Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

A semantic framework for proof evidence

Zakaria Chihani - Dale Miller -
Fabien Renaud

Draft: July 2, 2016

Abstract Theorem provers produce evidence of proof in many different formats, such
as proof scripts, natural deductions, resolution refutations, Herbrand expansions, and
equational rewritings. In implemented provers, numerous variants of such formats are
actually used: consider, for example, such variants of or restrictions to resolution refu-
tations as binary resolution, hyper-resolution, ordered-resolution, paramodulation, etc.
We propose the foundational proof certificates (FPC) framework for defining the se-
mantics of a broad range of proof evidence. This framework allows both producers of
proof certificates and the checkers of those certificates to have a clear formal definition
of the semantics of a wide variety of proof evidence. Employing the FPC framework
will allow one to separate a proof from its provenance and to allow anyone to construct
their own proof checker for a given style of proof evidence. The foundation on which
FPC relies is that of proof theory, particularly recent work into focused proof systems:
such proof systems provide protocols by which a checker extracts information from the
certificate (mediated by the so called clerks and experts) as well as performs various
deterministic and non-deterministic computations. While we shall limit ourselves to
first-order logic in this paper, we shall not limit ourselves in many other ways. The
FPC framework is described for both classical and intuitionistic logics and for proof
structures as diverse as resolution refutations, natural deduction, Frege proofs, and
equality proofs.

1 Introduction

Of all topics in mathematics and computer science, one might expect that logic has
provided us with clearly defined and delimited standards. This expectation is partic-
ularly high since the study of logic and proof has existed since early work by Boole,
Frege, Hilbert, Russell, Whitehead, G6del, and Gentzen and since the resulting log-
ical systems are actively being studied and applied to a wide range of applications
in mathematics and computer science. But in practice, sadly, formal proofs are often
technology-specific: such “proof objects” are usually meant for a particular prover and
even a particular version of that prover. There should be, however, considerable value

Inria-Saclay and LIX, Ecole Polytechnique, Palaiseau, France

in being able to have the multitude of computational logic systems—theorem provers,
model checkers, type checkers, static analyzers, etc.—share and check each other’s
proofs. Such advantages have been explicitly recognized in the SMT community by
Van Gelder when he wrote: “It is important to get our propositional house in order
to provide an adequate foundation for the more sophisticated challenge of producing
independently checkable proofs for SMT.” [38].

One way to realize the world-wide sharing and checking of proofs is to ask compu-
tational logic systems to export their proof evidence as documents with clear seman-
tics that can be validated by trusted checkers. If checkers can be small and formally
specified, then one might be able to trust their correctness by formally proving them
correct or by allowing any number of people to reimplement them. (In contrast, the-
orem provers are, generally speaking, complex and evolving systems that are more
difficult to trust.) By the term proof certificate we mean an exported document that
contains the proof evidence discovered by a computational logic system. We propose
here a framework for defining the semantics of a wide range of proof certificates: since
we use proof-theoretic concepts to define this framework, we refer to this framework as
“foundational” in contrast to, say, technological. Our framework will allow the sequent
calculus of Gentzen (with a number of improvements) to actually serve as the semantic
framework for defining a wide range of the proof evidence that is (or could easily be)
output from theorem provers.

Two bright spots in standardization. One bright spot in the use of logic to provide a
standard in computational logic system is the role of simply typed A-terms as a frame-
work for defining term structures and logical formulas. As Church has shown in [22],
his Simple Theory of Types (STT) provides an elegant and well understood framework
for defining terms, formulas, binding, and substitution. By varying the signature of
type constants, that framework can provide a specification of propositional formulas as
well as multi-sorted first-order logic formulas and various modal logics. Such a notion
of formula is popular and supported by a wide range of computational logic systems
today, such as Isabelle [73], AProlog [66], and Twelf [76]. A second bright spot is that
classical and intuitionistic logics have been identified as being important for most of
computational logic and that the set of theorems of these logics is well defined: see, for
example, textbooks such as [37}[43[90]. We shall assume for the rest of this paper that
terms, formulas, and theorems for first-order classical and intuitionistic logics are well
established. Having fixed these, we turn our attention to the specification of proofs.

1.1 Dealing with many proof languages

If the designer of a prover wishes it to be part of a larger world where theorems and
proofs are shared, checked, and stored, that prover must output some document that
can be checked by trusted proof checkers. The problem is, of course, that there can
be many different kinds of proof evidence and, hence, many different kinds of “proof
languages” with which to deal. A resolution theorem prover might output a presentation
of a resolution refutation; a constructive logic prover might output a typed A-term; a
bisimulation checker might output a set of pairs denoting a bisimulation; etc. Is it
necessary to have a separate checker for each of these many proof evidence formats?
Even then, how can one be completely clear and formal in providing the details of such
proof formats?

A computer scientist will recognize that similar problems have existed before. For
example, in the early days of computer science, the structure of a programming lan-
guage was often defined by a particular piece of technology - a parser. Eventually,
the framework of grammars (specifically certain classes of context-free grammars) was
used to describe the structure of programming languages. In that way, any number
of people could implement parsers for a language described by a given grammar. Fur-
thermore, cross compilers could be written that automatically transformed grammar
specifications into actual parsers. In a similar fashion, the meaning of early program-
ming languages was often defined by a particular compiler or interpreter. Today we
generally insist that the semantics of a programming language is given by a formal
framework such as denotational semantics [87], structural operational semantic (SOS)
[T7[78], or natural semantics [57]. The semantics of Standard ML, for example, has
been defined using natural semantics [70].

Just as frameworks were proposed for programming language structures (via gram-
mars) and semantics (via denotational, structured operational, and natural semantics),
we will provide in this paper a framework for defining the semantics of proof languages.
The framework that we present here is not the only possible universal framework pos-
sible or proposed: for example, the AII-modulo system [24] has been proposed, im-
plemented, and applied to the checking of proofs from a number of constructive logic
theorem prover (see Section .

1.2 What can be learned about proof structure from proof theory

Several different and concrete approaches to structuring proofs have been developed
within the proof theory literature. We overview a few of these here.

The earliest formalized notions of proof are now often called Frege-Hilbert proofs
(Frege proofs, for short): such proofs are sequences of formulas such that any formula
is either an axiom or is the result of applying an inference rule to formulas that precede
it. Such proofs provide a high degree of trust in what they prove. The LCF approach
to theorem proving [47] can be directly linked to such proof systems. In particular, the
axioms are given the type thm, the inference rules are then (partial) functions of type,
say, thm -> thm and thm -> thm -> thm. Finally, the type thm is declared to be an
abstract datatype (thus, no additional primitives for building terms of type thm can be
added). Any object that can be build of type thm in such a well-typed programming
language as ML can be trusted to encode a theorem. As a notion of proof itself, such
proof objects have little useful structure. In the LCF setting, proof scripts—specific
instructions that lead the prover to a proof—are often used as proofs although modern
LCF provers are capable of generating more abstract proof objects as well.

Natural deduction proofs for intuitionistic logic [394[79] provide a much richer setting
for studying proof. For example, proofs can be normal or non-normal and functional
computations can be performed on non-normal proofs in order to produce normal
proofs. In addition, computational information can often be extracted from normal
proofs. Furthermore, this paradigm can be augmented via the deduction modulo frame-
work to allow even more opportunities for functional-style computations within proofs
[30]. Dependently typed A-calculi have been used to encode natural deduction proofs
in a number of computer systems, for example, Automath, Coq, Twelf, and Agda, to
mention a few.

