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1 Introduction

It is well recognized that proofs serve two different goals. On one hand, they can
serve the didactic purpose of explaining why a theorem holds: that is, a proof has
a message that is meant to describe the “why” behind a theorem. On the other
hand, proofs can serve as certificates of validity. In this case, once a certificate
is checked for its syntactic correctness, one can then trust that the theorem is,
in fact, true. (For additional discussions of these two aspects of proof, see, for
example, [4, 25].)

In this paper, we argue that structural proof theory and computer automation
have matured to such a level that they can be used to provide a flexible and
universal approach to proof-as-certificate. In contrast, the notion of proof-as-
message is still evolving and deals with structures, such as diagrams and natural
language texts [35], that are not yet well formalized.

Since the notion of proof-as-certificate is at times strongly debated in the
literature, we discuss in Section 2 several aspects of proof in order to identify
those situations in which certification by proof can prove valuable. After that
discussion, we use the rest of this paper to outline more specifics of how proof
theory can be used to provide for a foundational approach to the design of a
universal notion of proof certificate.

2 Characterizing proofs and their roles

To understand the roles and the nature of proof, we need to take a step back and
review why proofs exist and how they are used. A key aspect of proofs seems to
be that they are documents that are communicated within a group of individuals
(possibly separated in both space and time) in order to inspire trust.

2.1 Societies of humans and machines

Communication takes place within various “societies” comprised of individuals
dedicated to common ends: such individuals can be human or mechanical. Admit-
ting machines into such societies seems sensible in the many modern situations
where computers are making decisions and are reacting to other individuals to
further the goals of a society. We list here various kinds of societies of agents
and some possible goals for them: while such societies may have several goals,
we select here those goals for which a notion of proof plays an important role.



1. A sole mathematician writes an argument that convinces herself and she
then moves to address new problems. In this small society, a proof is a
communication between the mathematician at one moment (the time she
developed the proof) and some future time (when she works on the next
problem). A goal of such a sole mathematician is to continue to develop a
line of mathematical research.

2. A collection of mathematician colleagues searches for beautiful and deep
mathematical concepts. The energies of such a group are put into finding
good definitions and connections among ideas.

3. An author of a mathematics text and his readers is a society that is typ-
ically distributed by both geography and by time: the readers are located
in a future after the text is written. The goal of this society is to have a
successful one-way communication: that is, the author must be able to com-
municate with readers without getting feedback on how successful was the
communications.

4. A group consisting of programmers, who are writing code for a popular op-
erating system, and users, who are attempting to use that operating system
on their computers, has a goal of producing quality software that the users
find convenient and secure.

5. A group of programmers, users, mobile computers, and servers can form a
society that exchanges money for various services (e.g., email, news, backups,
and cloud computing).

Notice that in example 4, machines are not meant as individuals of the group:
instead, they are tools used by the individuals. On the other hand, it seems
appropriate to classify smart phones, electronic banking systems, and software
servers all as individuals in example 5 since the choices and decisions that they
take affect the goals of the society.

2.2 Proofs as documents communicated within societies

By logical formulas we mean the familiar notion of syntactic objects composed
of logical connectives, quantifiers, predicates, and terms: these have, of course,
proved useful for encoding mathematical statements and assertions in computa-
tional logic. Proofs can be seen as one kind of document that is communicated
within a society of agents (human or computer) with the purpose of instilling
trust in an assertion (written as a logical expression). We return to the example
societies in the previous section and illustrate roles for proofs in them.

1. The only communication possible within a society consisting of a sole math-
ematician involves that mathematician telling a future instance of herself to
trust that a certain formula is a theorem. If at some point in the future,
that mathematician trusts her proof, she might take certain actions, such as
developing consequences of that theorem.

2. Consider a group of mathematician colleagues such as the one featured
in Lakatos’s Proofs and Refutations [22]. This society interacts within a



lively and narrow spacial dimension with the agents sitting together dis-
cussing. The individuals also interact across time, of course, as new examples,
counter-examples, definitions, and proofs appear. The goal of such a society
of mathematicians might be to “develop deeper insights and understand-
ing of geometry.” The group exchanges messages and makes presentations.
Proofs in this setting are generally informal since the energies of the group
are put into exploring and discovering definitions and connections among
ideas.

