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Preface for this draft

This draft is not intended for general circulation.
Included here are chapters that describe most features of λProlog. The examples given

to illustrate these features are rather short. I intend to add several chapters each dealing
with extended examples, in areas such as automated deduction, natural language processing,
and meta-programming of functional programs.

Various details of λProlog as reported here will change between now and the next release
of this monograph. In particular, certain details about the naming of modules and the use
of module names, about built-in predicates and functions, and about the use of polymorphic
types will almost certainly change. The essentially logical aspects of λProlog, however, have
been set for many years now and what the monograph describes about them should remain
unchanged.

Comments and corrections on any of this material will be greatly appreciated.
The URL http://www.cse.psu.edu/∼dale/lProlog contains some WWW pages for

λProlog.
Acknowledgments: I would like to thank Iliano Cervesato, Giorgio Delzanno, Joern

Dinkla, H. Krishnapriyan, Gary Leavens, Jim Lipton, Tong Mei, Gopalan Nadathur, Olivier
Ridoux, and Jenny Simon for useful comments on earlier drafts of this book.
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Chapter 1

Introduction

λProlog is a logic programming language that supports higher-order programming, poly-
morphic typing, modular programming, abstract data types, and allows λ-abstractions in
data structures. Most of these programming features can be seen as simple operational
interpretations of the intuitionistic theory of higher-order hereditary Harrop formula, the
logical foundation for λProlog.

1.1 The Logical Structure of λProlog

Figure 1.1 displays seven logical systems and the containment relationship between them.
Four of these logics are abbreviations.

fohc first-order Horn clauses
fohh first-order hereditary Harrop formulas, extended to fohh+

hohc higher-order Horn clauses
hohh higher-order hereditary Harrop formulas, extended to hohh+

It is the largest of these languages, namely hohh+, that constitutes the logical foundation of
λProlog. As this figure reveals, hohh is an extension to fohc (the logical foundation of Prolog)
along two dimensions. Both of these extensions provide for different notions of abstractions.
The extension from first-order to higher-order (the horizontal dimension) allows for higher-
order variables and quantification: this extension provides for higher-order programming and
λ-abstractions in terms. The extension from Horn clauses to hereditary Harrop formulas
(the vertical dimension) allows for the nesting of implications and universal quantifiers: this
extension allows for modular programming, abstract data types, and hypothetical reasoning.
The systems named fohh+ and hohh+ are extensions of fohh and hohh, respectively, that
allow for more flexible quantification over predicates within queries. The logic Lλ is also
displayed between fohh and hohh. This logic is a natural extension of fohh in which λ-
abstractions are treated in a natural and primitive fashion.

1.2 Organization of this monograph

This monograph is organized into the following parts.
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Figure 1.1: A map of the sublanguages within λProlog

1. Chapters 2, 3, and 4 describe how first-order Horn clauses are represented in λProlog.
Their presentation here differs significantly from the presentation given by Prolog.
In particular, constants and variables are given polymorphic types and programs are
organized into modules that are qualified by signatures. In order to allow for richer
logical expressions and term structures, the syntax of clauses and terms is also en-
riched.

2. Chapter 5 presents fohh and the extension to modular programming that they capture.

3. Chapters 6 and 7 present the simply typed λ-calculus and the Lλ extension of fohh
that permits direct reasoning about such λ-terms. Lλ permits only a limited form of
β-conversion and is implemented with a simple extension to first-order unification.

4. In various chapters (to be included here later), several extended examples of the use
of λProlog in various domains are given.

1.3 Prerequisites

This monograph assumes some familiarity with programming with Prolog as well as an
informal understanding of deduction within logic. The text [SS86], for example, provides
more than an adequate background. In the course of this monograph, we shall have occasion
to speak about the first-order and higher-order versions of classical and intuitionistic logics
as well as the λ-calculus and sequential proof systems. We shall not assume that the reader
is familiar with any of these topics. Our descriptions of these topics will, however, be partial:
we shall deal only with those aspects of these formal systems that support the operational
reading of λProlog specifications and programs. Familiarity with the programming language
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Standard ML [MTH90] would be helpful although is not required: the type system of λProlog
is related to that of ML and both languages permit higher-order programming, modules,
abstract data-types, and polymorphic types.

