))).

The predicate u n f o l d can be used to expand a whi le - loop into an i f construction. Consider the

goal,

unfold (W\(while (lesethan W 10) (advance W i))) Q.

The unique solution to this goal returns the following subst i tut ion for Q that is computed entirely

within the unification process.

W\(if (lessthan W 10) E\(while (lessthan W i0) (advance W 1) (advance W I E)) F\F)

The clause defining unfold is used with the variables Cond and Prog bound to W\(lessthan W

10) and U\(advance U I) respectively in this computation.

The provision of polymorphic types and function types adds an interesting complexity to the

language. Consider the following module.

module interpreter.

import basics lists.

interp H true.

interp H (GI, G2) :- interp H GI, interp H G2.

interp H (GI; G2) :- interp H GI; interp H G2.

interp H (sigma G) :- interp H (G X).

interp H A :- memb Clause H, instan Clause (A :- G), interp H G.

instan (pi B) C :- instan (B X) C.

instan C C.

Here, i n t e r p is a two place predicate. If Ce is a list of closed definite clauses and G is a goal then

(i n t e r p Ca G) succeeds if and only if there is a proof of an instance of G from the clauses in Cs.

This program consti tutes an interpreter for that subset of AProlog in which type variables are

not permi t ted in definite clauses. In the first clause of i n s t a n , the variable B has type A -> o

for some type variable A. When this clause is invoked, this type variable must be instantiated. A

value for that type variable may only be obtained by examining the te rm with which it is getting

unified. In other words, this is a case where a function type needs to be determined dynamically.

When i n s t a n is called from i n t e r p there is a fully instant iated te rm in its second argument, so

this does not consti tute a problem. It may, however, be the case tha t when a type variable needs

to be determined at runt ime the te rm that needs to be examined is not instant iated in such a way

as to provide an actual type. This would happen, for example, if i n s t a n is invoked with only its

second argument instantiated. Such a si tuation may cause a problem for the interpreter, and we

discuss it further in the next section.

S e c t i o n 5: A n A b s t r a c t I n t e r p r e t e r f o r D e f i n i t e C l a u s e s

We now desire a mechanism for finding proofs in T for a goal of the form 3~G from a set

of definite clauses P. In its abstract description we expect such a mechanism to be complete,

459

i.e. it should re turn a positive answer whenever a derivation does exist. Fur thermore, whenever

it provides a positive answer, it should also provide a subst i tut ion ~ for • such that P F-~- ~G.

The structure of such a mechanism is easily obtained from Theorem 1 in Section 3. However we

desire to describe it at a sufficient level of detail so tha t it may form the basis of an interpreter

for),Prolog. In order to do so we need to consider briefly the problem of unifying typed),-terms.

Let us call a pair of terms of the same type a disagreement pair. A disagreement set is a

finite set {(t l , s l) , . . . , (t,~, a,~)} of disagreement pairs, and a unifier for this disagreement set is a

subst i tut ion 9 such that , for each i < n, 8t~ is),-convertible to 8si. The higher-order unification
problem is the problem of determining whether a disagreement set can be unified and, when it

can be, of providing a unifier for it. We note that in the general case the question of existence

of unifiers is only undecidable [Goldfarb, 1981]. Also, when unifiers do exist, there may not be a

most general unifier. Nevertheless, a systematic search can be made for unifiers which succeeds

in discovering them whenever they exist. We outline, with a small modification, the procedure in

[Huet, 1975] which conducts such a search.

