A positive perspective on term representation

Dale Miller and Jui-Hsuan Wu

Inria Saclay \& LIX, Institut Polytechnique de Paris
CSL 2023, Warsaw, Poland
15 February 2023

Roles for proof theory: 1-4 of 6

1. Proof theory was started as a way to address the crisis of consistency in mathematics: Hilbert, Frege, Russell, Gentzen, ..., Voevodsky. Hilbert-Frege proof systems are eminently trustable: you only need to trust a small set of axioms and inferences, and perform simple computations.
2. Ordinal analysis of systems of arithmetic: Gentzen, Kreisel, Rathjen, Schütte, Pohlers, etc.
3. Constructive reasoning, program extraction, proof mining: Kohlenbach, Oliva, Hayashi, Schwichtenberg, etc.
4. Reverse mathematics, H. Friedman, S. Simpson, etc.

Ref: Rathjen and Sieg, Proof Theory, The Stanford Encyclopedia of Philosophy

Roles for proof theory: 5 of 6

5. Proof theoretic semantics.

Use inference rules and proofs to provide meaning instead of using references to truth, i.e., in contrast to using set theory, type theory, category theory, and denotational semantics.

- Gentzen, Prawitz, Schreoder-Heister, etc. used this approach to define logical connectives and their properties.
- Miller, Nadathur, Scedrov, Pfenning, Pym, Harland, Andreoli, Pareschi, Hodas, etc, used this approach to define the meaning of logic programming languages. Also the SOS of Plotkin, etc.

Ref: Schroeder-Heister, Proof Theoretic Semantics, The Stanford Encyclopedia of Philosophy
Ref: Miller, A Survey of the Proof-Theoretic Foundations of Logic Programming, Theory and Practice of Logic Prog, 2022

Roles for proof theory: 6 of 6

6. Principled approach to syntax.

- λ-tree syntax, mobility of binders (a.k.a. HOAS)
- Focused proofs determine term structures. Cut-free focused proofs yield normal terms. Cut-elimination determines substitution.
- Variant of the λ-calculi: Herbelin, Dyckhoff, Lengrand, Espírito Santo, Scherer, etc.
- Their work on the λ-calculus relies on negative polarity, possibly with disjunction and existentials (positive connectives).

Our project continues this line of work by putting positive polarity at the center.

Term structures

Terms (or expressions) are used in various settings.

- Mathematics: equations, formulas, proofs
- Programming: AST, types, intermediate representations
- Proof assistants: formulas, types, proofs

Term structures

Terms (or expressions) are used in various settings.

- Mathematics: equations, formulas, proofs
- Programming: AST, types, intermediate representations
- Proof assistants: formulas, types, proofs

Terms come in different formats:

$$
\begin{aligned}
& (1+2)+(1+(1+2)) \\
& \text { let } x=1+2 \text { in let } y=(1+(1+2)) \text { in } x+y \\
& \text { let } x=1+2 \text { in let } y=1+x \text { in } x+y
\end{aligned}
$$

Terms can be given graphical representations: labeled trees, directed acyclic graphs (DAGs)

Term structures

Terms (or expressions) are used in various settings.

- Mathematics: equations, formulas, proofs
- Programming: AST, types, intermediate representations
- Proof assistants: formulas, types, proofs

Terms come in different formats:

$$
\begin{aligned}
& (1+2)+(1+(1+2)) \\
& \text { let } x=1+2 \text { in let } y=(1+(1+2)) \text { in } x+y \\
& \text { let } x=1+2 \text { in let } y=1+x \text { in } x+y
\end{aligned}
$$

Terms can be given graphical representations: labeled trees, directed acyclic graphs (DAGs)
There are numerous operations on terms: equality, substitution, evaluation, unification, transformations
Things can get tricky: bindings? meta-variables? nested quantification? Skolemization?

Two examples of term structures

```
(f (f z z) (f z z))
name y1 = (f z z) in
name y2 = (f y1 y1) in y2.
```

These terms can be displayed as a labeled tree and a DAG.

Proof theory for term representations

NB: We are concerned primarily with proofs-as-terms and not proofs-as-programs!
NB: We are going against the mantra in dependently typed λ-terms: "proofs are just terms." Instead, we are considering "terms are proofs."

Proof theory for term representations

NB: We are concerned primarily with proofs-as-terms and not proofs-as-programs!
NB: We are going against the mantra in dependently typed λ-terms: "proofs are just terms." Instead, we are considering "terms are proofs."
Which proof system to use? Gentzen [1935] provided two choices.

- Natural deduction (NJ): too rigid; does not address sharing.
- Sequent calculus (LJ): too low-level, noisy, and chaotic.

Proof theory for term representations

NB: We are concerned primarily with proofs-as-terms and not proofs-as-programs!
NB: We are going against the mantra in dependently typed λ-terms: "proofs are just terms." Instead, we are considering "terms are proofs."
Which proof system to use? Gentzen [1935] provided two choices.

- Natural deduction (NJ): too rigid; does not address sharing.
- Sequent calculus (LJ): too low-level, noisy, and chaotic.

Focused proof systems greatly improve the sequent calculus.

- Uniform proofs [M, Nadathur, Pfenning, \& Scedrov 1991]
- Focused linear logic [Andreoli 1992]
- Focused intuitionistic logic LJF [Liang \& M, 2009]

Focused proof systems construct synthetic inference rules.
Different polarizations yield different normal forms of proofs.