1.4 Goals of this monograph

Informally describe λProlog. A large part of λProlog is based on a well studied, half-
century old logic and, as a result, the character and semantics of that portion of the language
is well understood. One goal of this monograph is to describe the operational interpretation
of this logical core of λProlog.

The remaining part of λProlog is not based on logical principles, but rather has been
influenced by several factors, such as other attempts to turn a declarative formalism into a
useful programming language (for example, ML and Prolog), by available implementation
techniques, by experience with existing implementations, and by insights form an analysis
of the growing set of examples of λProlog programs. Thus features such as input/output,
control of proof-search, polymorphic typing, and programming-in-the-large, which are not
addressed directly by the logical core of λProlog, namely the intuitionistic theory of hohh,
have had divergent developments in different implementations. A major goal of this mono-
graph is to present a coherent and useful interpretation of these language features.

For various reasons, it seems clear that λProlog is not ready for a formal definition in
the style of those given for Standard ML [MTH90] and Gödel [HL94]. What is contained
here is an informal description of the language.

Provide a description of various subsets of λProlog. The largeness of λProlog is
both an advantage and a disadvantage. Since it incorporates many aspects of computation
with logic, λProlog is a useful tool for learning about these aspects and how they interact.
Largeness will, however, almost certainly make effective analysis and compilation difficult:
for that, subsets of the language will almost certainly need to be explored. Thus, we expose
the logical foundation of λProlog by presenting various subsets of it: many of these subsets
are interesting logic programming languages in their own right.

Provide a significant and self-contained set of examples. Although many examples
of using λProlog have been published in various articles and dissertations, there is no one
place where the full scope of the current language can be seen. λProlog is a big language
containing many features and new programming idioms. Most existing sets of examples
have been designed to focus on certain selected features. A reader of these early papers may
be left with the feeling that the language is fragmented and resulted from gluing various
languages together. The larger set of examples contained here should help show how the
many features of λProlog work together and are aspects of a single logic.

Provide a common documentation for new implementations. Implementors of
interpreters and compilers for λProlog will hopefully be able to use this monograph as a
partial introduction to their individual implementations. This document, however, cannot
be viewed as a description of any particular implementation.
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Introduce the logic behind λProlog. Although λProlog is based on higher-order intu-
itionistic logic, this monograph does not provide a general analysis of this logic. Aspects of
its operational semantics will be described, although its proof theory and declarative seman-
tics will only briefly be described. References to the relevant literature on higher-order logic,
intuitionistic logic, and the proof theoretic analysis of logic programming will be provided
so that the interested reader can study these topics, central to a non-operational reading of
λProlog, in greater detail.

1.5 The brief history of λProlog

In 1984 D. Miller and G. Nadathur worked at designing a higher-order extension of Horn
clauses and at understanding their properties, possible applications, and the design of a
logic programming language based on such clauses. The first paper describing this early
work on λProlog was [MN85]. The theory and applications of higher-order Horn clauses was
developed further in [MN86a, MN86b, Nad87, NM90]. Since the traditional techniques in
the literature of logic programming appeared to be over-specialized for first-order, classical
logic or were lacking in explanatory powers, the theoretical part of this early work relied, to a
large extent, on the sequent calculus. This choice of formalism was fortunate since it helped
isolate some intrinsic and high-level characteristics of logic programming. In particular,
computation in logic programming can be usefully identified with the search for proofs,
in particular, with goal-directed search of cut-free sequent proofs. In a series of papers
[Mil86, Mil87a, MNS87, MNPS91] this characterization was used to develop and justify the
intuitionistic theory of hereditary Harrop formulas as a suitable basis for logic programming.
It is the higher-order version of hereditary Harrop formulas that is now the basis of λProlog
as it is described here. The notion of goal directed search has been used to design extensions
to hereditary Harrop formulas based on linear logic [Gir87]. For example, J. Hodas and D.
Miller have designed Lolli [HM91, HM94, Hod94] to extend hereditary Harrop formulas with
linear implication, and D. Miller has designed Forum [Mil94, Mil96] as an extension of Lolli
to incorporate all of linear logic. These extensions are not incorporated into λProlog.