While sequent calculus proof systems [39] are a flexible way to compare proofs in
classical, intuitionistic, and linear logics and to prove cut-elimination theorems, such
proofs are surprisingly unstructured and chaotic. In one of the earliest applications
of sequent calculus to computational logic [67], logic programming was described as
the search for certain normal forms of sequent calculus proofs (the so-called uniform
proofs) that involved two alternating phases of inference rules—one phase captured
goal reduction and one phase captured backchaining. Andreoli [1] lifted this notion of
two-phase alternating proof to all of linear logic and, thereby, introduced the notion of
focused proof system. Various focused proof systems for intuitionistic logic [141321/50]
53] and classical logic [251[42][59] appeared shortly afterwards.

Focused proof systems will play a central role in the FPC framework. In particular,
we shall use the LJF and LKF focused proof systems of [60] (see Figures [5| and
since they offer a framework in which most other focused proof systems can be seen as
subsystems.

1.3 The atoms, molecules, and chemistry of inference

The sequent calculus of Gentzen (especially as it is refined by Girard in linear logic
[41]) provides us with very small elements of inference: in particular, the introduction
rules for connectives, the structural rules of weakening and contraction (we shall avoid
Gentzen’s exchange rule), and the identity rules of initial and cut. We shall (informally)
refer to these inference rules as the atoms of inference. Sequent calculus proofs can be
rather chaotic in structure since the appearance of one occurrence of an inference rule
does not generally predict the occurrence of any adjacent inference rule.

Since focused proof systems are composed of alternating phases, we will be able
to identify entire phases with larger units of inference. Thus, we can say that focused
proof systems provide the rules of chemistry that identify which atoms stick together
(to form phases) and which separate to form boundaries (between phases). In classical
and intuitionistic logics, there is a great deal of flexibility in how such phases can be
constructed. We shall equate the molecules of inference (also called synthetic rules or
macro-level rules) with these phases.

This chemistry of inference will be used to build a framework for defining proof
semantics that satisfies the four desiderata laid out in [64] for a general notion of proof
certificates.

D1: A simple checker can, in principle, check if a proof certificate denotes a proof.
Simplicity is helped by the fact that the checker need only implement the atoms of
inference and the rules of chemistry. Since both of these are small and closed sets,
the checker size and complexity can, in principle, be limited.

D2: The format for proof certificates must support a wide range of proof systems. Since
the rules of chemistry allow for flexibility in how the atoms of inference can be
organized into phases, these phases can be made to match the reasoning steps
taken within different styles of proof.

D3: A proof certificate is intended to denote a proof in the sense of structural proof
theory. The ultimate elaboration of a proof certification involves the elaboration of
the molecules of inference into their constituent sequent calculus inference rules.
Thus, a sequent calculus proof is implicitly built during checking, satisfying this
desideratum.

D4: A proof certificate can simply leave out details of the intended proof. Thus a proof
checker must be able to do some proof reconstruction. As we shall illustrate later, the
search space for focused proofs will only use allowed molecules and will not produce
unintended molecules of inference by randomly assembling atomic inference rules.

1.4 Machine-machine transmission and checking of formal proofs

In what follows, we shall be concerned with formal and not with informal proofs.
Our goal is to describe how one machine might generate a proof that another machine
checks. There is no intention here that humans should be able to read or learn from such
formal proofs. It might well be the case that certain proof evidence is both formal and
human readable: such a happy accident is not to be expected in general. Of course, one
might want to browse and interact with formal proofs in order to understand them.
To that end, tools that allow such interactions might be built since, by desiderata
D3 above, formal proof semantics are not ad hoc structures because they ultimately
elaborate into sequent calculus proofs which have a rich meta-theory (including, for
example, cut-elimination).

2 Proof checking as computation and interaction

The Poincaré’s Principle [4] states that proofs do not need to contain computations
since computations are routine and can be performed by a proof checker without in-
structions coming from the proof. For example, a proof checker can verify that 242 = 4
without having computation steps occupy space in the proof. Most illustrations of this
principle generally view computation as a functional program: in particular, compu-
tation is deterministic. However, any general approach to proof representation should
also allow non-deterministic computation in the sense of relational programming. It is
well known that non-determinism is a powerful computing resource and if one is con-
cerned about the size of proofs certificates, non-determinism can help reduce the size
of certificates: witness, for example, the difference is sizes between deterministic and
non-deterministic finite state machines accepting the same language, or the difference
between the complexity classes P and NP. Also, a focus on non-deterministic com-
putations does not remove our ability to use only deterministic computations within
proof checking if one wishes.

Communication and interaction can also be seen as intimately related to proof
and proof checking. There are, of course, well-known connections between proof and
winning strategies in game theory [271[51[62]. We shall view proof checking as involving
interactions between the proof checker and the proof certificate.

2.1 Navigating a robot through corridors and mazes

In order to better illustrate the kind of interaction and computation that we have
in mind for proof checking, consider the problem of having a simple robot navigate
through the maze of offices and corridors in an office complex. The proof that there is
a path from office A to office B can be witnessed by navigating a robot through the

corridors and offices without going through or over walls. Navigation instructions can
be structured as follows.

When the robot is at the start of a corridor, we tell the robot (via a radio link) to
traverse that corridor. At that point, the robot can turn off its radio (to save power)
and compute its path through the corridor. Once the robot reaches the end of the
corridor, it turns on its radio again and waits for instructions to navigate the maze of
offices it has encountered. We would then interact repeatedly with the robot in order to
offer instructions (such as “turn left then forward 5m then turn right”) until it reaches
its final destination or another corridor. Thus, in this way, we can move through an
office complex with communications active only during actual mazes of office and not
during corridors.

Moving through corridors is a deterministic computation. Navigating a maze does
not necessarily require complete and precise instructions. If the robot has enough sen-
sors, the navigator can also give instructions such as “find the second left turn and take
that.” Non-deterministic computations can also be valuable here in this setting. For
example, every night, when the robot is guided back to the warehouse for recharging,
we can navigate the robot to the entrance of the warehouse and then ask it to search
the warehouse for an open electric plug. In principle, this computation might be non-
deterministic since there might be several such plugs and any one might be picked. We
might well expect, however, such a search to always terminate given our knowledge of
how warehouses are designed and how many other robots might be parked there.

2.2 Sorting out this analogy

When we present our first focused proof system in Section [4] its most striking feature
is that they build proofs in two different phases, called the asynchronous phase and
the synchronous phase. A robot moving down a long corridor can be modeled by
an asynchronous phase: that phase is characterized by determinate computations and
no communications. The robot moving through a maze of offices corresponds to the
synchronous phase where communications is useful in order to make a backtrack-free
path.

If one gives the checker some additional computational capabilities, we can, like
a robot with sensors and the ability to do search, give less explicit and less precise
instructions, such as, “the final destination is immediately behind one of the doors on
the right”. An implementation of proof checking within a logic programming setting
allows such high-level instructions to be effectively executed by the checker. In the
implementation of such a checker, a non-deterministic computation can be captured
via backtracking search.