The elements of focusing

We read sequent calculus rules from conclusion to premises.

rule application	invertible	vs	non-invertible
oracle	no information	vs	essential information
non-determinism	don't care	vs	don't know
phase	negative \Uparrow	vs	positive \Downarrow

Focused proofs alternative between two phases.
First developed with linear logic where the positive/negative status for logical connectives is unambiguous.

Later: applied to LJ and LK: LJT, LJQ, LKT, LKQ, etc. These were generalized by LJF and LKF [Liang \& M, 2009].

Focusing allows for defining synthetic inference rules which use one positive phase below negative phases.

Two-phase structure and large-scale rules

 (= synthetic inference rule)
decide: choose a formula to put under focus

The LJF system with only implication

Formulas are built using atomic formulas and implication.
In LJF, formulas are polarized.

- Implications are negative.
- Atomic formulas are either positive or negative. (forward-chaining / backchaining)

A polarized formula (resp. theory) is a formula together with an atomic bias assignment $\delta: \mathcal{A} \rightarrow\{+,-\}$.

Different polarizations do not affect provability, but they yield different normal forms of proofs.

Theorem: If a formula is provable in LJF for some polarization, then it is provable for all polarizations.

Sequents in a focused proof

$$
\left\ulcorner\Uparrow \Theta \vdash \Delta \Uparrow \Delta ^ { \prime } \quad \left\ulcorner\Downarrow \Theta \vdash \Delta \Downarrow \Delta^{\prime}\right.\right.
$$

All four zones Γ, Θ, Δ, and Δ^{\prime} are multisets of formulas.
The multiset union $\Delta \cup \Delta^{\prime}$ is always a singleton.
Γ and Δ^{\prime} are called the left and right storage zones.
Θ and Δ are called the left and right staging areas.
$\Gamma \Uparrow \cdot \vdash \cdot \Uparrow \Delta$ are called border sequents: these sequents form the conclusion and premises of synthetic inference rules.

Sequents in a focused proof

$$
\left\ulcorner\Uparrow \Theta \vdash \Delta \Uparrow \Delta ^ { \prime } \quad \left\ulcorner\Downarrow \Theta \vdash \Delta \Downarrow \Delta^{\prime}\right.\right.
$$

All four zones Γ, Θ, Δ, and Δ^{\prime} are multisets of formulas.
The multiset union $\Delta \cup \Delta^{\prime}$ is always a singleton.
Γ and Δ^{\prime} are called the left and right storage zones.
Θ and Δ are called the left and right staging areas.
$\Gamma \Uparrow \cdot \vdash \cdot \Uparrow \Delta$ are called border sequents: these sequents form the conclusion and premises of synthetic inference rules.

Notation conventions

- drop $\cdot \Downarrow$ and $\cdot \Uparrow$ when they appear on the right,
- drop \Downarrow. and \Uparrow. when they appear on the left.
- Thus, $\Gamma \Uparrow \cdot \vdash \cdot \Uparrow E$ can be written as $\Gamma \vdash E$. Border sequents in $L J F$ resemble sequents in $L J$.

The LJF system with only implication

Decide, Release, and Store Rules

$$
\begin{aligned}
& \frac{N, \Gamma \Downarrow N \vdash A}{N, \Gamma \vdash A} D_{l} \quad \frac{\Gamma \vdash P \Downarrow}{\Gamma \vdash P} D_{r} \quad \frac{\Gamma \Uparrow P \vdash A}{\Gamma \Downarrow P \vdash A} R_{l} \quad \frac{\Gamma \vdash N \Uparrow}{\Gamma \vdash N \Downarrow} R_{r} \\
& \frac{\Gamma, C \Uparrow \Theta \vdash \Delta^{\prime} \Uparrow \Delta}{\Gamma \Uparrow \Theta, C \vdash \Delta^{\prime} \Uparrow \Delta} S_{l} \quad \frac{\Gamma \Uparrow \Theta \vdash A}{\Gamma \Uparrow \theta \vdash A \Uparrow} S_{r} \\
& \text { Initial Rules } \\
& \frac{\delta(A)=+}{A, \Gamma \vdash A \Downarrow} I_{r} \quad \frac{\delta(A)=-}{\Gamma \Downarrow A \vdash A} I^{\prime}
\end{aligned}
$$

Introduction Rules for Implication

$$
\frac{\Gamma \vdash B \Downarrow \Gamma \Downarrow B^{\prime} \vdash A}{\Gamma \Downarrow B \supset B^{\prime} \vdash A} \supset L \quad \frac{\Gamma \Uparrow \Theta, B \vdash B^{\prime} \Uparrow}{\Gamma \Uparrow \Theta \vdash B \supset B^{\prime} \Uparrow} \supset R
$$

P is positive, N is negative, C is negative or atomic.

The LJF system with only implication

Decide, Release, and Store Rules

$$
\begin{gathered}
\frac{N, \Gamma, N \vdash A}{N, \Gamma \vdash A} D_{l} \quad \frac{\Gamma \vdash P}{\Gamma \vdash P} D_{r}
\end{gathered} \frac{\Gamma, P \vdash A}{\Gamma, P \vdash A} R_{l} \quad \frac{\Gamma \vdash N}{\Gamma \vdash N} R_{r}
$$

$$
\overline{A, \Gamma \vdash A} I_{r} \quad \overline{A, \Gamma \vdash A} I_{l}
$$

Introduction Rules for Implication

$$
\frac{\Gamma \vdash B \quad \Gamma, B^{\prime} \vdash A}{\Gamma, B \supset B^{\prime} \vdash A} \supset L \quad \frac{\Gamma, \Theta, B \vdash B^{\prime}}{\Gamma, \Theta \vdash B \supset B^{\prime}} \supset R
$$

P is positive, N is negative, C is negative or atomic.