Along with the development of λProlog’s design and logical foundation, numerous imple-
mentations have been written and planned. Miller and Nadathur collaborated on the Prolog
implementations, LP2.6 and LP2.7, which have been available since 1987: these systems did
not implement the full logic (in particular, implications in the body of clauses were not sup-
ported). The full language was first implemented in eLP, a Common Lisp implementation
by C. Elliott and F. Pfenning, which has been available since 1989. Y. Bekkers, P. Brisset,
and O. Ridoux implemented a compiler, called Prolog/MALI, of the full logic in 1989. The
Common Lisp implementation of eLP has been rewritten by Pfenning using Standard ML:
A. Felty and E. Gunter worked on extending that implementation, and during the 1995/96
academic year, P. Wickline took that system and rebuilt it extensively into a system named
Terzo. The first release of that system as in the spring of 1996. Nadathur and several of his
colleagues have designed an abstract machine for λProlog [KNW93, NJK95, KNW94] and
he is currently building a compiler for the full language.



Chapter 2

Kinds, types, and signatures

Before programs, queries, and data can be used with λProlog, they must be properly quali-
fied by giving them kind, type, or infix declarations. Such declarations are grouped together
into signatures.

2.1 Three styles of declarations

Consider the following specification of the concatenation of two lists in λProlog syntax
(described more fully in Chapter 3):

append nil K K.
append (X::L) K (X::M) :- append L K M.

This specification contains the four variables X, L, K, and M, one logical constant, namely :-
for the converse of implication, and three non-logical constants, namely nil, ::, and append,
denoting the empty list, the list constructor, and the concatenation relation, respectively.
Two of these constants, namely :: and :-, are also used as infix symbols. This specifica-
tion is not meaningful unless infix declarations and type declarations are given for these
constants. In this case, the necessary declarations will be given as the following signature.

type :- o -> o -> o.
type :: A -> list A -> list A.
type nil list A.
type append list A -> list A -> list A -> o.
infixr :: 5.
infixl :- 1.

The various items in this signature must be provided before the above specification for
append is considered complete. All logical constants and system predicates (predicates for
doing special operations such as input and output) have their declarations built into the
runtime system of λProlog so the programmer need not supply them. All other constants
must have their declarations made explicitly by the programmer. Notice, however, that
the above declarations have introduced two new constants not in the orginial specication,
namely o and list. These type constants will need declarations, called kind declarations,
which are described in the next section. The capital letter A also appears in some of the

15
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type declarations above. This token is an example of a type variable, which is described
more in Subsection 2.3.

Some implementations of λProlog supply some form of type inference that simplifies the
specification of type information. Here we assume no particular type inference mechanism
is available for constants, and we shall declare types for them. Variables, such as X, L, K, M
in the specification above are also typed, but since they have limited scope, their types will
be inferred from the context in which they appear.

2.2 Kind declarations

Kind declarations are used to introduce type constructors. A kind declaration starts with
the keyword kind and ends with a fullstop, a period followed by white space.. Following
the kind keyword is a list of one or more tokens (separated by commas) followed with the
kind expression that is to be associated with the given tokens. The tokens in this list, all
of which must start with a lowercase letter, will be declared to have the given kind. The
syntax of a kind expressions is given using the following grammar:

〈kind exp〉 ::= type | type -> 〈kind exp〉.

For example, the following are kind expressions. (Here, -> is an infix symbol that associates
to the right.)

type
type -> type
type -> type -> type
type -> type -> type -> type

The symbols that are declared by such kind declarations are called type constructors.
Examples of kind declarations are

kind o type.
kind int type.
kind real type.
kind string type.

These several lines can be replaced by the one line

kind o, int, real, string type.

These type constructors denote the types for formulas, integers, real numbers, and strings
and are available in implementations of λProlog. The following are also kind declarations.

kind list type -> type.
kind pr type -> type -> type.

Here, list takes a type and returns another type. For example, (list int) is the type of a
list of integers and (list (list string)) is the type of a list of lists of strings. Similarly,
pr takes two types and returns a type: for example, (pr string int) is the type of a pair
with its first component a string and second component an integer. Programmers are free
to introduce new primitive types and type constructors as desired.
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Notice that kind expressions are particularly simple: in particular, it is not possible to
nest -> to the left. Richer kind expressions could be considered for λProlog, but enhancing
them would likely cause enhancements to type and term expressions and produce a language
much different than the one we are considering. Thus, kind expressions only indicate the
arity of a type constructor and, hence, could be replaced with non-negative integers: some
of the above declarations might have been written as int/0, list/1, and pair/2. The
syntax adopted here, however, is more suggestive and is analogous to that used to specify
the type declarations described below.