3 Two proof systems for propositional classical logic

To illustrate how a sequent calculus proof system can be used to describe interactive
protocols, we consider in this section two different proof systems, LKneg and LKpos,
for classical propositional logic. In both cases, we shall assume that formulas are in
negation normal form (that is, negations have only atomic scope), that the logical
connectives are f, V, t, and A, and that sequents are one-sided. The soundness of both

;B AL T o

= start m store m it
AT FA;B,C, I -A;B, I’ FACT
A f, T FA;BVC, T F A D FA;BAC, T

Fig. 1 The LKneg proof system

~B; ;B F B;N,-A; B o

ﬁ start m restart m it

+ B;N; B; . FB;N;B1 + B;N;Bs
F B, N; BV Bs re{12} F BNt F B;N; B1 A B2

Fig. 2 The LKpos proof system

LKneg and LKpos is trivial to establish: their completeness follows directly from the
completeness of the LKF system that we present in Section [4]

3.1 LKneg and the invertible inference rules

The LKneg proof system (see Figure|l) will use only the invertible inference rules for
introducing both conjunction and disjunction. In this proof system, a sequent contains
two zones and is written as - A; ", where A is a multiset of literals, I" is a list of
formulas, and L (in the store rule) is a literal. Notice that the four introduction rules
and the store rule work only on the first member of the second zone of a sequent. A
dot is used to denote both an empty list and an empty multiset.

Clearly, the LKneg proof system describes a decision procedure for propositional
classical logic in the following sense.

1. Given a formula B, there is a unique derivation IIg of - B with premises of the
form F A;-. That is, I1g is functionally determined from B.

2. The formula B is a tautology if and only if every premise of IIg is such that its
first zone contains an atomic formula and its complement.

The implied decision procedure for proving B is first to build I/p and then check that
every premise in IIg contains complementary pairs of literals. Clearly, this decision
procedure is essentially the same as rewriting B into conjunctive normal form and
then checking that every disjunction in that normal form has complementary literals.
It is also clear that this decision procedure has exponential time complexity.

There is some non-determinism possible in this proof system in the sense that there
might be more than one way to decompose a multiset of literals into A, A, - A in the
init rule. For example, the formula (p V p) V —p can be seen as having two different
proofs.

3.2 LKpos and non-invertible rules

The LKpos proof system (see Figure|2)) uses the non-invertible inference rule for intro-
ducing disjunction. In this proof system, a sequent contains three zones and is written
as F B; A; C, where B is a (fixed) formula, A is a multiset of negated atoms, and C' is
a formula. Notice that introduction rules only introduce the formula in the third zone

CHB; ;B Ck+ B;N,-A;B

C+B start Ck B;N;-A empt B;N,—A; A

CF BN B C+ BN, B L+ B;N;Bi R\ B;N;B»
I(C)FB;N;B1VBy 7(C)FB;N;B1V By emphk B;N;t c(L,R) - B;N; B1 A By

restart init

Fig. 3 The LKpos proof system augmented with a certificate

(C.emp) F B; ;B (LOYE BN, ~AB o init
Cr B start (I,O)F BN —A restar (I,LI)F B; N, -A; A 1N
(I,O)'-B;N;Bl <I,O>}—B;/\/’;B2

((I),0) - B;N; B1 V Ba (r(I),0) + B;N; By V Ba
(I, M)+ B;N; By (M,0) + B;N; By
(I,I) - B;N; ¢t (I,0) + B;N; By A Ba

Fig. 4 The LKpos proof system augmented with a certificate

of a sequent. The restart rule is responsible for both “storing” a negated literal in the
third zone as well as restarting the proof process by copying the formula B in the first
zone and placing it into the third zone.

The LKpos proof system does not yield a decision procedure in the same, direct
sense that LKneg does. In particular, the restart rule can lead to unbounded proof
search: consider, for example, proving F —p, for some propositional constant p.

The bottom-up development of an LKpos proof for a given sequent is determinate
except for the introduction rule for the disjunction. In that case, the proof system needs
to choose between the left and right disjunction. Thus, one could view the essence
of a proof in LKpos as the information needed to answer that one question every
time a disjunction is encountered (reading proofs from conclusion to premises). It is,
thus, an easy matter to develop a certificate for LKpos proofs that explicitly provides
those choices. Such a certificate can be formalized using terms built from the following
constructors: [and r are constructors of one argument, c is a constructor of 2 arguments,
and emp is a constructor of no arguments. Notice that the formula (-p V ¢q) V p (for
propositional constants p and ¢) has a proof in LKpos that is given by the term
I(I(r(emp))): that is, [(I(r(emp))) - (=pV q) V p is provable using the rules in Figure 3]

This notion of certificate is similar to the use of “oracles as streams of bits” as rep-
resentations of proofs in [(2]. More precisely, the certificate structure used in Figure
is better named an oracle tree since it uses a binary constructor c¢ to pair together
two other oracle trees. A simple variation of the certificate format described above can
reorganize the choices of left/right into, instead, oracle strings. Consider removing the
c constructor and use, instead, a pair of two oracle strings. Figure@ contains a suitably
instrumented version of the LKpos inference rule: there, a certificate is such a list of
left /right choices but internally to the proof system, a pair of such lists is used. In
general, when an inference rule is labeled with the certificate term (I, O), then O is a
tail of the list I and the formal difference between these two lists is the sequence of
left /right choices that were consumed in building this proof.

3.3 A proof system can yield a protocol

The description of a specific proof of a given formula in LKneg and in LKpos are
radically different. For example, consider interacting with someone (called the checker)
attempting to build a proof bottom-up in LKneg: except for the init rule, there is no
choice in how the proof building process is conducted. At every step, the checker simply
needs to apply the only rule that is possible in the only way that is possible. With the
init rule, a choice is possible since we need to select a complementary pair of literals
from a multiset of literals and there can be multiple such pairs. Our interaction with
the checker building such a proof might either involve telling her the pair or letting her
find such a pair on her own, given that such a search is bounded and simple.

On the other hand, assume that the checker is attempting to build a proof in LKpos.
Here, the checker will need to ask from us what to do with every disjunction: should
she select the left or right disjunct? There is also a choice in the init rule again: this
time, the choice is between possibly different negated atoms within the A/ zone to pick
and we can let the checker search for her own answer to the init question.

Consider how these two protocols work on the formula (—pVC)Vp, where C is some,
possibly large propositional formula. This formula is clearly a tautology. A checker
building an LKneg proof will initially fall silent and build a possibly huge derivation,
stopping only when she wants to apply the init rule (then either asking for a pair of
complementary literals or searching for them). Of course, a possibly exponential (in the
size of C') number of such premises might be built and p and —p will occur in every one
of them. Thus, this checker might run in exponential time but consume no information
from an external source. Therefore, checking time can be exponential but interaction
can be constant sized. On the other hand, the LKpos proof can consume some ‘“clever”
information from a proof certificate and, as a result, terminate quickly. In particular,
the certificate (I(r(emp))) can steer the (augmented) LKpos proof system to a proof
independent of the formula C. Thus, if we are willing to communicate some information
to the checker, we can have drastic improvements in checking time.

We shall now present a more ambitious proof system for classical logic, one that, in
a sense, mixes the inference rules in LKneg and LKpos into one, hybrid proof system.
It will also include first-order quantification.

4 LKF as a framework for classical focused proofs

Figure [5| presents the LKF focused proof system for first-order classical logic [60]. The
sequents of this proof system contain polarized formulas instead of ordinary (unpolar-
ized) formulas. A polarized formula results from taking an ordinary first-order classical
formula and replacing every occurrence of propositional connectives and constants with
the corresponding occurrence of a positive or negative version of that connective or con-
stant. The polarized versions are formed by affixing a superscripted + or — symbol.
Thus, an occurrence of V can be replaced by an occurrence of either vior v .If B
is a formula with n occurrences of propositional connectives and constants then there
are 2" different polarized versions of B. The quantifiers have unambiguous polarities:
the existential quantifier is positive and the universal quantifier is negative.