The LJF system with only implication

Decide, Release, and Store Rules

$$
\frac{N, \Gamma, N \vdash A}{N, \Gamma \vdash A}
$$

Initial Rules

$$
\overline{A, \Gamma \vdash A}
$$

Introduction Rules for Implication

$$
\frac{\Gamma \vdash B \quad \Gamma, B^{\prime} \vdash A}{\Gamma, B \supset B^{\prime} \vdash A} \supset L \quad \frac{\Gamma, \Theta, B \vdash B^{\prime}}{\Gamma, \Theta \vdash B \supset B^{\prime}} \supset R
$$

P is positive, N is negative, C is negative or atomic.

Synthetic inference rules

Synthetic inference rule $=$ large-scale rule $=\Downarrow$-phase $+\Uparrow$-phase A left synthetic inference rule for B is an inference rule of the form

$$
\frac{\Gamma_{1} \vdash A_{1} \quad \ldots \quad \Gamma_{n} \vdash A_{n}}{\Gamma \vdash A} B
$$

justified by a derivation (in LJF) of the form

$$
\Gamma_{1} \Uparrow \cdot \vdash \cdot \Uparrow A_{1} \quad \ldots \quad \Gamma_{n} \Uparrow \cdot \vdash \cdot \Uparrow A_{n}
$$

$\vdots \Uparrow$ phase

$$
\begin{gathered}
\vdots \Downarrow \text { phase } \\
\frac{\Gamma \Downarrow B \vdash A}{\Gamma \Uparrow \cdot \vdash \cdot \Uparrow A} D_{l}, \text { where } B \in \Gamma
\end{gathered}
$$

In our settings, there is a unique synthetic rule for every formula B.

Two definitions

The order of a formula is defined as follows:

- $\operatorname{ord}(B)=0$ if B is atomic and
- $\operatorname{ord}(B \supset C)=\max (\operatorname{ord}(B)+1, \operatorname{ord}(C))$.

For example, $\operatorname{ord}(a \supset(b \supset c))=1$ and $\operatorname{ord}((a \supset b) \supset c)=2$.

We name two specific atomic bias assignments:

- $\delta^{-}(A)=-$ for all atomic A.
- $\delta^{+}(A)=+$ for all atomic A.

Axioms as rules

Let \mathcal{T} be a finite set of formulas of order 1 or 2 . Let δ be an atomic bias assignment. $L J\lfloor\delta, \mathcal{T}\rfloor$ extends $L J$ with the left synthetic inference rules for \mathcal{T} : for every left synthetic inference rule

$$
\frac{B, \Gamma_{1} \vdash A_{1} \quad \ldots \quad B, \Gamma_{n} \vdash A_{n}}{B, \Gamma \vdash A} B
$$

with $B \in \mathcal{T}$, the following inference rule is added to $L J\lfloor\delta, \mathcal{T}\rfloor$.

$$
\frac{\Gamma_{1} \vdash A_{1} \quad \ldots \quad \Gamma_{n} \vdash A_{n}}{\Gamma \vdash A} B
$$

Axioms as rules

Let \mathcal{T} be a finite set of formulas of order 1 or 2 . Let δ be an atomic bias assignment. $L J\lfloor\delta, \mathcal{T}\rfloor$ extends $L J$ with the left synthetic inference rules for \mathcal{T} : for every left synthetic inference rule

$$
\frac{B, \Gamma_{1} \vdash A_{1} \quad \ldots \quad B, \Gamma_{n} \vdash A_{n}}{B, \Gamma \vdash A} B
$$

with $B \in \mathcal{T}$, the following inference rule is added to $L J\lfloor\delta, \mathcal{T}\rfloor$.

$$
\frac{\Gamma_{1} \vdash A_{1} \quad \ldots \quad \Gamma_{n} \vdash A_{n}}{\Gamma \vdash A} B
$$

Theorem
$\mathcal{T}, \Gamma \vdash A$ is provable in $L J \Leftrightarrow \Gamma \vdash A$ is provable in $L J\lfloor\delta, \mathcal{T}\rfloor$.
For related work, see Negri \& von Plato, Cut elimination in the presence of axioms, BSL 1998.

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, D_{2}=a_{0} \supset a_{1} \supset a_{2}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$
where a_{i} are atomic.

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, D_{2}=a_{0} \supset a_{1} \supset a_{2}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$
where a_{i} are atomic.
Backchaining: The inference rules in $L J\left\lfloor\delta^{-}, \mathcal{T}\right\rfloor$ include

$$
\frac{\Gamma \vdash a_{0} \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}
$$

An example

Let \mathcal{T} be the collection of formulas
$D_{1}=a_{0} \supset a_{1}, D_{2}=a_{0} \supset a_{1} \supset a_{2}, \cdots, D_{n}=a_{0} \supset \cdots \supset a_{n}, \cdots$
where a_{i} are atomic.
Backchaining: The inference rules in $L J\left\lfloor\delta^{-}, \mathcal{T}\right\rfloor$ include

$$
\frac{\Gamma \vdash a_{0} \quad \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}
$$

Forwardchaining: The inference rules in $L J\left\lfloor\delta^{+}, \mathcal{T}\right\rfloor$ include

$$
\frac{\Gamma, a_{0}, \cdots, a_{n-1}, a_{n} \vdash A}{\Gamma, a_{0}, \cdots, a_{n-1} \vdash A}
$$

Backchaining and Forward-chaining

What are the proofs of $a_{0} \vdash a_{n}$?

