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Abstract: We present a new form of Herbrand's theorem which is centered around
structures called expansion trees. Such trees contains substitution formulas and selected
(critical) variables at various non-terminal nodes. These trees encode a shallow formula
and a deep formula - the latter containing the formulas which label the terminal nodes
of the expansion tree. If a certain relation among the selected variables of an expansion
tree is acyclic and if the deep formula of the tree is tautologous, then we say that the
expansion tree is a special kind of proof, called an ET-proof, of its shallow formula.
Because ET-proofs are sufficiently simple and general (expansion trees are, in a sense,
generalized formulas), they can be used in the context of not only first-order logic but
also a version of higher-order logic which properly contains first-order logic. Since the
computational logic literature has seldomly dealt with the nature of proofs in higher
order logic, our investigation of ET-proofs will be done entirely in this setting. It can be
shown that a formula has an ET-proof if and only if that formula is a theorem of higher
order logic. Expansion trees have several pleasing practical and theoretical properties.
To demonstrate this fact, we use ET-proofs to extend and complete Andrews' procedure
[41 for automatically constructing natural deductions proofs. We shall also show how to
use a mating for an ET-proof's tautologous, deep formula to provide this procedure with
the "look ahead" needed to determine if certain lines are unnecessary to prove other
lines and when and how backchaining can be done. The resulting natural deduction
proofs are generally much shorter and more readable than proofs build without using
this mating information. This conversion process works without needing any search.
Details omitted in this paper can be found in the author's dissertation [161.

Key Words: Higher-order Logic, Expansion Trees, ET-proofs, Natural Deduction,
Matings.

1. Introduction

Problem solving in mathematics involves many different kinds of reasoning processes:
about propositional connectives, about individual objects in a given domain, about
equality and order relations, about sets and functions, and, among a host of others, the
more exotic reasoning by example, analogy, etc. Approaches to theorem proving have
generally focused on studying the first three of these reasoning processes. Reasoning of
the more exotic kinds have also been studied by various artificial intelligence researchers.
Although logics based on the ability to reason about seta and functions (higher-order
logics) have been studied (see [1, 2, 8, 11, 12, 14, 18, 19, 20, 22]), until very recently few
implementations of theorem provers in such logics have been described in the literature.

- This work was supported by NSF grant MCS81-02870_
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The importance of doing theorem proving in higher-order logic has been argued by
several people, including Andrews in 1151 and Robinson in [20}. In fact, Robinson
concludes [20] with:

It is important to recognize that it is higher-order logic, and not first-order
logic, which is the natural technical framework for the 'mechanization of
mathematics'. We have in fact attempted ... to pursuade those engaged
in mechanical theorem-proving research, and those proposing to start such
research, to focus their attention henceforth on mechanizing higher-order
logic.

The computer system, TPS, described in [15], is the result of an ongoing project in
which many automatic and interactive approaches to theorem proving in higher-order
logic have been developed. Initially, the logical language described in the next section
was implemented, along with Huet's higher-order unification algorithm [121. Using this
unification algorithm, a mating enumeration theorem prover, described in [5], was then
implemented. The mating enumeration strategy, being conceived for first-order logic
theorem proving, provided TPS with an automatic theorem prover which was complete
for first-order logic. The use of Huet's algorithm also permitted genuinely higher-order
theorems to be proved. In particular, TPS found a proof of Cantor's theorem, s.e.
there is no one-to-one mapping from a power set of a set back to that set. The classical
diagonal argument was found by discovering a non-trivial higher-order substitution term
13]. However, the collection of theorems for which TPS could (theoretically) find a
proof was only a very modest extension of first-order logic. Currently, TPS is still
very incomplete in the general higher-order setting, since substitution terms containing
quantifiers and binary, logical connectives are not discovered by a straightforward use
of Huet's unification algorithm.

One way to describe this inadequacy is to say that TPS was not searching through
the proper "search space" of proof structures for higher-order theorems. What we shall
present in this paper is a useful characterization of the search space for a theorem
prover in higher-order logic. This characterization is based on a structure called an
expansion tree. Among the set of expansion trees for a given theorem, certain ones
will be considered proofs, called ET-proofs. In this paper we shall define and present
several important properties of expansion trees, but weshall not discuss the many issues
surrounding how to automate the search for ET-proofs. Approaches to this problem
are currently being studied and implemented in TPS.

In the next section, we shall describe the higher-order logic T on which we base
the rest of this paper. In Section 3, we present the definition of expansion trees and
ET-proofs. As it turns out, expansion trees and ET-proofs are useful structures for the
study of proofs in both first-order and higher-order logic. All the results in this and
following sections will work equally well in both logics. (See [171 for examples of how
expansion trees can be used in first-order logic meta.theory.) The fact tha.t this one kind
of structure can actually be used in both setting is clearly one of its strengths, since most
definitions of search spaces for first-order logic do not work in the higher-order case. In
Section 4, we present a list representation for expansion trees which are succinct and
easily implemented. We warn the reader that these 3 sections may prove to be difficult
to read, especially for a reader not familiar with higher-order logic and A-conversion.