Type constuctors of arity 0 are also called primitive types.

2.3 Type expressions

Type expressions are constructed from type constructors, type variables, and the function
type constructor. Tokens with an initial upper case letter denote type variables: these are
used to provide for polymorphic typing and ad hoc typing (see Section 3.10.2). We shall
generally need only a few such variables, and these will be written as A, B, C, and D. The
function type constructor, written as → in mathematical notation and as -> in concrete
syntax, is an infix constructor for types and it associates to the right. The expression a
-> b -> c is parsed as a -> (b -> c) and this type expression is different from the type
(a -> b) -> c. In contrast to kind expressions, there is no restriction on the use of the
function type constructor: it is possible to nest -> to the left or right of another ->. The
following is a grammar for type expressions.

〈type exp〉 ::= 〈type variable〉 |
(〈type exp〉 -> 〈type exp〉) |
(〈type constructor of arity n〉 〈type exp〉1 . . . 〈type exp〉n) (n ≥ 0)

Type variables are not allowed to have types as arguments: that is, they are treated as if
they have a kind declaration of type (an arity of 0).

Given the kind declarations in the previous subsection, the following are all legal type
expressions.

int -> real -> string
int -> int -> o
o -> int -> o
(int -> int) -> real
list A -> (A -> B) -> list B -> o
list (list A) -> list A -> o
(A -> B) -> list (A -> B)
((A -> B) -> A) -> A

We assume that the function type constructor -> binds with the lowest priority: thus, the
expression list A -> B is to be read as (list A) -> B.

Every type expression τ can be written in the form

τ1 → · · · → τn → τ0 (n ≥ 0)

where τ0 does not have a top-level function type constructor. In this case, we say that τ0 is
the target type of τ and the types τ1, . . . , τn are the argument types of τ . A type expression
is a functional type if it is of the form τ → σ; otherwise it is non-functional type.
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The order of a type expression is defined by recursion on the structure of the expression:
the order of a non-functional type expressions is 0 and the order of a functional type is one
greater than the maximum of the order of its argument types. Thus, if ord(τ) denotes the
order of type expression τ then the following two equations define ord.

ord(τ) = 0 provided τ is non-functional
ord(τ1 → τ2) = max(ord(τ1) + 1, ord(τ2))

Order counts the number of times the function type constructor is nested to the left. Below
are some examples of the order of types.

0 int, A, (list (int -> int)), (pair int A)

1 int -> int, string -> list (pair string int) -> o

int -> string -> o, int -> string -> A

2 (string -> string) -> string, int -> (int -> o) -> o

(int -> int) -> (int -> o) -> int

The order of a type expression may not be invariant under type variable substitution:
the order of a type containing type variables may increase under type variable substitution.
For example, while the order of the type A -> list A -> o is one, substituting A with a
type expression of order n results in a type expression of order n + 1.

Notice that if the definition of order is applied to kind expressions, all kind expressions
would have order either 0 or 1.

2.4 Type declarations

A type declaration starts with the keyword type and ends with a fullstop. Following the
type keyword is a list of one or more tokens (separated by commas) followed with the type
expression that is to be associated with the given tokens. The tokens in this list, all of which
must start with a lowercase letter, will be declared to have the given type. Thus the syntax
of a type declaration is similar to that of a kind declaration.

Consider the following kind and type declarations for pairs and lists.

kind list type -> type.
type :: A -> list A -> list A.
type nil list A.
kind pair type -> type -> type.
type pr A -> B -> pair A B.

The first line declares that list is a type constructor of one argument. The two constructors
for lists are given by the next two type declarations. The non-empty list constructor is
written as the symbol :: and the empty list is given by nil. The last two lines declare pair
to be a type constructor for pairs and pr as the constructor for pairs.