Backchaining and Forward-chaining

What are the proofs of $a_{0} \vdash a_{n}$?

When a_{i} are all given the negative bias, we have:

$$
\frac{\Gamma \vdash a_{0}}{\Gamma \vdash a_{1}} \frac{\Gamma \vdash a_{0} \Gamma \vdash a_{1}}{\Gamma \vdash a_{2}} \quad \cdots \frac{\Gamma \vdash a_{0} \cdots \quad \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}}
$$

The unique proof of $a_{0} \vdash a_{n}$ has exponential size.

Backchaining and Forward-chaining

What are the proofs of $a_{0} \vdash a_{n}$?

When a_{i} are all given the negative bias, we have:

$$
\frac{\Gamma \vdash a_{0}}{\Gamma \vdash a_{1}} \frac{\Gamma \vdash a_{0} \Gamma \vdash a_{1}}{\Gamma \vdash a_{2}} \quad \ldots \quad \frac{\Gamma \vdash a_{0} \cdots \Gamma \vdash a_{n-1}}{\Gamma \vdash a_{n}} \ldots
$$

The unique proof of $a_{0} \vdash a_{n}$ has exponential size.
When a_{i} are all given the positive bias, we have:

$$
\frac{\Gamma, a_{0}, a_{1} \vdash A}{\Gamma, a_{0} \vdash A} \quad \frac{\Gamma, a_{0}, a_{1}, a_{2} \vdash A}{\Gamma, a_{0}, a_{1} \vdash A} \quad \ldots \quad \frac{\Gamma, a_{0}, \ldots, a_{n-1}, a_{n} \vdash A}{\Gamma, a_{0}, \ldots, a_{n-1} \vdash A}
$$

The smallest proof of $a_{0} \vdash a_{n}$ has linear size.

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

$$
\begin{aligned}
& \frac{\Gamma \vdash a_{0}}{\Gamma \vdash a_{1}} \frac{\Gamma \vdash a_{0} \quad \Gamma \vdash a_{1}}{\Gamma \vdash a_{2}} \\
& \Gamma \vdash a_{0} \\
& \cdots \quad \Gamma \vdash a_{n-1} \\
& \Gamma \vdash a_{n}
\end{aligned}
$$

Consider the proofs of $a_{0} \vdash a_{4}$.

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

$$
\begin{aligned}
& \frac{\Gamma \vdash t_{0}: a_{0}}{\Gamma \vdash E_{1} t_{0}: a_{1}} \quad \frac{\Gamma \vdash t_{0}: a_{0} \quad \Gamma \vdash t_{1}: a_{1}}{\Gamma \vdash E_{2} t_{0} t_{1}: a_{2}} \\
& \frac{\Gamma \vdash t_{0}: a_{0} \quad \cdots \quad \Gamma \vdash t_{n-1}: a_{n-1}}{\Gamma \vdash E_{n} t_{0} \cdots t_{n-1}: a_{n}}
\end{aligned}
$$

Consider the proofs of $a_{0} \vdash a_{4}$.

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

$$
\begin{aligned}
& \frac{\Gamma \vdash t_{0}: a_{0}}{\Gamma \vdash E_{1} t_{0}: a_{1}} \quad \frac{\Gamma \vdash t_{0}: a_{0} \quad \Gamma \vdash t_{1}: a_{1}}{\Gamma \vdash E_{2} t_{0} t_{1}: a_{2}} \\
& \frac{\Gamma \vdash t_{0}: a_{0} \quad \cdots \quad \Gamma \vdash t_{n-1}: a_{n-1}}{\Gamma \vdash E_{n} t_{0} \cdots t_{n-1}: a_{n}}
\end{aligned}
$$

Consider the proofs of $d_{0}: a_{0} \vdash t: a_{4}$.

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

$$
\begin{array}{r}
\frac{\Gamma \vdash t_{0}: a_{0}}{\Gamma \vdash E_{1} t_{0}: a_{1}} \quad \frac{\Gamma \vdash t_{0}: a_{0} \quad \Gamma \vdash t_{1}: a_{1}}{\Gamma \vdash E_{2} t_{0} t_{1}: a_{2}} \\
\frac{\Gamma \vdash t_{0}: a_{0} \quad \cdots \quad \Gamma \vdash t_{n-1}: a_{n-1}}{\Gamma \vdash E_{n} t_{0} \cdots t_{n-1}: a_{n}}
\end{array}
$$

Consider the proofs of $d_{0}: a_{0} \vdash t: a_{4}$.
The term t is

$$
\begin{array}{r}
\left(E _ { 4 } \left(E_{3}\left(E_{2}\left(E_{1} d_{0}\right)\left(E_{1} d_{0}\right)\right)\right.\right. \\
\left.\left(E_{2}\left(E_{1} d_{0}\right)\left(E_{1} d_{0}\right)\right)\right) \\
\left(E_{3}\left(E_{2}\left(E_{1} d_{0}\right)\left(E_{1} d_{0}\right)\right)\right. \\
\left.\left.\left(E_{2}\left(E_{1} d_{0}\right)\left(E_{1} d_{0}\right)\right)\right)\right)
\end{array}
$$

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

$$
\begin{array}{r}
\frac{\Gamma, a_{0}, a_{1} \vdash A}{\Gamma, a_{0} \vdash A} \frac{\Gamma, a_{0}, a_{1}, a_{2} \vdash A}{\Gamma, a_{0}, a_{1} \vdash A} \\
\frac{\Gamma, a_{0}, \cdots, a_{n-1}, a_{n} \vdash A}{\Gamma, a_{0}, \cdots, a_{n-1} \vdash A}
\end{array}
$$

Consider the proofs of $a_{0} \vdash a_{4}$.