377

In the remaining sections of this paper, we show another strength of expansion
trees: Given an ET-proof, it is easily converted to a natural deduction proof. Such
a feature is also very important to the TPS project since a considerable amount of
effort has gone into providing the TPS user with not only automatic tools for proving
theorems but also interactive tools (see [4] and [15]). For example, TPS provides a
interactive editor for constructing natural deduction proofs in a top-down and bottom
up fashion (much as is alsodone in [6)). At any point in editing such a proof, the user
can have an unfinished portion of the proof given to the automatic theorem prover. If
the theorem prover finds a proof - that is, an ET-proof - the methods described in
the last sections can be used to finish the unfinished portion of the natural deduction
proof which the user started. In this way, the theorem prover can explain the proof it
found in a readable fashion. This capability is clearly valuable not only to researcher
using TPS but also to beginning logic students who use the interactive proof editor to
learn the process of building proofs. If the student gets stuck, the automatic theorem
prover could provide hints or complete instructions on how to complete the proof. See
[17] for more discussion of this feature, along with the description of how it is possible to
convert natural deduction proofs to ET-proofs. In that paper, Pfenning also describes
an algorithm which will convert a resolution-style refutation of a theorem into an ET
proof of that theorem. Thus the results about expansion trees mentioned in this paper
and Pfenning's can be made available to those systems which are based on resolution
theorem proving.

All the results described below are contained in [161, and the reader is referred to
this dissertation for details of proofs which are omitted below.

2. Logieal Preliminariea

It has often be observed that first-order logic is inadequate for formulating mathematics.
For example, consider Tarski's lattice-theoretical fixpoint theorem [23]:

If (L, $;) is a complete lattice and if f is an increasing function on L, then
f has a fixpoint, i.e. there is an x E L such that f(x) = z.

One difficult in representing this theorem and its proof in first-order logic is the need
to quantify over a set variable in the axiom concerning a complete lattice . If we let
(L, $;) be a lattice and let B be a set variable (a higher-order variable), an informal
mathematical representation of the completeness axiom would be:

VB [V:c [:c E B:):c E L j:)
3 Z [zE L 1\"I:c [:c E B :) :c $; z]

1\ vv l!y E L 1\ V:c [:c E B :) :c $; y]] :) z $; yJl]

In the proof of the fixpoint theorem, this axiom is used by applying it to the set
{:cl:c E LI\:C $; f(x)}. Informally this is done referring to ~he property used to define
B wherever x E B appears in this instance of the axiom. In other words, we actually
replace :c E B with :c E L 1\ x $; f(:c). Here, again first-order logic is inadequate
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to represent this kind of substitution - an atomic formula x E B becomes the non
atomic formula x E L 1\ x::; !(x). We D.OW present a higher-order logical system which
solves these two problems: explicit quantification of set (and function) variables and the
possible change of atomic subformula occurrences into non-atomic subformulas under
substitution.

The higher-order logic, T, which we shall consider here is essentially the simple
theory of types given by Church in [10], except that we do not use the axioms of
extensionality, choice, descriptions, or infinity. T contains two base types, 0 for boolean
and £ for individuals. All other types are functional types, i.e. the type (,8a) is the type
of a function with domain type a and codomain type,8. In particular, the type (oa),
being the type of a function from type a to a boolean, i.e. a characteristic function,
is used in T to represent the type for sets (predicates) of elements of type a. For
example, if the lattice L mentioned earlier is a set of elements of type a, then we say
that L has type [co). Formulas are built up from logical constants, variables, and
parameters (non-logical constants) by >.-abstraction and function application. Hence,
the type of [>.xaApl is (,8a) while the type for [A(Pa)Bal is,8. (We shall seldom adorn
formulas with type symbols, but rather, when the type of a formula, say A, cannot be
determined from context, we will add the phrase "where A is a formula.," to indicate
that A has type a.) For the convenience of making definitions in the next section, the
formulas of T which we shall consider contain only the logical constants -00 (negation),
v(oo)o (disjunction), and JIo(oa) (the "universal a-type set recognizer"). Other logical
constants will be considered abbreviations, i.e. A 1\ B stands for -. - A V -B, A:J B
stands for -A V B, "Ix P stands for JI[>'xP], and 3 x P stands for -JI[>'x. - PI. In
particular, we write Loaxa to denote the expression x E L. This definition of the
universal and existential quantifier may look rather peculiar, but it is very simple to
explain. The meaning of the logical constant JI is such that JIo(oa)Boa is true if and
only if Boa is the "universal" set of type oa. Hence, JI[>,xaPol is true if and only if
>'xaPo is the universal set of type (oa), i.e. Po is true for all Xa' We shall take as axioms
of T the following formulas (p, q, and r are formulass):

pVp:Jp
p:Jpvq

pvq:J.qVp
P :J q :J .r Vp :J .r Vq

JIo(oa)/oa :J !oaxa
"Ixa [pv !oax..J:J pvJIo(oa)!oa

Here, a is a type variable, and the last two axioms represent axiom schemes. The rules
of inference are substitution, modus ponens, universal generalization, and >.-conversion.
We shall write fr A to denote that A has a Hilbert-style proof using these axioms and
inference rules. The deduction theorem holds for T.

At first glance T may look rather esoteric, but it can be described as being simply
first-order logic in which we permit unrestricted comprehension via the use of >'-terms.
The type structure is necessary here in order to avoid the paradoxes (like Russell's para
dox) which arise from unrestricted comprehension. The use of >'-terms in substitutions
can make the nature of deductions in T more complex than in first-order logic. In the
fixpoint example, the result of substituting B with the term [>.x.Lx 1\ x ::; !(x)] in the
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completeness axiom will change the subformulas of the form Bz to [Ax.Lx A x ~ f(z))x
which A-convertsto Lx A x ~ fez). For another example, if we have the formula (where
Y is a variableo• and D and T are variableso(Oij)

VD [DY:JTY)

and we wished to do a universal instantiation (a derived rule of inference) of this formula
with the term AZ[TZ 1\ Vx .Zx :J Ax), i.e. the set of all sets of individuals which are
members of T and are subsets of A, we would then have

[AZ. TZ AVx .Zx:J AX)Y:J TY.

