Peano Arithmetic and muMALL: Work in progress

Matteo Manighetti University of Bologna

Dale Miller Inria Saclay & LIX, IPP

FICS 2023, Warsaw. Poland 17 February 2022

Technical Report:
http://www.lix.polytechnique.fr/Labo/Dale.
Miller/papers/lfmtp22-positive-perspective.pdf

Art by Nadia Miller

Different approaches to arithmetic

The traditional approach to Peano and Heyting Arithmetic is

- formalized using (classical or intuitionistic) first-order logic with axioms (for equality) and an axiom scheme (for induction), and
- focuses on cut-elimination, consistency proofs, ordinal measures, and the arithmetic hierarchy.

We are instead interested in a structural proof theory approach to arithmetic. Our focus will be on

- the use of sequent calculus, structural inference rules, rule permutation, polarization, etc, and
- applications to proof search and automated theorem proving.

$\bar{\bar{\mu}}MALL$ and $\bar{\bar{\mu}}LK$

Equality and not-equality (= and \neq) as logical connectives

- First proposed by Schroeder-Heister and Girard in 1992. Extended by McDowell, M, Tiu, Baelde, Nadathur, Gacek.
- Builds unification into a sequent calculus.
- ightharpoonup Provides a novel treatment of bindings and enabled the ∇ -quantifier.

Least and greatest fixed points (μ and ν) as logical connectives

- μ̄MALL, μ̄LJ, μ̄LK
- ▶ foundation of Bedwyr, a model checker [Heath & M, 2019]
- ▶ foundations of the Abella proof assistant [Baelde et al, 2014]

NB: [Baelde & M, 2007] used the name μ MALL.

Unpolarized and polarized formulas

We consider two classes of formulas.

- ▶ They both contain =, \neq , \forall , \exists , μ , and ν . These reference the first-order domain.
- ▶ Unpolarized formulas contain also \land , tt, \lor , ff.
- ▶ Polarized formulas contain instead \otimes , 1, \Re , \bot , &, \top , \oplus , 0.

There are no atomic formulas since there are no predicate (undefined) symbols: x = y is not atomic.

There is no negation. Everything is written in negation normal form (nnf).

If we write \overline{B} and $B \supset C$, we mean the corresponding nnf computed using De Morgan dualities.

Polarized version of formulas

A polarized formula \hat{Q} is a polarized version of the unpolarized formula Q if the following replacement carries \hat{Q} to Q:

$$\&, \otimes \ \mapsto \wedge \qquad ? ?, \oplus \ \mapsto \vee \qquad 1, \top \ \mapsto \textit{tt} \qquad 0, \bot \ \mapsto \textit{ff}.$$

If Q has n occurrences of propositional connectives, then there are 2^n formulas \hat{Q} that are polarized versions of Q.

Proof system for \$\bar{\bar{\pi}}MALL\$

Induction and coinduction are given by one rule (ν) . The higher-order variable S, in that rule, is the invariant.

The $\mu\nu$ rule is a form of the initial rule.

Eigenvariables are introduced by \forall rule and instantiated by \neq rule.

Proof system for $\bar{\bar{\mu}}LK$

The $\bar{\bar{\mu}}LK$ proof system is $\bar{\bar{\mu}}MALL$ plus the two structural rules:

$$\frac{\vdash \Gamma, Q, Q}{\vdash \Gamma, Q} C \qquad \frac{\vdash \Gamma}{\vdash \Gamma, Q} W$$

We also consider the following two rules in the context of both $\bar{\mu} MALL$ and $\bar{\mu} LK$.

$$\frac{\vdash \Gamma, B(\nu B)\vec{t}}{\vdash \Gamma, \nu B\vec{t}} \ \textit{unfold} \qquad \frac{\vdash \Gamma, Q \quad \vdash \Delta, \overline{Q}}{\vdash \Gamma, \Delta} \ \textit{cut}$$

The *unfold* rule is derivable in both $\bar{\mu}MALL$ and $\bar{\mu}LK$.

