
A positive perspective on term representation

Dale Miller and Jui-Hsuan Wu

Inria Saclay & LIX, Institut Polytechnique de Paris

CSL 2023, Warsaw, Poland

15 February 2023

1 / 1

Roles for proof theory: 1 - 4 of 6

1. Proof theory was started as a way to address the crisis of
consistency in mathematics: Hilbert, Frege, Russell, Gentzen,
. . ., Voevodsky. Hilbert-Frege proof systems are eminently
trustable: you only need to trust a small set of axioms and
inferences, and perform simple computations.

2. Ordinal analysis of systems of arithmetic: Gentzen, Kreisel,
Rathjen, Schütte, Pohlers, etc.

3. Constructive reasoning, program extraction, proof mining:
Kohlenbach, Oliva, Hayashi, Schwichtenberg, etc.

4. Reverse mathematics, H. Friedman, S. Simpson, etc.

Ref: Rathjen and Sieg, Proof Theory, The Stanford Encyclopedia
of Philosophy

2 / 1

Roles for proof theory: 5 of 6

5. Proof theoretic semantics.

Use inference rules and proofs to provide meaning instead of
using references to truth, i.e., in contrast to using set theory,
type theory, category theory, and denotational semantics.

• Gentzen, Prawitz, Schreoder-Heister, etc. used this approach
to define logical connectives and their properties.

• Miller, Nadathur, Scedrov, Pfenning, Pym, Harland, Andreoli,
Pareschi, Hodas, etc, used this approach to define the meaning
of logic programming languages. Also the SOS of Plotkin, etc.

Ref: Schroeder-Heister, Proof Theoretic Semantics, The
Stanford Encyclopedia of Philosophy

Ref: Miller, A Survey of the Proof-Theoretic Foundations of
Logic Programming, Theory and Practice of Logic Prog, 2022

3 / 1

Roles for proof theory: 6 of 6

6. Principled approach to syntax.

• λ-tree syntax, mobility of binders (a.k.a. HOAS)

• Focused proofs determine term structures. Cut-free focused
proofs yield normal terms. Cut-elimination determines
substitution.

• Variant of the λ-calculi: Herbelin, Dyckhoff, Lengrand,
Esṕırito Santo, Scherer, etc.

• Their work on the λ-calculus relies on negative polarity,
possibly with disjunction and existentials (positive
connectives).

Our project continues this line of work by putting positive polarity
at the center.

4 / 1

Term structures
Terms (or expressions) are used in various settings.

• Mathematics: equations, formulas, proofs

• Programming: AST, types, intermediate representations

• Proof assistants: formulas, types, proofs

Terms come in different formats:

(1 + 2) + (1 + (1 + 2))

let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y

let x = 1 + 2 in let y = 1 + x in x + y

Terms can be given graphical representations: labeled trees,
directed acyclic graphs (DAGs)

There are numerous operations on terms: equality, substitution,
evaluation, unification, transformations

Things can get tricky: bindings? meta-variables? nested
quantification? Skolemization?

5 / 1

Term structures
Terms (or expressions) are used in various settings.

• Mathematics: equations, formulas, proofs

• Programming: AST, types, intermediate representations

• Proof assistants: formulas, types, proofs

Terms come in different formats:

(1 + 2) + (1 + (1 + 2))

let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y

let x = 1 + 2 in let y = 1 + x in x + y

Terms can be given graphical representations: labeled trees,
directed acyclic graphs (DAGs)

There are numerous operations on terms: equality, substitution,
evaluation, unification, transformations

Things can get tricky: bindings? meta-variables? nested
quantification? Skolemization?

5 / 1

Term structures
Terms (or expressions) are used in various settings.

• Mathematics: equations, formulas, proofs

• Programming: AST, types, intermediate representations

• Proof assistants: formulas, types, proofs

Terms come in different formats:

(1 + 2) + (1 + (1 + 2))

let x = 1 + 2 in let y = (1 + (1 + 2)) in x + y

let x = 1 + 2 in let y = 1 + x in x + y

Terms can be given graphical representations: labeled trees,
directed acyclic graphs (DAGs)

There are numerous operations on terms: equality, substitution,
evaluation, unification, transformations

Things can get tricky: bindings? meta-variables? nested
quantification? Skolemization?

5 / 1

Two examples of term structures

(f (f z z) (f z z))

name y1 = (f z z) in

name y2 = (f y1 y1) in y2.

These terms can be displayed as a labeled tree and a DAG.

z z z z z

f f f

ff

y1

y2

6 / 1

Proof theory for term representations
NB: We are concerned primarily with proofs-as-terms and not
proofs-as-programs!
NB: We are going against the mantra in dependently typed
λ-terms: “proofs are just terms.” Instead, we are considering
“terms are proofs.”

Which proof system to use? Gentzen [1935] provided two choices.

• Natural deduction (NJ): too rigid; does not address sharing.

• Sequent calculus (LJ): too low-level, noisy, and chaotic.

Focused proof systems greatly improve the sequent calculus.

• Uniform proofs [M, Nadathur, Pfenning, & Scedrov 1991]

• Focused linear logic [Andreoli 1992]

• Focused intuitionistic logic LJF [Liang & M, 2009]

Focused proof systems construct synthetic inference rules.
Different polarizations yield different normal forms of proofs.