3. A society involving the author of a mathematics text and his readers gener-
ally involves a one-way communication: the readers will have the text only
after the book is written and the readers may be physically and temporally
remote from the author. A good example of such an author and text is, of
course, Euclid and his Elements, which has been an important text for the
communication of deep results about geometry to readers for two millennia.

4. A group of programmers and users of an operating system might need to
circulate among its members many kinds of documents: bug reports from
users should alert programmers to things that need to be fixed; program-
mers release new versions of software components; programmers exchange
programs, scripts, and interfaces; etc. Some of these documents, such as
interfaces, probably contain typing information, which can often be seen as
formulas for which the program is a proof: type checking is then a simple kind
of proof checking for simple assertions about the program. In addition, cer-
tain parts of an operating system can be so critical to the proper functioning
of the operating system that a formal proof of some correctness conditions
might be required: for example, it might be desirable for certain guarantees
about device drivers (low level code used to control devices attached to a
computer) to be formally verified by, say, a model checker [7].

5. A group of programmers, users, mobile computers, and servers can be seen as
a society involving machines as individuals since the decisions and actions
they make can help the groups achieve its goals. For example, a mobile
phone might be expected to maintain certain security policies and this might
mean that certain mobile code might not be downloaded to the phone. As a
result, certain services might not be available to the user of that phone and
some income for those services might be lost. If the infrastructure behind
the movement of code allows for proofs to be attached to mobile code, the
phone may allow the execution of mobile code if the phone could check
that the attached proof proves certain security assertions of the code. The
development of such an infrastructure has been studied under the title “proof
carrying code” [31].

As these examples illustrate, societies circulate a wide variety of documents in
order to help meet their goals. Of these many documents, proofs can be roughly
identified as those that inspire trust in one agent of the conclusions drawn by
another agent. One might acquire trust in a program in a number of ways that
do not use proofs: for example, one’s trust in a program might be inspired by



the fact that over its lifetime, no one has found errors in it: while such evidence
is an important source of trust, it is not a document nor a proof.

2.3 Formality of proofs

Proofs can be divided into those that are informal and those that are formal.
We generally expect that informal proofs are readable by humans and are

didactic. We also expect that they do not contain all details and that they may
have errors. Informal proofs are circulated within societies of humans where they
can be evaluated in a number of ways: Is the proof proving something interest-
ing? Are the assumptions the right ones? Are the proof methods appropriate? Is
this situation an example or a counterexample? If an informal proof is evaluated
highly enough, more might be done with it: it might be written for a broader
audience and it might be formalized. Typically, an informal proof will be made
“more formal” when the group of people with which it is intended to communi-
cate becomes larger and more diverse (involving greater separation in time and
space).

A formal proof is a document with a precise syntax that is machine check-
able: in principle, an algorithm should make it possible to “perform” the proof
described in the document. We shall not assume that formal proofs are human
readable or that they contain “explanations” of why a formula is actually true.
Trusted computer tools are used to check proofs so that other human or machine
agents come to trust the truth of a formula.

2.4 Revisiting criticisms of proofs-as-certificates

Given the discussion about proofs above, it seems useful to now revisit some of
the criticisms often leveled at proofs-as-certificates.

Consider, for example, two different societies discussed by Lakatos in Proofs
and Refutations [22]. One such society is Euclid and the readers of his Elements.
Here, Lakatos criticizes this text for “its awkward and mysterious ordering” of
definitions and theorems. Euclid’s text is notable for the society that it has
served: given the vast number of readers of the Elements that have been dis-
tributed over both space and time, it seems that some of that text’s success
comes, in part, from its formal (sometimes unintuitive) structure which increased
its universality. Another society famously considered by Lakatos is that of a small
society of mathematicians with limited distribution in time and space. In such
a setting, communications can be informal and the society of mathematicians is
more involved in an exploration of truth and good mathematical design. Even
though these two societies involve only humans, their different distribution in
time and space leads to rather different requirements on proofs-as-documents.