Observations about $\bar{\mu}MALL$ and $\bar{\mu}LK$

- The *unfold* and μ rules replace μB with $B(\mu B)$: thus one copy of B become two copies.
- ▶ Baelde [2012] proved that $\bar{\mu}$ MALL satisfies cut-elimination and that a natural focused proof system is complete.
- We have neither a cut-elimination theorem nor a completeness-of-focusing theorem for $\bar{\mu}LK$.
- We have proved that ¬LK (with cut) is consistent and contains Peano arithmetic.
- ▶ Girard [1991]: the completeness of a focused form of $\bar{\mu}$ LK would allow extracting constructive content from classical Π_2^0 theorems. The usual ways the completeness of focusing and cut elimination are proved should not yield that result.

Separating $\bar{\mu}MALL$ and $\bar{\mu}LK$

▶ The formula $\forall x \forall y [x = y \lor x \neq y]$ can be polarized as either

$$\forall x \forall y [x = y \ \Re \ x \neq y]$$
 or $\forall x \forall y [x = y \oplus x \neq y]$.

 $\bar{\bar{\mu}}MALL$ proves the first. $\bar{\bar{\mu}}LK$ proves both.

The totality of Ackermann's function has a simple μLK-proof. Here is what it looks like in Abella.

```
Define ack: nat -> nat -> nat -> prop by
ack zero N (succ N);
ack (succ M) zero R := ack M (succ zero) R;
ack (succ M) (succ N) R := exists R', ack (succ M) N R' /\ ack M R' R.

Theorem ack_total: forall M N, nat M -> nat N -> exists R, nat R /\ ack M N R.
induction on 1. induction on 2. intros. case H1 (keep).
search. case H2. apply IH to H3 _ with N = (succ zero). search.
apply IH1 to H1 H4. apply IH to H3 H5. search.
```

We conjecture that there is no proof in $\bar{\bar{\mu}}MALL$.

Arithmetic Hierarchy for polarized formulas

- ▶ Negative: \Re , \bot , &, \top , \forall , \neq , ν (invertible right rules)
- ▶ Positive: \otimes , 1, \oplus , 0, \exists , =, μ
- ► A formula is positive or negative depending only on its top-level connective.
- A formula is purely positive (resp., purely negative) if every logical connective it contains is positive (resp., negative).
- \triangleright Σ_1 -formulas are exactly the purely positive formulas
- ightharpoonup Π_1 -formulas are exactly the purely negative formulas
- ightharpoonup for $n \geqslant 1$,
 - ▶ Π_{n+1} -formulas are negative formulas for which every positive subformula occurrence is a Σ_n -formula.
 - Σ_{n+1} -formulas are positive formulas for which every negative subformula occurrence is a Π_n -formula.
- ▶ A formula in Σ_n or Π_n has at most n-1 polarity alternations.

Examples

- ▶ $\forall x \forall y [x = y \oplus x \neq y]$ is Π_3 .
- Addition and multiplication as least fixed points are in Σ_1 .

$$\begin{split} \mu\lambda P\lambda n\lambda m\lambda p ((n=z\otimes m=p)\oplus\\ \exists n'\exists p'(n=(s\ n')\otimes p=(s\ p')\otimes P\ n'\ m\ p')) \\ \mu\lambda M\lambda n\lambda m\lambda p \big((n=z\otimes p=z)\oplus\\ \exists n'\exists p'(n=(s\ n')\otimes \textit{plus}\ m\ p'\ p\otimes M\ n'\ m\ p')\big) \end{split}$$

- Horn clause specification naturally yield Σ₁-formulas.
- ightharpoonup Simulation can be encoded as Π_2 -formulas.

Basic results related to polarities:

- ▶ If B is Π_1 then $B \equiv ?B$ is provable in $\bar{\bar{\mu}}LL$.
- ▶ If B is Σ_1 then $B \equiv !B$ is provable in $\bar{\bar{\mu}}LL$.

Connections with Σ_n^0 , Π_n^0 for unpolarized formulas

Let Q be an unpolarized formula of Peano arithmetic in Σ_n^0 for $n \ge 1$. Then there is a polarized version \hat{Q} such that \hat{Q} is in Σ_n .