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

$$
\begin{gathered}
\frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash t: A}{\Gamma, x_{0}: a_{0} \vdash F_{1} x_{0}\left(\lambda x_{1} \cdot t\right): A} \frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1}, x_{2}: a_{2} \vdash t: A}{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash F_{2} x_{0} x_{1}\left(\lambda x_{2} \cdot t\right): A} \\
\frac{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1}, x_{n}: a_{n} \vdash t: A}{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1} \vdash F_{n} x_{0} \cdots x_{n-1}\left(\lambda x_{n} \cdot t\right): A}
\end{gathered}
$$

Consider the proofs of $d_{0}: a_{0} \vdash t: a_{4}$.

Annotating rules and proofs

Now we annotate the inference rules in the previous example.

$$
\begin{gathered}
\frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash t: A}{\Gamma, x_{0}: a_{0} \vdash F_{1} x_{0}\left(\lambda x_{1} \cdot t\right): A} \quad \frac{\Gamma, x_{0}: a_{0}, x_{1}: a_{1}, x_{2}: a_{2} \vdash t: A}{\Gamma, x_{0}: a_{0}, x_{1}: a_{1} \vdash F_{2} x_{0} x_{1}\left(\lambda x_{2} \cdot t\right): A} \\
\frac{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1}, x_{n}: a_{n} \vdash t: A}{\Gamma, x_{0}: a_{0}, \cdots, x_{n-1}: a_{n-1} \vdash F_{n} x_{0} \cdots x_{n-1}\left(\lambda x_{n} \cdot t\right): A}
\end{gathered}
$$

Consider the proofs of $d_{0}: a_{0} \vdash t: a_{4}$.
The term t annotating the shortest proof is

$$
\begin{array}{ll}
\left(F_{1} d_{0}\right. & \left(\lambda x_{1} .\right. \\
\left(F_{2} d_{0} x_{1}\right. & \left(\lambda x_{2}\right. \\
\left(F_{3} d_{0} x_{1} x_{2}\right. & \left(\lambda x_{3} .\right. \\
\left(F_{4} d_{0} x_{1} x_{2}\right. & \left.\left.\left.\left.\left.\left.\left.x_{3}\left(\lambda x_{4} \cdot x_{4}\right)\right)\right)\right)\right)\right)\right)\right)
\end{array}
$$

Encodings of untyped λ-terms: the theory

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix the theory $\mathcal{T}=\{\Phi: D \supset(D \supset D), \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form

$$
\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D
$$

Encodings of untyped λ-terms: the theory

We use a primitive type (atomic formula) D for untyped λ-terms.
We fix the theory $\mathcal{T}=\{\Phi: D \supset(D \supset D), \Psi:(D \supset D) \supset D\}$ and consider proofs of sequents of the form

$$
\mathcal{T}, x_{1}: D, \cdots, x_{k}: D \vdash t: D
$$

This theory is inconsistent in the sense that every formula over D and \supset is provable from \mathcal{T}.

As a result, the usual way we speak of cut-elimination is now trivialized!

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic inference rules:

$$
\frac{\Gamma \vdash D \quad \Gamma \vdash D}{\Gamma \vdash D} \Phi
$$

$$
\frac{\Gamma, D \vdash D}{\Gamma \vdash D} \Psi
$$

and the initial rule.

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic inference rules:

$$
\frac{\Gamma \vdash t: D \quad \Gamma \vdash u: D}{\Gamma \vdash D} \Phi
$$

$$
\frac{\Gamma, D \vdash D}{\Gamma \vdash D} \Psi
$$

and the initial rule.

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic inference rules:

$$
\frac{\Gamma \vdash t: D \quad \Gamma \vdash u: D}{\Gamma \vdash \phi t u: D} \Phi
$$

$$
\frac{\Gamma, D \vdash D}{\Gamma \vdash D} \Psi
$$

and the initial rule.

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic inference rules:

$$
\frac{\Gamma \vdash t: D \quad \Gamma \vdash u: D}{\Gamma \vdash \Phi t u: D} \Phi
$$

$$
\frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash D} \Psi
$$

and the initial rule.

Encodings of untyped λ-terms: the synthetic rules

When D is given the negative bias, we have the following synthetic inference rules:

$$
\begin{gathered}
\frac{\Gamma \vdash t: D \quad \Gamma \vdash u: D}{\Gamma \vdash \Phi t u: D} \Phi \\
\frac{\Gamma, x: D \vdash t: D}{\Gamma \vdash \Psi(\lambda x \cdot t): D} \Psi
\end{gathered}
$$

and the initial rule.

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic inference rules:

$$
\begin{gathered}
\frac{\Gamma, D, D, D \vdash D}{\Gamma, D, D \vdash D} \Phi \\
\frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \psi
\end{gathered}
$$

and the initial rule.

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic inference rules:

$$
\frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, D, D \vdash D} \Phi
$$

$$
\frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \psi
$$

and the initial rule.

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic inference rules:

$$
\begin{gathered}
\Gamma, x: D, y: D, z: D \vdash t: D \\
\Gamma, x: D, y: D \vdash \Phi x y(\lambda z \cdot t): D \\
\hline \frac{\Gamma, D \vdash D \quad \Gamma, D \vdash D}{\Gamma \vdash D} \psi
\end{gathered}
$$

and the initial rule.