Consider now a society of agents involved with building and using an operat-
ing system. Clearly, the quality of the operating system is important: it should
perform various duties correctly as well as maintain certain security standards.
Such a society is highly dynamic: new features are added and others are removed;
bugs are discovered and patches are issued; and the operating system must allow



for extension to its function by allowing new device drivers to be added or new
executable code to be loaded and run. In such a setting, it seems futile to ex-
pect that there is a unique formal specification of the operating system to which
members of the society are attempting to find a formal proof. None-the-less,
informal proof and formal proof could still have some role to play among some
agents of this society. Some programmers may want informal proofs that their
programs satisfy certain requirements while other programmers might want to
have completely formal proofs involving possibly weak properties of some other
programs.

In light of this description of a society working to develop an operating sys-
tem, consider some of the criticisms of formal methods raised by De Millo, Lip-
ton, and Perlis in [29]. They argued, for example, that formal verification in
computer science does not play the same role as proofs do in mathematics: this
certainly does not seem problematic because of the differences among the many
agents in this society. For example, informal proof may play an important role
among some agents while formal proof may play an equally important role among
other agents. Those components of an operating system that are static parts of
many generations of such a system (such as, for example, sorting algorithms,
file system functions, and security protocols) may need to be trusted at a level
that formal verification could provide. Those components that are dynamic, ex-
perimental, and constantly changing would not be sensible targets for formal
verification. De Millo, Lipton, and Perlis state that “Outsiders see mathematics
as a cold, formal, logical, mechanical, monolithic process of sheer intellection; we
argue that insofar as it is successful, mathematics is a social, informal, intuitive,
organic, human process, a community project.” Given the richness of societies
that are part of building large software systems, it seems clear that both views
of proofs are important and both serve important roles.

If we allow for machine-to-machine communications of proofs, then formal
proof can play a central role. The proof carrying code project of Lee and Necula
[31] illustrates just such a situation. In that setting, a society of agents contains
at least two machine agents, one that provides executable code and the other
that is charged with permitting the accumulation of new code as long as that
code maintains certain security assurances. Ensuring that security assurances
are maintained requires some knowledge about the executable code. Examples
of such assurances are that the code does not access inappropriate memory cells
or that a typing discipline is maintained: e.g., that a “string” object is not
transformed into, say, an “electronic wallet” object. The approach described by
Lee and Necula requires that the executable code is paired with a formal proof
that that code satisfies the necessary assurances: such a proof can be checked
prior to accepting to execute the code.

To underline again the different roles of proof in different societies consider
the following statement from Lakatos [22]: “‘Certainty’ is far from being a sign
of success, it is only a symptom of lack of imagination, of conceptual poverty. It
produces smug satisfaction and prevents the growth of knowledge.” While this
criticism of formal proof sounds appropriate for those charged with the discovery



of mathematical concepts, it is not a valid criticism (nor was it intended to be) of
those building safety critical software where formal proof can play an important
role in establishing certainty [25].

2.5 Formal proofs and machine agents

While much of the value of proofs comes from sharing and checking them, the cur-
rent state of affairs in computational logic systems makes exchanging proofs the
exception instead of the rule. Many theorem proving systems use proof scripts
to denote proofs and such scripts are generally not meaningful in other theo-
rem provers: they may also fail to denote proofs for different versions of the
same prover. There is also a wide variety of “evidence of proofs” that appear
in computational logic systems: these can range from proof scripts to resolution
refutations and tableau proofs to winning strategies in model checkers. When one
theorem prover does accept proofs from another prover, the bridge built between
those two provers is generally ad hoc: see, for example, [15] where proofs from
an SMT prover are translated into proof scripts understandable to the Isabelle
prover.

In the remainder of this paper, we turn our attention to a foundational ap-
proach to designing proof certificates to be universal and amenable to commu-
nicating and checking.

3 Formulas and logical interpretation

Before describing proof certificates in more specifics, we fix the language of for-
mulas and inference rules that will hopefully allow a wide range of logics and
proofs to be encoded naturally. In fact, Church’s Simple Theory of Types (STT)
[13] provides a syntactic framework for unifying propositional, first-order, and
higher-order logics. Such formulas allow quantification at all higher-order types
which in turns allows for rich forms of abstractions to be encoded. This frame-
work also comes with an elegant and powerful mechanism for binding, quantifi-
cation, and substitution by its incorporation of the simply typed λ-calculus into
its equational theory. A remarkable feature of STT is that by making simple
syntactic restrictions to the types of constants, one can restrict STT to propo-
sitional logic or to (multisorted) first-order logic. It is also immediate to add to
formulas modal, fixed point, and choice operators. This choice of a framework
for specifying formulas is not only one of the oldest such frameworks but also a
common choice in several modern theorem proving systems.

