
Defining the semantics of proof evidence

Dale Miller

Inria Saclay & LIX, École Polytechnique
Palaiseau, France

7 August 2015, HaPoC Session, CLMPS 2015, Helsinki

Joint work with Roberto Blanco, Zakaria Chihani, Quentin Heath,
Danko Ilik, Tomer Libal, Fabien Renaud, Giselle Reis

For more, see papers in: CADE 2013, CPP 2011/13/15.



Outline

• Formal proofs in the modern world.

• A proposal for separating formal proofs from provenance.

• Outline how modern proof theory research can provide a
framework for defining a wide range of proof evidence.



Some roles for formal proofs in Mathematics

• Frege, Hilbert, Church, Gödel, etc used Frege/Hilbert (formal)
proofs to increase trust in foundational issues.

• Voevodsky uses Coq to reduce abstract proofs to computation
in order to survive possible inconsisencies in mathematics.

• Hales and Gonthier have use modern theorem provers (Isabelle,
Coq, and HOL) to formally prove the Four color theorem, the
Feit–Thompson (odd-order) theorem, and the Kepler
conjecture.

There are several places in the modern, digital world where formal
proofs can be used.



Some roles for formal proofs in Mathematics

• Frege, Hilbert, Church, Gödel, etc used Frege/Hilbert (formal)
proofs to increase trust in foundational issues.

• Voevodsky uses Coq to reduce abstract proofs to computation
in order to survive possible inconsisencies in mathematics.

• Hales and Gonthier have use modern theorem provers (Isabelle,
Coq, and HOL) to formally prove the Four color theorem, the
Feit–Thompson (odd-order) theorem, and the Kepler
conjecture.

There are several places in the modern, digital world where formal
proofs can be used.



What can we trust?



In cryptology: Trust the math

Bruce Schneier



In software correctness: Trust the proof!

With software systems, there are many things to trust.

verification condition generators

type checkers, type inference, abstract interpretation

compilers

printers and parsers

theorem provers

All this is overwhelming. A modest goal:

Provide the framework so that we can at least trust proofs.

We restriction our of attention to formal proofs, generated and
checked by computer tools.



The current situation with formal proofs

Most proof production and checking is technology based.

If you change the version number of a prover, it may not
recognized its earlier proofs.

Most proofs are locked into the technology.

Some bridges are now being built between different provers, but
these are affected by two version numbers.

A recent panel discussion (PxTP 2015, 2 August) revealed that
practitioners do not alway trust their theorem provers. They use
other provers to double check their work.



The current situation with formal proofs

Most proof production and checking is technology based.

If you change the version number of a prover, it may not
recognized its earlier proofs.

Most proofs are locked into the technology.

Some bridges are now being built between different provers, but
these are affected by two version numbers.

A recent panel discussion (PxTP 2015, 2 August) revealed that
practitioners do not alway trust their theorem provers. They use
other provers to double check their work.



The vision: The network is the prover

Goal: Permit the formal methods community to become a network
of communicating provers.

Proof certificates: documents that circulate and denote proofs.

Approach: Provide formal definitions of “proof evidence” so that
proof certificates can be checked by trusted checkers.

But: There is a wide range of “proof evidence.”

• proof scripts for steering a theorem prover to a proof

• resolution refutations, natural deduction, tableaux, etc

• winning strategies, simulations



Outline

• Formal proofs in the modern world.

• A proposal for separating formal proofs from provenance.

• Outline how modern proof theory research can provide a
framework for defining a wide range of proof evidence.



The need for frameworks

Three central questions:

How can we manage so many “proof languages”?

Will we need just as many proof checkers?

How does this improve trust?

Computer scientists have seen this kind of problem before.

We develop frameworks to address such questions.

lexical analysis: finite state machines / transducers

language syntax: grammars, parsers, attribute grammars,
parser generators

programming languages: denotational and operational
semantics



The need for frameworks

Three central questions:

How can we manage so many “proof languages”?

Will we need just as many proof checkers?

How does this improve trust?

Computer scientists have seen this kind of problem before.

We develop frameworks to address such questions.

lexical analysis: finite state machines / transducers

language syntax: grammars, parsers, attribute grammars,
parser generators

programming languages: denotational and operational
semantics



A non-goal: didactic aspects of formal proofs

We do not assume that humans will necessarily be able to read or
learn from formal proofs.

Consider formal proofs of the following kind of theorems.

• 2147483647 is prime.

• A certain program will not produce a buffer overflow error.

• There is no path between two points in some reachability graph.

Of course, having tools to browse and interact with a formal proof
is certainly desirable. Eventually.



Earliest notion of formal proof

Frege, Hilbert, Church, Gödel, etc, made extensive use of the
following notion of proof:

A proof is a list of formulas, each one of which is either
an axiom or the conclusion of an inference rule whose
premises come earlier in the list.

While granting us trust, there is little useful structure here.



The first programmable proof checker

LCF/ML (1979) viewed proofs as
slight generalizations of such lists.