7 / 1

Proof theory for term representations
NB: We are concerned primarily with proofs-as-terms and not
proofs-as-programs!
NB: We are going against the mantra in dependently typed
λ-terms: “proofs are just terms.” Instead, we are considering
“terms are proofs.”

Which proof system to use? Gentzen [1935] provided two choices.

• Natural deduction (NJ): too rigid; does not address sharing.

• Sequent calculus (LJ): too low-level, noisy, and chaotic.

Focused proof systems greatly improve the sequent calculus.

• Uniform proofs [M, Nadathur, Pfenning, & Scedrov 1991]

• Focused linear logic [Andreoli 1992]

• Focused intuitionistic logic LJF [Liang & M, 2009]

Focused proof systems construct synthetic inference rules.
Different polarizations yield different normal forms of proofs.

7 / 1

Proof theory for term representations
NB: We are concerned primarily with proofs-as-terms and not
proofs-as-programs!
NB: We are going against the mantra in dependently typed
λ-terms: “proofs are just terms.” Instead, we are considering
“terms are proofs.”

Which proof system to use? Gentzen [1935] provided two choices.

• Natural deduction (NJ): too rigid; does not address sharing.

• Sequent calculus (LJ): too low-level, noisy, and chaotic.

Focused proof systems greatly improve the sequent calculus.

• Uniform proofs [M, Nadathur, Pfenning, & Scedrov 1991]

• Focused linear logic [Andreoli 1992]

• Focused intuitionistic logic LJF [Liang & M, 2009]

Focused proof systems construct synthetic inference rules.
Different polarizations yield different normal forms of proofs.

7 / 1

The elements of focusing

We read sequent calculus rules from conclusion to premises.

rule application invertible vs non-invertible

oracle no information vs essential information

non-determinism don’t care vs don’t know

phase negative ⇑ vs positive ⇓

Focused proofs alternative between two phases.

First developed with linear logic where the positive/negative status
for logical connectives is unambiguous.

Later: applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc. These
were generalized by LJF and LKF [Liang & M, 2009].

Focusing allows for defining synthetic inference rules which use one
positive phase below negative phases.

8 / 1

Two-phase structure and large-scale rules

−
+
−
+
−

...

large-scale rule

(= synthetic inference rule)
borders

decide: choose a formula to put under focus

ax
` A⊥,A

ax
` B,B⊥

⊗
` A⊥,B⊥,A⊗ B

⊕1
` A⊥,B⊥ ⊕ (C⊥ ⊗ D⊥),A⊗ B

ax
` A⊥,A

ax
` C ,C⊥

ax
` D⊥,D

⊗
` C ,D,C⊥ ⊗ D⊥

⊕2
` C ,D,B⊥ ⊕ (C⊥ ⊗ D⊥) `
` C ` D,B⊥ ⊕ (C⊥ ⊗ D⊥)

⊗
` A⊥,B⊥ ⊕ (C⊥ ⊗ D⊥),A⊗ (C ` D)

&
` A⊥,B⊥ ⊕ (C⊥ ⊗ D⊥), (A⊗ B) & (A⊗ (C ` D)) `
` A⊥ ` (B⊥ ⊕ (C⊥ ⊗ D⊥)), (A⊗ B) & (A⊗ (C ` D))

9 / 1

The LJF system with only implication

Formulas are built using atomic formulas and implication.

In LJF , formulas are polarized.

• Implications are negative.

• Atomic formulas are either positive or negative.
(forward-chaining / backchaining)

A polarized formula (resp. theory) is a formula together with an
atomic bias assignment δ : A → {+,−}.

Different polarizations do not affect provability, but they yield
different normal forms of proofs.

Theorem: If a formula is provable in LJF for some polarization,
then it is provable for all polarizations.

10 / 1

Sequents in a focused proof

Γ⇑ Θ ` ∆ ⇑∆′ Γ⇓ Θ ` ∆ ⇓∆′

All four zones Γ, Θ, ∆, and ∆′ are multisets of formulas.
The multiset union ∆ ∪∆′ is always a singleton.

Γ and ∆′ are called the left and right storage zones.
Θ and ∆ are called the left and right staging areas.

Γ⇑ · ` · ⇑∆ are called border sequents: these sequents form the
conclusion and premises of synthetic inference rules.

Notation conventions

• drop · ⇓ and · ⇑ when they appear on the right,

• drop ⇓ · and ⇑ · when they appear on the left.

• Thus, Γ⇑ · ` · ⇑E can be written as Γ ` E . Border sequents
in LJF resemble sequents in LJ.

11 / 1

Sequents in a focused proof

Γ⇑ Θ ` ∆ ⇑∆′ Γ⇓ Θ ` ∆ ⇓∆′

All four zones Γ, Θ, ∆, and ∆′ are multisets of formulas.
The multiset union ∆ ∪∆′ is always a singleton.

Γ and ∆′ are called the left and right storage zones.
Θ and ∆ are called the left and right staging areas.

Γ⇑ · ` · ⇑∆ are called border sequents: these sequents form the
conclusion and premises of synthetic inference rules.