Our approach to proofs of formulas departs from the simplistic setting of
Church’s original proposal where Axioms 1-6 described the logical core of higher-
order logic and the remaining axioms enable mathematical theories by introduc-
ing extensionality, infinity, and choice. Instead, we mix Church’s approach to
formulas, bindings, and λ-calculus with the sequent calculus proofs provided by
Gentzen for classical and intuitionistic logics [16] and by Girard for linear logic
[17].



For the rest of this paper, we shall assume that we will be using a single
language of logical formulas (namely, STT) and a single framework for describing
proofs (Gentzen style sequents). We shall not, however, assume that the reader
is intimately familiar with either of these two formalisms.

It is worth noting that we are not proposing to use the LF framework [19]
for specifying proof systems and proofs. While LF can easily accommodate the
formulas of Church’s STT, the design of LF as a dependently typed λ-calculus
fixes a particular proof structure, namely, natural deduction for intuitionistic
logic. We shall use the flexibility of the sequent calculus to allow many different
forms of proof to be performed without the necessity of encoding them as any
particular kind of term structure.

4 Two desiderata for proof certificates

We shall now use the term “proof certificate” to mean a document that should
elaborate into a formal proof via the efforts of a proof checker. We list now the
first two of four desiderata for proof certificates.

D1: A simple checker can, in principle, check if a proof certificate denotes
a proof.

Proof checkers should be simple and well structured so that they can be
inspected and possibly proved formally correct. The correctness of a checker
should be much easier to establish than the correctness of a theorem prover:
in a sense, a proof checker removes the need to have trust in theorem provers.
The separation of proof generation from proof checking is a well understood
principle: for example, Pollack [37] argues for the value of independent checking
of proofs and the Coq proof system has a trusted kernel that checks proposed
proof objects before accepting them [39]. Proof checking is likely to be at times
computationally expensive, so different proof checkers may perform differently
depending on the resources (say, memory and processors) to which they have
access.

D2: The format for proof certificates must support a wide range of proof
systems.

In other words, a given computational logic system should be able to take
the internal representation of the “proof evidence” that it has built and output
essentially that structure as the proof certificate. This one proof certificate for-
mat should be be able to encode natural deduction proofs, tableau proofs, and
resolution refutations, to name a few. Thus, if a system builds a proof using a
resolution refutation, it should be possible to output a certificate that contains
an object that is roughly isomorphic to that refutation.

A theorem prover is said to satisfy the “de Bruijn criterion” if that prover
produces a proof object that can be checked by a simple checker [8]. Desiderata
D1 and D2 together imply a “global” version of the de Bruijn criterion: if



every theorem prover can output a proper proof certificate, then any prover can
trust any other prover simply by using a trusted checker. The tension between
“simplicity” of the checker (D1) and the “flexibility” of the certificates (D2)
is clearly a challenge to address. Section 5.1 briefly describes an approach to
addressing this tension by identifying “macro” and “micro” inference rules and
the rules that allow micro rules to be assembled into macro rules.

Before presenting two additional desiderata, we examine two implications of
desiderata D1 and D2.

4.1 Marketplaces for proofs

Formal proofs of software and hardware are developing some economic value. For
example, some professional and contractual standards (for example, DefStan 00-
55 of the UK Defence Standards [30]) mandate formal proofs for software that
is highly critical to system safety (see [11] for an overview of such standards).
The cost of going to market with a computer system containing an error can,
in some cases, prove so expensive that additional assurances arising from formal
verification can be worth the costs. For example, an error in the floating point
division algorithm used in an Intel processor proved to be extremely costly for
Intel: more recently, formal verification has been used within Intel to improve
the correctness of its floating point arithmetic [20].