ML provided types, abstract
datatypes, and higher-order
programming in order to increase
confidence in proof checking.

Many provers today (HOL, Coq,
Isabelle) follow LCF principles.



Outline

• Formal proofs in the modern world.

• A proposal for separating formal proofs from provenance.

• Outline how modern proof theory research can provide a
framework for defining a wide range of proof evidence.



More recent advances: Atoms and molecules of inference

Atoms of inference

• Gentzen’s sequent calculus first provided these: introduction,
identity, and structural rules

• Girard’s linear logic refinement of these inference rules

• To account for first-order structure, we also need fixed points
and equality. (eg. McDowell, Tiu, Baelde, et al).

Rules of Chemistry

• Focused proof systems show us that some atoms stick
together while other atoms form boundaries.

Molecules of inference

• Collections of atomic inference rules that stick together form
synthetic inference rules.



Features enabled for proof certificates

• Simple checkers can be implemented.
Only the atoms of inference and the rules of chemistry (both
small and closed sets) need to be implemented in a checker of
certificates.

• Certificates support a wide range of proof systems.
The molecules of inference can be engineered into a wide range
of inference rules.

• Certificates are based (ultimately) on proof theory.
Immediate by design.

• Proof details can be elided.
Search using atoms will match search in the space of molecules:
that is, the checker will not invent new molecules.



Clerks and experts: the office workflow analogy

Imagine an accounting office that needs to check if a certain
mound of financial documents (provided by a client) represents a
legal tax transaction (as judged by the kernel).

Experts look into the mound and extract information and

• decide which transactions to dig into and

• release their findings for storage and later reconsideration.

Clerks take information released by the experts and perform some
computations on them, including their indexing and storing.

Focused proofs alternate between two phases: positive (experts are
active) and negative (clerks are active).

The terms decide, store, and release come from proof theory.

A proof certificate format defines workflow and the duties of the
clerks and experts.



Proof checking and proof reconstruction

Clearly, (determinate) computation is built into this paradigm: the
clerks can perform such computation.

Proof reconstruction might be needed when invoking not-so-expert
experts (or ambiguous tax forms).

Non-deterministic computation is part of the mix: non-determinism
is an important resource that is useful for proof-compression.



The LKneg proof system

Use invertible rules where possible. In propositional classical logic,
both conjunction and disjunction can be given invertible rules.

` ·;B
` B

start
` ∆, L; Γ

` ∆; L, Γ
store ` ∆,A,¬A; · init

` ∆; Γ
` ∆; false, Γ

` ∆;B,C , Γ

` ∆;B ∨ C , Γ ` ∆; true, Γ

` ∆;B, Γ ` ∆;C , Γ

` ∆;B ∧ C , Γ

Here, A is an atom, L a literal, ∆ a multiset of literals, and Γ a list
of formulas. Sequents have two zones.

This proof system provides a decision procedure (resembling
conjunctive normal forms).

A small (constant sized) certificate is possible.

Consider proving (p ∨ C ) ∨ ¬p for large C .



The LKneg proof system

Use invertible rules where possible. In propositional classical logic,
both conjunction and disjunction can be given invertible rules.

` ·;B
` B

start
` ∆, L; Γ

` ∆; L, Γ
store ` ∆,A,¬A; · init

` ∆; Γ
` ∆; false, Γ

` ∆;B,C , Γ

` ∆;B ∨ C , Γ ` ∆; true, Γ

` ∆;B, Γ ` ∆;C , Γ

` ∆;B ∧ C , Γ

Here, A is an atom, L a literal, ∆ a multiset of literals, and Γ a list
of formulas. Sequents have two zones.

This proof system provides a decision procedure (resembling
conjunctive normal forms).

A small (constant sized) certificate is possible.

Consider proving (p ∨ C ) ∨ ¬p for large C .



The LKpos proof system

Non-invertible rules are used here.

` B; ·;B
` B

start
` B;N ,¬A;B

` B;N ;¬A restart ` B;N ,¬A;A
init

` B;N ;Bi

` B;N ;B1 ∨ B2 ` B;N ; true
` B;N ;B1 ` B;N ;B2

` B;N ;B1 ∧ B2

Here, A is an atom and N is a multiset of negated atoms.
Sequents have three zones.

The ∨ rule consumes some external information or some
non-determinism.

An oracle string, a series of bits used to indicate whether to go left
or right, can be a proof certificate.



A proof in LKpos

Let C have several alternations of conjunction and disjunction.

Let B = (p ∨ C ) ∨ ¬p.

` B;¬p; p
init

` B;¬p; p ∨ C
∗

` B;¬p; (p ∨ C ) ∨ ¬p
∗

` B; · ;¬p restart

` B; · ; (p ∨ C ) ∨ ¬p
∗

` B
start

The subformula C is avoided. Clever choices ∗ are injected at
these points: right, left, left. We have a small certificate and small
checking time. In general, these certificates may grow large.