Notation conventions

• drop · ⇓ and · ⇑ when they appear on the right,

• drop ⇓ · and ⇑ · when they appear on the left.

• Thus, Γ⇑ · ` · ⇑E can be written as Γ ` E . Border sequents
in LJF resemble sequents in LJ.

11 / 1

The LJF system with only implication

Decide, Release, and Store Rules

N, Γ⇓ N ` A

N, Γ ` A
Dl

Γ ` P ⇓
Γ ` P

Dr
Γ⇑ P ` A

Γ⇓ P ` A
Rl

Γ ` N ⇑
Γ ` N ⇓ Rr

Γ,C ⇑ Θ ` ∆′ ⇑∆

Γ⇑ Θ,C ` ∆′ ⇑∆
Sl

Γ⇑ Θ ` A

Γ⇑ Θ ` A ⇑ Sr

Initial Rules

δ(A) = +

A, Γ ` A ⇓ Ir
δ(A) = −
Γ⇓ A ` A

Il

Introduction Rules for Implication

Γ ` B ⇓ Γ⇓ B ′ ` A

Γ⇓ B ⊃ B ′ ` A
⊃ L

Γ⇑ Θ,B ` B ′ ⇑
Γ⇑ Θ ` B ⊃ B ′ ⇑ ⊃ R

P is positive, N is negative, C is negative or atomic.
12 / 1

The LJF system with only implication

Decide, Release, and Store Rules

N, Γ,N ` A

N, Γ ` A
Dl

Γ ` P
Γ ` P

Dr
Γ,P ` A

Γ,P ` A
Rl

Γ ` N
Γ ` N

Rr

Γ,C ,Θ ` ∆′,∆

Γ,Θ,C ` ∆′,∆
Sl

Γ,Θ ` A

Γ,Θ ` A
Sr

Initial Rules

A, Γ ` A
Ir A, Γ ` A

Il

Introduction Rules for Implication

Γ ` B Γ,B ′ ` A

Γ,B ⊃ B ′ ` A
⊃ L

Γ,Θ,B ` B ′

Γ,Θ ` B ⊃ B ′
⊃ R

P is positive, N is negative, C is negative or atomic.
12 / 1

The LJF system with only implication

Decide, Release, and Store Rules

N, Γ,N ` A

N, Γ ` A

Initial Rules

A, Γ ` A

Introduction Rules for Implication

Γ ` B Γ,B ′ ` A

Γ,B ⊃ B ′ ` A
⊃ L

Γ,Θ,B ` B ′

Γ,Θ ` B ⊃ B ′
⊃ R

P is positive, N is negative, C is negative or atomic.

12 / 1

Synthetic inference rules
Synthetic inference rule = large-scale rule = ⇓-phase + ⇑-phase
A left synthetic inference rule for B is an inference rule of the form

Γ1 ` A1 . . . Γn ` An

Γ ` A
B

justified by a derivation (in LJF) of the form

Γ1 ⇑ · ` · ⇑A1 . . . Γn ⇑ · ` · ⇑An
.....
⇑ phase

.....
⇓ phase

Γ⇓ B ` A
Dl , where B ∈ Γ

Γ⇑ · ` · ⇑A

In our settings, there is a unique synthetic rule for every formula B.
13 / 1

Two definitions

The order of a formula is defined as follows:

• ord(B) = 0 if B is atomic and

• ord(B ⊃ C) = max(ord(B) + 1, ord(C)).

For example, ord(a ⊃ (b ⊃ c)) = 1 and ord((a ⊃ b) ⊃ c) = 2.

We name two specific atomic bias assignments:

• δ−(A) = − for all atomic A.

• δ+(A) = + for all atomic A.

14 / 1

Axioms as rules

Let T be a finite set of formulas of order 1 or 2. Let δ be an atomic
bias assignment. LJbδ, T c extends LJ with the left synthetic
inference rules for T : for every left synthetic inference rule

B, Γ1 ` A1 . . . B, Γn ` An
B

B, Γ ` A

with B ∈ T , the following inference rule is added to LJbδ, T c.

Γ1 ` A1 . . . Γn ` An
B

Γ ` A

Theorem
T , Γ ` A is provable in LJ ⇔ Γ ` A is provable in LJbδ, T c.

For related work, see Negri & von Plato, Cut elimination in the
presence of axioms, BSL 1998.

15 / 1

Axioms as rules

Let T be a finite set of formulas of order 1 or 2. Let δ be an atomic
bias assignment. LJbδ, T c extends LJ with the left synthetic
inference rules for T : for every left synthetic inference rule

B, Γ1 ` A1 . . . B, Γn ` An
B

B, Γ ` A

with B ∈ T , the following inference rule is added to LJbδ, T c.

Γ1 ` A1 . . . Γn ` An
B

Γ ` A

Theorem
T , Γ ` A is provable in LJ ⇔ Γ ` A is provable in LJbδ, T c.

For related work, see Negri & von Plato, Cut elimination in the
presence of axioms, BSL 1998.

15 / 1

An example

Let T be the collection of formulas

D1 = a0 ⊃ a1, D2 = a0 ⊃ a1 ⊃ a2, · · · , Dn = a0 ⊃ · · · ⊃ an, · · ·

where ai are atomic.