Where there is economic value there are opportunities for markets. If proof
certificates satisfy desiderata D1 and D2, it should be possible to develop a
marketplace for proofs in the following sense. Assume that the ACME company
needs a formal proof of its next generation safety critical system (such as might
be found in avionics, electric cars, and medical equipment). ACME can submit
to the marketplace a formula that needs to be proved: this can be done by
publishing a proof certificate in which the entire proof is elided. The market then
works as follows: anyone who can fill the hole in that certificate in such a way that
ACME’s trusted proof checker can validate it will get paid. This marketplace
can be open to anyone: any theorem prover or combination of theorem provers
can be used. The provers themselves do not need to be known to be correct. The
people submitting completed proof certificates must also try to ensure that the
ACME proof checker, with its restrictions on computational power, can perform
the checking: otherwise they would not be paid for their proof certificate.

If someone working in the marketplace finds a counterexample to a proposed
theorem, then that person should also get paid for that discovery. Similarly,
partial progress on proving a theorem might well have some economic values. A
comprehensive approach to proof certificates should formally allow counterex-
amples and partial proofs: we will not pursue these issues here.

4.2 Libraries of proofs

Once proof certificates are produced they can be archived within libraries. In
fact, libraries might be trusted agents that are responsible for checking certifi-
cates. Since such checking is likely to be computationally expensive in many



cases, libraries might be designed to focus significant computational resources
(e.g., large machines and optimizing compilers) on proof checking. Once a proof
certificate is checked and admitted to a library, others might be willing to trust
the library and to use its theorems without rechecking certificates. To the extent
that formal proofs have economic value, libraries will have economic incentives
to make certain that the software that it uses to validate certificates is trustable.
If someone else (a competing library, for example) finds that a non-theorem is ac-
cepted into a library, trust in that library could collapse along with its economic
reason for existing. Libraries can also provide other services such as searching
among theorems and structuring collections of theorems.

5 Two more desiderata for proof certificates

We shall now present two additional desiderata.

D3: A proof certificate is intended to denote a proof in the sense of
structural proof theory.

By “structural proof theory” we mean the literature surrounding the analysis
of proofs in which the restriction to analytic proofs (e.g., cut-free sequent proofs
or normal natural deductions) still preserves completeness. For references to the
literature on structural proof theory, see [16, 38, 40, 34]. Checking a certificate
should mean that a computation on the certificate should yield (at least in
principle) a formal proof in the sense covered by that literature.

This desideratum insists that certificates can be related to a well studied no-
tion of proof and, as such, it should be possible to apply many well known and
deep formal results from proof theory (cut-elimination, normalization, construc-
tive content, etc) to certificates. For example, proof certificates might support
the extraction of witnesses and, hence, programs: given a (constructive) proof of
∀x.A(x) ⊃ ∃y.B(x, y) and a proof of A(c), these two proofs together (via their
certificate format) might be expected to yield a witness d such that B(c, d) holds.
Similarly, one might hope to do proof mining [21] with or program extraction [9]
from proof certificates stored in a library. By using such sophisticated techniques
for manipulating proofs, it should be possible to build browsers of certificates
that would allow humans to interact with proof certificates in order to get a
sense of their “message” (see Section 1).

Our final desideratum (D4 below) addresses the fact that formal proofs can
be large and that certificates must, somehow, allow proofs to be redacted. Large
proofs will tax computational resources to store, communicate, and check them.
Thus, any definition of proof certificates must provide some mechanism for mak-
ing them compact even if the proof they denote is huge. One approach to making
proofs smaller could be “cut-introduction”: that is, examine an existing proof for
repeated subproofs and then introduce lemmas that account for the commonal-
ity in those subproofs. In this way, lemmas could be proved once and the various
similar subproofs could be replaced by “cutting-in” instances of that lemma.
There are clearly situations where cut-introduction can make a big difference in



proof size. Proof certificates must, obviously, permit the use of lemmas (clearly
permitted by desideratum D3). But this one technique alone seems unlikely to
be effective in general since proofs without cuts (without lemmas) can be so
large that they cannot be discovered in the first place. Our fourth desideratum
suggests another way to compress a proof.

D4: A proof certificate can simply leave out details of the intended proof.

Things that can be left out might include entire subproofs, terms for instan-
tiating quantifiers, which disjunct of a disjunction to select, etc. Thus, proof
checking may need to incorporate proof-search in order to check a proof certifi-
cate that left out some details. As a result, proof checkers will not just check
that all requirements of inference rules match correctly. Instead, they will need to
be logic programming-like engines that involve unification and (bounded) back-
tracking search. An early experiment with using logic programming engines to
reconstruct missing proof information was reported by Necula and Lee [32].