Certain disagreement sets, called solved sets here, have trivial unifiers (al though computing

all their unifiers can be quite hard). Certain other disagreement sets, ca l l ed /a i l ed sets here, are

easily seen to have no unifiers. The search for a unifier proceeds by a t tempt ing to reduce a given

disagreement set to either a solved set or a failed set. Central to this process are the operations

SIMPL, T R I V and MATCH. SIMPL a t tempts to simplify a disagreement set by looking at pairs

of terms whose heads cannot be changed by substi tutions. It either decides tha t the terms of at

least one such pair cannot be unified, or reduces the question of unification of the terms of each

such pair to that of the unification of their arguments. In the first-order case, this corresponds

to descending through the pair of terms simultaneously so long as no variables are encountered

and the t e rm structures are identical at the top. Given a disagreement set P, S IMPL returns the

marker jr if it has determined that P has no unifiers, or it produces a simplified disagreement

set P ' that has the same set of unifiers as P. If P~ is not a solved set then substi tutions are

necessary to continue the reduction process. T R I V examines a simplified disagreement set and

returns the set of pairs in it of the form (x,t I where x is a variable and t is a t e rm in which

x does not appear free. (An implementat ion of T R I V may, of course, drop this %ccur-check"

condition, t rading soundness with efficiency.) If there are such pairs, then any one of them may

be used as a subst i tut ion to simplify the disagreement set further. SIMPL and T R I V are used

repeatedly till ei ther the set has been successfully reduced to a solved or failed set, or no further

simplifications are possible. In the lat ter case strictly higher-order considerations are needed to

carry the search process forward. This is the domain of the M A T C H procedure. When MATCH

is applied to a simplified disagreement set, it first picks a pair in the set and then produces a

finite set of substi tut ions that help in unifying tha t disagreement pair. M A T C H is therefore a

non-determinist ic function, since the value it returns depends of the choice of disagreement pair.

We do not describe the s tructure of MATCH here due to a lack of space.

We may now define a not ion of derivation relative to a set of definite clauses P . Let us use,

perhaps wi th subscripts, the symbols .~ to denote a finite subset of ~ + , l) to denote a disagreement

set and 0 to denote a substi tution. Then the triple (.~2,/)2,02) is said to be P-derived from the

triple (~61, /)1, 81) if the former is obtained from the lat ter by one of the following steps; in this

definition, we say that a variable is new if it is does not occur free in any of the formulas that

appear in (~1, /)1, 01).

460

C1) Goal reduction and backchaining steps: Let G be some member of 9 and let ,~' be the result

of removing that occurrence of G from 9. In the first four cases below, set /)2 := Pl and

02 := 0. We refer to the first five cases as goal reduction steps and the last one as the

backchaining step.

Ca) If G is true, then ,~2 := ~l.

(b) If G is G1 ^ G2 then 92 := {G1, Gp} U 9 ' -

(c) If G is G1 V Gp, then ~2 := {G1) U ~ ' or 92 := {Gp} U 9 ' .

(d) If G is ~ B , then ~2 := {)~norrn(By)) U ~ ' for some new variable y.

(e) If G has a variable, y of type a l --~ . . . --~ at, --~ o, as its head, then set 02 := {(y,

)~xl ...Ax,drue)}, 92 := 029' , and l)2 := SIMPL(02Pl) . Here, the type of xi is a~, for

i = l . . . , n .
(f) Otherwise, G has a nonlogical constant as its head. Let ~'~ (G' D A) be a type variable

free, type-instance of a clause in P. Set 02 := 0, ~2 := (G t} t.J ~ , and /)2 := D1 U

S1MPL({(G,A)}) . Here we assume that the variables ~ are new.

(2) Unification step: If/)1 is neither ~r nor a solved set, then we either apply T R I V or MATCH.

(a) If TRIV(/) I) ~ ~ then for any a E TRIV(/) I) set 82 := a, 92 := a ~ l and P2 :=
SIMPL(aD1).

