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Abstract. When a proof system checks a formal proof, we can say that
the kernel asserts that the formula is a theorem in a particular logic.
We describe a general framework in which such assertions can be made
global so that any other proof assistant willing to trust the creator of the
assertion can use that assertion without rechecking any associated formal
proof. This framework is heterogeneous and allows each participant to
decide which tools and operators they are willing to trust in order to
accept external assertions. This framework can also be integrated into
existing proof systems by making minor changes to the input and output
subsystems of the prover. It achieves a high level of distributivity using
off-the-shelf technologies: IPFS, IPLD, and public key cryptography. We
illustrate the framework by providing implementations of an intermediate
tool for validating and publishing assertion objects and a modified version
of the Abella theorem prover that can use and publish such assertions.

1 Introduction

In order to communicate a result from one formal reasoning system to another,
a common technique is to transfer a formal proof certificate from the source
system to the target system. This technique is usually required when the target
system is autarkic,1 wherein the system only trusts its own components, of which
a particularly trusted component may be an implementation of a proof checking
kernel. To transfer a formal proof to an autarkic target system, either (a) the proof
has to be translated from the source system, or (b) the verifier for the proof must
be re-implemented as a certified procedure in the target system [5,25]. Both kinds
of transferral are complicated for a variety of reasons: (1) The source and target
system may not be syntactically, semantically, or foundationally compatible.
(2) The source proof language can have complex operational semantics that is
cumbersome to encode in the target system. (Note that no universal standard has
yet emerged for encoding the formal semantics of arbitrary proof languages; cf.
sec. 5.) (3) As systems change and mature, older versions of proof certificates can
become stale and unmaintained. (4) Perhaps most importantly, there are many
popular reasoning systems that do not produce proof certificates at all. Prominent
examples of that latter are SMT solvers that are not certifying when memory size
and execution time are critical [32] and the specification tool Twelf [43] when
using non-certifying procedures (e.g., totality checking).

1 In [11], the adjective autarkic was applied to computational components of a proof
checker but not to an entire proof checker.



Formal reasoning systems that are non-autarkic have an additional way
to interact with external provers that addresses many of the above issues. In
such systems, a host system is designed to build proof obligations that are then
dispatched to external systems to solve. While these external systems may produce
proofs, the host system usually does not check the proofs and instead trusts the
executions of the external systems. This system architecture is most commonly
used in program verification tools such as Dafny [28], Why3 [24], and TLAPS [15].
One issue not addressed with this enlarged view of trust is that the external
dependencies tend to have unclear descriptions, especially from a third party
perspective. To illustrate, Dafny may declare that it trusts “Z3 v.4.12.1”, but
what does this mean? Is this external dependency to be interpreted by name, in
which case any tool called “Z3 v.4.12.1” can be used, or is it precisely identified by,
e.g., (a cryptographic hash of) the source code (or better, an executable binary)
of a particular tool called “Z3 v.4.12.1”? Even with a precise identification, an
external executable dependency may not be practical to incorporate. For example,
the HOL Light system [27] re-checks its entire standard library every time it is
started, taking on the order of minutes. If a development involves a number of
calls to an external HOL Light-based solver, how are the calls to be orchestrated?

In addition to these two bases of trust—autarkic based on proof certificates,
and non-autarkic based on executions of external tools—there is at least one
other basis of trust in any heterogeneous development: the agents that write and
assemble the developments and execute the formal tools as required (checkers,
solvers, etc.). An example of an agent is a user, but one individual user can have
many agent profiles (see sec. 3.2), and entities such as a trustworthy central
database can also correspond to an agent. Agents as trust bearers has been largely
neglected in the formal reasoning world, but is common in other settings of high
reliability such as security. Nevertheless, agents are at least implicitly present
in any formal development: to claim that a result has been formally achieved
is tantamount to saying that some trustworthy agent (e.g., peer reviewers) has
correctly and successfully executed a specific collection of formal tools to convince
themselves of that formal result. Furthermore, if one agent A trusts another B,
there is no need for A to re-check B’s proof scripts and re-execute any tools that
B used to construct the result.

In this paper, we propose a framework where a distributed collection of
agents can exchange formal results (called assertions), where the results have an
unimpeachable provenance, and where each agent is in full control of their trust
parameters. This Distributed Assertion Management Framework (DAMF) is:

– Decentralized : a global notion of truth is not imposed on every participant
by the means of a privileged logic, language, system, or software. This
linguistic independence makes DAMF different from formalisms such as the
evidential tool bus [19,39] that have been proposed for integrating external
reasoning agents into a unified formal system. Participants in DAMF are free
to combine assertions from different sources if they believe the combination
to be meaningful. Any participant can retrieve and use any assertion they
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understand, and this external import will be explicitly marked as a dependency
if they choose to publish assertions they build with such external imports.

– Reliable: assertions have an irrepudiable provenance, i.e., the fact that an
agent has published an assertion is locally verifiable and independent of
any other aspect of DAMF. Assertions therefore need to be immutably and
eternally available, even in the presence of intermittent infrastructure and
nefarious users or tools.

– Composable: assertions are not rigidly constrained by their own history ; new
logical artifacts such as theories, libraries, proof outlines, etc. can be crafted
by reorganizing existing assertions based on their declared dependencies.

– Egalitarian: the barrier to entry is low for participants who want to produce
or consume such assertions.

– Status Quo Compatible: existing work that has already been done with
currently mainstream systems is readily incorporated as assertions without
needing to modify any existing system.

Concretely, DAMF provides JSON-based representations of a small number
of concepts such as formulas, assertions, dependencies, etc. without any up front
commitment to a formal syntax or any particular semantics. These objects
are then added to a global store in terms of the InterPlanetary File System
(IPFS) [12] using linked data in the InterPlanetary Linked Data (IPLD) format.
An object in IPFS/IPLD is denoted by a canonical content identifier (cid) that
is a cryptographic hash of its content. Knowing the cid is sufficient to retrieve
the object by any participant of the IPFS network. Furthermore, the cids serve
as the only externally visible names in DAMF, and links between objects are
made using these cids by IPLD. Features specific to a particular language or
system, such as constants, variables, definitions, notations, etc. are kept localized
to particular formula objects. Assertions are built using (the cids of) formula
objects and signed by their creator agents using public key cryptography. IPFS
is used to distribute DAMF objects transparently using a variety of technologies
whose precise details are not relevant for this paper.

This paper is accompanied by two concrete implementations that illustrate
DAMF. First, we provide a tool called Dispatch that can be used by users and
systems to both produce and consume DAMF assertions. Dispatch is not a privi-
leged tool in DAMF: users and systems can interact directly with DAMF objects
in IPFS if they so choose. Dispatch is simply one interface to the DAMF global
store making the integration of producers and consumers minimally demanding.
It does tasks such as schematically validating the concrete JSON objects that
are added to or retrieved from the global store. Dispatch also helps to analyze
and modify the trust parameters for (compositions of) assertions.

Second, we implement a version of the Abella interactive theorem prover [9]
that can produce and consume assertions in DAMF, mediated by Dispatch. As
an example of its use, we show how Abella can use a lemma that was stated and
proved using the automated linear arithmetic reasoning tactics of Coq (v. 8.16.1);
this lemma is manually translated from the Coq to the Abella language, with
an explicit dependency on its Coq development, and added to the global store
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by the present authors. A user can accept this heterogeneous development as
long as they trust Coq, Abella, and our translation of the Coq lemma to Abella.
Moreover, this assertion, which contains explicit links to the externally sourced
DAMF imports, can be published back to DAMF for use by others.