A polarized formula is positive if its top-level connective is a positive connective
(\/+, NI A 3) or an atomic formula. Similarly, a polarized formula is negative
if its top-level connective is a negative connective (V_, A, ¢t~ , f~, V) or a negated

10

ASYNCHRONOUS INTRODUCTION RULES

FI A0 +FIL4BO IO FI4ABO FI'fly/z]B,6
FLt50 FIYAA B,O FI{f50 FIfAV-B,O I {1Vz.B,O

SYNCHRONOUS INTRODUCTION RULES

FIyB, FI'|B FIlB; e (1,2} =14 [t/z]B
Fryet F Iy By AT By F Iy BVt By ’ FIy3z.B
IDENTITY RULES
- FI'fB FIf-B .
F-pP, 4P "™ FTq- e
STRUCTURAL RULES
FLL,CHO . FIWN . FP,FUPd .
'_Fﬂc’@SOTG l_l_,uNreease '—P,Fﬂ‘ eclae

Here, P is a positive formula; N a negative formula; P, a positive literal; C' a positive formula
or negative literal; and —B is the negation normal form of the negation of B. The proviso
marked as f is the usual eigenvariable restriction: y is not free in @, in I, nor in Vz.B.

Fig. 5 LKF: a focused proof systems for classical logic

atomic formula. The notion of de Morgan duals is extended to polarized connectives
following the pairing t~/f*, t*/f~, vt /A~, v~ /AT, and ¥/3. Negation is not a proper
logical connective: we assume that all classical formulas are in negation normal form,
meaning that the = symbol has only atomic scope. When we write - B, for a non-atomic
polarized formula B, we mean the polarized formula that results from computing the
de Morgan dual of the connectives and literals within B. We shall sometimes refer to
polarized formulas as simply formulas when it is clear from context which we mean.

The LKF proof system uses two kinds of sequents. The up-arrow sequents - I" 4} ©
and the down-arrow sequents - I" |} B. In both cases, I" is a multiset of formulas, ©
is a list of formulas, and B is a formula. We say that the up or down arrows divide
sequents into two zones, namely the collection of formulas to the left or to the right of
the arrow. The left zone is called storage. It is most accurate to consider such sequents
as one-sided sequents since these two sequents can be approximated as the sequents
F 1,0 and F I, B, respectively. Introduction rules are applied to the first element of
the second zone of both of these sequents.

Proofs in LKF are built using two kinds of alternating phases. The asynchronous
phase is composed of invertible inference rules and only involves f}-sequents in the
conclusion and premise. The other phase is the synchronous phase: here, applications
of such inference rules often require choices. In particular, the introduction rule for the
disjunction requires selecting either the left or right disjunct and the introduction rule
for the existential quantifier requires selecting a term for instantiating the quantifier.
The initial rule can terminate a synchronous phase and the cut rule can restart an
asynchronous phase. Finally, there are three structural rules in LKF. The store rule
recognizes that the first formula to the right of the {} is either a negative atom or a
positive formula: such a formula does not have an invertible introduction inference rule
and, hence, its treatment is delayed by storing it on the left. The release rule is used
when the formula under focus (i.e., the formula to the right of the {) is no longer
positive: at such a moment, the phase changes to the asynchronous phase. Finally, the

11

decide rule is used at the end of the asynchronous phase to start a synchronous phase
by selecting a previously stored positive formula as the focus.

Notice that negative non-literal formulas are treated linearly in the sense that they
are never weakened nor contracted. Only positives formulas are contracted (in the
decide rule) and only negative literals and positive formulas are weakened (in the init
rule). The following theorem about LKF is proved in [60].

Theorem 1 Let B be a classical, first-order formula.

1. If B is a theorem then for every polarization B of B, the sequent - - f B has an
LKF proof.

2. If Bisa polarization of B and if = - {} B has an LKF proof then B is a theorem.

8. If a sequent has an LKF proof, it has a cut-free LKF proof.

The right zone in the up-arrow sequent is a list. It is possible to make that zone into
a multiset instead but we refrain from doing this for two reasons. First, the completeness
of LKF (Theorem [1)) is a stronger result when the © context is a list, and second, the
behavior of proof construction in LKF' is more deterministic and that lends itself to a
more predictable protocol between a proof checker and proof certificate.

It is straightforward to prove the completeness of the LKneg and LKpos proof
systems given Theorem |1} In particular, the LKneg system corresponds to using LKF
when all propositional connectives have been polarized negatively and the LKpos sys-
tem corresponds to using LKF when all propositional connectives have been polarized
positively. In the late case, the rule called restart in LKpos is a combination of the
LKF rules store and decide.

Ezxample 1 In order to present a simple macro-level inference rule, assume that I
contains the formula a AT b AT —c. An LKF proof in which the root inference rule is a
decide rule applied to this formula must have the following form.

FI,—cf-
N o 7FF'(T—|C store
FTla init FTUb init m release
FIyantbAt —c ,
decide

T

Given the design of the focused initial rule, this derivation is possible if and only if I is
of the form —a, —b, I"". Thus, deciding on this formula encodes the following synthetic
inference rule.
F —a, b, —c¢, I 1 -
F—a,—b, I 1 -

While checking the applicability of individual sequent calculus inference rules can
be done effectively, checking synthetic inference rules may, in fact, require exponential
time and or space: consider, for example, the synthetic inference rules that correspond
to the LKneg proof system. Thus, synthetic rules are not always inference rules in the
sense of Cook [23] where inference rules must be polynomially checkable.

12

ASYNCHRONOUS RULES

E1EI 1O fo(E0,E1) E1ETI A6 EbETNB,0 AdEo, E1,52)

SEoFI'Nf,0 EoFT'fYAN B,O
E1-I'NAB,O Vc(Z0,E1) (Z19)F T (By),® Ve(Z0,51) ;
SoFTftAV- B,© ST f1t=,0 S0+ T (\Vz.B,©
SYNCHRONOUS RULES
te(E()) =1k FUBI = FUBQ Ae(Eo,El,Eg)
ok T itt Zo+ Il By At By
E1-IU B Ve(Zo,Z1,1) E1 T U (Bt) (20, 51,t)
Zo Tl BVt By ZoFTy3B
IDENTITY RULES
E\FT{B S3FT{1-B cut.(=o,Z1,50,B) l: =P, el inite(Zp,l)
— cut — init
SEokT1- EoFT | P,
STRUCTURAL RULES
E1 TN releasec(Zo, Z1) E1-TyP 1: Pel decidee(=Zo,=1,1))
ZFTUN release R decide

E1-: CHO store.(=o, =1,l)
oI fCe
The proviso T requires that y is not free in =, ©, I, B. Notice also that in that same rule = is

a term-level abstraction over certificates and B is a term-level abstraction over formulas (as it
is also in the J-introduction rules).

store

Fig. 6 The augmented LKF proof system LKF®.

5 Augmented LKF and checking certificates

We are now in a position to describe in detail how the LKF proof system can be used to
provide a protocol for mediating the communications between a proof checker, whose
architecture is described in this section, and foundational proof certificates, introduced
in the following section.

We present an analogy to help convey the spirit of the intended protocol. Imagine
an accounting office which is charged with checking if a certain mound of financial
documents represents a legal transaction as judged by some particular tax code. The
tax office staff is divided into two groups. The workers called experts are given the
responsibility of looking into the mound and extracting information: they must decide
into which series of transactions to dig and they need to know when to release their
findings for storage and later reconsideration. On the other hand, the workers called
clerks are responsible for taking information released by the experts and performing
various computations on them, including their indezing and storing. The justification
of this division of effort between clerks and experts comes from the structure of focused
sequent proof systems: experts operate during the synchronous phase of proof construc-
tion while clerks operate during the asynchronous phase. Furthermore, the vocabulary
of decide, release, and store comes directly from the structural rules of LKF.