Backchaining: The inference rules in LJbδ−, T c include

Γ ` a0 · · · Γ ` an−1

Γ ` an

Forwardchaining: The inference rules in LJbδ+, T c include

Γ, a0, · · · , an−1, an ` A

Γ, a0, · · · , an−1 ` A

16 / 1

An example

Let T be the collection of formulas

D1 = a0 ⊃ a1, D2 = a0 ⊃ a1 ⊃ a2, · · · , Dn = a0 ⊃ · · · ⊃ an, · · ·

where ai are atomic.

Backchaining: The inference rules in LJbδ−, T c include

Γ ` a0 · · · Γ ` an−1

Γ ` an

Forwardchaining: The inference rules in LJbδ+, T c include

Γ, a0, · · · , an−1, an ` A

Γ, a0, · · · , an−1 ` A

16 / 1

An example

Let T be the collection of formulas

D1 = a0 ⊃ a1, D2 = a0 ⊃ a1 ⊃ a2, · · · , Dn = a0 ⊃ · · · ⊃ an, · · ·

where ai are atomic.

Backchaining: The inference rules in LJbδ−, T c include

Γ ` a0 · · · Γ ` an−1

Γ ` an

Forwardchaining: The inference rules in LJbδ+, T c include

Γ, a0, · · · , an−1, an ` A

Γ, a0, · · · , an−1 ` A

16 / 1

Backchaining and Forward-chaining

What are the proofs of a0 ` an?

When ai are all given the negative bias, we have:

Γ ` a0
Γ ` a1

Γ ` a0 Γ ` a1
Γ ` a2

· · · Γ ` a0 · · · Γ ` an−1
Γ ` an

· · ·

The unique proof of a0 ` an has exponential size.

When ai are all given the positive bias, we have:

Γ, a0, a1 ` A

Γ, a0 ` A

Γ, a0, a1, a2 ` A

Γ, a0, a1 ` A
· · · Γ, a0, . . . , an−1, an ` A

Γ, a0, . . . , an−1 ` A
· · ·

The smallest proof of a0 ` an has linear size.

17 / 1

Backchaining and Forward-chaining

What are the proofs of a0 ` an?

When ai are all given the negative bias, we have:

Γ ` a0
Γ ` a1

Γ ` a0 Γ ` a1
Γ ` a2

· · · Γ ` a0 · · · Γ ` an−1
Γ ` an

· · ·

The unique proof of a0 ` an has exponential size.

When ai are all given the positive bias, we have:

Γ, a0, a1 ` A

Γ, a0 ` A

Γ, a0, a1, a2 ` A

Γ, a0, a1 ` A
· · · Γ, a0, . . . , an−1, an ` A

Γ, a0, . . . , an−1 ` A
· · ·

The smallest proof of a0 ` an has linear size.

17 / 1

Backchaining and Forward-chaining

What are the proofs of a0 ` an?

When ai are all given the negative bias, we have:

Γ ` a0
Γ ` a1

Γ ` a0 Γ ` a1
Γ ` a2

· · · Γ ` a0 · · · Γ ` an−1
Γ ` an

· · ·

The unique proof of a0 ` an has exponential size.

When ai are all given the positive bias, we have:

Γ, a0, a1 ` A

Γ, a0 ` A

Γ, a0, a1, a2 ` A

Γ, a0, a1 ` A
· · · Γ, a0, . . . , an−1, an ` A

Γ, a0, . . . , an−1 ` A
· · ·

The smallest proof of a0 ` an has linear size.

17 / 1

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

Γ ` a0

Γ ` a1

Γ ` a0 Γ ` a1

Γ ` a2
· · ·

Γ ` a0 · · · Γ ` an−1

Γ ` an
Consider the proofs of a0 ` a4.

18 / 1

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

Γ ` t0 : a0

Γ ` E1t0 : a1

Γ ` t0 : a0 Γ ` t1 : a1

Γ ` E2t0t1 : a2
· · ·

Γ ` t0 : a0 · · · Γ ` tn−1 : an−1

Γ ` Ent0 · · · tn−1 : an
Consider the proofs of a0 ` a4.

18 / 1

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

Γ ` t0 : a0

Γ ` E1t0 : a1

Γ ` t0 : a0 Γ ` t1 : a1

Γ ` E2t0t1 : a2
· · ·

Γ ` t0 : a0 · · · Γ ` tn−1 : an−1

Γ ` Ent0 · · · tn−1 : an
Consider the proofs of d0 : a0 ` t : a4.

18 / 1

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

Γ ` t0 : a0

Γ ` E1t0 : a1

Γ ` t0 : a0 Γ ` t1 : a1

Γ ` E2t0t1 : a2
· · ·

Γ ` t0 : a0 · · · Γ ` tn−1 : an−1

Γ ` Ent0 · · · tn−1 : an
Consider the proofs of d0 : a0 ` t : a4.