Since dependencies are explicitly tracked in DAMF assertions, it is possible
for any user to analyze various aspects of how it was composed from other
assertions. Such analysis can form the basis of various kinds of investigations:
for example, if a formula is found to be a non-theorem, an investigator can
explore the compositions of the DAMF assertions that yield that formula in
order to find the agents whose trust parameters may need to be modified. The
Dispatch tool mentioned above comes with a command called lookup that explores
combinations of known assertions that ultimately yield a desired result; for each
such composition, the analysis extracts the collection of agents (and tools) that
could be trusted in order to accept that composition.

In the next section, we describe the abstract design of DAMF and its underly-
ing logic of assertions, which forms the basis of the investigations mentioned above.
Section 3 describes our concrete implementation of DAMF, Section 4 discusses
some of the design choices in DAMF, and Section 5 discusses some related work.
The specific software tools (Dispatch and Abella-DAMF) accompanying this paper
are fully documented at: https://distributed-assertions.github.io/.

2 Design of DAMF

2.1 Languages, contexts, and formulas

To transfer a theorem from a source proof system to a target proof system, we
must be able to transfer the statement of the theorem, which we represent as a
formula object in DAMF. To be as general as possible, we represent the content
of such a formula as a string, i.e., in a format suitable as an input to a parser
of the source proof system. To determine that the input is well-formed, the
source proof system may need further information about the features—symbols,
predicates, functions, types, notations, hints, etc.—that are used in the formula.
Such additional information is the context of the formula, which we represent as
a document fragment in the language of the source proof system.

For example, take the following theorem written in Coq 8.16.1:

1 Definition lincomb (n j k : nat) := exists x y, n = x * j + y * k.

2 Theorem ex_coq : forall n:nat, 8 <= n -> lincomb n 3 5.

The formula corresponding to the theorem ex_coq is the literal string "forall

n:nat, · · · lincomb n 3 5". The symbols 8, <=, etc. are part of the standard
prelude of this language, and the symbol lincomb is defined in line 1, so a
sufficient context necessary for Coq 8.16.1 to parse and type-check the theorem
statement is the text of line 1, which is also written in the Coq 8.16.1 language.

Abstractly, a formula object in DAMF is a triple (L,Σ, F ) where L denotes
a language, Σ denotes a context, and F denotes a formula, all of which may
conceptually be thought of as strings. We will use the schematic variable N
to range over such formula objects. The language L is a canonical identifier
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(specifically, the cid of a DAMF language object) which may optionally represent
information about a suitable loader for the language that will make sense of the
strings Σ and F ; DAMF compares languages just by their identifiers. Moreover, L
is interpreted as defining all the features that are globally available; for instance,
the symbol nat is part of the standard prelude of this version of Coq and should
therefore be understood as being defined in the language Coq 8.16.1. The context
Σ introduces any user-defined features such as the definition lincomb above that
is not part of Coq’s standard prelude.

Note that DAMF formula objects are considered to be closed, i.e., every
symbol that is used in the formula is defined in the language or the context.
From the perspective of DAMF, a formula object is an atomic entity and there
are no reasoning principles on the language or context components. For instance,
there is no mechanism in DAMF that would allow the substitution of a declared
symbol in the context with a concrete definition. The purpose of differentiating a
formula object into three parts is purely pragmatic: the language part will in most
cases be a well known object used by many agents, and the context part may
potentially be shared between multiple assertions. DAMF consumers may be able
to use this sharing of information to consolidate tasks such as context-processing.

2.2 Sequents and assertions

A sequent in DAMF is abstractly of the form N1, . . . , Nk ⊢ N0 where each of the
Ni is a DAMF formula object defined in the previous subsection. We will use
the schematic variable Γ to range over ordered lists of formula objects, and S to
range over sequents. In a sequent Γ ⊢ N , we say that N is the conclusion and Γ
are the dependencies. Such sequent objects may be produced whenever a formal
proof has been checked in a proof checker: the conclusion represents the statement
of the theorem, and the dependencies are external lemmas that were used during
that proof. As an example, suppose the Coq 8.16.1 theorem in sec. 2.1 has a proof
that appeals to the lemma lem : forall m n, m <= n -> S m <= n \/ m = n. The
sequent that is produced is conceptually of the form lem ⊢ ex_coq, though
concretely we would have to build DAMF formula objects by packaging the
language and contexts.

An agent is a globally unique name; we use the schematic variable K to range
over agents. We define a simple multi-sorted first-order logic where agents and
sequents are primitive sorts and where the infix predicate says is the sole predicate;
the atomic formulaK says S, whereK is an agent and S a sequent, is an assertion.
The says predicate is implemented in DAMF using public-key cryptography. In a
DAMF-aware proof system, when an appeal is made—say as part of the proof of
some other theorem—to an assertion K says (N1, . . . , Nk ⊢ N0), the appeal is
interpreted as follows:

– The agent K is treated as trusted ; if the agent cannot be trusted for some
reason, such as if K occurs in a deny list, then the assertion is unusable.

– The conclusion of the assertion, N0, contains the formula representing the
lemma that is being appealed to. Note, in particular, that the dependencies
N1, . . . , Nk do not participate as such in the appeal.
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2.3 Adapters

Because every formula object packages the formula together with its context and
language identifier, every formula object is independent of every other formula
object. Thus, in a sequent N1 ⊢ N0, there is no requirement that the conclusion
N0 and the dependency N1 be in the same language or have a common context.
When working within a single autarkic system (e.g., a proof checker using a single
logic), the sequents that are generated for every theorem will probably place the
conclusion and dependencies in the same language and context; however, in the
wider non-autarkic world, we can use multilingual sequents as first class entities
that are documented and tracked the same way as any other kind of sequent.

An important class of multilingual sequents comes from adapters. In order
for a theorem written in the Coq 8.16.1 language to be used by a different
system with a different language, say Abella 2.0.9, we will need to transform
the formula objects in the former language to those in the latter language. This
kind of translation is an example of a language adapter, which falls into the
general class of adapters, and which creates a sequent by translating between
languages or modifying the logical context by standard logical operations such as
weakening (adding extra symbols), instantiation (replacing a symbol by a term),
or unfolding (replacing a defined symbol by its definition).

As an example, the Coq 8.16.1 example above can be translated to the
Abella 2.0.9 language as follows, where the function symbols + and * are replaced
by relations in Abella.2

1 Import "nats". % some natural numbers library

2 Define lincomb : nat -> nat -> nat -> prop by

3 lincomb N J K := exists X Y U V,

4 times X J U /\ times Y K V /\ plus U V N.

5 Theorem ex_ab : forall n, nat n -> le 8 n -> lincomb n 3 5.

Lines 1–4 determine the context Σex_ab for the formula ex_ab on line 5.
The sequent that represents this translation therefore has the form(

Coq 8.16.1, Σex_coq, ex_coq
)
⊢ (Abella 2.0.9, Σex_ab, ex_ab).