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic inference rules:

$$
\begin{aligned}
& \frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, x: D, y: D \vdash \Phi x y(\lambda z \cdot t): D} \Phi \\
& \frac{\Gamma, x: D \vdash t: D \quad \Gamma, y: D \vdash u: D}{\Gamma \vdash D} \psi
\end{aligned}
$$

and the initial rule.

Encodings of untyped λ-terms: the synthetic rules

When D is given the positive bias, we have the following synthetic inference rules:

$$
\begin{aligned}
& \frac{\Gamma, x: D, y: D, z: D \vdash t: D}{\Gamma, x: D, y: D \vdash \Phi x y(\lambda z \cdot t): D} \Phi \\
& \frac{\Gamma, x: D \vdash t: D \quad \Gamma, y: D \vdash u: D}{\Gamma \vdash \Psi(\lambda x \cdot t)(\lambda y \cdot u): D} \Psi
\end{aligned}
$$

and the initial rule.

Two formats for untyped λ-terms

Two different polarity assignments give two different term
structures: (The infix backslash is the syntax of λ Prolog and Abella for λ-abstraction.)
D is negative: yields top-down, tree-like structure

x	nvar x	x
$\Phi t u$	napp t u	$t u$
$\Psi(\lambda x . t)$	nabs (x $\mathrm{x} \backslash \mathrm{t})$	$\lambda x . t$

D is positive: yields bottom-up, DAG structure

x	pvar x	x
$\Phi \times y(\lambda z . t)$	papp $\mathrm{y}(\mathrm{z} \backslash \mathrm{t})$	name $z=a p p x y$ in t
$\Psi(\lambda x . t)(\lambda y . s)$	pabs $(\mathrm{x} \backslash \mathrm{t}) \quad(\mathrm{y} \backslash \mathrm{s})$	name $y=a b s(\lambda x . t)$ in s

Some examples for the positive-bias syntax

name $\mathrm{y}=\operatorname{app} \mathrm{x} \mathrm{x}$ in name $\mathrm{z}=\operatorname{app} \mathrm{y} \mathrm{y}$ in z

- Arguments of app are all names

Some examples for the positive-bias syntax

name $\mathrm{y}=\operatorname{app} \mathrm{x} x$ in name $\mathrm{z}=\operatorname{app} \mathrm{y} \mathrm{y}$ in z

- Arguments of app are all names
name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ in name $\mathrm{y} 2=\operatorname{app} \mathrm{x} \mathrm{x}$ in
name $z=a p p y 1$ y2 in z
- Redundant naming

Some examples for the positive-bias syntax

name $\mathrm{y}=\operatorname{app} \mathrm{x} x$ in name $\mathrm{z}=\operatorname{app} \mathrm{y} \mathrm{y}$ in z

- Arguments of app are all names
name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ in name $\mathrm{y} 2=\operatorname{app} \mathrm{x} \mathrm{x}$ in
name $z=a p p y 1$ y2 in z
- Redundant naming
name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ in name $\mathrm{y} 2=\operatorname{app} \mathrm{y} y$ in
name $\mathrm{z}=\mathrm{app} \mathrm{y} 1 \mathrm{y} 1$ in z
- Vacuous naming

Some examples for the positive-bias syntax

name $\mathrm{y}=\operatorname{app} \mathrm{x} x$ in name $\mathrm{z}=\operatorname{app} \mathrm{y} \mathrm{y}$ in z

- Arguments of app are all names
name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ in name $\mathrm{y} 2=\operatorname{app} \mathrm{x} \mathrm{x}$ in
name $z=a p p y 1$ y2 in z
- Redundant naming
name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ in name $\mathrm{y} 2=\operatorname{app} \mathrm{y} \mathrm{y}$ in
name $\mathrm{z}=\mathrm{app} \mathrm{y} 1 \mathrm{y} 1$ in z
- Vacuous naming
name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ in name $\mathrm{y} 2=\operatorname{app} \mathrm{y} y$ in name $z=a p p y 1$ y2 in z
- Parallel naming

Some examples for the positive-bias syntax

name $\mathrm{y}=\operatorname{app} \mathrm{x} x$ in name $\mathrm{z}=\operatorname{app} \mathrm{y} \mathrm{y}$ in z

- Arguments of app are all names
name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ in name $\mathrm{y} 2=\operatorname{app} \mathrm{x} \mathrm{x}$ in
name $z=a p p y 1$ y2 in z
- Redundant naming
name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ in name $\mathrm{y} 2=\operatorname{app} \mathrm{y} \mathrm{y}$ in
name $\mathrm{z}=\mathrm{app} \mathrm{y} 1 \mathrm{y} 1$ in z
- Vacuous naming
name $\mathrm{y} 1=\operatorname{app} \mathrm{x} x$ and $\mathrm{y} 2=\operatorname{app} \mathrm{y} \mathrm{y}$ in
name $z=a p p y 1 y 2$ in z
- Parallel naming (by introducing multi-focusing)

Cut-elimination for $L J\lfloor\delta, \mathcal{T}\rfloor$

The following theorem ${ }^{1}$ states that cut is admissible for the extensions of $L J$ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $L J\lfloor\delta, \mathcal{T}\rfloor$)

Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $L J\lfloor\delta, \mathcal{T}\rfloor$.