We can now apply the A-conversion inference rule to this formula to deduce

[TY 1\ Vx .Yx:J AX]:J TY.

Notice how the structure of this last formula is much more complex than that of the
formula it was deduced from. This last formula contains occurrences of logical connec
tives and quantifiers which are not present in the original formula. Notice also that Y
now has the role of a predicate where this was not the case in the first formula. None
of these structural changes can occur in first-order logic. The discovery of such substi
tution terms as the one used to instantiate D is a much more complex problem than
can be achieved by simply applying unification. TPS, for example, cannot currently
discover terms of this kind. Radical new heuristics for finding substitutions must be
developed, and we hope that expansion trees will provide a vehicle for formalizing such
attempts. Bledsoe in [8] and [9) has made some exciting progress in the development of
just such heuristics.

3. Expansion TJoees and ET·Proofs

All references to trees below will actually refer to finite, ordered, rooted trees in which
the nodes and arcs mayor may not be labeled, and that labels, if present, are formulas.
In particular, nodes may be labeled with simply the logical connectives >- and v. We
shall picture our trees with their roots at the top and their leaves (terminal nodes) at
the bottom. In this setting, we say that one node dominates another node if it they
are on a common branch and the first node is higher in the tree than the second. This
dominance relation shall be considered reflexive. All nodes except the root node will
have in-arcs while all nodes except the leaves will have out-arcs. A node labeled with
'" will always have one out-arc, while a node labeled with V will always have two out
arcs. We shall also say that an arc dominates a node if the node which terminates the
arc dominates the given node. In particular, an arc dominates the node in which it
terminates. Also, we say that an arc dominates another arc if their respective terminal
nodes dominate each other in the same order.

3.1. Definition. Let A be a formula.; An occurrence of a subformula B in A is a
boolean sublormuJa occurrence if it is in the scope of only '" and v, or if A is B. A
formula, A is an atom if its leftmost non-bracket symbol is a variable or a parameter.
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A formula B is a boolean atom (b-atom, for short) if its leftmost non-bracket symbol
is a variable, parameter or IT. A signed atom (b-atom) is a formula which is either an
atom (b-atom) or the negation of an atom (b-atom}, I

3.2. Definition. Formulas, of T can be considered as trees in which the non-terminal
nodes are labeled with"", or v, and the terminal nodes are labeled with b-atoms. Given
a formulag, A, we shall refer to this tree as the tree representation 01 A. I

3.3. Example. Figure 1 is the tree representation of ""'[ITB V Ax] V ""''''''IT[>.x.Ax V Bxl.
This formula is equivalent to ""'[V '!I By V Ax] V""'''''' Vx .Ax V Bz; I

/v~

f \V _

/\ \
nB A%

Figure 1

n[>.z.A% v Bz].

We shall adopt the following linear representation for trees. If the root of the tree
Q is labeled with ""', we write Q == _Q', where Q' is the proper subtree dominated by
Q's root. Likewise, if the root of Q is labeled with v, we write Q == Q'v q", where Q'
and Q" are the left and right subtree of Q. The expression Q' 1\ Q" is an abbreviation
for the tree ""'[""'Q' V ""'Q"l.
3.4. Definition. Let Q, q' be two trees. Let N be a node in q and let I be a label.
We shall denote by Q +~ Q' the tree which results from adding to N an are, labeled I,
which joins N to the root of the tree Q'. This new arc on N comes after the other arcs
from N (if there are any). In the case that the tree Q is a one-node tree, N must be
the root of Q, and we write A +/ Q' instead of Q +~ Q', where .4 is the formula which
h~~~ I

3.5. Example. Figure 2 contains three trees, Q, Q' and Q+}j Q', where N is a node
of Q and c is some label. The nodes and arcs of Q and Q' mayor may not have their
own labels,

I
3.6. Definition. Let Q be a tree, and let N be a node in Q. We say that N occurs
positively (negatively) if the path from the root of Q to N contains an even (odd)
number of nodes labeled with ""'. We shall agree that the root of Q occurs positively
in Q. If a node N in Q is labeled with a formula of the form ITB, then we say that
N is universal (existential) if it occurs positively (negatively) in Q. A terminal node
which is not labeled with a formula of the form ITB is called a neutral node. A universal
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N

Figure 2: The trees q, q', and q +~ q'.

(existential) node which is not dominated by any universal or existential node is called
a top-level universal (existential) node. A labeled arc is a top-level labeled arc if it is not
dominated by any other labeled arc. I

3.1. Definition. Let Q be a tree with a terminal node N labeled with the formula
nB, for some formulag; B. If N is existential, then an ezpan8ion of q at N with respect
to the list of formulass,, (t1,.. . ,t..), is the tree q +~ ql +~ .. .+~ q.. (associating to
the left), where, for 1 ~ i ~ n, Qi is the tree representation for some ..\-normal form of
Bt. , The formulas t 1 , ••• ,t.. are called ezpan8ion terms of the resulting tree. We say
that each of these terms are used to expand N.

If N is universal, then a 3election of q at N with respect to the variable., y, is the
tree q +~ q', where q' is the tree representation of some ..\-normal form of By, and y
does not label an out-arc of any universal node in Q. We say that the node N is selected
by y.

The set of all ezpan8ion trees is the smallest set of trees which contains the tree
representat ions of all ..\-normal formulaa, and which is closed under expansions and
selections. I

Expansion trees are, in a sense, generalized formulas. The main difference is that
expansion trees can contain labeled arcs. An expansion tree which contains no labeled
arcs can easily be interpreted as a formula.