Suppose agent K1 signs this translation and that agent K2 signs the sequent
⊢
(
Coq 8.16.1, Σex_coq, ex_coq

)
. As long as K1 and K2 are trusted by the user

of Abella 2.0.9, then the formula object (Abella 2.0.9, Σex_ab, ex_ab) can also
be treated as a theorem by that user thanks to composition, discussed next.

2.4 Composing assertions, trust

Assertions will be composed by means of a single rule of inference that implements
a cut-like rule for sequents, Compose.

K says (Γ1 ⊢ M) K says (M,Γ2 ⊢ N)

K says (Γ1, Γ2 ⊢ N)
Compose

2 This encoding of functions using relations is the usual one: see [16] for details.
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The effect of this rule means that the says predicate does not correspond one-to-
one with cryptographic signatures. The conclusion of the Compose rule may, in
particular, not be a sequent that has been explicitly signed by the agent K even if
both premises are. Rather, the rule states that whenever K can be said to reliably
claim, either by a cryptographic signature or by a Compose-derivation tree,
that both Γ1 ⊢ M and M,Γ2 ⊢ N , then K must also reliably claim Γ1, Γ2 ⊢ N .

There are many variations to access control logic in the literature. For example,
some such logics use inference rules such as:

Γ ⊢ N
K says (Γ ⊢ N)

or
K says (Γ ⊢ N)

K says (K says (Γ ⊢ N))
.

Such rules are neither syntactically well-formed nor desirable for our purposes.
We use here a very weak access control logic (see [1] for a survey of such
logics). Instead, checking the validity of a given derivation using Compose is
computationally trivial: each instance of it must eliminate exactly the leftmost
dependency in the second premise, which is a DAMF formula object that is
compared by cid.

Observe that the agent K does not participate in a meaningful way in a
derivation that is built with the Compose rule. Thus, for a given end sequent
of the form K says (⊢ N), a Compose derivation can be seen as a proof outline
for the desired theorem N , with the leaves of the derivation being the assertions
that need to be sourced from an assertion database (such as the DAMF global
store). We say that an assertion (K says S) is published if it can be retrieved
from such a database. The inference system is then enlarged with the following
rule that can be used to complete the open leaves of the Compose derivation
using assertions made by different agents.

(K1 says S) is published

K2 says S
Trust [K1 7→ K2]

This rule is parameterized by a pair of agents, K1 and K2, and is understood
to be applicable only when K1 is in the user-specified allow list of K2 (i.e., K1

speaks for K2, which we write as [K1 7→ K2]).
We do not assume that agents have any additional closure properties beyond

Compose and Trust. For example, suppose NA, NA→B , and NB are the formula
objects that correspond to the formulas A, A → B, and B respectively in some
language. We do not assume that the following rule is admissible:

K says (Γ ⊢ NA→B) K says (Γ ⊢ NA)

K says (Γ ⊢ NB)
mp.

That is, we do not assume that the formulas asserted by agent K are closed under
modus ponens. Similarly, we do not assume that what agents assert are closed
by substitution or instantiation of any symbols that are defined in the contexts
of the formula objects. While a particular agent may not be closed under modus
ponens, substitution, or instantiation, it is possible to employ other agents that
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can look for opportunities to apply such inference rules on the results of trusted
agents. In particular, if we want the query engine to be able to use the mp rule,
then the engine must construct an agent Kmp whose sole function is to generate
assertions such as Kmp says (NA→B , NA ⊢ NB) that correspond to applications
of the mp rule. Of course, Kmp will need to be in the allow list for any agent
wanting to use this agent.

2.5 Producing assertions, formal reasoning tools

Conceptually, an agent constructs a DAMF sequent as a consequence of running
formal reasoning tools such as proof checkers or theorem provers. DAMF includes
tool objects, which are unconstrained JSON objects that can be used to describe
such tools or tool collections. Like with languages in sec. 2.1, we compare tools
for equality by means of the cids of these tool objects. It is also possible for an
agent to build a DAMF sequent manually, without running any tool. The agent
may do this for a number of reasons: e.g., the assertion may be an axiom (i.e., no
proof is expected) or a conjecture (i.e., a proof may be provided at some other
time but is currently missing).

A DAMF production is a sequent that is annotated with a mode that describes
how the sequent was produced; this mode can be the cid of a tool object
mentioned above, or it can be one of a small number of keywords such as axiom,
conjecture; this mode annotation can also be omitted. We use the schematic
variable T for modes, and write a production of the sequent Γ ⊢ N with mode
T as Γ ⊢T N . Published DAMF assertions will be of the form K says (Γ ⊢T N),
and we modify the Trust rule to the following:

(K1 says (Γ ⊢T N)) is published

K2 says (Γ ⊢ N)
Trust [K1/T 7→ K2]

where the side condition [K1/T 7→ K2] means that K2 allows K1’s assertions
in mode T . It may be tempting to think of K1/T as an agent by itself, but, as
we shall see in sec. 3.1, agents are implemented in DAMF using keypairs, so if
K1/T1 and K1/T2 were separate agents then there would be no verifiable way to
link them both to K1. This use of modes makes it possible, for example, to trust
an agent K using any version of Coq while not trusting K when using other
proof systems.

2.6 Logical consistency of heterogeneous combinations

DAMF imposes no constraints on the composition of assertions, which can
at first glance appear to be risky. For example, suppose the assertions come
from incompatible logics, say an assertion in classical logic during the proof of
an intuitionistic theorem. Without exceptional care, the result of a Compose
will only be classically, not intuitionistically, true. Similar problems exist if the
imported assertion requires additional axioms that are incompatible with the
user’s setting (e.g. extensionality or UIP in the setting of univalence).

This issue highlights the fact that DAMF does not guarantee logical com-
patibility of assertions; rather, DAMF is more accurately seen as a record of
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compositions that have been made. To trust an agent’s assertion is just to say that
we trust that the agent indeed had good reasons (such as a proof) to make that
assertion, not that the assertion may be arbitrarily composed. Moreover, DAMF
assertions are intended to be read as hypothetical statements from dependencies
to conclusions (where “hypothetical” is understood in the informal language of
discourse rather than as a formal implication or entailment). If the dependencies
cannot be met, the assertion is useless. To illustrate, if an agent K wants to
use an assertion Γ ⊢ M in their proof of N , the assertion they will publish is
K says (M ⊢ N), which is acceptable in isolation; if M is incompatible with the
logic of N , then the assertion K says (M ⊢ N) is vacuous.

3 Implementation: Information, processes, and tools

3.1 The structures of the global store

A crucial design criterion of DAMF is that the assertions and their constituent
objects are a globally shared commodity, existing independently of the tools
that produce or consume them. To this end, DAMF requires well-defined basic
structures that producers would produce and consumers would expect and know
how to address.

The use of a content-addressing scheme is an essential part of seeing these
structures as global. Each structure is identified and addressed by a unique global
identifier in a common namespace in an independently verifiable and trusted
way: the identifier is derived from the content itself and every alteration of
the content produces a new identifier; at the DAMF level, the content is the
name/address, and comparing two objects structurally at the DAMF level is
reduced to comparing their cids as strings. One way to handle differences in cids
between different forms of conceptually the same DAMF object is by curation
and normalization of such structures at the level of producers or potentially other
DAMF actors.