A formal definition of the augmentation of LKF, seen in Figure [6 is presented
along three directions.

13

1. Every sequent in every inference rule is decorated with an additional argument,
labeled as =, =7, or Z5. These additional arguments are certificate terms or just
certificates, for short.

2. The first zone in all sequents has been changed from being a multiset of formulas
to being a multiset of pairs of the form [: B where B is a formula and [is an
index. Along with this change, the store and decide rules refer to indexes as well
as formulas.

3. Every inference rule in LKF' (except the introduction rule for ¢7) is given an extra
premise which is an atomic formula with a top-level predicate that is either a “clerk
predicate” (subscripted with the letter “c”) or an “expert predicate” (subscripted
with the letter “e¢”). The definition of these “agents” provide the formal meaning
of certificates terms.

The LKF proof system can be recovered from LKF? by removing all occurrences
of the syntactic variable = and by removing all premises with a subscripted e or ¢ as
well as replacing all occurrences of tuples such as [: B with just B. For this reason,
any proof in LKF® is a proof in LKF, which guarantees the soundness of the LKF®
system.

An implementation of the augment focused proof system LKF® will be called a
kernel (for LKF). We describe in the next section the items that must be added to
the kernel—formal definitions of clerks and experts as well as the data structures
for indexes and certificate terms—in order to construct a complete proof checker. In
Section [8] we describe how to build a kernel along similar lines for intuitionistic first-
order logic and in Section we describe an approach to implementing kernels using
the AProlog programming language.

6 Foundational proof certificates

A foundational proof certificate consists of a proof object written in a suitable language
along with the semantic definition of that language. A proof language is given meaning
by specifying how a proof object written in it can unfold into a sequent calculus proof,
in the same way a programming language is given meaning by specifying how its
instructions can be interpreted using some other low-level programming language (e.g.,
assembly language). The sequent calculus is arguably standard enough to serve as the
“assembly language of proof languages”. While a kernel based on it may not be able
to deal with certain aspects of proofs—such as “is this proof minimal”—it can provide
a means to ascertain that a given logical formula is a theorem.

The semantic definition of a class of proof objects is given through the specifica-
tion of five parameters. A proper proof certificate is then a pair, containing a specific
proof object and a reference to the formal semantic definition that is then used by
an implementation of LKF® to provide a proof checker for that proof object. The five
parameters—polarization, certificate terms, indexes, clerks, and experts—are described
below and are, collectively, called an FPC.

Polarization. Since provers work with unpolarized formulas but LKF“ requires polar-
ized formulas, the first step in specifying a proof semantics involves choosing how to
polarize formulas. Exactly how to choose polarity depends on many considerations.
For example, an inspection of Figure [f] shows that the decide rule incorporates the

14

only occurrence of the contraction rule. Therefore a positive polarity must be given to
formulas that one wishes to make “contractible”. Similarly, if one wishes to perform a
deterministic computation within a proof—such as reducing a clause to a multiset of its
literals—then all the connectives in such a clause need to be given a negative polarity.
There is a great flexibility in polarizing connectives since it is possible to polarize some
occurrences of disjunctions and conjunctions as positive and some as negative, even
in the same polarized formula. Finally, the polarity choice of atoms can also greatly
influence the proofs one gets. Each atom can receive either a positive polarity (turning
the negation of that atom into a negatively polarized atom) or a negative polarity
(turning the negation of that atom into a positively polarized atom). In LKF we have
chosen to give all atomic formulas positive polarity: another treatment of the polarity
of atoms is described in Section

Certificate terms. The signature for the certificate terms augmenting the LKF sequents
(via the schema variable =) must be declared. When we explicitly list such signatures
below, we will identify constructors of certificate terms as any constant whose type
has target type cert. The different constructors are used to denote different “regions”
of the proof checking/reconstruction process: generally speaking, the clerk and expert
relations operate differently in different regions of the proof checking process. Terms
of type cert are threaded throughout the LKF® inference rules in a systematic way.
Because they are, in essence, the containers of a proof’s evidence, these terms will often
be referred to simply as “certificates”.

Indexes. The store and decide inference rules are responsible for moving formulas in
and out of storage. When a formula is put into storage using the store rule, it is assigned
an index and when we need to take a formula from storage in the decide rule, that
formula is addressed via an index. The exact structure of indexes is open to the author
of an FPC: in what follows, an index is any term of type index. Examples of indexes
can be numbers (such as de Bruijn indexes or clause numbers in resolution refutations).
They can also be terms representing occurrences of subformulas with a formula. There
is no assumption that indexes uniquely determine formulas: in some of the examples
we present starting in Sectionm many stored formulas have the same label: thus, when
the decide rule selects a formula by supplying an index, the dereferencing of that index
might be non-deterministic. Formulas can themselves be used as indexes in which case
such dereferencing is, of course, deterministic.

Ezperts. The synchronous inference rules in the augmented proof system LKF® are
given an extra premise that invokes an expert predicate that is responsible for ex-
amining a certificate term and extracting information from it, yielding continuation
certificates in the process. For example, the existential introduction rule invokes the
existential expert predicate in order to extract a term for witnessing the existential in-
stance. Keeping with the theme of making the FPC framework as flexible and general
as possible, experts may not exhibit actual expert behavior. For example, when the
disjunction expert is asked which disjunct to select, it might suggest both left and right.
Similarly, the exists expert is allowed to guess at any (every) term. This kind of flexibil-
ity is desirable since deterministic behavior is certainly allowed but non-determinism is
more general. The proof context itself might be a useful way to determine (via search)
the value of an existential witness. In other words, sometimes the best thing an expert

15

can do is to let the checker search for the right instantiation term. We illustrate this
below in, for example, the resolution refutation checker.

Clerks. The asynchronous inference rules in the augmented proof system LKF® are
given an extra premise that invokes a clerk predicate that specifies the computations
that take place in that phase. For example, clerks are used to compute indexes for use
in the store rule and, if necessary, on which branch of a two-premise inference rule the
proof checking phase continues.

When we present examples of FPCs in the following sections, we use the concrete
syntax of AProlog [66]. We make this choice for several reasons [I§]. First, it is useful to
have a typed specification language so that we can explicitly specify the constructors
of different datatypes denoting, for example, indexes, certificate terms, and formulas.
Such declarations can be written as AProlog signatures. Second, clerks and experts are
relations that are defined by inductive specifications: the Horn clauses available within
AProlog immediately and naturally allow such definitions to be written. Third, the
A-tree syntax approach to treating bindings available in AProlog yields an immediate,
declarative, and effectively implemented approach to the computational treatment of
formula-level bindings (quantifiers) and proof-level bindings (eigenvariable). In any
case, the use of A\Prolog syntax is only one of convenience: when we use that syntax we
are describing nothing more than formulas in, say, Church’s Simple Theory of Types
(STT) [22]. No non-logical features of AProlog are used in this paper. All the AProlog
code described in this paper is available [20].

For readers familiar with, say, Prolog or ML, the syntax of AProlog should be easy
to read. We illustrate here two specific aspects of AProlog’s design: the syntax for
signatures and the syntax for term and formula binders.

To introduce a new type constructor, a kind declaration is used. Following the
example in Section the line

kind oracle type.

can be used to declare a new type called oracle. Introducing the constructors for
building terms is done with type declarations. For example, the type declarations

type emp oracle.
type 1, r oracle -> oracle.
type c oracle -> oracle -> oracle.

introduce four constants that can be used to build oracles.