[^0]
Cut-elimination for $L J \backslash \delta, \mathcal{T}\rfloor$

The following theorem ${ }^{1}$ states that cut is admissible for the extensions of $L J$ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $L J\lfloor\delta, \mathcal{T}\rfloor$)

Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $L J\lfloor\delta, \mathcal{T}\rfloor$.

The proof is based on a cut elimination procedure for $L J F$, and it yields the notion of substitution for terms.

[^1]
Cut-elimination for $L J\lfloor\delta, \mathcal{T}\rfloor$

The following theorem ${ }^{1}$ states that cut is admissible for the extensions of $L J$ with polarized theories based on synthetic inference rules.

Theorem (Cut admissibility for $L J\lfloor\delta, \mathcal{T}\rfloor$)

Let \mathcal{T} be a finite polarized theory of order 2 or less. Then the cut rule is admissible for the proof system $L J\lfloor\delta, \mathcal{T}\rfloor$.

The proof is based on a cut elimination procedure for $L J F$, and it yields the notion of substitution for terms.

When we restrict to atomic cut formulas, the cut elimination procedure can be presented in a big-step style.

- Cuts are permuted with synthetic rules instead of LJF rules.

[^2]
Untyped λ-terms (substitution)

The cut-elimination procedure of LJF gives us the following definitions of substitutions.

```
type nsubst tm -> (val -> tm) -> tm -> o.
type psubst tm -> (val -> tm) -> tm -> o.
nsubst T (x\ napp (R x) (S x)) (napp R' S') :-
    nsubst T R R', nsubst T S S'.
nsubst T (x\ nabs y\ R x y) (nabs y\ R' y) :-
                pi y\ nsubst T (x\ R x y) (R' y).
nsubst T (x\ nvar Y) (nvar Y).
nsubst T (x\ nvar x) T.
psubst (papp U V K) R (papp U V H) :-
    pi x\ psubst (K x) R (H x).
psubst (pabs S K) R (pabs S H) :-
    pi x\ psubst (K x) R (H x).
psubst (pvar U) R (R U).
```


An example

$$
\begin{aligned}
& \text { name } y=\operatorname{app} x \times \text { in } \\
& \text { name } z=\operatorname{app} y \text { in } \\
& z
\end{aligned}
$$

An example

name $\mathrm{y}=\operatorname{app} \mathrm{x} x$ in name $z=\operatorname{app} y$ y in Z

An example


```
name y = app x x in
name z = app y y in
z
```

```
name y' = app a a in
```

name y' = app a a in
name z' = app y' y' in
name z' = app y' y' in
name y = app z' z' in
name y = app z' z' in
name z = app y y in z

```
name z = app y y in z
```

name $y^{\prime}=$ app a a in
name $z^{\prime}=\operatorname{app} y^{\prime} y^{\prime}$ in
z^{\prime}

Equality on terms

We have two different formats for untyped λ-terms.

When should two such expressions be considered the same?

Equality on terms

We have two different formats for untyped λ-terms.

When should two such expressions be considered the same?
"White box" approach: Look at the actual syntax of proofs.

- Transform proofs between systems: see Pimentel, Nigam, \& Neto, Multi-focused proofs with different polarity assignments, LSFA 2015.
- Expensive since sharing is usually unwound.

Equality on terms

We have two different formats for untyped λ-terms.

When should two such expressions be considered the same?
"White box" approach: Look at the actual syntax of proofs.

- Transform proofs between systems: see Pimentel, Nigam, \& Neto, Multi-focused proofs with different polarity assignments, LSFA 2015.
- Expensive since sharing is usually unwound.
"Black box" approach: Use concurrency theory notions of traces and bisimulation.

Traces in untyped λ-terms: Using the negative bias syntax

```
kind tm
type napp
type nabs
kind trace
type left, right
type bnd
type tm
type trace
```

```
type.
```

type.
tm }->\mathrm{ tm -> tm.
tm }->\mathrm{ tm -> tm.
(tm -> tm) -> tm.
(tm -> tm) -> tm.
type.
type.
trace -> trace.
trace -> trace.
(trace -> trace) -> trace.
(trace -> trace) -> trace.
tm -> 0.
tm -> 0.
tm -> trace -> 0.
tm -> trace -> 0.
tm (napp M N) :- tm M, tm N.
tm (nabs R) :- pi x\ tm x => tm (R x).
trace (napp M N) (left P) :- trace M P.
trace (napp M N) (right P) :- trace N P.
trace (nabs R) (bnd S) :- pi x\ pi p\ trace x p => trace (R x) (S p).

```

The following theorem has a simple proof in Abella.
```

Theorem trace_eq :
forall X Y, {tm X} ->
(forall T, {trace X T} -> {trace Y T}) -> X = Y.

```

\section*{Traces in untyped \(\lambda\)-terms: Using the positive bias syntax}
```

ptrace (papp U V K) P :-
pi x\ (pi P\ ptrace (pvar x) (left P) :- ptrace (pvar U) P) =>
(pi P\ ptrace (pvar x) (right P) :- ptrace (pvar V) P) =>
ptrace (K x) P.
ptrace (pabs R K) P :-
pi x\ (pi Q\ ptrace (pvar x) (bnd Q) :-
pi p\ pi u\ ptrace (pvar u) p => ptrace (R u) (Q p))
=> ptrace (K x) P.

```

\section*{Traces in untyped \(\lambda\)-terms: Using the positive bias syntax}
```