The structures we may want to specify in DAMF are built by composing
several elements; for instance, a sequent contains formula structures, which
themselves contain context structures. In DAMF, we make the design choice to
treat all such structures as first class objects stored in a distributed network
through IPFS, and use the linked data representation of IPLD to represent an
object as being composed of other objects.

The core DAMF structures we define are context, formula, sequent, production,
and assertion. Concretely, these structures are represented as JSON objects with
a varying format property which has the type of the structure as its value. These
structures are described as follows (Appendix A contains the full definitions):

– Context : contains a language field, which is an IPLD link to a language object,
described in sec. 2.1, and a content field containing the body of the context.

– Formula: contains a language field, a content field for a string representation
of the formula in the language, and a context field that is an IPLD link to a
context object, as described in sec. 2.1.

– Sequent : a dependencies field mapped to a list of IPLD links to formula
objects, and a conclusion field as an IPLD link to a formula object.
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– Production: pairs a sequent object with a mode field denoting a mode of
production of a sequent as described in sec. 2.5.

– Assertion: a claim field mapped to an IPLD link to a production (currently
considered the main claim type in DAMF), an agent field mapped to a public
key, and a signature field containing the result of signing the cid of the value
of the claim field.

Given these schemata, the aspects of tracking and trusting become natural: a
formula present as a dependency in some assertion could be matched with the
same formula present as the conclusion of a different assertion.

It is also useful to annotate these core DAMF objects with additional metadata
such as external names, proof objects, timestamps, etc. In DAMF, we have chosen
to give the core objects a cid independent of the metadata; instead, for every
core object, we define an annotated object that is composed of a link to the
core object and a link to any additional metadata. DAMF follows the design
principle that objects are to be considered equal at the DAMF level if they have
the same cid: the content of the objects is not examined, and no IPLD-links are
followed for such comparisons. Generally speaking, therefore, DAMF core objects
will not link to annotated objects, since the annotations will factor into the
cids and force disequality when undesired, such as when building compositions
(sec. 2.4). The sole exception to this rule of thumb are assertion objects which
can use annotated production objects as their claims. Note that every assertion
object will be globally unique when produced: it will have a different cid each
time its claim is signed, even if signed by the same agent, because cryptographic
signatures always include a nonce.

Another layer of structures that can aggregate global object references are col-
lections. We currently define one generic collection format in our implementation:
many other non-generic collection formats can easily be considered.

3.2 Processes in DAMF, and Dispatch as an intermediary tool

The two obvious processes in DAMF are the production and consumption of
DAMF objects. In a production process, DAMF objects are constructed starting
from local information, published, and then stored across the distributed net-
work. The consumption process is in the opposite direction: locally consumable
information are constructed from DAMF objects. The important point is that
these DAMF objects are common and well-understood (as DAMF formats) for
all consumers, and each consumer decides what to consume and how to consume
it. For example, a consumer might only choose to read formulas that are of some
specific language, and then decide how to process their internal structures based
on its own criteria. Other than these two, other processes will be done on the
published DAMF objects that will incorporate their combination, curation, and
analysis. The process we consider first in our implementation is lookup which will
be discussed further below. Individual producers and consumers, such as theorem
provers, can choose to implement some or several of these DAMF processes.
However, many aspects of dealing with linked data and IPFS will be common to
such tools, so we describe an intermediary tool called Dispatch that simplifies the
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interactions between these producers and consumers and the DAMF global store.
Of course, Dispatch would be considered part of the trusted code base, along with
IPFS and any utilities used to manipulate JSON data and cryptographic signa-
tures. If this is problematic, Dispatch can be completely foregone in preference to
native implementations.

The Dispatch tool is distributed as an executable dispatch with three sub-
commands: publish, get, and lookup. The dispatch publish command operates
on one of a collection of standard input formats that contains local information
corresponding to DAMF types. After syntactically validating this input, the
publish command will construct and publish the global objects. Dispatch can also
optionally interact with a specific storage service in order to make that object
widely discoverable in the IPFS network. As an example, consider the following
input for an assertion object, where newly created formulas and contexts are
placed in the same file and are referred by local names such as plus_comm, and
previously existing objects are referred by their cids usig the damf: flag, such as
the first value of "dependencies" (line 10) which refers to a formula object cid,
as well as "language" and "mode" values which refer to existing language and tool
objects respectively.

1 { "format": "assertion",
2 "agent": "localAgent",
3 "claim": {
4 "format": "annotated-production",
5 "annotation": . . .,
6 "production": {
7 "mode": "damf:bafyreihnx2. . .",
8 "sequent": {
9 "conclusion": "plus_comm",

10 "dependencies": [ "damf:bafyreihw6g. . .", "plus_succ" ] } } },
11 "formulas": {
12 "plus_comm": {
13 "language": "damf:bafyreidyts. . .",
14 "content": ": forall M N K, nat K -> . . .",
15 "context": ["plus"] },
16 "plus_succ": {
17 "language": "damf:bafyreidyts. . ...",
18 "content": ": forall M N K, . . .",
19 "context": ["plus"] } },
20 "contexts": {
21 "plus": {
22 "language": "damf:bafyreidyts. . ...",
23 "content": [
24 "Kind nat type.", "Type z nat.", "Type s nat -> nat.",
25 "Define plus : nat -> nat -> prop by . . .." ] } } }

This example is based on an output from our Abella-DAMF prover described
below. A prover using Dispatch tool only needs to be able to produce and consume
JSON objects with this structure, without needing to interface with IPFS directly.
The value of "agent" (line 2) refers to an agent profile in Dispatch; each profile
maps a user-readable name to a cryptographic key-pair, created separately using
the dispatch create-agent command.

The dispatch get command takes a cid as an argument, fetches the IPLD dag

(the full JSON object) referenced by it from the global store, validates the types
of all constituent IPLD linked objects, verifies any signatures, and finally outputs
a JSON object that is similar in structure to that accepted by dispatch publish.
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The consumer will have access to all the necessary DAMF objects referenced by
the root cid without needing to interact with the global store or structurally
validating any objects. The only difference between the output of dispatch get

and the input of dispatch publish is that the local names that appeared in the
input will be replaced by cids (i.e., global names) in the output. Input and
output formats corresponding to other global types are described further at the
site mentioned in the introduction.3

The dispatch lookup command, as mentioned earlier, is the starting process
that we consider in our implementation regarding the combination and analysis
of DAMF assertions. Given a formula cid and a collection of assertion cids, the
output of this command is a list of potential sets of (agent, mode/tool) pairs that
correspond to combinations of assertions that would yield the target formula.
Any remaining unmatched dependency is also outputed along with the (agent,
mode/tool) pairs. In our current implementation, Dispatch exhaustively generates
all possible ways of constructing the target formula. A direct improvement is to
change this aspect of the tool to allow for a more interactive and incremental
exploration of such dependencies. In addition, filtering through allow-lists would
reduce the number of assertion combinations generated by this command.