The A-abstraction is written as an infix backslash: that is, the term A\z.t is written
in AProlog syntax as x\ t. The scope of this infix operator extends to the right as far
as possible consistent with parentheses: thus, (x\ y\ z\ t) is the AProlog encoding
of Az(Ay(Az.t)). Following Church [22], quantifiers in formulas are decomposed into
a A-binder and a constant denoting that quantifier. Thus, the existential and univer-
sal quantifiers 3z.B and Vz.B that are part of AProlog specifications are written as
(sigma x\ B) and (pi x\ B), respectively. Later in Section [9.2] we will need to ex-
plicitly encode first-order universal formulas as terms and in that encoding, we shall
similarly decompose that object-level quantifier, using the constant forall (instead of
pi which is used to denote the AProlog universal quantifier).

While we use AProlog code to specify most aspects of particular FPCs, it is only
meant to convey the formal semantic definition of a proof format. Whether or not
one actually uses AProlog to implement a proof checker for the defined proof format

16

is a separate concern. We have used the Teyjus [71L[80] implementation of AProlog to
build prototype proof checkers and to debug our FPC specifications. A number of other
means for implementing a formal semantic definition can, of course, be considered. The
logic programming perspective on proof checking is, however, rather powerful since it
incorporates in a familiar and systematic fashion unification and backtracking search.
Both of these tools can play useful roles in proof reconstruction during proof checking
[65].

7 Examples of FPCs in classical, first-order logic

We shall now present examples of FPCs in classical logic. For each example, the se-
mantic definition follows the same steps:

1. Provide a mapping of unpolarized formulas into polarized versions. Since the fo-
cused proof system LKF has twice the number of propositional connectives as stan-
dard first-order logic, one must decide how to treat, for example, the disjunction:
is it treated as invertible or not. The actual polarization for propositional connec-
tives and literals is chosen in concert with choosing the definition of the clerks and
experts (item 4 below).

2. Provide constructors of the type cert: this type is used to build the certificate
terms that are represented by the schema variable = in Figure [f]

3. Provide constructors of the type index: this type is used to represent legal indexes
that are represented by the schema variable [in Figure [f]

4. Define the clerk and expert predicates.

Note that if an n-ary predicate (clerk, expert, or otherwise) is not specified by any
clauses, that predicate will never be provable and, hence, denotes the empty relation
on n arguments.

The names for clerks and experts will be written as tokens with three components:
the name for the connective introduced or the name for the structural rules, the string
_k, and either the letter e (for expert) or ¢ (for clerk). When we later present clerks
and experts for intuitionistic logic, we replace the _k with _j. For example, orNeg kc
is the V¢ clerk predicate from Figure

7.1 CNF decision procedure

In Section we introduced a proof system (and decision procedure) for propositional
classical logic that used only invertible introduction rules. We can describe an FPC that
can steer the LKF proof system to emulate the same proof system as follows. First, we
translate unpolarized, propositional classical logic formulas into polarized formulas by
translating A, t, V, fas A~ ,t",V ,and f~, respectively. The rest of this FPC is given
in Figure[7] In particular, we declare each of the types cert and index as having exactly
one member each, namely, cnf and 1it, respectively. Thus, the certificate essentially
contains just the name of a decision procedure and the only index used will have the
name 1lit. Finally, meaning is given to both of these constructors as well as to the four
clerk and the three expert predicates

Ae(yy), fe(yr), storec(s,-,), Ve(:,-), releasec(-,-), inite(-,-), and decidee(-, -,).

17

type 1lit index.
type cnf cert.
andNeg_kc cnf cnf cnf.
orNeg_kc cnf cnf.
false_kc cnf cnf.
release_ke cnf cnf.
initial_ke cnf 1lit.
decide_ke cnf cnf 1it.
store_kc cnf cnf 1it.

Fig. 7 An FPC providing a decision procedure based on conjunctive normal forms

by the theories for these predicates displayed in Figure[7] The clerk and expert predi-
cates not in this list are given an “empty theory” and thus do not hold for any argu-
ments.

As we have commented beifore (in Section , soundness is guaranteed: that is, it
is immediate to show that if B is the polarization of B using the negative versions of
disjunction and conjunction, then a proof of cnf F - {} B implies - B in classical logic.
We can also make the following additional observations about this FPC.

— If = F I'{} © is provable then = is the constant cnf and © is a multiset of pairs
lit : L where L is a literal.

— If ZF I' | B is provable then = and I" are as above and B is an atom such that
lit: B and 1it : =B are members of ©. An occurrence of such a sequent must be
both the premise of a decide rule and the conclusion of an initial rule.

Using these observations, the completeness of this encoding is simple to establish.

7.2 LKpos example

To provide a slightly more interesting notion of proof certificate, we can show how the
proof evidence (oracle strings) described in Section can be described as an FPC.
First, we translate unpolarized, propositional classical logic formulas into polarized
formulas by translating A and V as AT and VT, respectively (similarly for their units).
The rest of this FPC is given in Figure [B In particular, the type index has two
inhabitants: root is used to label the restart formula and 1it is used to label (negative)
literals. The proof certificate contains oracles, these have the same structure as the proof
evidence described in Section and Figure [3] Since more than one inference rule of
LKF* is needed to encode the start and restart rules of LKpos, additional constructors
are used in certificates to connect these two inference rules in LKF®.

7.3 Resolution refutations

Binary resolution is a popular form of proof and we demonstrate an FPC that is able
to check an alleged (binary) resolution refutation. We review the key ideas behind
resolution refutations.

A (resolution) clause is a closed formula that is composed of universal quantifiers
around a disjunction of literals (the empty disjunction is identified with false). We use

18

kind oracle type.

type emp oracle. % empty

type 1, r oracle -> oracle. % left, right
type c oracle -> oracle -> oracle. J conjunction
kind cert type.

type start, restart oracle -> cert.

type consume oracle -> cert.

type root, 1lit index.

decide_ke (start Oracle) (consume Oracle) root.

store_kc (start Oracle) (start Oracle) root.
decide_ke (restart Oracle) (consume Oracle) root.
store_kc (restart Oracle) (restart Oracle) 1lit.
true_ke (consume emp).

initial_ke (consume emp) lit.

orPos_ke (consume (1 Oracle)) (consume Oracle) left.
orPos_ke (consume (r Oracle)) (consume Oracle) right.

andPos_ke (consume (c Left Right)) (consume Left) (consume Right).
release_ke (consume Oracle) (restart Oracle).

Fig. 8 An FPC based on oracle strings

C' as a schema variable ranging over clauses. We assume that a certificate for resolution
contains the following items:

1. The proposed theorem —=Cj V ---V =Cy which is the disjunction of a number of
negated clauses.

2. A list of clauses Cp41,...,Cp.

3. A list of triples (i, 7, k) where each such triple claims that C}, is a binary resolution
(with factoring) of C; and Cj.

If the implementer of a traditional, binary resolution prover wished to output a resolu-
tion refutation, a document containing these items should be easy to provide. Of course,
for such a structure to denote a proper refutation, one of the clauses Cp41, ..., Cp (usu-
ally the last one) must be the empty clause (denoted here as false).

As before, the first step in defining an FPC is describing how to polarize formulas.
For this FPC, we polarize disjunctions and false in clauses as negative and the conjunc-
tion and true in negated clauses as positive. We shall always assume that clauses have
negative polarity and that negated clauses always have positive polarity. If, for exam-
ple, a clause is just an atomic formula A (which has positive polarity), then we must
write that clause as, for example, AV~ f~ . In what follows, the expression —C; denotes
a polarized negated clause, that is, an existentially quantified positive-conjunction of
literals.