Type variables in type declaratiosn are intended to be quantified universally with a
quantifier around the type declaration. Thus, the type declaration for nil above asserts
that “for every type A, the constant nil is of type (list A).” Thus, nil is considered to
have an infinite number of different typings.
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2.5 Infix declarations

The keywords infixl and infixr are used to declare a token as a constant that is to
be parsed as an infix symbol that associates to either the left or right, respectively. The
syntax of infix declarations is similar to that for kind and type declarations. They begin
with either the infixr or infixl keyword, which are followed by a list of tokens, and
these are followed by a single integer of value between 0 and 9, inclusively. This integer is
called an infix priority and is used to disambiguate the parsing of numerous infix symbols
given in a series: the larger the priority the tighter the symbol binds. (The possibility to
use 10 numbers for priorities is generally seen to be sufficient: various other programming
languages use a similar range). For example, the declaration for :: is given as

infixr :: 5.

A token declared to be infix must also be declared with a type of the form τ1 → τ2 → τ0,
where τ0 is some type. For example, let compose have the following declarations:

type compose (A -> B) -> (B -> C) -> A -> C.
infixr compose 6.

(Here, compose has the type of function composition.) Then the expression (f compose g) x
should parse correctly (provided that f, g, and x have the appropriate types) and yields
the expression that would be displayed as (compose f g x) if the infix declaration were
not enforced. (The syntax of terms will be described in Section 3.1 and further extended in
Chapter 6.)

Since constants can be given both type and infix declarations, the interaction between
these declarations needs to be examined. Consider the following set of kind and type dec-
larations.

kind number type.
type a,b,c number.
type plus number -> number -> number.
type less number -> number -> o.

If less is to be declared to be infix, then either infixr or infixl declarations can be given,
since it is not possible to have less be nested in a properly typed expression. Also, assume
that both less and plus are infix and that we wish expressions of the form “a less b
plus c” to parse as a less (b plus c). While this is the only bracketing that will type
check (that is, (a less b) plus c is type incorrect), the infix declarations must be given
so that the priority of plus is higher than that for less. For example, the following infix
declarations will cause the string above to be parsed as intended.

infixr plus 6.
infixr less 5.

When λProlog code is parsed, infix declarations are used in a phase that occurs prior to the
use of type declarations.

2.6 Signatures

A signature is an ordered list of kind, type, and infix declarations for which the following
restrictions apply.
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1. If a token is given a kind declaration in this list, that declaration must appear prior
to any use of it in a type declaration.

2. If a token is given an infix declaration, that token must also be given either a kind or
a type declaration.

3. A token cannot be given two kind declarations, two type declarations, two infix dec-
larations, or a kind and a type declaration. If a token is given two declarations, they
must be either a type and infix declaration or a kind and infix declaration.

Two signatures are equal if they give the same set of tokens exactly the same set of
declarations. For this comparison, we identify two type expressions if they differ only up to
renaming of type variables. As we shall see in Chapter 4, signatures are contained within
modules and are used to qualify modules much as kinds qualify types and types qualify
terms. Signatures also play an important role in the runtime environment of a computation
(see, for example, Section 3.3).

In summary, every item in a signature is declared with (at least) one of the following
keywords: infixl, infixr, type, and kind. The keyword type is also allowed in kind
expressions, and the arrow -> is allowed in both kind and type expressions.

In subsequent chapters, the captial Greek letter Σ is used to range over signatures.

2.7 First-order types and signatures

While λProlog is a higher-order language, it has sublanguages that are first-order (see the
map in Section 1.1). Chapter 3 through Chapter 5 will, in fact, only deal with these
sublanguages. The first-order sublanguages are based on the notion of first-order signature,
which is, in turn, based on the notion of first-order type. The latter is not simply a type
that is of order 0 or 1, since that would allow types such as o -> o (the type of a predicate
over formulas) and list (int -> int) (the type of a list of functions): such types are
seldom considered to be first-order although their order is 0 or 1. Thus, a first-order type
is defined as a type of order 0 or 1 such that the argument and target types do not contain
occurrences of -> and if the type contains an occurrence of o, that occurrence is the target
type. A first-order signature is a signature such that all the types given in its declarations
are first-order types.

Let symbol c be given a type τ in a first-order signature. If the target type of τ is o,
then c is a first-order predicate symbol; otherwise, c is a first-order function symbol. If c is a
first-order function symbol that is not functional, then we can also say that c is a first-order
individual symbol.

These three classes can be described more directly as follows. Let τi range over first-order
individual types, let τp range over first-order predicate types, and τf range over first-order
function types. These three syntactic variables can be related using the following two
grammar rules.