The term t is

(E4 (E3 (E2 (E1 d0) (E1 d0))

(E2 (E1 d0) (E1 d0)))

(E3 (E2 (E1 d0) (E1 d0))

(E2 (E1 d0) (E1 d0))))

18 / 1

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

Γ, a0, a1 ` A

Γ, a0 ` A

Γ, a0, a1, a2 ` A

Γ, a0, a1 ` A
· · ·

Γ, a0, · · · , an−1, an ` A

Γ, a0, · · · , an−1 ` A
Consider the proofs of a0 ` a4.

18 / 1

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

Γ, x0 : a0, x1 : a1 ` t : A

Γ, x0 : a0 ` F1x0(λx1.t) : A

Γ, x0 : a0, x1 : a1, x2 : a2 ` t : A

Γ, x0 : a0, x1 : a1 ` F2x0x1(λx2.t) : A
· · ·

Γ, x0 : a0, · · · , xn−1 : an−1, xn : an ` t : A

Γ, x0 : a0, · · · , xn−1 : an−1 ` Fnx0 · · · xn−1(λxn.t) : A
Consider the proofs of d0 : a0 ` t : a4.

18 / 1

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

Γ, x0 : a0, x1 : a1 ` t : A

Γ, x0 : a0 ` F1x0(λx1.t) : A

Γ, x0 : a0, x1 : a1, x2 : a2 ` t : A

Γ, x0 : a0, x1 : a1 ` F2x0x1(λx2.t) : A
· · ·

Γ, x0 : a0, · · · , xn−1 : an−1, xn : an ` t : A

Γ, x0 : a0, · · · , xn−1 : an−1 ` Fnx0 · · · xn−1(λxn.t) : A
Consider the proofs of d0 : a0 ` t : a4.

The term t annotating the shortest proof is

(F1 d0 (λx1.

(F2 d0 x1 (λx2.

(F3 d0 x1 x2 (λx3.

(F4 d0 x1 x2 x3 (λx4. x4))))))))

18 / 1

Encodings of untyped λ-terms: the theory

We use a primitive type (atomic formula) D for untyped λ-terms.

We fix the theory T = {Φ : D ⊃ (D ⊃ D),Ψ : (D ⊃ D) ⊃ D} and
consider proofs of sequents of the form

T , x1 : D, · · · , xk : D ` t : D

This theory is inconsistent in the sense that every formula over D
and ⊃ is provable from T .

As a result, the usual way we speak of cut-elimination is now
trivialized!

19 / 1

Encodings of untyped λ-terms: the theory

We use a primitive type (atomic formula) D for untyped λ-terms.

We fix the theory T = {Φ : D ⊃ (D ⊃ D),Ψ : (D ⊃ D) ⊃ D} and
consider proofs of sequents of the form

T , x1 : D, · · · , xk : D ` t : D

This theory is inconsistent in the sense that every formula over D
and ⊃ is provable from T .

As a result, the usual way we speak of cut-elimination is now
trivialized!

19 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic
inference rules:

Γ ` D Γ ` D
Φ

Γ ` D

Γ,D ` D
Ψ

Γ ` D

and the initial rule.

20 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic
inference rules:

Γ ` t : D Γ ` u : D
Φ

Γ ` D

Γ,D ` D
Ψ

Γ ` D

and the initial rule.

20 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic
inference rules:

Γ ` t : D Γ ` u : D
Φ

Γ ` Φ t u : D

Γ,D ` D
Ψ

Γ ` D

and the initial rule.

20 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic
inference rules:

Γ ` t : D Γ ` u : D
Φ

Γ ` Φ t u : D

Γ, x : D ` t : D
Ψ

Γ ` D

and the initial rule.

20 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic
inference rules:

Γ ` t : D Γ ` u : D
Φ

Γ ` Φ t u : D

Γ, x : D ` t : D
Ψ

Γ ` Ψ (λx .t) : D

and the initial rule.

20 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic
inference rules:

Γ,D,D,D ` D
Φ

Γ,D,D ` D

Γ,D ` D Γ,D ` D
Ψ

Γ ` D

and the initial rule.

20 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic
inference rules:

Γ, x : D, y : D, z : D ` t : D
Φ

Γ,D,D ` D

Γ,D ` D Γ,D ` D
Ψ

Γ ` D

and the initial rule.

20 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic
inference rules:

Γ, x : D, y : D, z : D ` t : D
Φ

Γ, x : D, y : D ` Φ x y (λz .t) : D

Γ,D ` D Γ,D ` D
Ψ

Γ ` D

and the initial rule.

20 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic
inference rules:

Γ, x : D, y : D, z : D ` t : D
Φ

Γ, x : D, y : D ` Φ x y (λz .t) : D

Γ, x : D ` t : D Γ, y : D ` u : D
Ψ

Γ ` D

and the initial rule.

20 / 1

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic
inference rules:

Γ, x : D, y : D, z : D ` t : D
Φ

Γ, x : D, y : D ` Φ x y (λz .t) : D

Γ, x : D ` t : D Γ, y : D ` u : D
Ψ

Γ ` Ψ (λx .t) (λy .u) : D

and the initial rule.

20 / 1

Two formats for untyped λ-terms

Two different polarity assignments give two different term
structures: (The infix backslash is the syntax of λProlog and Abella for

λ-abstraction.)