The first phase in building an LKF® proof of the proposed theorem —C1V---V—-Ch,
is the asynchronous phase using the clerks described in Figure [J] that are responsible
for interpreting the cert constructor start. These clerks steer the LKF® kernel to
build the following augmented, synthetic inference rule.

(start (n+1) R) F (idx 1) : =C1,..., (idx n) : =Cp{t
(start 1 R) F(CyLV---V-Ch

That is, this initial phase of proof building simply stores the negated clause —C; with
the index (idx).

19

type idx int -> index.
type start int -> list method -> cert.

orNeg_kc (start C Resol) (start C Resol).
false_kc (start C Resol) (start C Resol).
store_kc (start C Resol) (start D Resol) (idx C) :- D is C + 1.

Fig. 9 Region one: Store the negated clauses that comprise the alleged theorem

kind method type.

type resol int -> int -> int -> method.

type rlist list method -> cert.

type rlisti int -> 1list method -> cert.

type rdone cert.

type lemma int -> form -> o.

cut_ke (start C Resol) C1 C2 Cut :- cut_ke (rlist Resol) C1 C2 Cut.

cut_ke (rlist (resol I J K::Rs)) (dlist [I,J]) (rlisti K Rs) Cut :-
lemma K Cut.

store_kc (rlisti K Rs) (rlist Rs) (idx K).

decide_ke (rlist []) rdomne (idx I).

true_ke rdone.

Fig. 10 Region two: a sequence of cuts leading to the selection of the empty clause

The second phase in building this proof involves translating the resolution steps
into uses of the cut rule. An inspection of the inference rules in Figure [6]shows that the
only inference rules that are available when the context on the right of the 1} is empty
are the rules for cut and for decide. The specification in Figure shows that when
the certificate term has start as its top-most constructor, that certificate can only be
used to build a cut-inference. In particular, if the list of resolvents R has (i, j, k) as its
first triple, then the cut-formula will be taken from the list of lemmas at position k.
Note that the predicate lemma is not part of the kernel but is code supplied by the
resolution refutation certificate: we use this predicate as a convenient storage for the
additional resolvents Cj,41,...,Cp.

If the first resolution step claims that clauses C; and C; (i,j € {1,...,n}) resolve
together to yield Cj then this claim is translated into the following proof fragment.
Here, I" denotes the context (idx 1) : =C1,..., (idx n) : =Ch.

(rlist R) F I, (idx k) : =Cpft
(dlist [4,j1) F I Cy (rlisti R k) F I —C
(start (n+1) (resol i j k::R) FI'{

store

cut

Note that the constructor rlisti is used to link the store inference rule (which needs
an index, here, k) and the cut rule (whose certificate terms contains the needed index).
This proof fragment reduces proof checking to two subproblems. The left premise con-
tains the subproblem of showing that the clause C}, is derivable using the context I" (in
particular, using only clauses C; and C;). The right premise contains the subproblem
of showing that the enlarged sequent F (idx 1) : =Cy,..., (idx (n+1)) : =Cpp1f
can be checked using the remaining resolution triples. The search for a proof of the
right premise will now be guided by the constructor rlist which will cause all the
resolution triples in its argument to generate, in a similar fashion, additional cut in-
ferences. Once no more triples are stored in the certificate term, that is, the proof

20

type 1lit index.

type dlist list int -> cert.

all_kc (dlist L) (x\ dlist L) & orNeg_kc (dlist L) (dlist L).

false_kc (dlist L) (dlist L) & store_kc (dlist L) (dlist L) 1lit.
decide_ke (dlist L) (dlist [J]) (idx I) :- L = [1,J] ; L = [J,I].
decide_ke (dlist [I]) (dlist [1) (idx I).

decide_ke (dlist L) (dlist []) 1lit :- L = [I]; L = [].

initial_ke (dlist L) 1lit.

true_ke (dlist L).

andPos_ke (dlist L) (dlist L) (dlist L).

some_ke (dlist L) (dlist L) T.

release_ke (dlist L) (dlist L).
Fig. 11 Region three: a short proof checks an individual resolution step

reconstruction process reduces the proof certificate on the right branch of the proof to
the term (rlist []), the final step of that branch is the following proof fragment.

+
rdone - (idx 1) : =Cy,..., (idx p) : =Cp | ~C; ¢)
(rlist [1) F (idx 1) : =Cq,..., (idx p) : ~Cpf decide

The decide rule expert for the certificate term (rlist []) provides no special infor-
mation as to which index to select to start the focused phase: instead, it is allowed to
succeed with any index. At the same time, the certificate term is changed to rdone
and proof checking with this certificate term can succeed if and only if the formula
under focus, namely —C}; is t+ and this is only possible if C; is f~ (the empty clause).
Thus, the forced pairing of the decide rule and the t+ rule guarantees that this branch
terminates only if an empty clause has been reached. While we can restrict that empty
clause to be Cp, that is not necessary.

We are left with checking a series of subproofs of augmented sequents of the form
(dlist [4i,51) F It Cg, where the resolution refutation information contained in
the triple (4,7, k). It is a simple matter to prove the following: if clauses C; and Cj
yield resolvent C} as a binary resolvent (allowing also factoring), then there exists a
shallow, focused proof of the sequent = —C;,=C} ft Ci. In particular, this proof can
be characterized as being built by focusing first on —C; then on =C; or by focusing
first on =C; then on —Cj. In either case, that proof may need to be terminated with
one additional decide rule but this time on a literal. Thus, such a proof is bounded by
at most three decide rules: such proofs will, in principle, be easy to reconstruct. The
clerk and expert clauses in Figure actually describe the full details of how such a
proof can be built. In particular, left premises of the cut rules will all start with proof
fragments that have the following shape.

(dlist [4,51) F T lit: pLy,...,lit: pLgf
(dlist [i,51) F I Cy

Here, we assume the following.

— The clause C}, is of the form VZ[L; V™ ...V~ Lg] for a list of variables Z and a list
of literals L1, ..., Lq.

— The context I’ is of the form (idx 1) : -C1,..., (idx m) : -~Cy, for some m such
that n <m <gq

21

— The substitution p denotes some renaming of the variables in the list Z and new
eigenvariables that have been inserted by the V-introduction rule.

Thus, this initial phase of proof construction essentially dissolves the clause C}, into
eigenvariables and a collection of stored literals. At this point, the decide expert pred-
icate non-deterministically selects either ~C; or —C; to start the synchronous phase.
Which ever clause is selected, the certificate term will have the corresponding index
withdrawn so that the next time the decide rule must select an index, the other index
will be selected. Finally, the proof is completed by either attempting to prove AT or
by selecting a literal which has a complement in the same context.

Ezample 2 Consider the following theorem, written as the disjunction of three negated
clauses.

~(r 2) V" Ba.(r 2) AT =(r (k2)] VT (r (k (k (k (k 2)))))

A resolution refutation for this formula can be given by making the following additional
assumptions used to name the clauses generated by resolutions.

Ve (r (k (k 2)))).
zo(rx) Vo (r (k (k (k (k2))))))-

lemma 6 (r (k (k (k (k 2))))).

lemma 7 f~

lemma 4 (Vz.—(r z)

lemma 5 (V.

Finally, the following certificate term denotes a particular resolution refutation that
can be used to prove the proposed theorem above.

start 1 (resol 2 2 4 :: resol 445 :: resol 1 56 :: resol 6 3 7 :: nil)

The indexes 1, 2, and 3 refer to the formulas that are stored in the first steps of the
proof construction.