(b) Let ® be some value re turned for MATCH(D1). If O is empty, then D1 is recognized as

a failed set. In this case, set 92 :-- 91, /)2 := Y', and 8 := 0. Otherwise, pick a E O, and

set 02 := a, 92 := a91 and/)2 := SIMPL(a/)I).
A sequence (gl,/)i,0i)i_<~ in which, for each i < n, (9i+1,Pi+1,0~+1) is P-derived from

(~i, D¢, 0i), is called a P-derivation sequence. In addition, if Do = ~, 00 = 0 and 90 = (G} then

the sequence is said to be a P-derivat ion sequence for G. Notice that sequences for which ~,~ = 0

and/)~, is either a solved set or .T, cannot be extended. If 9~ -- 0 and /),~ is a solved set, we say

tha t that P-derivat ion of G is a proof o/G from P, and tha t the subst i tut ion 0,~ o . . . o ~1 is its

answer substitution. The following theorem establishes the soundness and completeness for this
notion of proof.

T h e o r e m 3: Let 3~G be a closed goal formula which contains no type variables. P ~-T 3~G if

and only if there is a P-derivat ion sequence which is a proof of G from P. In the la t ter case, if 0 is

the answer subst i tut ion for the sequence and er is a unifier for the final solved set, then P F't" G ~

for every ground instance G ~ of a o 0 G.

Notice that if P and G are essentially first-order, the final solved set of a proof of G from 7

is always empty, so a can be taken to be the empty substi tution. In this case, the notion of an

answer subst i tut ion coincides with the usual (first-order) definition.

The mechanism that we desired at the beginning of this section may be described as one

tha t s tarts with the triple ({G}, 0, 0) and performs an exhaust ive search for a proof of G from P.

There are several choices in extending a derivation sequence, but most of these are inconsequen-

tial. A complete procedure may for instance choose to do any one of the unificatlon steps or a

backchaining step or one of the goal reduction steps l (a) - l (d) . Within the unification step 2(b),

however, the choice of subst i tut ion may be critical. A similar observation applies to the choice of
clause in l (f) .

In construct ing an interpreter for AProlog, it appears inappropriate to per form a breadth-first

search even where necessary, and trade-offs need to be made between completeness and practi-

cality. We have designed an interpreter that performs a depth-first search with backtracking that

461

is similar to the one standard Prolog interpreters perform: It always chooses to do a unification

step, applying TRIV, whenever possible. When a choice of goal has to be made it picks the first

in the list. In determining a clause to use (l(f)), it picks the first appropriate one in a predeter-

mined ordering. However there are a few points peculiar to our language that bear mentioning:

(1) Before using l(e) to solve a goal with a variable, y, as its head it is necessary for completeness

to check that y does not appear free in an argument of any of the other goals or in the associated

disagreement set. Our interpreter does not perform such a check, preferring instead not to reorder

goals in the goal list. (2) Even after a clause has been chosen in l(f), it is still necessary to choose

a type instance of it. Our solution to this problem is to permit type variables in goals and to

delay their determination until term unification. SIMPL and TRIV can be easily modified to

deal with such variables, but there are problems in adapting MATCH to deal with type variables

that need to be instantiated to function types. When it encounters such a case, our interpreter

gives up and indicates a run-time error. A better analysis of this problem is clearly necessary,

and must be based on a stronger formalization of type quantification. (3) Choices may have

to be made in the unification step, and backtracking points need to be maintained for these as

well. Our interpreter saves such points and can backtrack over them. We have implemented no

control primitives for the unification search process. Although such controls will most certainly

be necessary for various kinds of programs, we have been successful at running many ~Prolog

programs which make non-trivial uses of higher-order unification without such controls.

There are several other issues pertaining to the interpreter that need to be discussed, but we

omit these here due to a limitation on space.

Sec t i o n 6: Conc lus ions

In this paper we have investigated the issue of introducing higher-order objects into a logic

programming language. Toward this end we have used a higher-order logic to generalize the

first-order Horn clauses. Our theoretical results show that this generalisation preserves certain

important computational properties. We have described a programming language that is based

on these results, and we have also outlined an interpreter for this language. Our current imple-

mentation of an interpreter was not designed with efficiency in mind. We are now investigating

the design of an abstract machine to support a more efficient implementation.