3.3 Edge systems example: Abella

We have implemented a DAMF-aware branch of Abella [9] as an example of a
system that interacts with assertions in DAMF with the help of Dispatch as a
mediator. Abella was originally designed to test a particular approach to meta-
theoretic reasoning using a new, proof-theoretically motivated mechanism for
reasoning directly with bound variables (in particular, the ∇-quantifier [30] and
a treatment of equality based on equivariant higher-order unification [26]). While
the current implementation of Abella has succeeded with those meta-theoretic
tasks [22,42], the prover has not grown much beyond that domain. Indeed, Abella
has some (mis)features that make it a good test case for DAMF: (1) it has no
awareness of the file system and it is easy to replace the backing store from local
files to objects stored in IPFS; (2) it has a feature-poor proof language with
nearly no support for proof automation and hence an underdeveloped formal
mathematical libraries; and (3) it uses relational specifications as opposed to the
more common functional programming specifications. Furthermore, the area of
meta-theory that Abella treats declaratively is also an area many conventional
proof systems do not deal well, in part, because of the need to encode and
manipulate bindings [8,23]. Such conventional systems might be willing to delegate
such meta-theoretic reasoning to Abella.

Ordinary Abella developments (in .thm files) support a kind of import mecha-
nism which loads in marshaled results from a different run of Abella. We extend
import with a new kind of statement: Import "damf:bafyr. . ." that refers to a
collection of DAMF assertions (i.e., a DAMF collection object whose elements
are assertions). Dispatch is used to fetch all the referenced objects from IPFS as
explained in the previous subsection.

3 https://distributed-assertions.github.io/
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To appeal to an assertion, the elements of the context of the conclusion of
the assertion are merged using their internal names with the ambient context of
Abella where the assertion is appealed to. An Abella declaration in the context
is mergeable if it has both the same internal name and an identical (up to λ-
equivalence) definition; thus, type and term constants are merged if they have the
same kinds or types (respectively), and (co-)definitions are merged if they have
the same definitional clauses. This is done to keep the implementation simple
and mostly unchanged from the standard (non-DAMF) Abella, which also only
allows an Import declaration when the imported objects can be merged.

When the proof of a theorem is completed in Abella, a sequent object is
constructed with the dependencies being all the DAMF lemmas appealed to in
the proof, and the conclusion being the statement of the theorem (the formula)
in the context of all its necessary declarations, computed using a dependency
analysis. We use only the necessary declarations to allow such DAMF sequents
to have the widest possible uses, since a DAMF assertion can only be used in
Abella if the entire context of the conclusion can be merged.

Appendix B contains a full example of an Abella development that makes use
of imported assertions from Abella, Coq, and λProlog. In this example, Coq and
λProlog are not modified at all, and Abella is only minimally modified to use
Dispatch to interact with DAMF assertions. The total amount of modifications to
Abella to interface with Dispatch amounts to about 100 lines of code, most of which
deals with (un)marshalling JSON. We expect that making tools DAMF-aware
would require negligible effort.

4 Discussion: Design choices and alternatives

4.1 The role of formal proofs

Autarkic theorem provers often exploit the existence of proofs for several reasons.
Obviously, the ability to check a fully detailed proof object in their own kernel,
following the De Bruijn criterion [10], is central. But proofs can also be used for
various other roles. For example, they sometimes contain constructive content
that can be extracted as executable programs, and they can be used as guides
during the development and maintenance of other proofs. Given their central role
in many proof assistants, a great deal of effort has gone into the formalization,
manipulation, and transformation of formal proof objects; see, for example,
MMT [36], Logipedia [20], and foundational proof certificates [17]. As a concrete
matter, proof objects can be included in the annotations of annotated productions
in the global store of DAMF. Sequents are linked in productions by their cids,
so it is possible for the same sequent to have multiple proof objects contributed
by different agents in separate assertions.

4.2 Potential benefits to mainstream systems

The fact that proof objects are not central to DAMF and the example presented in
Section 3.3 might lead the reader to believe that the only beneficiaries of DAMF
are new systems that want to leverage existing developments in mainstream
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systems. This belief is not necessarily true for two reasons. First, there are certain
logical systems and formalization styles that are inordinately complicated or
impossible to do in mainstream systems. Good examples are nominal sets [34],
λ-tree syntax (a.k.a. higher-order abstract syntax ) [2,23], generic judgments [30],
and nominal abstraction [26]. It is conceivable that a mainstream prover can
use DAMF to import a formalization such as the proof of soundness of Howe’s
method done in the setting of higher-order abstract syntax and contextual modal
type theory [31], which is at present not available in a mainstream proof system
such as Coq or Agda.

A second benefit to mainstream systems is to enable more trustworthy refac-
toring of their existing implementations. For example, modern autarkic provers
routinely recheck large collections of proofs, often after every invocation of a new
instance of the proof checker and certainly after every change in the version of
the prover. As a result of needing to recheck such proofs, there is a tendency
for implementers of proof checkers to optimize such kernels to be more efficient.
However, such optimizations can add greater complexity to a kernel, making
errors in the kernel more likely to occur. With DAMF, once a trustworthy but
slow kernel—e.g., a certified implementation of a kernel [40]—checks a proof,
it rarely needs to be rechecked. This can even lower the pressure for kernel
implementations to chase performance with increasing, error-prone complexity.
Furthermore, the immutable nature of IPFS objects makes DAMF assertions
resistant to malicious subversion of the proper execution of a tool – see, for
example, the discussion in [4] concerning attacks on Coq’s .vo object files

4.3 Other use cases

While it is common to view tools that perform pure computations (such as
functional program execution or proof search a la λProlog) as producing assertions
without proofs, there are various well-known reasoning systems that have been
used a lot without being either certified or certifying: for example, Twelf [33].
DAMF would enable Twelf-based assertions to be exported to agents willing to
trust its type and totality checkers.

The relationship of DAMF to the following topics is discussed in greater
detail in the technical report [3]: libraries as curation on top of the DAMF model
of global objects; attacks in the adversarial environment of the web; and possible
uses of this framework in settings (such as journalism) where the lack of formal
proof means increasing the need to explicitly track trust.

5 Related work

The semantic web [13,14] was proposed to enrich the web with aspects of trust
and would rely on concepts and technologies such as cryptography, taxonomies,
ontologies, and inference rules. While the semantic web and DAMF both use
cryptographic signatures and low-level web-based technologies, DAMF differs
from the semantic web by focusing on objects rather than documents and using
richer notions of logic and compositional reasoning.
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Dedukti [7] is a dependently typed λ-calculus augmented with rewriting.
Dedukti can be used to produce adapters (Section 2.3): in particular, proofs in a
source system can be transformed to Dedukti proofs and then transformed back
into formal proofs in a different system. For example, the Logipedia documentation
mentions that “some proofs expressed in some Dedukti theories can be translated
to other proof systems, such as HOL Light, HOL 4, Isabelle/HOL, Coq, Matita,
Lean, PVS, . . .” [29]. As a by-product, Dedukti can be used to build correctness-
preserving translations of assertions for DAMF.

TPTP [41] provides a number of standards for the concrete syntax of first-
order and higher-order logic along with tools for parsing and printing files that
adhere to such standards. Deploying those tools for the production of the kind of
multilingual adaptors that we have described in sec. 2.3 is a natural next step
for tool development within DAMF.