D is negative: yields top-down, tree-like structure

x nvar x x
Φ t u napp t u t u
Ψ (λx .t) nabs (x\t) λx .t

D is positive: yields bottom-up, DAG structure

x pvar x x
Φ x y (λz .t) papp x y (z\t) name z = app x y in t
Ψ (λx .t) (λy .s) pabs (x\t) (y\s) name y = abs(λx .t) in s

21 / 1

Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z

• Arguments of app are all names

22 / 1

Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z

• Arguments of app are all names

name y1 = app x x in name y2 = app x x in

name z = app y1 y2 in z

• Redundant naming

22 / 1

Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z

• Arguments of app are all names

name y1 = app x x in name y2 = app x x in

name z = app y1 y2 in z

• Redundant naming

name y1 = app x x in name y2 = app y y in

name z = app y1 y1 in z

• Vacuous naming

22 / 1

Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z

• Arguments of app are all names

name y1 = app x x in name y2 = app x x in

name z = app y1 y2 in z

• Redundant naming

name y1 = app x x in name y2 = app y y in

name z = app y1 y1 in z

• Vacuous naming

name y1 = app x x in name y2 = app y y in

name z = app y1 y2 in z

• Parallel naming

22 / 1

Some examples for the positive-bias syntax

name y = app x x in name z = app y y in z

• Arguments of app are all names

name y1 = app x x in name y2 = app x x in

name z = app y1 y2 in z

• Redundant naming

name y1 = app x x in name y2 = app y y in

name z = app y1 y1 in z

• Vacuous naming

name y1 = app x x and y2 = app y y in

name z = app y1 y2 in z

• Parallel naming (by introducing multi-focusing)

22 / 1

Cut-elimination for LJbδ, T c
The following theorem1 states that cut is admissible for the
extensions of LJ with polarized theories based on synthetic
inference rules.

Theorem (Cut admissibility for LJbδ, T c)
Let T be a finite polarized theory of order 2 or less. Then the cut
rule is admissible for the proof system LJbδ, T c.

The proof is based on a cut elimination procedure for LJF , and it
yields the notion of substitution for terms.

When we restrict to atomic cut formulas, the cut elimination
procedure can be presented in a big-step style.

• Cuts are permuted with synthetic rules instead of LJF rules.

1S. Marin, D. Miller, E. Pimentel, and M. Volpe. From axioms to synthetic
inference rules via focusing. Annals of Pure and Applied Logic 173(5).

23 / 1

Cut-elimination for LJbδ, T c
The following theorem1 states that cut is admissible for the
extensions of LJ with polarized theories based on synthetic
inference rules.

Theorem (Cut admissibility for LJbδ, T c)
Let T be a finite polarized theory of order 2 or less. Then the cut
rule is admissible for the proof system LJbδ, T c.

The proof is based on a cut elimination procedure for LJF , and it
yields the notion of substitution for terms.

When we restrict to atomic cut formulas, the cut elimination
procedure can be presented in a big-step style.

• Cuts are permuted with synthetic rules instead of LJF rules.

1S. Marin, D. Miller, E. Pimentel, and M. Volpe. From axioms to synthetic
inference rules via focusing. Annals of Pure and Applied Logic 173(5).

23 / 1

Cut-elimination for LJbδ, T c
The following theorem1 states that cut is admissible for the
extensions of LJ with polarized theories based on synthetic
inference rules.

Theorem (Cut admissibility for LJbδ, T c)
Let T be a finite polarized theory of order 2 or less. Then the cut
rule is admissible for the proof system LJbδ, T c.

The proof is based on a cut elimination procedure for LJF , and it
yields the notion of substitution for terms.

When we restrict to atomic cut formulas, the cut elimination
procedure can be presented in a big-step style.

• Cuts are permuted with synthetic rules instead of LJF rules.

1S. Marin, D. Miller, E. Pimentel, and M. Volpe. From axioms to synthetic
inference rules via focusing. Annals of Pure and Applied Logic 173(5).

23 / 1

Untyped λ-terms (substitution)
The cut-elimination procedure of LJF gives us the following
definitions of substitutions.

type nsubst tm -> (val -> tm) -> tm -> o.

type psubst tm -> (val -> tm) -> tm -> o.

nsubst T (x\ napp (R x) (S x)) (napp R’ S’) :-

nsubst T R R’, nsubst T S S’.

nsubst T (x\ nabs y\ R x y) (nabs y\ R’ y) :-

pi y\ nsubst T (x\ R x y) (R’ y).

nsubst T (x\ nvar Y) (nvar Y).

nsubst T (x\ nvar x) T.

psubst (papp U V K) R (papp U V H) :-

pi x\ psubst (K x) R (H x).

psubst (pabs S K) R (pabs S H) :-

pi x\ psubst (K x) R (H x).

psubst (pvar U) R (R U).

