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A web of distrust

A great triumph of the World Wide Web is the ease at which
anyone can access a great deal of diverse information.

A glaring flaw of the WWW is the lack of tools to help consumers
of information actually trust the assertions made in documents.

Trusting is important since trust leads to actions.

I If I trust an particular engineering company, I fly their planes.

I If I trust Microsoft, I do my taxes on their computers.

I If I trust that ConjectureA is really a theorem, I will spend my
next months on trying to prove ConjectureB.



Formal proof can lead to trust

Formal proofs have helped to establish trust during two different
epochs.

In the late 1800s and early 1900s, there were various crises in
mathematics.

I The uses of infinity and infinitesimals was questionable.

I Foundations were naive.

In the late 1900s and early 2000s, there have been numerous crises
in our digital infrastructure.

I The use of error-prone computer systems to operate and
control our infrastructure.

I Correctness, security, and privacy are often overlooked.

Formal proofs have improved the situation in both settings.



Advances in formal proof

In the area of mathematics,

I axiomatics of foundations (e.g., set theory) and

I new definitions of infinity (Cantor) and limit (ε− δ arguments)

lead the way to greater confidence. There is still reason to worry:
see, Voevodsky’s 2010 and 2014 talks at the IAS.

In the area of computer science,

I proofs of functional correctness (c.f., Hoare, Floyd, etc),

I program testing,

I model checking, and

I better program language design

have lead to more confidence in the actual correctness of
programs. There are still many reasons to worry.



Formal proofs are for machines

Except for toy examples, formal proofs are produced by machines
and consumed (checked) by machines.

Despite de Bruijn’s pleas for weak frameworks [1991], proof
checkers are complex, computational systems containing

I printers and parsers,

I interpreters and compilers,

I garbage collectors, and

I hardware processors.

All of these can have flaws. We have good grounds to be skeptical
of proof checkers.

It is usually the reputation of a theorem prover or proof checker in
which we place our trust. Unfortunately, reputation has limitations.



Reproducibility instead of reputation

Sir Francis Bacon’s introduction of
the scientific method—with its focus
on reproducible results—was seen by
the academics at that time as a way
out of the political and social chaos
that arose from the English Civil War
(1642-1651).

Bacon’s thoughts were enshrined in the Royal Society’s creed
“Nullius in verba” (take no one’s word for it): that is, before
trusting something, check it for yourself.



Who checks the proof checkers?

The familiar and ancient conundrum “Quis custodiet ipsos
custodes?” (Who will guard the guards?).

There is a modern approach to solving this problem: make it
possible for anyone and everyone to monitor and audit the guards
(proof checkers, in our case).

In 50 years, skeptics should be able to write their own checkers in
order to re-check a formal proof.

Thus the format and semantics of documents containing formal
proofs must be neither proprietary nor technology-based: this is
possible if the format has a well defined mathematical semantics.



State of the art: WWW

Digital signatures determine authorship of signed information, but
few techniques are available to provide trust in what is actually
claimed.

Blockchains and Merkle trees can help establish provenance and
dependency.

The web has changed from a cooperative to an adversarial
environment. Formal proofs can provide winning strategies against
bad guys.

The WWW provides frameworks on which new behaviors emerge.



State of the art: Formal proof

Almost all formal proofs are dependent on the specific piece of
technology that created them.

If the version number of the prover changes, proofs may not longer
be proofs.

This situation is slowly improving.

I Specialized proof certificates: DRAT/DRUP, CPF, primality
certificates, etc

I Proof-Carrying Code (PCC) [Necula & Lee, 1996]

I Frameworks for logics and proofs: logical frameworks (LF),
mathematical knowledge management

I General-purpose proof certificates: Dedukti (Dowek, et al.),
Foundational Proof Certificates (FPC) (Miller, et al.)

One can now imagine a proposal such as the following for
providing formal proofs as an overlay on the WWW.