Let Q be an unpolarized formula of Peano arithmetic in Π_n^0 for $n \ge 2$. Then there is a polarized version \hat{Q} such that \hat{Q} is in Π_n .

Conservativity results for linearized arithmetic

Theorem

 $\bar{\bar{\mu}}LK$ is conservative over $\bar{\bar{\mu}}MALL$ for Σ_1 -formulas: if B is Σ_1 and has a $\bar{\bar{\mu}}LK$ proof then B is provable in $\bar{\bar{\mu}}MALL$.

Definition

A sequent has a $\bar{\mu}LK(\Sigma_1)$ proof if it has a $\bar{\mu}LK$ proof in which all invariants of the proof are purely positive.

This restricted proof system is similar to the $I\Sigma_1$ restriction.

Theorem

 $\bar{\bar{\mu}} L \textit{K}(\Sigma_1)$ is conservative over $\bar{\bar{\mu}} \textit{MALL}$ for $\Pi_2\text{-formulas}.$

These results (and many other) are straightforward if we assume that $\bar{\mu}LK$ satisfies cut-elimination and has a complete focused proof system.

Using proof search to compute functions

The binary relation ϕ computes a function if one can prove totality and determinancy, namely $\forall x \exists ! y. \phi(x, y)$:

$$\forall x \big[[\exists y. \varphi(x, y)] \land [\forall y_1 \forall y_2. \varphi(x, y_1) \supset \varphi(x, y_2) \supset y_1 = y_2] \big]. \quad (*)$$

In this case, $\lambda y. \phi(x, y)$ denotes a singleton for every x.

How can we use a proof of totality to compute the function?

- Given an intuitionistic proof of (*), we exploit its constructive content.
- ▶ If ϕ is Σ_1 , then (*) can be polarized Π_2 . If we have a $\bar{\mu}LK$ proof of (*), that proof can be an oracle to guide proof search.

Proof search procedure

The search-state S is of the form $\langle \Sigma ; B_1, \ldots, B_m ; t \rangle$.

Theorem

Assume that P is Σ_1 and that $\exists ! y. Py$ has a $\bar{\mu}LK$ proof. Then $\langle y ; P y ; y \rangle \Rightarrow^* \langle \cdot ; \cdot ; t \rangle$ iff (P t) is provable.

Nondeterministic transitions $S \Rightarrow S'$ are defined by

- ▶ If B_1 is u = v and u and v are unifiable with mgu θ , then we transition to $\langle \Sigma \theta ; B_2 \theta, \dots, B_m \theta ; (t\theta) \rangle$.
- ▶ If B_1 is $B \otimes B'$ then we transition to $\langle \Sigma ; B, B', B_2, \dots, B_m ; t \rangle$.
- ▶ If B_1 is $B \oplus B'$ then we transition to either $\langle \Sigma ; B, B_2, \ldots, B_m ; t \rangle$ or $\langle \Sigma ; B', B_2, \ldots, B_m ; t \rangle$.
- ► If B_1 is $\mu B \vec{t}$ then we transition to $\langle \Sigma ; B(\mu B) \vec{t}, B_2, \dots, B_m ; t \rangle$.
- ▶ If B_1 is $\exists y. B \ y$ then we transition to $\langle \Sigma, y \ ; B \ y, B_2, \dots, B_m \ ; t \rangle$ where y is not in Σ .

Conclusion

- We propose to approach the structural proof theory of arithmetic by studying both $\bar{\mu}MALL$ and $\bar{\mu}LK$.
- ▶ Open: cut-elimination and completeness of focusing for $\bar{\bar{\mu}}LK$.
- Without the completeness of focusing result, we are incrementally attacking conservative extension results of $\bar{\mu}LK$ over $\bar{\mu}MALL$.
- ► We explicitly connect the arithmetic hierarchy to polarity alternations a la Andreoli and Girard.
- ► Proof search in \$\bar{\pi}\$MALL should be more manageable, even when faced with generating invariants.
- Proof search can be used to compute functions from their relational specifications.

Questions?