τf ::= τi | τi → τf τp ::= o | τi → τp

Notice that in these two classes of types, there is never an occurrence of → that appears to
the left of an →: nesting of → occurs only to the right. Higher-order languages will allow
→ to be nested to the left of another →.

The types of predicates are given using the function type constructor: that is, a predicate
can be seen as a function that maps its arguments into formulas. This treatment of predicates
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is similar to the use of characteristic functions to denote sets. For more on the nature of
types in λProlog, see Subsection 3.10.

The following is a first-order signature.

kind i type.
type a, b i.
type f i -> i.
type g i -> i -> i.
type r o.
type p i -> o.
type q i -> i -> o.

Here, the type i is introduced, as well as two first-order individuals, a and b, two first-order
functions f and g of arities 1 and 2, respectively, and three first-order predicates r, p, and
q of arities 0, 1, and 2, respectively. (The symbols a and b can also be considered first-
order function symbols.) The following signature, which contains type variables in its type
expressions, is also first-order.

type append list A -> list A -> list A -> o.
type member A -> list A -> o.

Notice that argument types may be type variables.
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Chapter 3

First-order Horn clauses

While λProlog is based on a higher-order logic, it is natural and desirable to start a descrip-
tion of λProlog by considering a first-order logic that lies within λProlog. After presenting
that sublogic, we describe first-order Horn clauses (fohc) also in this chapter and first-order
hereditary Harrop formulas (fohh) in the next chapter.

3.1 First-order terms

λProlog comes with certain built-in data structures, such as those for integers, real numbers,
and strings (see Section 4.4). In order to build other kinds of data structures, such as lists
and trees, terms are used. First-order terms are particularly simple structures and can be
used for representing a wide variety of data structures.

The term structure of λProlog is actually richer than that of first-order terms. In partic-
ular, the language allows λ-terms and these generalize first-order terms by allowing bound
variables within data structures. The topic of λ-terms will be left, however, until Chapter 6.
One consequence of the use of λ-terms is that λProlog makes use of curried syntax: expres-
sions of functional type are applied to one argument and, if the resulting expression is of
functional type, can be applied to a second argument, and so on. A functional expression of
type a -> b -> c can be applied to an argument of type a yielding a result of type b -> c.
This latter expression can now be applied to an argument of type b to yield an expression
of type c. An uncurried syntax convention, which is used in Prolog, for example, applies
the functional or predicate expression to both arguments simultaneously. For example, in
Prolog, if f is a function of two arguments, a term that involves f must have f applied to two
arguments, as in the expression f(t,s). In λProlog, it is possible to form the expressions
(f t) and ((f t) s): since application associates to the left, this last expression can be
written more simply as (f t s).

The following signature can be used to represent binary trees in which leaves are labelled
with integers.

kind btree type.
type root int -> btree.
type bt btree -> btree -> btree.

Here, btree is a type constructor, and the symbols root and bt are used to build terms of
type btree. The following are terms of type (bt int).

23
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root 5
bt (root 4) (root 5)
bt (bt (root 4) (root 5)) (root 3)

It is also possible to form term (bt (root 4)) of type btree -> btree. The flexiblity
that such “partial application” allows will become apparent starting in Chapter 6. Since
this latter expression is not considered a part of first-order logic, we shall not be concerned
with it now.

Lists can be encoded as terms by introducing the following declarations. Consider the
following signature regarding lists.

kind list type -> type.
type nil list A.
type ’::’ A -> list A -> list A.
infixr ’::’ 5.

Here, list is a type constructor: that is, it can be used to take a type, for example, int
(for integers) or string (for strings), and produce another type, for example, (list int)
(for lists of integers) or (list string) (for list of strings). The symbol nil will be used to
denote the empty list while the list constructor :: (pronounced “cons”) is the constructor
that places an element on the front of a list. The following are examples of terms of type
(list int).

nil
1 :: nil
1 :: 4 :: 9 :: 25 :: nil

Notice that since :: is declared to be an infix symbol that associates to the right, the last
list can be fully parenthesized as

(1 :: (4 :: (9 :: (25 :: nil))))

The following are examples of lists of lists of integers.

nil
(1 :: nil) :: nil
(1 :: nil) :: (1 :: 2 :: nil) :: nil

Since lists are frequently used structures, implementations of λProlog generally contain these
declarations already built into them.