S.8. Definition. Assume that Q is an expansion tree. Let SQ be the set of all variable
occurrences which label the out-arcs from (non-terminal) universal nodes in q, and let
8 Q be the set of all occurrences of expansion terms in q. I

Expans ion trees, a generalization of Herbrand instances, do not use Skolem func-
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tions as is customary in Herbrand instances. Skolem functions can be used in this
setting, but their occurrences in substitution teI'IIU! must be restricted in ways that are
not apparent from the first-order use of Skolem functions. The reader is referred to [16]'
for details. In order to do without Skolem functions, we need to place a restriction on
selected variables which models the way in which Skolem teI'IIU! would imbed themselves
in other Skolem teI'IIU!. This restriction amounts to requiring that the following binary
relation on SQ be acyclic.

3.9. DetlnitioD. Let Q be an expansion tree and let -<~ be the binary relation on
SQ such that z -<~ y if there exists an expansion term occurrence t E 9 Q such that z
is free in t and y is selected for a node dominated by the arc labeled by t. Let -<Q be
the transitive closure of -<~. -<Q is called the imbedding relationbecause it reflects how
Skolem terms, represented by the variables in SQ, are imbedded in one another. I

We next define two formulas which are encoded in an expansion tree. The "deep"
formula. Dp(Q) of the expansion tree Q is a formula whose b-atoms correspond to the
leaves of Q. The "shallow" formula Sh(Q) of q is a formula whose b-atoms correspond
to the top-level universal, existential, and neutral nodes in q.
3.10. DetlnitioD. Let q be a tree such that either q or ...q is an expansion tree. We
define Dp(q) by induction on the structure of q.

(1) If q is a one-node tree, then Dp(q) = A, where A is the formula which labels
that one-node.

(2) If q = ...q' then Dp(q) := ...Dp(q').

(3) If q =q'v q" then Dp(q) :== Dp(q') V Dp(q").

(4) If q::::: IIB+" ql +... +'. q" then Dp(q):= Dp(ql)I\.·.I\Dp(q,,). I

3.11. DetlnitioD. Let q be a tree such that either q or ...q is expansion tree. We
define Sh(q) by induction on the top-level boolean structure of q.

(1) If q is a one-node tree, then Sh(q) = A, where A is the formula which labels
that one-node.

(2) If q ::::: ...q' then Sh(q) := ...Sh(q').

(3) If q == q'v q" then Sh(q) :== Sh(q') V Sh(q").

(4) If q == lIB +" ql +... +'. q" then Sh(q):= lIB. I

Notice, that if A is a formulas; and q is the tree representation of A, then Dp(q) =
A == Sh(q).

3.12. DetlnitioD. Let Q be an expansion tree. q is sound if no variable in SQ is free
in Sh(q). q is an ET-proof if q is sound, Dp(q) is tautologous, and -<Q is acyclic. q
is an expansion tree for A if q is sound and Sh(q) is a A-normal form of A. q is an
ET-proof for A if q is an ET-proof and q is an expansion tree for A. I

3.13. Example. Let A be the theorem 3 y V% .P% ::> Py. An ET-proof for A would
then be the tree q given as:

... 1IIl,\y· ... Il,\%.... p%V Py]+- [l1IA% p%V Pu) +- [ PtIV PuJl
+- [lTIAx p% V Pv) +w [ Pwv PvllJ.
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Here, Dp(q) = ,.+·+·..PtI V PulA "",["",Pw V PtllJ. The imbedding relation is the pair
tI -<Q w. Notice, that if we had used u instead of w, -<Q would have been cyclic. In
Example 4.2 we give a more readable representation of this expansion tree. I

3.14. Soundness and Relative Completeness ror ET·Proors. Let A be a
formulao. r,. A if and only if A Iuu an ET-proof.

This theorem is what we shall consider our higher-order version of Herbrand's theo
rem. The reader is referred to [16] for the details of this proof. The relative completeness
result, i.e. if r,. A then A has an ET-proof, is proven by using the Abstract Consis
tency Property in [11. The central result concerning Abstract Consistency Properties is
based on Takahashi's proof of the cut-elimination theorem for higher-order logic [221.
Since i is non-extensional, Henkin-style general models do not correctly characterize
derivability in i. Hence, the completeness result is stated relative to the notion of
derivability and is not based on a notion of validity.

3.1&. Definition. An expansion tree is grounded if none of its terminal nodes are
labeled with formulas of the form JIB. An ET-proof is a grounded ET-proof if it is also
a grounded expansion tree. I

A formula has an ET-proof if and only if it has a grounded ET-proof.

4. List Representations or Expansion Trees

We shall now present a representation of expansion trees which is more succinct and
more suitable for direct implementation on computer systems. We shall no longer
consider the logic connectives A and:) and the quantifiers Vand 3 to be abbreviations.
This will help make list representations of expansion trees more compact.

The set of all list structures over a given set, 5, is defined to be the smallest set
which contains 5 and is closed under building finite tuples.

Since expansion and selection nodes in an expansion tree must occur under an odd
and even number of occurrences of negations respectively, we need to be careful how we
imbed expansion trees under negations when we attempt to build up larger expansion
trees from smaller ones. This explains why we need to consider so many cases in the
following definition.

4.1. Definition. Let 5 be the set which contains the labels SEL and EXP and all
formulas of T. Let ebe the smallest set of pairs (R, A), where R is a list structure over
5 and A is a formulas, which satisfies the conditions below. We say that a variable y is
selected in the list structure R if it occurs in a sublist of the form (SEL y R').