The language that we have presented here gives first-class logical status to typed ~,-terms of

all types, and this constitutes a considerable enrichment to the data structures of Prolog. This

enrichment brings with it a cost, viz a branching in unification, that at first sight may appear

prohibitive. However, there are certain points to be noted. First of all, branching occurs only

in cases that involve genuinely higher-order unification, and in these cases the cost may not

be unacceptable. Moreover there are several uses of A-terms where the unification involves no

branching at all. Examples in this category include all the uses of Lisp-like features described in [D.

H. Warren, 1982] and situations where the A-terms are used solely for the purpose of performing

computations through reductions. In cases like these the language described here provides a

clear and theoretically well-understood implementation. Finally, our preliminary investigations

indicate that an interpreter for AProlog may be written in such a way that it performs very

efficiently for the first-order fragment without jeopardizing its ability to deal with higher-order

terms. If this is indeed true, then the new additions to the language would be achieved in a

manner that is strictly conservative.

462

Sect ion 7: References
[Apt and van Emden, 1982] Krzysztof R. Apt and M. H. van Emden, "Contributions to the

Theory of Logic Programming" JACM, Vol 29 (1982), 841 - 862.
[Church, 1940] Alonzo Church, "A Formulation of the Simple Theory of Types," Journal of

Symbolic Logic 5 (1940), 56 - 68.
[Fortune, Leivant and O'Donnell, 1983] Steven Fortune, Daniel Leivant, and Michael O'Donnell,

"The Expressiveness of Simple and Second-Order Type Structures", J.ACM Vol. 30(1),
January 1983, pp. 151-185.

[Goldfarb, 1981] Warren D. Goldfarb, "The Undecidability of the Second-Order Unification Prob-
lem," Theoretical Computer Science 13 (1981), 225 - 230.

IHuet, 19751 G~rard P. Huet, "A Unification Algorithm for Typed A-calculus," Theoretical Com-
puter Science 1 (1975), 27 - 57.

[Huet and Lang, 1978] G~rard P. Huet, Bernard Lang, "Proving and Applying Program Trans-
formations Expressed with Second-Order Patterns" Acta Informatica 11 (1978), 31 - 55.

[Miller, 1983] Dale A. Miller, "Proofs in Higher-order Logic," Ph. D. Dissertation, Carnegie-
Mellon University, August 1983.

[Miller, 1986] Dale A. Miller, "A Theory of Modules for Logic Programming," University of
Pennsylvania Techincal Report, 1986.

IMiller and Nadathur, 1985] Dale A. Miller, Gopalan Nadathur, "A Computational Logic Ap-
proach to Syntax and Semantics," 10 th Annual Symposium of the Mathematical Foundations
of Computer Science, IBM Japan, May 1985.

[Miller and Nadathur, 1986] Dale A. Miller, Gopalan Nadathur, "An Abstract Interpreter for a
Higher Order Extension of Prolog," forthcoming UPenn technical report, December 1985.

[Milner, 1978] Robin Milner, "A Theory oi Type Polymorphism in Programming," Journal of
Computer and System Sciences 17, 348 - 375, 1978.

[Mycroft and O'Keefe, 1985] A. Mycroft and R. A. O'Keefe, "A Polymorphie Type System for
Prolog," Artificial Intelligence, Vol. 23(3), August 1984.

[Reynolds, 1985] J. C. Reynolds, "Three Approaches to Type Structure", Proceedings of the
International Joint Conference on Theory and Practice of Software Development, March
1985.

[van Emden and Kowalski, 1976] M. H. van Emden, R. A. Kowalski, "The semantics of predicate
logic as a programming language," J.ACM 23, 4 (Oct. 1976), 733 - 742.

[D. H. Warren, 1982] D. H. D. Warren, "Higher-order extension to PROLOG: are they needed?",
Machine Intelligence 10, 1982, pp. 441 - 454.

[D. S. Warren, 1983] David Scott Warren, "Using h-Calculus to Represent Meaning in Logic
Grammars" in the Proceedings of the 21st Annual Meeting of the Association for Computa-
tional Linguistics, June 1983, 51 - 56.