The world wide web of documents and proof

WWW of documents WWW of proof

Standards and Infrastructure

Documents Files in various formats Proofs in various formats

Standards SGML, HTML, etc FPC, Dedukti, CPF, RUP,
etc

Naming URI, DOI Content addressable storage

Transport HTTP, FTP, torrents In addition: IPFS

Trust certificate authorities,
public logs, encryption,
open source, etc

Reputation (eg, proved by
Coq 8.1) & Reproducibility
(rechecking proof evidence)

Emergent structures

Access browsers, JavaScript interacting with proofs,
proof browsers

Curation Wikipedia, etc proof libraries, textbooks

Not discussed more here. Serious issues appears here.



The starting point: [Principle says Assertion]

It seems that we are forced to deal with a logic whose atomic
statements such as are found in “logics for access control” (e.g.,
Abadi, Burrows, Lampson, and Plotkin 1993).

P says String P says (` B) P says (Ξ ` B)

The truth of [P says A] is given by a cryptographic signing using
the private key of P of (the string/file denoting) A.

If Coq8.1 says (` B) and HOL6.5 says (` B) then I say (` B).

It is more likely that in 50 years, it will be proof certificates that
are rechecked multiply ways.

If Ker12 says (Ξ ` B) and Check51 says (Ξ ` B) then I say (` B).



A logic for tracking trust seems necessary

P speaks-for Q: ∀A.(P says A ⊃ Q says A)

SAT1.5 speaks-for Vampire SMT2.2 speaks-for Vampire

Thus, the two proof engines SAT1.5 and SMT2.2 are trusted
internally to Vampire without checking them.

We need a logic to help track “trust-chains”.

Issues such as “degree of trust” or “transitivity of trust” are not
forced on us yet.



A first attempt at a worthy goal

Goal: Construct a large library of formalized mathematics
using Mizar, Coq, Agda, Isabelle, etc.

This is a commonly stated problem: one articulation of it was the
QED manifesto (1994).

The most important reasons offered by Freek Wiedijk for why the
QED effort failed to advance

“is that only very few people are working on
formalization of mathematics.”

There is no compelling application for fully mechanized
mathematics among “working mathematicians”, the intended
target of QED. (An early suggested topic for the QED project was
ring theory.)

The audience is too small.



Take a lesson from the early web

Tim Berners-Lee set out to build a repository of physics and
engineering documents for CERN. What if he succeeded in doing
(only) that?

The web could have taken another decade or so to emerge from
that Ivory Tower prison.

Can we move this approach to trust and formal proof from its own
Ivory Tower prison?



Let’s try for sometime much more ambitious

Goal 1: Libraries of formalized mathematics.

Goal 2: Reproducibility in science.
Formal proofs can capture the collecting of data values,
computation on them, statistical inference, etc.

Goal 3: Security and correctness of mobile and modular
computing platforms.
“Is this app safe to put on my mobile phone?” Echos of Proof
Carrying Code.

Goal 4: Journalism and “fake news”.
While unlikely to use rich logic and proof techniques, journalism
could benefit from the infrastructure of transparency and the
signing of assertions that accompanies the infrastructure of proofs.



Some specific challenges for this project

Challenge 1: Permanent, signed electronic documents
Cryptographic hash functions and content-addressable storage
(CAS) (e.g., BitTorrent and the Interplanetary File System IPFS)
can be used to provide the permanence of such signed documents.

Challenge 2: Structuring libraries of theorems and proofs
Bindings (such as eigenvariables) can be implemented locally via,
say, de Bruijn numerals and distributively via nonces.

Challenge 3: Interoperatbility of proofs
Provide tools for moving between implicit and explicit proofs. A
proof using a naive approach to foundations might be moved to
different formalizations of foundations.

Challenge 4: Replication in experimental sciences
Link traditional tools (Maple, Sage) and new web-based services
(Open Science Framework (osf.io), Life Sciences Protocol
Repository (www.protocols.io) to proof certificates that include
computation and inference.



Thank you

Questions?