We now provide a more formal definition of typed terms by introducing the following
definitions.

In order to capture the instantiation of type variables within type expressions, we first
introduce the following binary relation on type expressions. If τ is the result of substituting
some variables in σ with type expressions, then we write τ / σ. Notice that / is reflective
and transitive, and if both τ / σ and σ / τ hold, then σ and τ are equal up to changes in
the names of type variables. It is possible that τ / σ holds for two types, and that σ is a
first-order type and τ is not. To avoid this possibility, we denote by /f the binary relation
that is the restriction of / relation to first-order type expressions.

The typing judgment Σ; Γ `̀f t: τ is used to judge that t is a first-order term of type τ
with respect to signatures Σ and Γ. The signature Σ is used to hold the declarations for
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c: σ ∈ Σ0 τ /f σ

Σ;Γ `̀f c: τ
c: σ ∈ Σ τ /f σ

Σ;Γ `̀f c: τ
c: τ ∈ Γ

Σ; Γ `̀f c: τ

Σ;Γ `̀f g: τ1 → τ2 Σ; Γ `̀f t: τ1

Σ; Γ `̀f (g t): τ2

Figure 3.1: Rules for defining typed first-order terms.

constants while the signature Γis used to hold the types of bound variables (which we will
encounter in the next section). This relation is defined using the rules in Figure 3.1. The
subscript on both `̀f and /f indicates that they are restricted to first-order terms and types.
Later we will give versions of these relations that are not so restricted. Notice that the
difference between Σ and Γ in these rules is that the types variables in types from Σ can
be instantiated while type variables in types from Γ can not be instantiated. When using
this judgment, we shall alway assume that no symbol is given a declaration in both of Σ
and Γ. Also notice the reference to the signature Σ0 in the first rule in Figure 3.1: this is
the “ambient” signature in which all builtin constants of the λProlog interpreter have been
placed. This signature will be revealed as we proceed. For now, we shall assume that it
contains declarations for all integers, reals, and string.

Let τ be a first-order type of order 0. The expression t is a first-order Σ-term of
type τ if Σ; `̀f t: τ is provable (here, Γ is empty so we elide it). For example, let Σ
be a signature containing the three declarations above for binary trees. To show that
(bt (root 4) (root 5)) is a first-order Σ-term of type btree, we can proceed as fol-
lows. First notice that Σ; `̀f 4: int holds since 4 is given type int in Σ0 (since Σ0 con-
tains all builtin constants) and /f is reflexive. Similarly, we know Σ; `̀f 5: int. Next,
Σ; `̀f bt: int -> btree -> btree since bt is given type int -> btree -> btree in Σ and
/f is reflexive. Given these, we can then conclude that Σ; `̀f bt (root 4): btree -> btree
and, finally, Σ; `̀f bt (root 4) (root 5): btree.

Notice that if Σ was assumed to have the declarations for lists above, the establishing
that (1 :: nil) would require showing that the type (list int) is related by /f to the
type (list A), which is the type declared for nil. (A similar step is required for the ::
constructor.)

Typing is used in a wide variety of situations in logic and programming languages. See
[?, Pfe92] for some additional references to uses of types and typing judgments.

3.2 First-order formulas

The logic underlying λProlog is based on six logical connectives, which, when written using
a mathematical notion, are > (truth), ∧ (conjunction), ∨ (disjunction), ⊃ (implication),
∃τ (existential quantification over type τ), and ∀τ (universal quantification over type τ).
In the concrete syntax of λProlog, these are written as follows. The constant > is written
as true. The two infix symbols , and & both denote conjunction: while they denote the
same connective and can be used interchangeably, a convention we adopt later (Section 3.5)
suggests using them in different situations. The infix symbol => denotes implication while
the infix symbol :- is the converse of implication or “implied-by.” Since they are both
converses of each other, we need only one of these connectives; but as for conjunction, we
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adopt later a convention that suggests using them in different situations. The infix semicolon
; is used to denote disjunction.

In λProlog, both universal and existential quantification range over explicit domains,
which are specified by a type: ∀τx and ∃τx denote universal and existential quantification
over type τ . The concrete syntax for these quantifiers is written as pi x\ and sigma x\,
respectively, where the concrete syntax of the bound variable x is written as x. Notice that
in the concrete syntax the type of x is not written: the syntax of λProlog is such that it is
possible for this type to be inferred from context.