24 / 1

An example

appy

appz

root

x

appy’

appz’

root

a

name y = app x x in

name z = app y y in

z

name y’ = app a a in

name z’ = app y’ y’ in

z’

name y’ = app a a in

name z’ = app y’ y’ in

name y = app z’ z’ in

name z = app y y in z

25 / 1

An example

appy

appz

root

x

appy’

appz’

root

a

name y = app x x in

name z = app y y in

z

name y’ = app a a in

name z’ = app y’ y’ in

z’

name y’ = app a a in

name z’ = app y’ y’ in

name y = app z’ z’ in

name z = app y y in z

25 / 1

An example

appy

appz

root

x

appy’

appz’

root

a

name y = app x x in

name z = app y y in

z

name y’ = app a a in

name z’ = app y’ y’ in

z’

name y’ = app a a in

name z’ = app y’ y’ in

name y = app z’ z’ in

name z = app y y in z

25 / 1

Equality on terms

We have two different formats for untyped λ-terms.

When should two such expressions be considered the same?

“White box” approach: Look at the actual syntax of proofs.

• Transform proofs between systems: see Pimentel, Nigam, &
Neto, Multi-focused proofs with different polarity
assignments, LSFA 2015.

• Expensive since sharing is usually unwound.

“Black box” approach: Use concurrency theory notions of traces
and bisimulation.

26 / 1

Equality on terms

We have two different formats for untyped λ-terms.

When should two such expressions be considered the same?

“White box” approach: Look at the actual syntax of proofs.

• Transform proofs between systems: see Pimentel, Nigam, &
Neto, Multi-focused proofs with different polarity
assignments, LSFA 2015.

• Expensive since sharing is usually unwound.

“Black box” approach: Use concurrency theory notions of traces
and bisimulation.

26 / 1

Equality on terms

We have two different formats for untyped λ-terms.

When should two such expressions be considered the same?

“White box” approach: Look at the actual syntax of proofs.

• Transform proofs between systems: see Pimentel, Nigam, &
Neto, Multi-focused proofs with different polarity
assignments, LSFA 2015.

• Expensive since sharing is usually unwound.

“Black box” approach: Use concurrency theory notions of traces
and bisimulation.

26 / 1

Traces in untyped λ-terms: Using the negative bias syntax

kind tm type.

type napp tm -> tm -> tm.

type nabs (tm -> tm) -> tm.

kind trace type.

type left , right trace -> trace.

type bnd (trace -> trace) -> trace.

type tm tm -> o.

type trace tm -> trace -> o.

tm (napp M N) :- tm M, tm N.

tm (nabs R) :- pi x\ tm x => tm (R x).

trace (napp M N) (left P) :- trace M P.

trace (napp M N) (right P) :- trace N P.

trace (nabs R) (bnd S) :- pi x\ pi p\ trace x p => trace (R x) (S p).

The following theorem has a simple proof in Abella.

Theorem trace_eq :

forall X Y, {tm X} ->

(forall T, {trace X T} -> {trace Y T}) -> X = Y.

27 / 1

Traces in untyped λ-terms: Using the positive bias syntax

ptrace (papp U V K) P :-

pi x\ (pi P\ ptrace (pvar x) (left P) :- ptrace (pvar U) P) =>

(pi P\ ptrace (pvar x) (right P) :- ptrace (pvar V) P) =>

ptrace (K x) P.

ptrace (pabs R K) P :-

pi x\ (pi Q\ ptrace (pvar x) (bnd Q) :-

pi p\ pi u\ ptrace (pvar u) p => ptrace (R u) (Q p))

=> ptrace (K x) P.

% Order 3

ptrace :- (ptrace :- ptrace) =>

(ptrace :- ptrace) => ptrace.

% Order 4

ptrace :- (ptrace :- ptrace => ptrace) =>

ptrace.

However, trace-based equality tests are necessarily exponential in
cost since all sharing is unfolded.

28 / 1

Traces in untyped λ-terms: Using the positive bias syntax

ptrace (papp U V K) P :-

pi x\ (pi P\ ptrace (pvar x) (left P) :- ptrace (pvar U) P) =>

(pi P\ ptrace (pvar x) (right P) :- ptrace (pvar V) P) =>

ptrace (K x) P.

ptrace (pabs R K) P :-

pi x\ (pi Q\ ptrace (pvar x) (bnd Q) :-

pi p\ pi u\ ptrace (pvar u) p => ptrace (R u) (Q p))

=> ptrace (K x) P.

% Order 3

ptrace :- (ptrace :- ptrace) =>

(ptrace :- ptrace) => ptrace.

% Order 4

ptrace :- (ptrace :- ptrace => ptrace) =>

ptrace.

However, trace-based equality tests are necessarily exponential in
cost since all sharing is unfolded.

28 / 1

Traces in untyped λ-terms: Using the positive bias syntax

ptrace (papp U V K) P :-

pi x\ (pi P\ ptrace (pvar x) (left P) :- ptrace (pvar U) P) =>

(pi P\ ptrace (pvar x) (right P) :- ptrace (pvar V) P) =>

ptrace (K x) P.

ptrace (pabs R K) P :-

pi x\ (pi Q\ ptrace (pvar x) (bnd Q) :-

pi p\ pi u\ ptrace (pvar u) p => ptrace (R u) (Q p))

=> ptrace (K x) P.

% Order 3

ptrace :- (ptrace :- ptrace) =>

(ptrace :- ptrace) => ptrace.

% Order 4

ptrace :- (ptrace :- ptrace => ptrace) =>

ptrace.