This desideratum forces the design of proof certificates in rather particular
directions. While the other desiderata seem general and even obviously desirable,
this fourth desideratum is the most distinctive in our proposal here.

5.1 Flexible description of proof systems

Taken together, desideratum D2 and D3 require that we can provide a rich set
of inference rules similar to the analytic rules (introduction, elimination, and
structural) used in proof theory. One way to achieve such richness is to identify
a comprehensive set of “atoms” of inference as well as the rules of “chemistry”
that allow us to build the “molecules” of inference. We briefly describe how such
an approach might work; see [27] for more specifics.

The atoms of inference The sequent calculus provides an appealing set of prim-
itive inference rules: these include the introduction of one logical connective and
the deletion and copying (weakening and contraction) of formulas. Gentzen used
this setting to distinguish classical and intuitionistic logic simply as different
restrictions on structural rules [16]. Linear logic [17] provides a finer analysis of
the roles of introduction rules and the structural rules: this analysis provides
additional atoms of inference by, for example, separating connectives into their
multiplicative and additive forms. The decomposition of the intuitionistic impli-
cation B ⊃ C into !B −◦ C is another example of this finer analysis of logical
connectives. In order to capture inductive and co-inductive reasoning (including
model-checking-like inference), the atoms of inference should also include fixed
points and equality [5, 6, 26]. Since the trusted proof checker needs to only im-
plement the atomic inference rules, the checker can be simple in its design, thus
satisfying D1.

The molecules of inference Without any additional discipline, the structure of
the atomic inferences within sequent calculus proofs is chaotic: the application



of one inference can have little relationship with the application of any other
inference rule. A well studied discipline for organizing atoms of inference into
the molecules of inference is provided by the technical notion of a focused proof
system [1, 23, 24]. These proof systems attribute “polarity” to atomic inference
rules. Atoms of the same polarity can stick together to form molecules: atoms of
different polarities form boundaries between molecules. The resulting collection
of molecules of inference form a proper proof system since they satisfy such
properties as cut-elimination. In this sense, the resulting molecules of inference
satisfy desideratum D3. There is also flexibility in how polarities are attributed
so it is possible to “engineer” the set of molecules to cover a wide range of proof
evidence, thus satisfying desideratum D2. Finally, when details of a proof are
elided in a proof certificate (desideratum D4), the proof checker will need to
conduct a search and that search should be understood as being conducted at
the molecular and not atomic level: when filling in details to a proof, one should
not be searching for new molecules via new combinations of atoms.

Since adequately representing one proof system within another proof system
is central to our design of proof certificates, we expand on this topic next.

5.2 Three levels of adequacy

When comparing two inference systems, we follow [36] by identifying three “levels
of adequacy.” The weakest level of adequacy is relative completeness: a formula
has a proof in one system if and only if it has a proof in another system. Here, only
provability is considered. A stronger level of adequacy is that of full complete-
ness of proofs: the proofs of a given formula are in one-to-one correspondence
with proofs in another system (such a correspondence must also be composi-
tionally described). If one uses the term “derivation” for possibly incomplete
proofs (proofs that may have open premises), an even stronger level of adequacy
is full completeness of derivations: here, the derivations (such as inference rules
themselves) in one system are in one-to-one correspondence with those in the
other system. When claiming equivalences between proof systems, one should
describe the level of adequacy of the associated correspondence: in general, we
shall strive to always have the engineered macro inference rules (molecules of
inference) encode target proof systems at the third and most demanding level of
adequacy. These degrees of adequacy appear to correspond roughly to Girard’s
proposal [18, Chapter 7] for three levels of adequacy based on semantical notions:
the levels of truth, functions, and actions.

The third level of adequacy (which, of course, implies the other two levels)
is particularly significant here since it provides a sensible means for addressing
desideratum D4. If a proof certificate elides an entire subproof then the proof
checker will need to reconstruct that subproof. The designer of the proof cer-
tificate presumably has elided that subproof because he feels that it is an easy
proof for the proof checker to discover. This impression is only useful, however,
if the search conducted by the proof checker (which strings together the atoms of
inference) can be related directly to the search for the elided proof. This match



must hold for successful applications of inference rules as well as for failing ap-
plications of inference rules. The notion of full completeness of derivations allows
making this match.