ptrace (papp U V K) P :-
pi x\ (pi P\ ptrace (pvar x) (left P) :- ptrace (pvar U) P) =>
(pi P\ ptrace (pvar x) (right P) :- ptrace (pvar V) P) =>
ptrace (K x) P.
ptrace (pabs R K) P :-
pi x\ (pi Q\ ptrace (pvar x) (bnd Q) :-
pi p\ pi u\ ptrace (pvar u) p => ptrace (R u) (Q p))
=> ptrace (K x) P.

```
\% Order 3
ptrace :- (ptrace :- ptrace) =>
                                    (ptrace :- ptrace) \(=>\) ptrace.
\% Order 4
ptrace :- (ptrace :- ptrace => ptrace) =>
    ptrace.

\section*{Traces in untyped \(\lambda\)-terms: Using the positive bias syntax}
```

ptrace (papp U V K) P :-
pi x\ (pi P\ ptrace (pvar x) (left P) :- ptrace (pvar U) P) =>
(pi P\ ptrace (pvar x) (right P) :- ptrace (pvar V) P) =>
ptrace (pabs R K) P :-
pi x\ (pi Q\ ptrace (pvar x) (bnd Q) :-
pi p\ pi u\ ptrace (pvar u) p => ptrace (R u) (Q p))
=> ptrace (K x) P.
% Order 3
ptrace :- (ptrace :- ptrace) =>
(ptrace :- ptrace) => ptrace.
% Order 4
ptrace :- (ptrace :- ptrace => ptrace) =>
ptrace.

```

However, trace-based equality tests are necessarily exponential in cost since all sharing is unfolded.

\section*{Graphical representations}

The positive-bias syntax is better displayed graphically.
- name introduces new nodes and gives them a label.

\section*{Graphical representations}

The positive-bias syntax is better displayed graphically.
- name introduces new nodes and gives them a label.

An example: the term \((\lambda x .(x x)(x x))\) as a graph:
```

$>\lambda^{X_{3}}$
\downarrow
(${ }^{x_{2}}$ name $x 3=$
$($) abs (x\ name $x 1=a p p x \times$ in
name $x 2=a p p x 1$ x1 in $x 2$) in $x 3$

```

\section*{Graphical representations}

The positive-bias syntax is better displayed graphically.
- name introduces new nodes and gives them a label.

An example: the term \((\lambda x .(x x)(x x))\) as a graph:


Bisimulation on such graphs can be checked in linear time: see A. Condoluci, B. Accattoli, \& C. Sacerdoti Coen, Sharing equality is linear, PPDP 2019. The Abella specification is in our paper.

\section*{Graphical representations and parallel naming}

Parallel naming can be captured by graphical representations:

name \(z=a b s(x \backslash\) name \(y 1=a p p y\) in \(y 1)\) in \(z\)
name \(\mathrm{y} 1=\operatorname{app} \mathrm{y} y\) in name \(\mathrm{z}=\mathrm{abs}\) ( \(\mathrm{x} \backslash \mathrm{y} 1\) )
in \(z\)

\section*{Related and future work}
- Change the way speak of cut elimination: it should be able partial proofs and not complete proofs.

\section*{Related and future work}
- Change the way speak of cut elimination: it should be able partial proofs and not complete proofs.
- Can we rephrase the concurrency-inspired methods for checking term equality in proof-theoretic terms?

\section*{Related and future work}
- Change the way speak of cut elimination: it should be able partial proofs and not complete proofs.
- Can we rephrase the concurrency-inspired methods for checking term equality in proof-theoretic terms?
- Conjecture: Maximal multifocused proofs are isomorphic to some graphical structure in the case of untyped \(\lambda\)-terms.

\section*{Related and future work}
- Change the way speak of cut elimination: it should be able partial proofs and not complete proofs.
- Can we rephrase the concurrency-inspired methods for checking term equality in proof-theoretic terms?
- Conjecture: Maximal multifocused proofs are isomorphic to some graphical structure in the case of untyped \(\lambda\)-terms.
- Connection with the literature in programming language theory (administrative-normal form, etc.).

\section*{Related and future work}
- Change the way speak of cut elimination: it should be able partial proofs and not complete proofs.
- Can we rephrase the concurrency-inspired methods for checking term equality in proof-theoretic terms?
- Conjecture: Maximal multifocused proofs are isomorphic to some graphical structure in the case of untyped \(\lambda\)-terms.
- Connection with the literature in programming language theory (administrative-normal form, etc.).
- Explore connections with other approaches to term structures: terms-as-graphs by Grabmayer and bigraphs by Milner.

\section*{Related and future work}
- Change the way speak of cut elimination: it should be able partial proofs and not complete proofs.
- Can we rephrase the concurrency-inspired methods for checking term equality in proof-theoretic terms?
- Conjecture: Maximal multifocused proofs are isomorphic to some graphical structure in the case of untyped \(\lambda\)-terms.
- Connection with the literature in programming language theory (administrative-normal form, etc.).
- Explore connections with other approaches to term structures: terms-as-graphs by Grabmayer and bigraphs by Milner.
- Relate term structures to evaluation strategies: call-by-value is based on sharing, while call-by-name is not.```


[^0]:    ${ }^{1}$ S. Marin, D. Miller, E. Pimentel, and M. Volpe. From axioms to synthetic inference rules via focusing. Annals of Pure and Applied Logic 173(5).

[^1]:    ${ }^{1}$ S. Marin, D. Miller, E. Pimentel, and M. Volpe. From axioms to synthetic inference rules via focusing. Annals of Pure and Applied Logic 173(5).

[^2]:    ${ }^{1}$ S. Marin, D. Miller, E. Pimentel, and M. Volpe. From axioms to synthetic inference rules via focusing. Annals of Pure and Applied Logic 173(5).