One can specify various generalizations and specializations of this technique, in-
cluding, for example, hyper-resolution. We present here a simple variation to account
for factoring. If clause C; results from factoring in clause C;, then there is a simple
proof of the sequent - =C; {+ C; and this proof can be guided by the clerk and expert
clauses contained in Figure[T2} In order to accommodate factoring as a refutation step,
the type declarations in Figure [12]include a new construct of type method: the certifi-
cate term (factor ¢ j) that claims that clause C; results from factoring in clause Cj.
Similar to the treatment of the dlist constructor above, this certificate term instructs
the proof checking engine to first decide on =C}; and attempt to finish the proof using
only decides on literals.

Note that the proof certificate for resolution does not contain any explicit informa-
tion regarding how quantifiers should be instantiated: while this kind of information
can be included in the proof certificate, it seems far more natural and compact to leave
it out. This is particularly true in the setting of first-order logic where unification is a
simple and decidable operation. An implementation of the proof checking machinery
directly in a logic programming language, such as AProlog in these examples, makes
the reconstruction of substitution instances a simple feature of the above definition of
the resolution refutation format.

One final observation to make about this checker for resolution refutations: while
we have described a sound checker, one might wish to have a converse guarantee,

22

type factor int -> int -> method.
type factr int -> cert.
type fdone cert.

cut_ke (rlist (factor I K ::Rs)) (factr I) (rlisti K Rs) Cut :-
lemma K Cut.

all_kc (factr I) (x\ factr I).

orNeg_kc (factr I) (factr I) & store_kc (factr I) (factr I) 1lit.

false_kc (factr I) (factr I) & decide_ke (factr I) fdone (idx I).

true_ke fdone & andPos_ke fdone fdone fdone.
some_ke fdone fdone T & decide_ke fdone fdone 1lit.
release_ke fdone fdone & store_kc fdone fdone 1lit.

initial_ke fdone 1it.

Fig. 12 Describing how to check factoring between two clauses

namely, that if the checker succeeds with a given certificate term, then that term
denotes a proper resolution refutation. That property is not, however, the case for the
certificate format that we have described above. For example, while the resolution of
Va[p(z) Vr(f(z))] and Ve[-p(f(z))Vq(x)] is Vz[r(f(f(z))) V ¢(x)], the following clause
is also provable.

= 3z[=p(x) A =r(f(2))], Fzlp(f(2)) A =g(@)] 4 V2[r(f(f(F(2))) Va(f (@) v s(f(2))].

This formula is similar to a resolvent except it uses a unifier that is not most general
and it has an additional literal. The proof certificate mechanism above will actually
validate this entailment which is not a problem from the point-of-view of soundness.

8 Intuitionistic first-order logic

The structure of sequent calculus proof for intuitionistic logic is usually presented
with a two-sided sequent calculus and with the restriction that there is at most one
formula on the right-hand side of the sequent [39]. The sequent calculi of classical and
intuitionistic logics are close enough to make it possible to give a focusing system for
intuitionistic first-order logic that has many similarities with focusing in classical logic
(see Section [10| for a detailed relationship between focusing in these two logics). Below
we describe the LJF proof system for focusing first-order intuitionistic logic [60].

8.1 The LJF focused proof system

Focused proof systems involve polarized formulas. As we observed in the classical case,
both the conjunction and disjunction (and their units) can be polarized either positively
or negatively. When moving to the intuitionistic setting, we find that there are, indeed,
two polarities for conjunction and for truth which we write as AT, AT, tT, and ¢7. On
the other hand, there are not two polarities for V but rather the two connectives V"
and D. As a result, we shall simply write V instead of V™ and write its unit as f instead
of f¥. The polarity of D is negative and it has no unit. The polarities for V and 3 are
the same in the intuitionistic setting as in the classical setting.

In LKF, the polarity of atomic formulas was set globally to be positive. One could
instead arbitrarily assign polarity to atomic formulas although such flexibility is not

23

ASYNCHRONOUS RULES

T'fAF B rcy-Af I'ft B
I'ff FADBY I'ft AN BY I'ff Ht q
't - ly/=]Bf I'©[y/=]B,OFR
I'f FVYz.BA I'#3z.B,O+FR r'ftf,OFR
I'ftABOFR I'fOFR I'fA6FR I'tB,OFR
I'fANtB,OFR Ittt OFR IT'ftfAVB,OFR
SYNCHRONOUS RULES
I'+Al TI'|lBFR AU I'JA;F R
TVADBFR THFA VA TLA A~ AsFR
I'+Al TI'vBJY I} [t/z]B+ R I't[t/z]B |
I'FAAT B et TyVz.BFR T+3z.By

IDENTITY RULES

I't-F{ TI{FFf{R

nit L
TUNGEN, ™ T hrpy ™ 't F 1R cut
STRUCTURAL RULES
F,N{}NI—Rd » I'-PJ decid I'tPF TR . 't ENA1 .
NI F TR ecide; ThFqP ecide, TIPFR release; TN release,
C,THTOFR I't+ 14D
———— storep ————— store,
I'fC,OFR 't +-Dp

Here, P is positive, N is negative, C is a negative formula or positive atom, D a positive
formula or negative atom, N, is a negative atom, and P, is a positive atom. Other formulas
are arbitrary.

Fig. 13 The intuitionistic sequent calculus LJF.

necessary in a classical setting: for example, if one wishes to have the atomic formula p
positive but the atomic formula g negative, one could simply change all occurrences of ¢
to g and once again assume that ¢ is positively polarized. Note that the intuitionistic
negation B D f is always negative no matter the polarity of the formula B. Thus in
intuitionistic logic, the option of assigning polarities to atomic formulas arbitrarily is
an important choice.

The synchronous sequent in LJF comes in two kinds, namely, the left focused
sequent I' || B + R and the right focused sequent I' = B |}. In both of these cases,
the formula B is under focus. Asynchronous sequents also come in two kinds, namely,
'@+ Ry or 'O F {t R. In both the synchronous and asynchronous sequents, B and
R are formulas and the zone marked with I" is a multiset of formulas while the zones in
asynchronous sequents marked with © are lists of formulas. We shall sometimes write
an asynchronous sequent as I' {} © - R where R can be of the form f R or R 1.

The inference rules for LJF are given in Figure The basic structure of LJF is
rather similar to that of LKF in that they both classify inference rules as either identity
rules (initial and cut), structural rules (decide, release, and store), or introduction
rules (divided among asynchronous and synchronous rules). Let B be a (polarized)
intuitionistic formula and let IT be an LJF proof of the (end)sequent f} - B1{. We list
some invariants that hold for the various sequents that appear in I1.

24

1. Every occurrence of the sequent I'} © = R or the sequent I" | B F R in I is such
that I' is a multiset of negative formulas and positive atoms.

2. Similarly, every occurrence of the sequent I' ff © - f} R or the sequent I" || B+ R
in IT is such that R is a positive formula or a negative literal.

3. If I'ff © I R1 is the conclusion of a right-introduction rule, then © is empty.

The asynchronous introduction rules can actually be applied in any order without
changing the shape of focused proofs when one ignores the internal structure of phases.
As a result, we fix the order of processing asynchronous inferences in the following
natural order. First, elements of the list in the zone labeled © are introduced in the
order that they appear in that list. Second, an asynchronous introduction on the right
is applied only when the © zone is empty.

Besides the fact that sequents in LKF and LJF different in that the latter has two
sides and four zones, there are a couple of other key differences between