
On Subexponentials, Synthetic Connectives,
and Multi-Level Delimited Control

Dale Miller
Inria Saclay & LIX, École Polytechnique, France

Joint work with Chuck Liang, Hofstra University, NY, USA
Based on a paper in LPAR 2015

2 February 2016, GDRI-LL, Bologna

Outline

A computational phenomena that needs a proof theory
treatment, a la Curry-Howard.

Proof theory: subexponentials & synthetic connectives

A fragment of subexponential linear logic called MC for
multi-colored classical logic.

Sequent calculus for MC

Natural Deduction for MC: bounded λµ-terms

Computational Motivation

A control operator captures its continuation context: e.g.,

(+ 2 (+ (control k .(+ (k 1) (k 3))) 1)) −→ 10

Here, k is bound to its calling context λx .(+ 2 (+ x 1)).

One wishes to delimit the scope of control operator: e.g.,

(+ 2](+ (control k .(+ (k 1) (k 3))) 1)) −→ 6

Here, k is bound to λx .(+ x 1).

Multi-levels of delimitation are also desirable: e.g.,

(f]2(g]5(h]4 control3 k .E [control1 k ′.s])))

Here, control3k . delimited by]2, captures h and g but not f .

Scope extrusion

Consider the formula (C ⊃ A) ∨ B.

In intuitionistic logic, C has scope over A and not B.

In classical logic, the assumption C is allowed to extrude its scope
over also B.

(C ⊃ A) ∨ B ≡ (¬C ∨ A) ∨ B

≡ A ∨ (¬C ∨ B) ≡ A ∨ (C ⊃ B)

≡ ¬C ∨ (A ∨ B) ≡ C ⊃ (A ∨ B)

Gentzen’s sequent calculus (1935) models the difference between
intuitionistic and classical logic as one of scope extrusion.

Gentzen did not use this term: we borrow it from the π-calculus.

Sequents and binding structure

The single-conclusion sequent

x1 : B1, . . . , xn : Bn ` t : B0

encodes the judgment that the term t is a properly typed
functional program fragment of type B0 given that the variables
x1, . . . , xn have type B1, . . . ,Bn, respectively.

Continuation variables are added as multiple conclusions.

x1 : B1, . . . , xn : Bn ` t : B0, k1 : C1, . . . , km : Cm

where Ci is the type expected by the continuation ki .

Later: t : (x1 : B1, . . . , xn : Bn ` B0 | k1 : C1, . . . , km : Cm).

Sequent rules and program structure

In intuitionistic (single-conclusion) proof systems, the left-hand
side can be treated as monotone: once a variable appears in that
context, it stays in that context as we move up in a proof.

In classical (multiple-conclusion) proof systems, both left-hand and
right-hand sides can be treated as monotone.

If we can add restrictions to monotonicity, then we can have more
expressive typing.

E.g., declare that certain lambda and continuation variables cannot
appear within certain regions inside their scopes.

Sequent calculus and program execution

We do not wish to change evaluation models here.

Instead, we want richer types that can forbid variables from
occurring in certain parts of their scope.

Basic β-reduction (cut-elimination) is untouched.

The paper addresses both the call-by-name and call-by-value
variants of evaluation.

We now consider the logic of types. Only at the end, do we return
to the terms that they intend to qualify.

Sequent calculus and program execution

We do not wish to change evaluation models here.

Instead, we want richer types that can forbid variables from
occurring in certain parts of their scope.

Basic β-reduction (cut-elimination) is untouched.

The paper addresses both the call-by-name and call-by-value
variants of evaluation.

We now consider the logic of types. Only at the end, do we return
to the terms that they intend to qualify.

Intuitionistic logic and multiple conclusions

Γ ` A,A,∆

Γ ` A,∆
C

Γ ` ∆
Γ ` A,∆

W Right structural rules

A, Γ ` B

Γ ` A ⊃ B,∆
IL

A, Γ ` B,∆

Γ ` A ⊃ B,∆
CL Right implication

You either forget the formulas in ∆ (intuitionistic logic) or keep all
those formulas (classical logic).

Informally, we can hope for something intermediate:

A, Γ ` B,∆1∆2

Γ ` A
1
⊃ B,∆1∆2

A, Γ ` B,∆2

Γ ` A
2
⊃ B,∆1∆2

A, Γ ` B

Γ ` A
3
⊃ B,∆1∆2

Introducing an implication at level 2 requires forgetting level 1
conclusions.