(1) If A is a boolean atom and R is a A-normalform of A, then (R, A) E eand ("",R,
"'"A) E e. Here, "'"R is shorthand for the two element list ("'" R).

(2) If (R, A) E e then (R,B) E ewhere A conv B.

(3) If (R, A) E e then ("'" "'" R, "'""'" A) E e.
In cases (4), (5), and (6), we assume that R l and ~ share no selected variables in

common and that Ai (A2 ) has no free variable selected in ~ (Rd.

(4) If (R l , Ad E e and (~, Az) E e then ((V R l ~), Ai VAz} E e and
((1\ Rl ~), Ai 1\Az} E e.
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(5) H (.....RI, .....AI) E t and (.....~, .....A~) E t then (.....(v RI ~), -« , AI V A~) E t
and (....(/\ R I ~) . ......AI/\A~) E e.

(6) H (....RI .....Ad E e and (~,A2) E t then «~ RI ~),AI ~ A2) E e and
(....(~ ~ Rd......A:I ~ AJl E e.

In cases (7). (8). and (9). we assume that y is not selected in R and that y is not
free in [A%P] or in B.

(7) H (R, [A%Ply) E e then «SEL y R),V% P) E e.
(8) H (....R, .... [A%P)y) E t then « .....(SEL y R» ...... 3 % P) E e.
(9) H (R,By) E t then «SEL y R), rrB) E e.
In cases (10), (11). and (12), we must assume that for distinct i,i such that 1 ~

i.i ~ n, R; and R; share no selected variables and that no variable free in !A%Pjti is
free in Rj .

(10) H for i = 1•. ..• n, (R;, [A%Pjti) E t then «EXP (t l Rd .. . (t" R,.»,3 % P) E
t.

(11) H for i = 1, . .. ,n. (.....R;, .... [A%P)t;) E t then (....(EXP (t l Rd . .. (t" R,.»,
.... '1% P) E t .

(12) H fori = 1, . .. . n, (.....R;. ....Bti) E t then (..... (EXP (t l Rd .. . (t" R,.», rrB) E
t . I

The pair (R, A) E t represents - in a succinct fashion - an expansion tree. Notice
that the only formulas stored in the list structure R are those used for expansions and
selections and those which are the leaves of the expaneion tree. Expansion trees as
defined in §2 contain additional formulas which are used as "shallow formulas" to label
expansion and selection nodes. These formulas. however, can be determined up to A
convertibility if we know what the expansion tree is an "expansion" for. Notice, that one
list structure alone may represent several expansion trees. For example, (EXP (a P aa»
could represent an expansion tree for 3 % Pes, 3 % Paz, and 3 x Paa. H we keep this
complication in mind. we can informally considered list structures as expansion trees.

4.2. Example. The expansion tree in Example 3.13 can be written as the list structure:

(EXP (u (SEL II (~ PII Pu) »(v (SEL w (~ Pw PII) ))).

5. Natural Deductions

Beyond the fact that ET·proofs are sound and (relatively) complete for r, they also have
several other pleasing properties, for both theoretical and practical concerns. We shall
illustrate this claim by showing how ET.proofs can be converted to natural deduction
style proofs. This investigation is an immediate extension of the work described by
Andrews in [41. In that paper, Andrews showed how natural deduction proofs could
be constructed by processing incomplete proofs, called ouUines, in both a top-down
and bottom-up fashion. In these outlines, certain lines. called sponsoring lines, were
not justified. To each sponsoring line is associated a (possibly empty) list of justified
lines which appear earlier in the proof and which might be required for completing the
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proof of the sponsoring line. These lines are called supporting lines. Proof lines which
are either supporting or sponsoring are called active. Incomplete proofs built in this
fashion are such that their asserlions are subformulas of the original theorem. (Notice
that in higher-order logic, this is stretching the usual meaning of subformulas.) Using
ih is fad, we shall be able to attach to each active line an expansion tree (actually a
list representation) lor the assertion in that line. These expansion trees, which are
essentially sub-trees of the ET·proof of the original theorem, provide the information
necessary to determine how an active line should be "processed."

Beyond the fact that the conversion process describe below works for higher-order
logic, this process differs in two other important ways from the process described in
(4). First, Andrews used a structure called a plan to provide the information which
would indicate how to process active lines. ET-proofs, when restricted to first-order
logic, contain the same kind of information as plans. Plans, however, are defined with
respect to several global properties of formulas. This makes it awkward (in theory and
practice) to construct new plans for new subproofs. Since subtrees or the negation of
subtrees of expansion trees are themselves expansion trees, it is much easier to build new
ET-proofs for new subproofs. Secondly, Andrews actually considered subproofs to be
based on a sponsoring line and its hypotheses while we consider subproofs to be based
on sponsoring lines and their supports. These differences allow us to give a complete
analysis of this transformation process.

Below we provide formal definitions for the concepts informally discussed above.
In the rest of this paper, all ET·proofs will be assumed to be grounded.

6.1. Definition. By a natural deduction proof we mean a Suppes-style proof struc
tures [211. Such systems emphasize reasoning from hypotheses instead of axioms. An
incomplete natural deduction proo/is a list of proof lines some of which are justified by
NJ - the non-justification label. Such lines represent subproofs which must be com
pleted. The rules of inference in this system are those listed in [4] along with a rule
for ~·conversion. The rules of existential generalization and universal instantiation are
examples of two rules of inference. !