The recognition that distributing some aspects of proof environments goes
back to at least the systems described by Sacerdoti Coen, et al. [6,18]. In such
systems, integration was meant to work between “near-peer” systems: that is,
between systems that are both based on rich logics such as higher-order logic or
on typed λ-calculi based on the Curry-Howard correspondence. A prerequisite
for successful integration in such systems is the ability to connect the semantics
of formulas, types, universes, proofs, etc. The wide spread use of such integration
approaches has been delayed since it has only been in recent years that efforts,
such as Dedukti [7] and MMT [37,38], are making it possible to form the necessary
deep and sophisticated ties between the semantics of these objects arising from
different implementations. In contrast, DAMF allows the composition of different
assertions without an apriori assumption that there is a formal semantics that
relates them. Of course, correctness is a concern in many (most) situations: in
those cases, Dedukti and MMT encodings can be used to translate assertions
between two provers with precise correctness assurances. Often, however, the
integration is of a more asymmetric kind. For example, when integrating a system
that only performs integer operations or reasons only with integer inequalities
(operations that are available in SMT systems) with a system based on higher-
order logic, producing adapters based on sophisticated encodings might be
completely unnecessary. The DAMF system similarly allows such integration.

6 Conclusion

We have described a Distributed Assertion Management Framework (DAMF)
designed to share assertions between agents while tracking dependencies with
canonical content ids (cids). This framework endows assertions with reliable
provenance using public key cryptography and distributes them globally using
the IPFS network. We have given an example of using DAMF to import a Coq
lemma into Abella. The biggest challenge for future work is to adapt existing
work on language translation and proof translation (in, e.g., Dedukti) to create or
derive adapters automatically. Another important matter for future consideration
is whether to persist compositions (i.e., Compose-derivations, cf. sec. 2.4) to
DAMF, which can serve as hints for post hoc investigations.
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A Global types, or DAMF types

A.1 Types schema

The global types, as identified in our implementation, are illustrated below
(in TypeScript syntax). A type of the form (X)Link is an ipldLink which has
the form { "/": cid }, where cid is a string. This is done only to illustrate
the kind of object the link is referencing. Similarly, while both publicKey and
digitalSignature are, in fact, strings, we use two different names to indicate
their different roles. Finally, we write damfLink to denote that the defined generic
collection type refers to any type of the defined DAMF types. Notice that
in a formula object, the context is a list of ipldLinks to context objects: thus,
previously stored contexts can be accumulated to form larger contexts. In this
example, we have provided some mode values for illustration purposes: the actual
collection of useful modes will certainly grow as a larger community uses this
framework.

type language = {

"format": "language",

"content": ipldLink }

type context = {

"format": "context",

"language": languageLink,

"content": ipldLink }

type formula = {

"format": "formula",

"language": languageLink,

"content": ipldLink,

"context": contextLink[] }

type sequent = {

"format": "sequent",

"dependencies": formulaLink[],

"conclusion": formulaLink }

type tool = {

"format": "tool",

"content": ipldLink }

type production = {

"format": "production",

"sequent": sequentLink,

"mode": null | toolLink | "axiom" | "conjecture" }

type assertion = {

"format": "assertion",

"claim": productionLink | annotatedProductionLink

"agent": publicKey,

19



"signature": digitalSignature }

type annotatedContext = {

"format": "annotated-context",

"context": contextLink,

"annotation": ipldLink }

type annotatedFormula = {

"format": "annotated-formula",

"formula": formulaLink,

"annotation": ipldLink }

type annotatedSequent = {

"format": "annotated-sequent",

"sequent": sequentLink,

"annotation": ipldLink }

type annotatedProduction = {

"format": "annotated-production",

"production": productionLink,

"annotation": ipldLink }

type collection = {

"format": "collection",

"name": string,

"elements": damfLink[] }

A.2 Examples

The following are examples of published objects of assertion, annotated-production,
production, sequent , formula, and context types respectively. The full objects
can be viewed using the IPLD Explorer.

Assertion

// bafyreiek2t75whn7gi6ygrymegguescqi4iu. . .
{ "format": "assertion",

"claim": {

"/": "bafyreibvtxzqhvht5rfxpw3rkgx3xliotvjs. . ." },

"agent": "-----BEGIN PUBLIC KEY-----\nMFIwEA. . .",
"signature": "3040021e10db76a6606d7a813747849028c79e. . ." }

Annotated production

// bafyreibvtxzqhvht5rfxpw3rkgx3xliotvjs. . . [OR]

// bafyreiek2t75whn7gi6ygrymegguescqi4iu. . ./claim
{ "format": "annotated-production",

"production": {

"/": "bafyreihlji3p7py5sbfklmutnoclqjs4uql3. . ." },

"annotation": {

"/": "bafyreieonawrhw3czj27bcdxo6lpydazmu22. . ." } }
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Production

// bafyreihlji3p7py5sbfklmutnoclqjs4uql3. . . [OR]

// bafyreibvtxzqhvht5rfxpw3rkgx3xliotvjs. . ./production
{ "format": "production",

"mode": { "/": "bafyreihnx2hp5xhgozl5mcu3ixh3xlebsqhb. . ." },

"sequent": { "/": "bafyreigw3o7kbd65zl43f6ksinyljdzbk3nj. . ." } }

Sequent

// bafyreigw3o7kbd65zl43f6ksinyljdzbk3nj. . . [OR]

// bafyreihlji3p7py5sbfklmutnoclqjs4uql3. . ./sequent
{ "format": "sequent",

"conclusion": {

"/": "bafyreieysj5wtzzi6jx64octfttrpaij5k7q. . ." },

"dependencies": [

{ "/": "bafyreihw6ggod5k5nvrfs7a3prtvjoqd6t3u. . ." },

{ "/": "bafyreiawv2xo62nkwoto2cw77gwbcpef3ete. . ." } ] }

Formula

// bafyreieysj5wtzzi6jx64octfttrpaij5k7q. . . [OR]

// bafyreigw3o7kbd65zl43f6ksinyljdzbk3nj. . ./conclusion
{ "format": "formula",

"language": { "/": "bafyreidytsnnzmr7mcmd4abvy4ufp7rwh. . ." },

"content": {

"/": "bafyreigytwz7qnrssba2vdqsle765kgyuvnp. . ." },

"context": [

{ "/": "bafyreifitbc5ywrbxrvnykdohxxc5d6yvdsx. . ." } ] }

Context

// bafyreifitbc5ywrbxrvnykdohxxc5d6yvdsx. . . [OR]

// bafyreieysj5wtzzi6jx64octfttrpaij5k7q. . ./context/0
{ "format": "context",

"content": { "/": "bafyreia4m2rkjud4jdregjtajo3v4yws5. . ."},
"language": { "/": "bafyreidytsnnzmr7mcmd4abvy4ufp7rwh. . ." } }
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B A Complete Example

This section presents a complete example of proving the following theorem in
Abella using external lemmas from Coq and λProlog:

For n ∈ N, fib(n) = n2 if and only if n ∈ {0, 1, 12} where fib(n) denotes
the nth Fibonacci number.

The purpose of this example is to illustrate the communication with DAMF and
the various edge provers, so the theorem itself is not particularly challenging.
Nevertheless, a complete proof of this theorem inside Abella would currently
require formalizing a sizeable amount of integer arithmetic, not to mention
automated tactics for reasoning about arithmetic. Since Coq has these components
already, we will use Coq to prove the following theorem by making heavy use of
its linear arithmetic solvers:

For n ∈ N, if n ≥ 13 then fib(n) > n2.