However, trace-based equality tests are necessarily exponential in
cost since all sharing is unfolded.

28 / 1

Graphical representations

The positive-bias syntax is better displayed graphically.

• name introduces new nodes and gives them a label.

29 / 1

Graphical representations

The positive-bias syntax is better displayed graphically.

• name introduces new nodes and gives them a label.

An example: the term (λx .(xx)(xx)) as a graph:

·

@ x1

@ x2

λ x3

name x3 =

abs (x\ name x1 = app x x in

name x2 = app x1 x1 in x2) in x3

29 / 1

Graphical representations

The positive-bias syntax is better displayed graphically.

• name introduces new nodes and gives them a label.

An example: the term (λx .(xx)(xx)) as a graph:

·

@ x1

@ x2

λ x3

name x3 =

abs (x\ name x1 = app x x in

name x2 = app x1 x1 in x2) in x3

Bisimulation on such graphs can be checked in linear time: see A.
Condoluci, B. Accattoli, & C. Sacerdoti Coen, Sharing equality is
linear, PPDP 2019. The Abella specification is in our paper.

29 / 1

Graphical representations and parallel naming

Parallel naming can be captured by graphical representations:

x x y y

@
y1 y2

z

@

@ name y1 = app x x in name y2 = app y y

in name z = app y1 y2 in z

name y2 = app y y in name y1 = app x x

in name z = app y1 y2 in z

y y

@

λ

y1

z
name z = abs (x\ name y1 = app y y in y1)

in z

name y1 = app y y in name z = abs (x\ y1)

in z

30 / 1

Related and future work

• Change the way speak of cut elimination: it should be able
partial proofs and not complete proofs.

• Can we rephrase the concurrency-inspired methods for
checking term equality in proof-theoretic terms?

• Conjecture: Maximal multifocused proofs are isomorphic to
some graphical structure in the case of untyped λ-terms.

• Connection with the literature in programming language
theory (administrative-normal form, etc.).

• Explore connections with other approaches to term structures:
terms-as-graphs by Grabmayer and bigraphs by Milner.

• Relate term structures to evaluation strategies: call-by-value
is based on sharing, while call-by-name is not.

31 / 1

Related and future work

• Change the way speak of cut elimination: it should be able
partial proofs and not complete proofs.

• Can we rephrase the concurrency-inspired methods for
checking term equality in proof-theoretic terms?

• Conjecture: Maximal multifocused proofs are isomorphic to
some graphical structure in the case of untyped λ-terms.

• Connection with the literature in programming language
theory (administrative-normal form, etc.).

• Explore connections with other approaches to term structures:
terms-as-graphs by Grabmayer and bigraphs by Milner.

• Relate term structures to evaluation strategies: call-by-value
is based on sharing, while call-by-name is not.

31 / 1

Related and future work

• Change the way speak of cut elimination: it should be able
partial proofs and not complete proofs.

• Can we rephrase the concurrency-inspired methods for
checking term equality in proof-theoretic terms?

• Conjecture: Maximal multifocused proofs are isomorphic to
some graphical structure in the case of untyped λ-terms.

• Connection with the literature in programming language
theory (administrative-normal form, etc.).

• Explore connections with other approaches to term structures:
terms-as-graphs by Grabmayer and bigraphs by Milner.

• Relate term structures to evaluation strategies: call-by-value
is based on sharing, while call-by-name is not.

31 / 1

Related and future work

• Change the way speak of cut elimination: it should be able
partial proofs and not complete proofs.

• Can we rephrase the concurrency-inspired methods for
checking term equality in proof-theoretic terms?

• Conjecture: Maximal multifocused proofs are isomorphic to
some graphical structure in the case of untyped λ-terms.

• Connection with the literature in programming language
theory (administrative-normal form, etc.).

• Explore connections with other approaches to term structures:
terms-as-graphs by Grabmayer and bigraphs by Milner.

• Relate term structures to evaluation strategies: call-by-value
is based on sharing, while call-by-name is not.

31 / 1

Related and future work

• Change the way speak of cut elimination: it should be able
partial proofs and not complete proofs.

• Can we rephrase the concurrency-inspired methods for
checking term equality in proof-theoretic terms?

• Conjecture: Maximal multifocused proofs are isomorphic to
some graphical structure in the case of untyped λ-terms.

• Connection with the literature in programming language
theory (administrative-normal form, etc.).

• Explore connections with other approaches to term structures:
terms-as-graphs by Grabmayer and bigraphs by Milner.

• Relate term structures to evaluation strategies: call-by-value
is based on sharing, while call-by-name is not.

31 / 1

Related and future work

• Change the way speak of cut elimination: it should be able
partial proofs and not complete proofs.

• Can we rephrase the concurrency-inspired methods for
checking term equality in proof-theoretic terms?

• Conjecture: Maximal multifocused proofs are isomorphic to
some graphical structure in the case of untyped λ-terms.

• Connection with the literature in programming language
theory (administrative-normal form, etc.).

• Explore connections with other approaches to term structures:
terms-as-graphs by Grabmayer and bigraphs by Milner.

• Relate term structures to evaluation strategies: call-by-value
is based on sharing, while call-by-name is not.

31 / 1