Two lessons from linear logic

1 Implications are built using exponentials: A ⊃ B ≡ !A−◦ B.

2 Exponentials are not canonical.

Tensor (⊗) is canonical since if we have two versions of ⊗, i.e.,

Γ,A,B ` ∆

Γ,A⊗ B ` ∆

Γ ` A,∆ Γ′ ` B,∆′

Γ, Γ′ ` A⊗ B,∆,∆′
Γ,A,B ` ∆

Γ,A⊗ B ` ∆

Γ ` A,∆ Γ′ ` B,∆′

Γ, Γ′ ` A⊗ B,∆,∆′
,

we can prove that A⊗ B ` A⊗ B and A⊗ B ` A⊗ B.
All linear logic connectives are canonical except for the
exponentials. The promotion rule is the culprit.

! Γ ` B, ? ∆

! Γ ` !B, ? ∆

This leaves no way to prove !B ` !B.

Two lessons from linear logic

1 Implications are built using exponentials: A ⊃ B ≡ !A−◦ B.

2 Exponentials are not canonical.

Tensor (⊗) is canonical since if we have two versions of ⊗, i.e.,

Γ,A,B ` ∆

Γ,A⊗ B ` ∆

Γ ` A,∆ Γ′ ` B,∆′

Γ, Γ′ ` A⊗ B,∆,∆′
Γ,A,B ` ∆

Γ,A⊗ B ` ∆

Γ ` A,∆ Γ′ ` B,∆′

Γ, Γ′ ` A⊗ B,∆,∆′
,

we can prove that A⊗ B ` A⊗ B and A⊗ B ` A⊗ B.

All linear logic connectives are canonical except for the
exponentials. The promotion rule is the culprit.

! Γ ` B, ? ∆

! Γ ` !B, ? ∆

This leaves no way to prove !B ` !B.

Two lessons from linear logic

1 Implications are built using exponentials: A ⊃ B ≡ !A−◦ B.

2 Exponentials are not canonical.

Tensor (⊗) is canonical since if we have two versions of ⊗, i.e.,

Γ,A,B ` ∆

Γ,A⊗ B ` ∆

Γ ` A,∆ Γ′ ` B,∆′

Γ, Γ′ ` A⊗ B,∆,∆′
Γ,A,B ` ∆

Γ,A⊗ B ` ∆

Γ ` A,∆ Γ′ ` B,∆′

Γ, Γ′ ` A⊗ B,∆,∆′
,

we can prove that A⊗ B ` A⊗ B and A⊗ B ` A⊗ B.
All linear logic connectives are canonical except for the
exponentials. The promotion rule is the culprit.

! Γ ` B, ? ∆

! Γ ` !B, ? ∆

This leaves no way to prove !B ` !B.

Subexponentials

Since they are not canonical, we can have any number of them!

Consider having a collection of pairs of !i , ?i where

i ∈ I , a set of indexes and

the set I has a pre-order �.

The logical connectives !i , ?i are called subexponentials and their
promotion rule is the following:

!n1A1, . . .!nkAk ` B, ?m1C1, . . .?mjCk

!n1A1, . . .!nkAk ` !jB, ?m1C1, . . .?mjCk
j ≤ n1, . . . nk ,m1, . . .mj

In particular, if i � j then !jB ` !iB.
Promotion for ?j takes place on the left.

Subexponentials

Since they are not canonical, we can have any number of them!

Consider having a collection of pairs of !i , ?i where

i ∈ I , a set of indexes and

the set I has a pre-order �.

The logical connectives !i , ?i are called subexponentials and their
promotion rule is the following:

!n1A1, . . .!nkAk ` B, ?m1C1, . . .?mjCk

!n1A1, . . .!nkAk ` !jB, ?m1C1, . . .?mjCk
j ≤ n1, . . . nk ,m1, . . .mj

In particular, if i � j then !jB ` !iB.
Promotion for ?j takes place on the left.