On the other hand, we will use λProlog to find all the solutions for fib(n) = X
for n ∈ {0, 1, . . . , 12}. We could of course have used Coq to perform these
computations as well, but it is pedagogically useful to see an example that
combines both functional and relational programming.

Further details on this example, including the various input files and the
precise tools and commands to run to verify the development, can be found in
the following location:

https://distributed-assertions.github.io/example-walkthrough/.

B.1 Setup in Abella

Abella has no built in notion of natural numbers. We therefore begin an Abella
development (in a .thm file) by declaring the nat type together with its con-
structors z and s to obtain a unary representation for natural numbers. The
Abella type system is only used for syntactic checks and yields no induction
principles for logical reasoning, so we have to define an auxiliary inductively
defined relation, also called nat, that is used for inductive reasoning. In Abella
the namespace of types and predicates are separate, so the same name nat can be
used both for type names and for predicate names. Finally, because Abella uses
only λ-equivalence as its equational theory of λ-terms, we will have to capture
recursive computations in the form of relations; thus, operations such as addition
and multiplication and relations such as ≤ are defined using inductively defined
relations. Thus, our Abella development begins as follows.

1 %% FibExample.thm

2

3 Kind nat type.

4 Type z nat.

5 Type s nat -> nat.

6

7 % nat X ≡ X is a natural number
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8 Define nat : nat -> prop by

9 ; nat z

10 ; nat (s X) := nat X.

11

12 % le X Y ≡ X ≤ Y

13 Define le : nat -> nat -> prop by

14 ; le z X

15 ; le (s X) (s Y) := le X Y.

16

17 % lt X Y ≡ X < Y

18 Define lt : nat -> nat -> prop by

19 ; lt z (s X)

20 ; lt (s X) (s Y) := lt X Y.

21

22 % plus X Y Z ≡ Z = X + Y

23 Define plus : nat -> nat -> nat -> prop by

24 ; plus z X X

25 ; plus (s X) Y (s Z) := plus X Y Z.

26

27 % times X Y Z ≡ Z = X × Y

28 Define times : nat -> nat -> nat -> prop by

29 ; times z X z

30 ; times (s X) Y Z :=

31 exists U, times X Y U /\ plus U Y Z.

The nth Fibonacci number is defined in Abella relationally as well:

32 Define fib : nat -> nat -> prop by

33 ; fib z z

34 ; fib (s z) (s z)

35 ; fib (s (s X)) N :=

36 exists L M, fib X L /\ fib (s X) M /\ plus L M N.

B.2 Using λProlog to compute ground instances

While Abella has a logic programming engine, which implements a fragment of
λProlog, as part of its search tactic, it is inefficient and cumbersome to use. We
could improve this implementation in Abella, but we could also use a trusted
external λProlog engine such as Teyjus [35] or ELPI [21]. In λProlog, we can
define the nat type and the predicates plus and fib analogously to the Abella
formulation above.

1 %% fib.sig: type, term, and predicate constants

2 sig fib.

3 kind nat type.

4 type z nat.

5 type s nat -> nat.

6 type plus nat -> nat -> nat -> o.

7 type fib nat -> nat -> o.

8 end.
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1 %% fib.mod: program clauses for predicates

2 module fib.

3 plus z X X.

4 plus (s X) Y (s Z) :- plus X Y Z.

5 fib z z.

6 fib (s z) (s z).

7 fib (s (s X)) N :- fib X L, fib (s X) M, plus L M N.

8 end.

With this definition, we can ask a λProlog engine to solve fib goals where
the first argument is ground. For example:

[fib] ?- fib (s (s (s z))) X.

The answer substitution:

X = s (s z)

More solutions (y/n)? y

no (more) solutions

We can also, of course, check that a given ground predicate is indeed derivable.

[fib] ?- fib (s (s (s (s (s z))))) (s (s (s (s (s z))))).

yes

We have instrumented a variant of the Teyjus implementation of λProlog to
produce a Dispatch assertion (i.e., in the input language of Dispatch) for such
checks. For example, the above check will be written as the following JSON
object.

1 { "format": "assertion",

2 "agent": "exampleAgent",

3 "claim": {

4 "format": "annotated-production",

5 "annotation": {"name": "fib5"},

6 "production": {

7 "mode": "damf:bafyreigk. . .",
8 "sequent": {

9 "conclusion": "fib5",

10 "dependencies": [] } } },

11 "formulas": {

12 "fib5": {

13 "language": "damf:bafyreice. . .",
14 "content": "fib (s (s (s (s (s z))))) . . .",
15 "context": ["fib"] } },

16 "contexts": {

17 "fib": {

18 "language": "damf:bafyreice. . .",
19 "content": [

20 – contents of fib.sig as a string – ,
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21 – contents of fib.mod as a string –
22 ] } } }

The "language" values in lines 13 and 18 are understood to be canonical
references to a DAMF object referencing the language of λProlog. Similarly, the
"mode" value in line 7 is a canonical reference to a DAMF object describing the
Teyjus implementation. The "agent" value in line 2 is the name of some agent
profile created by running dispatch create-agent; Dispatch uses the private key
of this agent profile to sign the assertion when publishing it to DAMF.

B.3 Proving arithmetic facts in Coq

The lemma we are ultimately interested in depends on fairly significant arithmetic
reasoning. We will use Coq’s linear integer arithmetic solver lia to write fairly
straightforward proofs of the lemma. However, in Coq we will define fib not as a
binary relation but as a recursively defined fixed point with one argument. The
full development in Coq v. 8.16.1 is shown below.

1 Require Import Arith Lia.

2

3 Fixpoint fib (n : nat) :=

4 match n with

5 | 0 => 0

6 | S j =>

7 match j with

8 | 0 => 1

9 | S k => fib j + fib k

10 end

11 end.

12

13 Ltac liarw F :=

14 let h := fresh "H" in

15 assert (h : F) by (simpl ; lia) ; rewrite h in * ; clear h.

16

17 Theorem fib_square_lemma : forall n, 2 * n + 27 <= fib (n + 12).

18 induction n.

19 - simpl ; lia.

20 - liarw (n + 12 = S (n + 11)).

21 liarw (S n + 12 = S (S (n + 11))).

22 assert (Hl : 2 <= fib (n + 11)).

23 clear IHn ; induction n ; [simpl ; lia | ].

24 liarw (n + 11 = S (n + 10)).

25 liarw (S n + 11 = S (S (n + 10))).

26 assert (H : fib (S (S (n + 10))) = fib (S (n + 10)) + fib (n + 10))

27 by auto.

28 lia.

29 assert (fib (S (S (n + 11))) = fib (S (n + 11)) + fib (n + 11))

30 by auto.

31 lia.

32 Qed.
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33

34 Theorem fib_square_above : forall n, 13 <= n -> n ^ 2 < fib n.

35 intros n Hle ; pose (k := n - 13) ; liarw (n = k + 13) ; clear Hle.

36 induction k.

37 - simpl ; lia.

38 - liarw (k + 13 = S (k + 12)).

39 liarw (S k + 13 = S (S (k + 12))).

40 assert (fib (S (S (k + 12))) = fib (S (k + 12)) + fib (k + 12))

41 by auto.

42 liarw (S (S (k + 12)) ^ 2 = S (k + 12) ^ 2 + 2 * k + 27).

43 specialize (fib_square_lemma k).