Combining the LKneg and LKpos proof systems

Introduce two versions of conjunction, disjunction, and their units.

t−, t+, f −, f +,∨−,∨+,∧−,∧+

The inference rules for negative connectives are invertible.

These polarized connectives also exist in linear logic.

Introduce the two kinds of sequent, namely,
` Θ ⇑ Γ: for invertible (negative) rules (Γ a list of formulas)
` Θ ⇓ B: for non-invertible (positive) rules (B a formula)



LKF : a focused proof systems for classical logic

` Θ ⇑ Γ, t−
` Θ ⇑ Γ,B ` Θ ⇑ Γ,B ′

` Θ ⇑ Γ,B ∧−B ′
` Θ ⇑ Γ

` Θ ⇑ Γ, f −
` Θ ⇑ Γ,B,B ′

` Θ ⇑ Γ,B ∨−B ′

` Θ ⇓ t+
` Θ ⇓ B ` Θ ⇓ B ′

` Θ ⇓ B ∧+ B ′
` Θ ⇓ Bi

` Θ ⇓ B1 ∨+ B2

Init

` ¬A,Θ ⇓ A

Store

` Θ,C ⇑ Γ

` Θ ⇑ Γ,C

Release

` Θ ⇑ N
` Θ ⇓ N

Decide

` P,Θ ⇓ P
` P,Θ ⇑ ·

P is a positive formula; N is a negative formula;
A is an atom; C positive formula or negative literal



Results about LKF

Let B be a propositional logic formula and let B̂ result from B by
placing + or − on t, f , ∧, and ∨ (there are exponentially many
such placements).

Theorem. [Liang & M, TCS 2009]

If B is a tautology then every polarization B̂ has an LKF
proof.
If some polarization B̂ has an LKF proof, then B is a
tautology.

The different polarizations do not change provability but can
radically change the proofs.

Also:

• Negative (non-atomic) formulas are treated linearly (never
weakened nor contracted).

• Only positive formulas are contracted (in the Decide rule).



Example: deciding on a simple clause

Assume that Θ contains the formula a ∧+ b ∧+ ¬c and that we
have a derivation that Decides on this formula.

` Θ ⇓ a Init ` Θ ⇓ b Init

` Θ,¬c ⇑ ·
` Θ ⇑ ¬c Store

` Θ ⇓ ¬c Release

` Θ ⇓ a ∧+ b ∧+ ¬c ∧+

` Θ ⇑ · Decide

This derivation is possible iff Θ is of the form ¬a,¬b,Θ′. Thus,
the “macro-rule” is

` ¬a,¬b,¬c ,Θ′ ⇑ ·
` ¬a,¬b,Θ′ ⇑ ·



Example: Resolution as a proof certificate

• A clause: ∀x1 . . . ∀xn[L1 ∨ · · · ∨ Lm]

• C3 is a resolution of C1 and C2 if we chose the mgu of two
complementary literals, one from each of C1 and C2, etc.

• If C3 is a resolvent of C1 and C2 then ` ¬C1,¬C2 ⇑ C3 has a
short proof (decide depth 2 or less).

Translate a refutation of C1, . . . ,Cn into a (focused) sequent proof
with small holes:

Ξ
` ¬C1,¬C2 ⇑ Cn+1

...
` ¬C1, . . . ,¬Cn,¬Cn+1 ⇑ ·
` ¬C1, . . . ,¬Cn ⇑ ¬Cn+1

Store

` ¬C1, . . . ,¬Cn ⇑ · Cut

Here, Ξ can be replaced with a “hole” bounded by depth 2.



The ProofCert project: recent results

• The FPC framework for first-order (classical and intuitionistic)
logics.

• Defined various proof certificate formats:
• Classical: resolution, expansion trees, matings, CNF, etc.
• Intuitionistic: natural deduction, various typed λ-calculus.
• Also: Frege systems, equality reasoning, etc.

• Implemented a reference kernel (using λProlog / Teyjus)

• The intuitionistic checker can “host” the classical kernel, so
only one kernel is needed.



The ProofCert project: next steps

Address induction, co-induction, and model checking

Develop certificates for various modal and temporal logics

Treat parallelism in proof structures (using multi-focusing and
multi-cut rules)

Develop an approach to theories: set theories, type theories, etc

Design of libraries of theorems and proofs



Related Work

PCC - proof carrying code

TPTP - a library of theorems and proofs, promotes interchange
between theorem provers

LF - Logical Framework (dependently typed λ-calclulus)

Dedukti - a proof checker based on dependent typed λ-calculus
and functional computations

PVS and “little engines of proof”



Thank you



What relations are there between LF and FPC?

LF: The logical framework of Harper, Honsell, and Plotkin [1987,
1993] (a.k.a. λΠ).

It seems straightforward to encode LF, LFSC (LF with side
conditions), and LF modulo (Dedukti) as FPCs.

Alone LF does not seem to have the right “atoms of inference.”

• Canonical normal forms provide only one structuring of proofs.

• These lack an analytic notion of classical reasoning and sharing.

• Also lacking is a natural treatment of parallel proof steps.