Exponentials vs Subexponentials

The other inference rules for subexponentials are standard:

Γ ` ?iA, ?iA,∆

Γ ` ?iA,∆
CR

Γ ` ∆
Γ ` ?iA,∆

WR
Γ ` A,∆

Γ ` ?iA,∆
DR

Γ, !iA, !iA ` ∆

Γ, !iA ` ∆
CL

Γ ` ∆
Γ, !iA ` ∆

WL
Γ,A ` ∆

Γ, !iA ` ∆
DL

Subexponentials do not need to permit weakening and contraction:
in those cases, the exponential laws !i (A & B) ≡ !iA⊗ !iB do not
hold. Hence, the name.

In this paper, all subexponentials are, in fact, exponentials.

Subexponentials are not an extension of linear logic but a feature
of linear logic.

Many versions of the implication A ⊃ B

!A−◦ B !A−◦ !B !?A−◦ ?B !A−◦ ?!B

All of the occurrences of ! and ? can now have indexes.

Implications should be transitive (i.e., cuts can be eliminated).

!A !A−◦ ?B
?B !B −◦ ?C

?
oops

Proving the sequent !1A, !2B `!2C requires weakened !1A.

If term λxλy .t has type !1A−◦ !2B−◦ !2C , then x is not free in t.

This represents a form of resource control: not how many times it
is used but where it can appear.

Designing a new implication

Recall that A−◦ B can be built from the (multiplicative)
disjunction and negation A⊥ O B.

We highlight two equivalences of linear logic.

?(?AO?B) ≡?AO?B: contraction on a (negative) compound
formula can be replaced by contraction on subformulas.

!(!A−◦!B) ≡!(!A−◦ B): some occurrences of ! are
superfluous. Thus, !(!A−◦ !(!B −◦ !C)) ≡ !(!A−◦ !B −◦ C).

With indexed exponentials, these equivalences are preserved under
the following conditions:

?i ′(?kAO?j ′B) ≡ ?kAO?j ′B if and only if i ′ ≤ k , j ′

!i (!kA−◦!jB) ≡ !i (!kA−◦ B) if and only if j ≤ k , i .

The !i?k and ?k!i?k modals

Let i , k ∈ I be two indexes. We shall make use of the following two
strings of exponentials (along with their abbreviations).

!i?k =
(i
k

)
and ?k !i?k =

[k
i

]
.

We have (i
k

)
≡ !i?k ≡ !i?k !i?k ≡ !i

[k
i

]
and

[k
i

]
≡ ?k

(i
k

)
If we write only equivalence classes of these modalities, then
promotion and dereliction become inverse operations:

!?A
?!?A

derelict

!?A
promote

(i
k

)
A[k

i

]
A

derelict(i
k

)
A

promote

A new synthetic connective

Consider the following possible encoding of the implication A ⊃ B:(i
i ′

)
(
(k
k ′

)
A−◦

(j
j ′

)
B) where i ′ ≤ k , j ′ and j ≤ i , k

This forms a proper synthetic connective in the sense that a
sequent calculus for it can be given (next slide) and both cuts and
(non-atomic) initials can be eliminated.

For example, !4?0(!5?1A−◦!3?2(!8?6B−◦!2?2C)) is a legal formula.

Focusing can be used to build synthetic connectives.
Unfortunately, there are too many exponentials here to employ
focusing to support this claim.

Sequents for MC

Sequents are of the form Γ ` C |∆, where

Γ denotes a set of formulas of the form
(i
i ′

)
B.

C ranges over Γ but contains at most one formula.

∆ denotes a set of formulas of the form
[i ′
i

]
B.

We introduce the following schematic variables, where n ∈ I .

Γ(n) denotes a set of formulas
(i
i ′

)
B such that n ≤ i .

C(n) ranges over Γ(n) but contains at most one element.

∆(n) denotes a set of formulas
[i ′
i

]
B such that n ≤ i ′.

Sequent calculus proof rule for MC

Γ(n) ` A |∆(n) B, Γ(n) ` C(n) |∆(n)(i
i ′

)
(A−◦ B), Γ′, Γ(n) ` C(n) |∆(n),∆′ ⊃L, i ′ ≤ n

A, Γ(n) ` B |∆(n)

Γ′, Γ(n) `
(i
i ′

)
(A−◦ B) |∆(n),∆′

⊃R, i ≤ n

Γ(n) ` · |
[i
k

]
A,∆(n)

Γ′, Γ(n) `
(k
i

)
A |∆(n),∆′

Produce, k ≤ n

Γ `
(j
i

)
A |∆

Γ ` · | ∆,
[i
j

]
A

Consume

(a
b

)
q, Γ `

(c
d

)
q |∆

!DR/Id , c ≤ a, b ≤ d , q atomic

Intuitionistic logic in MC

Intuitionistic logic occurs in MC when we use just, say,
(2
1

)
and

[1
2

]
.