6 Mixing computation and deduction

Proofs and computations have, of course, a great deal in common. The Curry-
Howard Isomorphism views certain (constructive) proofs as programs. Here, we
are interested in another connection between proofs and computation: that is,
during checking of (or performing) a proof, certain computations must be made.
For example, a condition on a step in a proof might require that a certain
number evenly divides another number: such a condition can be established by
a straightforward computation.

Proof checkers can be divided into those that rely solely on determinate
(functional) computations and those that permit the more general notion of
non-deterministic (relational) computation. Proof checkers of proofs in typed λ-
calculi generally rely on extensive uses of β-reduction. Via the deduction modulo
approach to specifying proof systems, theories can, at times, be turned into
functional computations that sit within inference rules [14]. The Dedukti proof
checker [10] implements deduction modulo by compiling such computations into
a functional programming language.

On the other hand, there are proof checkers that are built using non-de-
terministic search principles and that employ logic programming engines. For
example, some of the early proof checkers [2, 3, 32] involved in the proof carrying
code effort used logic programming based on (subsets of) higher-order logic [28].
These systems experimented with backtracking search (sometimes, even within
the unification process). In one paper, the non-determinism inherent in a Prolog-
based proof checker was resolved by supplying the checker with an oracle that
was responsible for having all the answers to the question “I have several choices
to consider, which should I take?” [33].

While placing significant amounts of computation (either functional or re-
lational) into inferences seems necessary for capturing a wide range of proof
certificates, this integration comes with some costs. First, one must accept that
a compiler and a runtime system for a programming language are part of the
trusted core of a proof checker. While compilers and interpreters for both func-
tional and logic programming implementations are well understood, their pres-
ence in a proof checker will certainly complicate one’s willingness to trust them.
Second, proof checkers running on different hardware could have rather different
resources available to them: thus, the computation required to check a proof
might be available to one checker and not to another. This problem could be
addressed by having a network of trusted libraries of proofs: such libraries could
publish theorems only after their own proof checkers have checked a given proof
certificate. Libraries could, of course, have computational resources available
that might not be available on, say, desktop or mobile computers.



The use of proof search (non-deterministic, logic programming) to do proof
checking may introduce some special issues of its own. Most logic programming
engines (the efficient ones) usually come with a depth-first search strategy for
building proofs. This style of search is notoriously poor when dealing with prob-
lems related to deduction. Since a proof checker is only rechecking or reconstruct-
ing an object that is already known to exist, the proof certificate could come with
useful bounds on how much search needs to be done in order to reconstruct a
particular, elided subproof. For example, a depth-bound for a depth-first-search
process should be a natural value to estimate when eliding an existing proof
object. Another issue with using a non-deterministic proof checker is that there
can be a mismatch between finding the proof or finding a proof: theorems gener-
ally have many proofs. Since a proof certificate might elide information, there is
no guarantee that the proof the checker reconstructs is the original proof. This
discrepancy does not appear to be serious since the proof checker will, at least,
find a proof.

7 Conclusion

A proof is often expected to explain why a given theorem is true: such expla-
nations are generally informal and flow from human to human. On the other
hand, a proof can also serve as certification: such certificates are generally for-
mal objects and flow from machine (the prover) to machine (the checker). We
have advanced four desiderata for proof certificates and have outlined how re-
sults from structural proof theory and the automation of logic can be used to
build certificates satisfying those desiderata. The resulting approach to proof
certificates is based on foundational rather than technological considerations.
There are several important consequences of having foundational proof certifi-
cates. First, one must not trust theorem provers but only proof checkers: since
checkers are based on simple and universal proof principles, they should be much
easier to trust. Second, open markets for proofs can exist where those who need a
proof can unambiguously request a proof of a theorem (via an empty certificate)
and can unambiguously check that a proposed proof is, in fact, correct (using a
trusted checker). Third, since proof certificates are not based on changing tech-
nological considerations but on a permanent foundation, libraries of proofs are
possible. Such libraries offer the possibility to become trusted proof checkers as
well as agents for structuring theories.

Note. Since this paper was first written in July 2012, the paper [12] has appeared:
this paper provides details about how one can use focused proofs in classical
first-order logic to specify foundational proof certificates for a number of proof
systems.
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