6.2. Example. The following is an example of an incomplete natural deduction proof.

(1) 1 f- 3 c Vp .13 u .pu] ::) .p.cp Hyp
(2) 2 l- V:c 3y .P :cy Hyp
(3) 3 f- VP .13u .pul ::) .p.cp H yp
(16) 2,3 f- 31 Vz .P z .l z NJ
(17) 1,2 f- 3/Vz .Pz.lz RuleC :1,16
(18) 1 f- [V:c3y .P:cy]::).3/Vz.Pz.lz Deduct: 17
(19) f- [3cVp .[3u.pu]::).p.cp!::)

[V:c 3y .P :cyl ::) 3/ VZ .Pz.f« Deduct: 18

Here e is a variable,(o,), p is a variable"., P is a variable"... / is a variable,.. and :c, y,
Z, u are variables,. I

In what follows, we shall use .L to represent a false statement. It can be treated
as an abbreviation for p" -po We shall also let .L stand for both the expansion tree
for .L and for the list representation for this expansion tree. If .L occurs as one of the
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disjuncts of a formula, we shall assume that that formula is an abbreviation for the
formula which results from removing .L as a disjunct.

6.3. Definition. A proofoutline, 0, is the triple, (L, p, {R,}), where:

(1) L is a list of proof lines which forms an incomplete natural deduction proof.
A line with the justification NJ corresponds to a subproof which must be
completed. Let Lo be the set of all lines labels in L which have this justification.
These are called the sponsoring lines of O.

(2) P is a function defined on Lo such that whenever z E Lo, p(z) c L \ Lo and
all the lines in p(z) precede z in the list L. Whenever I E p(z), we say that z
sponsors I, I supports z, z is a sponsoring line, and I is a supporting line. A line
is active if it is either a supporting line or a sponsoring line which does not
assert .L. (In the outlines we shall consider, only sponsoring lines may assert
.L.)

(3) {R,} represents a set of list structures, one for each active line, such that if I
is a supporting line, then (....R" ..../) E eand if I is a sponsoring line, then (R"
1) E e.

(4) If line a supports line z then the hypotheses of a are a subset of the hypotheses
of z,

If Lo is not empty, we define the followingformulas and expansion trees. For each
z E Lo set Az := [VIEP(z) ....lj V z (where line labels stand for their assertions) and let
Qz be the expansion tree for Az represented by the list structure (v (V1EP(z) ....R,) Rz).
The following condition must also be satisfied by an outline.

(5) If Lo is not empty, then Qz is a (grounded) ET-proof for Az for each z E Lo.

It is easy to show that 0 has an active line if and only if Lo is not empty. We say
that 0 is an outline for A if the last line in 0 has no hypotheses and asserts A. I

The ET-proof Qz roughly corresponds to a plan for the sponsoring line z as de
scribed in [4].

6.4. Delinition. Let A be a formula and R a list representation of an ET-proof for
A. Let z be the label for the proof line

(z) f- A NJ,

and set L:= (z), p(z) = 0 and Rz := R. Then 00 := {L,p, {R,}) is clearly an outline.
We call this outline the trivial outline for A based on R. I

6.5. Example. An example of a proof outline is given by setting L = (1,2,3, 16, 17, 18,
19), p(16) = {2,3} and

s« = (EXP (z (SEL y pzy)))
Ra = (EXP (pz (:) (EXP (y pzy)) pz.c.Pz)))
RI 6 = (EXP ([).V.C.PII] (SEL z pz.c.Pz)))

where the lines in L are those listed in Example 5.2. It is easy to verify that (v ....~ (v
....Ra R16 )) represents an ET-proof of ....2 v ....3 V 16 and that {L,p, {~, Ra, RI 6 } ) is an
outline. I
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5.6. Deftnition. A formula t is admi$sible in 0 if no free variable in t is selected in
R, for any active line I. I

The D- and P- (deducing and planning) transformations described in [4) can now
be used in this setting if we describe how each such transformation attributes expansion
trees to each new active line. We illustrate how this is done with the P-Conj and D-All
transformations.

IT some sponsoring line z in an outline 0 = (L,p, {R,}) is of the form

NJ

then R. is of the form (A HI ~). Applying P-Conj to line z will result in an outline
0' = (L', I, {H[}), where L' contains the new sponsoring lines

(%) Jl
(y) Jl

NJ

NJ

and line a has its justification changed to RuleP: %, y. Also, P'C%) and p'(y) are set equal
to pea), and R~ := RlI R~ := ~. I agrees on all other sponsoring lines of 0', and
R( := R, for all active lines of 0' other than % and y. This application of P-Conj has
reduced the subproof based on line a to the two subproofs based on lines % and y.

IT the outline 0 contains a supporting line a of the form

(a) Jl f- "1% P Hu/eX

for some justification RuleX (other than NJ), then Ra has the form (EXP (tl Rtl...
(t,. R,.)). IT anyone of the terms t l , ••• ,t,. is admissible within 0, say ti, then D-All
can be applied to line a by doing a universal instantiation of it with ti. L' is then equal
to L with the line h, shown below, inserted after line a.

(h) Jl f- V1:a.

Here it is assumed that in this substitution, bound variables are systematically renamed
to avoid variable capture. Also, R1 := ~. IT n ~ 2 then line a must remain active, so

and for each sponsoring line a such that a E p(z), set I(z) := p(z) u{h} (i.e. h is a
cosupport with a). IT n = 1, then line a is no longer active so b replaces a as a support
- that is, for each sponsoring line z such that a E p(z), set p'(z) := p{z) \ {a} u{h}. In
either case, l(z) := p(z) for all other sponsoring lines of 0 and R( := R, for all active
lines I =I a of O. It is straightforward to verify that 0' = (L', I, {Rf}) is an outline.