Classical logic occurs in MC when we use just, say,
(1
1

)
and

[1
1

]
.

It is easy to see that Peirce’s formula ((P ⊃ Q) ⊃ P) ⊃ P, cannot
be proved using only

(i
k

)
and

[k
i

]
with i 6≤ k.

For example, the MC formula(2
1

) ((2
1

) ((2
1

) ((2
1

)
P −◦

(2
1

)
Q
)
−◦

(2
1

)
P
)
−◦

(2
1

)
P
)

is not provable.

Natural Deduction in MC

u : Γ `
(i
k

)
A |∆

[d]u : Γ ` · | d :
[k
i

]
A,∆

Name
t : Γ ` · | d :

[k
i

]
A,∆

µkd .t : Γ `
(i
k

)
A |∆

Unname

f : Γ(n)`
(i
i ′

)
(
(k
k ′

)
A−◦

(j
j ′

)
B) |∆(n) t : Γ(m)`

(k
k ′

)
A |∆(m)

(f]n′t) : Γ(n)Γ(m) `
(j
j ′

)
B |∆(n)∆(m)

App

provided that n′ ≤ min(n, j ′).

t : x :
(k
k ′

)
A, Γ(n) `

(j
j ′

)
B |∆(n)

λx .t : Γ′Γ(n) `
(i
i ′

)((k
k ′

)
A−◦

(j
j ′

)
B
)
|∆(n)∆′

Abs, i ≤ n

t : Γ(n) ` · |
[i
k

]
A,∆(n)

t : Γ′Γ(n) `
(k
i

)
A |∆′∆(n)

Produce (k ≤ n)
x : x :

(i
j

)
C , Γ `

(i
j

)
C |∆

Id

t : Γ `
(a
b

)
q

t : Γ `
(c
d

)
q

!DR (a ≥ c , b ≤ d , q atomic)

Bounded λµ-terms

t = [d]t named term

= µkd .t binder

= (t]nt) application and bounded reset indicator

= λx .t function abstraction

= x bound variable

A proof of Peirce’s formula

. . . `
(
j
j′

)
(
(
k
k′

)
(
(
a
a′

)
P −◦

(
b
b′

)
Q)−◦

(
a
a′

)
P) |

[
a′

a

]
P

(
a
a′

)
P `

(
a
a′

)
P |

[
b′

b

]
Q(

a
a′

)
P ` · |

[
b′

b

]
Q,

[
a′

a

]
P(

a
a′

)
P `

(
b
b′

)
Q |

[
a′

a

]
P

b ≤ a, a′

`
(
k
k′

)
(
(
a
a′

)
P −◦

(
b
b′

)
Q) |

[
a′

a

]
P
k ≤ a′

(
j
j′

)
(
(
k
k′

)
(
(
a
a′

)
P −◦

(
b
b′

)
Q)−◦

(
a
a′

)
P) `

(
a
a′

)
P |

[
a′

a

]
P(

j
j′

)
(
(
k
k′

)
(
(
a
a′

)
P −◦

(
b
b′

)
Q)−◦

(
a
a′

)
P) ` · |

[
a′

a

]
P(

j
j′

)
(
(
k
k′

)
(
(
a
a′

)
P −◦

(
b
b′

)
Q)−◦

(
a
a′

)
P) `

(
a
a′

)
P | ·

a ≤ j

`
(
i
i ′

) ((
j
j′

) ((
k
k′

) ((
a
a′

)
P −◦

(
b
b′

)
Q
)
−◦

(
a
a′

)
P
)
−◦

(
a
a′

)
P
)
| ·

Needed restrictions: k ≤ a′ and b ≤ a′. The proof term is

λx .µa
′
d .[d](x]m(λy .µb

′
e.[d]y))

where m ≤ min(j , a′).

Conclusions

We have built an implication that has some controls on the
resources in its environment.

These resources are bound variables, denoting formal parameters
as well as continuations.

These controls allow mixing intuitionistic and classical principles.

Next we need to design functional programming primitives that can
exploit some of the riches of the many parameters (i , i ′, j , k , etc).