44 lia.

45 Qed.

Note the various appeals to the linear integer arithmetic solver lia in the proofs,
either used directly or via a defined Ltac liarw defined in lines 13–15.

If Coq were to add publishing support for DAMF, the sequent generated for
the fib_square_lemma theorem above may look something like this:

1 { "format": "assertion",

2 "agent": "exampleAgent",

3 "claim": {

4 "format": "annotated-production",

5 "annotation": {"name": "fib_square_above"},

6 "production": {

7 "mode": "damf:bafyreium. . .",
8 "sequent": {

9 "conclusion": "fib_square_above",

10 "dependencies": [] } } },

11 "formulas": {

12 "fib_square_above": {

13 "language": "damf:bafyreikf. . .",
14 "content": "forall n, 13 <= n -> n ^ 2 < fib n",

15 "context": ["fib_square_above!ctx"] } },

16 "contexts": {

17 "fib_square_above!ctx": {

18 "language": "damf:bafyreikf. . .",
19 "content": [

20 "Require Import Arith.",

21 "Fixpoint fib (n : nat) := match · · · end."

22 ] } } }

Here, the "mode" on line 7 represents a DAMF object that describes the Coq
(v. 8.16.1) tool, while the "language" field in lines 13 and 18 describe the Coq
language. Note that this is in the input format intended for dispatch publish.

B.4 Adapting λProlog and Coq sequents for Abella

Taking stock, we have ground facts built in the higher-order logic programming
language λProlog using the tool Teyjus, and a lemma about the rate of growth
of the Fibonacci function written in the calculus of inductive constructions using
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the tool Coq. Obviously, neither of these languages correspond to the language G
that forms the basis of the Abella theorem prover. Thus, we need adapters for
translating these external dependencies to Abella’s language.

These adapters can, in principle, be quite sophisticated; for instance, they
can be written using Dedukti. For illustration purposes in the present paper, we
adapt the sequents by hand by asserting in Abella the intended translation at the
point of importing the assertion. Imagine, for instance, that the fib5 assertion
shown in Section B.2 is given the cid bafyrei4j. . .. Here is how we would import
it in Abella:

37 %% FibExample.thm continuing...

38 Import "damf:bafyrei4j. . ." as

39 Theorem fib5: fib (s (s (s (s (s z))))) (s (s (s (s (s z))))).

From the perspective of Abella, this looks just like an ordinary Theorem statement,
except there is no proof that follows. Instead, Abella would generate the following
adapter sequent (which it could then publish using Dispatch):

1 { "format": "assertion",

2 "agent": "exampleAgent",

3 "claim": {

4 "format": "annotated-production",

5 "annotation": {"name": "fib5"},

6 "production": {

7 "mode": null,

8 "sequent": {

9 "conclusion": "fib5",

10 "dependencies": [

11 "damf:bafyrei4j. . ./claim/sequent/conclusion" ] } } },

12 "formulas": {

13 "fib5": {

14 "language": "damf:bafyreig8. . .",
15 "content": "fib (s (s (s (s (s z))))) . . .",
16 "context": ["fib5!context"] } },

17 "contexts": {

18 "fib5!context": {

19 "language": "damf:bafyreig8. . .",
20 "content": [

21 "Kind nat type.", "Type z nat.", "Type s nat -> nat.",

22 "Define fib : nat -> nat -> prop by . . .." ] } } }

Lines 14 and 19 above are references to a DAMF object describing the Abella
language. In line 7, the "mode" field is left as null to indicate that this assertion
was not created by any tool; in other words, the agent "exampleAgent" is solely
responsible for the assertion. If a tool had been used instead, this field would refer
to the DAMF description of that tool. Finally, in line 11, the dependency that is
included is the cid of the conclusion of the assertion object that was produced
by λProlog, and in turn imported by Abella in line 38 of FibExample.thm. As
explained in Section 3.1, the dependencies in a sequent are formula objects, not
assertions; the same formula object can have several different proofs of it asserted
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by a variety of agents, and the use of the formula as a lemma should not be seen
as privileging any particular assertion above others. From Abella’s perspective,
then, the name fib5 denotes just the formula on line 39 of FibExcample.thm.

The Coq lemma fib_square_above is imported into Abella in a similar fashion.
The only difference is that the Abella translation of the Coq theorem needs to be
sensitive to the fact that the type nat of Abella is not inductively defined as in
Coq, and arithmetic operations are defined relationally. A conservative treatment
is as follows:

40 %% FibExample.thm continuing...

41 Import "damf:bafyreiyv. . ." as

42 Theorem fib_square_above : forall n, nat n -> le (s13 z) n ->

43 forall u, times n n u ->

44 forall v, fib n v -> lt u v.

The cid damf:bafyreiyv. . . on line 41 is that of the assertion corresponding to the
theorem fib_square_above in Coq. The imorted assertion is rewritten as shown in
lines 42–44. As before with λProlog, the assertion corresponding to this assertion,
with the "mode" of production set to null, can be easily generated and published
by Abella.

B.5 Assembling the final theorem in Abella

Given these external lemmas from λProlog and Coq, the final desired theorem is
fairly straightforward to assemble; the essential cases are shown below.

45 %% FibExample.thm continuing...

46

47 % Some more easy lemmas

48 Theorem fib_deterministic : forall x y z, fib x y -> fib x z -> y = z.

49 . . . % proof elided

50 Theorem lt_irreflexive : forall x, nat x -> lt x x -> false.

51 . . . % proof elided

52 Theorem times_result_nat : forall m n k, nat m -> nat n ->

53 times m n k -> nat k.

54 . . . % proof elided

55

56 %%% main theorem

57

58 Theorem fib_squares : forall x x2, nat x -> times x x x2 ->

59 (fib x x2 <-> x = z \/ x = s z \/ x = s12 z).

60 intros Hnat Hsquare. split.

61

62 %% ->

63 intro Hfib.

64 Hcs: assert x = z \/ x = s z \/ · · · \/ x = s12 z \/ leq (s13 z) x.

65 case Hnat. search.

66 case Hnat. search.

67 · · · /* repeat 12 times in total */

68 search. % leq (s13 z) (s13 x).

69 case Hcs. search. % case of x = z
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70 case Hcs. search. % case of x = s z

71 case Hcs.

72 % case of x = s (s z)

73 Ha : apply fib2. % fib (s (s z)) (s z)

74 case Hsquare. · · · % etc. to instantiate x2 to 4

75 apply fib_deterministic to Ha Hfib. % contradiction: 1 ̸= 4

76 · · · /* so on for 3, ..., 11 */

77 case Hcs. search. % case of x = s12 z

78 % finally, case of x = s13 z

79 H : apply fib_square_above to Hnat Hcs.

80 H : apply *H to Htimes Hfib. % lt x2 x2

81 Hnat’ : apply times_result_nat to Hnat Hnat Htimes.

82 apply lt_irreflexive to Hnat’ H. % obtains a contradiction

83

84 %% <-

85 intro Hcs.

86 case Hcs. search. % case of x = z

87 case Hcs. search. % case of x = (s z)

88 apply fib12. search. % case of x = s12 z

The uses of the external lemmas are highlighted in red. There are some other
minor lemmas (e.g., times_result_is_nat, fib_deterministic) which are easily
proved within Abella.
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