It is possible to show that at least one expansion term associated with such active
lines in 0 must be admissible, so requiring that the tertIU! introduced in a universal
instantiation (or introduced in a bottom-up fashion by P-Exists) be admissible is always
possible to meet. This restriction to admissible terms is necessary to guarantee that
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when variables are selected in the P-All and P-Choose transformations, they do not
already have a free occurrence in the current proof outline.

A simple, naive process of transforming an ET-proof, represented by the list struc
ture R, for the theorem A, would then start by successively applying either D- or P
transformations to the trivial outline for A based on R and finish when a.ll the subproofs
generated can be recognized as instances of the RuieP transformation.

6. Focused Construction of Proof Outlines

The proof outlines produced by the naive method described above will often turn out to
be very inelegant for at last two reasons, which wewillexamine here. An implementation
of this naive algorithm was made in the computer program TPS (see [15]) and it was
frequently found that many of the supporting lines for a given sponsoring line were not
really needed to prove that sponsoring line. The naive algorithm contained no way of
checking for this since it was provided with no ability to "look ahead." Hence, may
applications of D- and P- rules were not necessary and the resulting, completed natural
deduction proofs were much longer and redundant than necessary. The naive algorithm
was also not equipped to recognize when it could backchain on a supporting line which
asserted an implication, since backchaining also requires looking ahead to see it if can
actually be applied. Hence, the naive procedure always treated such implicational linea
in the most general possible way - by using its equivalent disjunctive form in the form
of an argument from cases. Implicational support lines were always used in a very
unnatural fashion.

The information which would supply a transformation process with the necessary
ability to look ahead is contained in a matingwhich is present in the tautology encoded
in the ET-proofs of each subproof of a given outline. We now need several definitions.

6.1. Definition. If Jh and Jh are sets, define Jh till ..42 := {el u 6 I6 E Jh,e2 E Jh}.
Let D be a A-normal formulas. We shall define two sets, CD and VD , which are both
sets of sets of b-asom subformula occurrences in D, by joint induction on the boolean
structure of D. CD is the set of clauses in D while VD is the set of "dual" clauses in D.
Dual clauses have been called vertical paths by Andrews (see [5]).

(1) If D is a b-asom, then CD := {{D}} and VD := {{D}}.

(2) If D = -D1 then CD := VD, and VD := CD,.

(3) If D = D 1 V D2 then CD := CD, iIJJ CD. and VD := VD, U VD•.

(4) If D = D1l\D2 then CD := CD, uCD• and VD := VD , UlJ VD•.

(5) If D = D1 :.) D2 then CD := VD, UlJ CD. and VD := CD, U VD•. I

6.2. Definition. Let D be a A-normal formula.; Let .M be a set of unordered pairs,
such that if {H, K} E .M and Hand K are b-asom subformula occurrences in D, then
Hand K are contained in a common clause in D, H conv-! K, and either H occurs
positively and K occurs negatively in D, or H occurs negatively and K occurs positively
in D. Such a set .M is called a mating for D. If {H, K} EM we say that Hand K are
oM -mated, or simply mated if the mating can be determined from context. If it is also
the case that for all eE CD there is a {H,K} E .M such that {H, K} c e, then we say
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that M is a clause-spanning mating (cs-mating, for short) for D. In this case, we shall
also say that M spans D. HDis a set of A-normalformulaso, we say that M is a mating
(cs-mating) for f) if M is a mating (cs-mating) for V f). Here, the order by which the
disjunction V D is constructed is taken to be arbitrary but fixed. I

The notion of a mating used by Andrews in [5] is a bit more general than the one we
have defined here. In that paper, a mating, M, is a set of ordered pairs, (H, K), such that
there is a substitution 0 which makes all such pairs complementary, i.e. OK = -OH.
Except for this difference, the notion of a cs-mating corresponds very closely to his
notion of a p-acceptable proof*-mating. Bibel in [7] also exploits matings for various
theorem proving and metatheoretical application.

6.3. Proposition. Let D be in A-normal form. D is tautologous if and only if D has
a cs-mating.

6.'. Definition. Let f) be a finite, nonempty set of formulasg, and let M be a mating
for f). With respect to D and M, define ~o to be the binary relation on f) such that
when DI , D2 E f), D I ~o D2 if D I contains a b-asom subformula occurrence Hand
D2 contains a b-atom subformula occurrence K such that {H, K} E M. Let ~ be the
reflexive, transitive closure of ~o. Clearly ~ is an equivalence relation on f). H D ED,
we shall write [D].. to denote the equivalence class (partition) of D which contains D.
The following proposition is easily proved. I

6.5. Proposition. Let f) be a finite, nonempty set of formulaso ' If M is a cs-mating
for f) then M spans at least one of th.e ~-partitions of D. Th« conflerse is trivially true.

6.6. Definition. Let 0 = (L,z, {~}) be an outline. Let Dr be the formula Dp(Q,)
if I is a sponsoring line or Dp(-Qd if I is a supporting line. Now define liz :=
{D,} U {Dr II E p(z)} if z does not assert .L and f)z := {Dr II E p(z)}, otherwise. No
tice that for each z E Lo, Dp(Qz) = VDz. Now let Mz be a cs-mating for Dp(Qz) for
each z E Lo and set oM := UzELo Mz. M is called a cs-mating for O. (Notice that .M is
also a cs-mating for each Dp(Qz).) We say that 0 is .M-focused if for each z E Lo, Dz
is composed of exactly one ~-partition. I

6.7. Example. If 0 is the outline in Example 5.5, then

D2 = -pzy
D3 = -[Pzy:J pz.c.pz]
D I 6 = Pz.c.Pz
VDI 6 = ....Pzyv -[Pzy:J pz.c.pz] V pz.c.pz]

Notice that DIG is tautologous. If we let AI, A2, A3, A4 represent the four b-atom
occurrences in DI 6 then a cs-mating for DIG would be {(AI, A2), (A3, A4)}. I

Let 0 = (L,z,{~}) be an outline and let M be a cs-mating for O. If 0 is not
M-focused, then there must be a z E Lo such that Dz has too many members, i.e. there
are at least two ~·partitions of Dz • What we need is a thinning outline transformation
which will permit us to deactivate lines in 0, there by removing elements from Dz • As
long as the resulting Dz is still spanned by M, the result of the thinning transformation
will satisify the requirements of being an outline.

The thinning transformation works as follows. Let outline 0 and a cs-mating M
for 0 be such that 0 is not M-focused. Let z be sponsoring line such that Dz contains
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more than one ~-partition. By Proposition 6.5, there is at least one ~-partition P C f)~

such that .M spans P. Set P' := p \ f)~. For each supporting line I of z such that
I E pI, the thinning transformation modifies the value of p(z) by removing I from it. If
it is the case that Dz E pI, then the supporting lines in P are strong enough to prove
.1, from which the assertion in line z follows immediately. In this case, the thinning
transformation must add the new sponsoring line

(y) )( f- .1 NJ,

where )( is the set of hypotheses for line z. The justification for line z is changed to
RuleP: y. The supports for line yare those lines which were supporting line z and were
not thinned out as described above.

7. Baekehaining

Using the mating information contained in the Dp-values of the expansion trees associ
ated with each active line of an outline provides the outline transformation process with
enough information to look ahead and identify unnecessary supporting and sponsoring
lines. This same look ahead will help us determine when we should backchain on an
implicational support line.

Consider the outline fragment

(a) )( f
(z) )( f-

RuleX
NJ

(0')

where we have already determined that line a is a necessary support of line z, and RuleX
is the justification for line a. One way to use line a in proving line z is to apply P-Cases
(see [4]) to the lines in (0'), which would then yield the following lines.

(a) )( f- .....Al V A2 RuleX
(b) b f- -Ai Hyp
(m) )(, b f- B NJ

(Til(n) n f- A2 Hyp
(y) }(,n f- B NJ
(z) )( f- B Cases: a, m, y

It may turn out that this new outline is no longer focused for at least two reasons. First,
line m may be proved indirectly from its sponsors, which now includes line b. In other
words, f)m may contain a partition P such that Db E P but Dm !f. P. Hence, -Ai .is
used to prove.i. The proof could, therefore, be reorganized so that we instead try' to
prove Ai directly. In this case, weshould apply the new D-ModusPonens transformation
to the lines in (0') to yield the following lines.

(a) )( f- .....Al V A2 RuleX
(m) )( f- Ai NJ
(n) )( f- A2 R'uleP: a,m (T2)

(y) )( f- A2 ::>B NJ
(z) )( f- B RuleP: Y,n



RuleX
NJ

RuleP: a,m
NJ

RuleP : Y,n
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Lines m and Y are new sponsoring lines and they share the supports which z had, less
line a. Notice that R". has the form (v -RI R.i) for some list structures RI and R.i .
In the new outline, we set R:,. := R I and R~ := (:J R.i R,,). The new outline will be
focused.

Another way the outline containing the lines in (TI) may not be focused is that
line y is proved indirectly from its supports. In this case, we need to backchain on the
contraposltive form of line a, i.e. we should apply the new D-ModusTollens on the lines
in (0") to yield the following lines.

(a) }{ I- -AI V A2

(m) }{ I- -A2

(n) }{ I- -AI
(y) }{ I- -AI:J B
(z) }{ I- B

If in fact the outline containing the lines in (Td was focused, then neither D
ModusPonens or D-ModusTollens could not be used on line a, and we actually needed
to treat line a as a disjunction by applying P-Cases. Of course, all these comments
apply equa.lly well when line a asserts a formula of the form Al :J A2 •

8. Other Forms of Natural Deduction

There are several different formats of proofs which have been called natural deduction,
and, at first glance, the problems encountered in converting ET-proofs to these other
proof formats might appear to be quite different than the problems encountered in
building the Suppes-style proofs of the previous sections. This is genera.lly not the case.
For example, the transformation process already described produces , in a sense, proofs
in Gentzen's LK format [131. For each sponsoring line z in a given outline, consider the
sequent, p(z) -+ z, where line labels are used to refer to their assertions . Hence, to each
outline there corresponds a set of sequents which represent the unfinished subproofs of
that outline. The D- and P- transformations can then be seen as ways of taking the
sequents of one outline and replacing some of them with logicia.lly simpler sequents.
These simpler sequents can then be joined using derived rules of the LK-calculus to
yield the sequents they replace. In this fashion, an entire LK derivation can be built.
Of course, for this to work in higher-order logic, we would need to add an inference rule
for A-conversion,but this is the only essential addit ion needed for this accommodation.
LK derivations built in this fashion will contain no instances of the cut inference rule.
Thus, by using our relative completeness result for ET-proofs, if A is a theorem of
T, A has an ET-proof which can be converted to a cut-free LK derivation. Via the
transformation process, our version of Herbrand's theorem can thus be used to prove
Gentzen's Hauptsatz. See [16) for a complete account of how ET-proofs can be converted
to LK deriviations.
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