In Section 3.1, we defined terms by introducing the judgment Σ; Γ `̀f t: τ . To define
formulas, we could introduce a new judgment, but if we use type information appropriately
(and extend this typing judgment to handle the bound variables of quantified expressions),
we can reuse the judgment for terms for defining formulas. In particular, if we reserve
the type o for formulas (as was suggested in Section 2.2), then we can use the judgment
Σ; Γ `̀f t: o to define t as a first-order formula. In particular, λProlog uses the signature in
Figure 3.2 to declare the types of the logical constants. We shall assume that the ambient
signature Σ0 introduced in the previous section contains these declarations. The signature
in Figure 3.2 is not a first-order signature (see Section 2.7). In particular the types of pi
and sigma are of order 2 and the other symbols have occurrences of o outside of their target
types.

Since predicate symbols have o as their target type (see Section 2.7), they can be used
to build atomic formulas: these are formulas of the form p t1 · · · tn, where n ≥ 0, p is a
first-order predicate of type τ1 → · · · → τn → o, and for each i = 1, . . . , n, ti is a term of
type τi. With the following declaration of three predicates

type memb A -> list A -> o.
type append, join list A -> list A -> list A -> o.

and the declarations for logical connectives in Figure 3.2, the following can all be judged to
be first-order formulas.

append (1 :: nil) (2 :: nil) (1 :: 2 :: nil)
join (2 :: 5 :: nil) (1 :: 4 :: 9 :: 25 :: nil) (2 :: 4 :: nil)
memb 1 (2 :: nil) => memb 2 (2 :: nil)
(append nil nil nil ; memb 1 (2 :: nil)), join nil nil (3 :: nil)

The first two of these formulas are atomic formulas.
Quantified expressions introduce the notion of bound variable: this is represented in the

concrete syntax using a backslash. (In Chapter 6 we shall see that the backslash is actually
λ-abstraction.) When reading an expression containing such a backslash symbol, the body
of the quantified expression is the expression as far to the right as is possible (given the
presence of other parentheses and the end of the expression). For example, the expression,

pi x\ pi z\ join x z x => sigma y\ join x y z, pi x\ join y z x

will be parsed as the following expression.

(pi x\ (pi z\ (join x z x => (sigma y\ (join x y z, pi x\ (join y z x))))))

(All the bound variables in this expression will have the type (list A).) Such a convention
is useful when a series of binders is necessary. For example, the formula
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kind o type.

type true o.

type ’&’, ’,’, ’:-’, ’;’, ’=>’ o -> o -> o.

type pi, sigma (A -> o) -> o.

infixl ’:-’ 0.

infixl ’;’ 1.

infixr ’,’ 2.

infixr ’&’ 3.

infixr ’=>’ 4.

Figure 3.2: Declarations for the logical constants.

pi x\ pi y\ pi z\ join x y z

denotes the universal closure of the atomic formula join x y z. The following are some
more examples of formulas containing quantification.

pi x\ pi k\ memb x (x :: k)
pi X\ pi L\ pi K \ pi M\ append (X::L) K (X::M) :- append L K M
sigma X\ pi y\ sigma h\ append X y h

The lexical notion of bound variable scope used in λProlog is the usual one taken from
logic or form most programming languages. The scope of bound variable is the expression
that follows the backslash. An important aspect of this scoping is that the name of the
bound variable is not as important as its pattern of binding. In particular, the names of
bound variables can be changed systematically without affecting the meaning of a quantified
formula. For example, all the following formulas are related to each other by renaming of
bound variables.

pi x\ (p x) => sigma y\ (q x y, pi x\ (q y x))
pi x\ (p x) => sigma U\ (q x U, pi x\ (q U x))
pi z\ (p z) => sigma y\ (q z y, pi x\ (q y x))
pi z\ (p z) => sigma y\ (q z y, pi v\ (q y v))

We say that these formulas are related by α-conversion (described in more detail in Chap-
ter 6).

Given the types used to declare logical constants, first-order formulas can be defined
using the type judgement Σ; Γ `̀f t: τ if we add the additional rules displayed in Figure 3.3
to those in Figure 3.1. Notice that the Γ signature now plays the role of holding the type of
bound variables. When Σ be is signature, we shall say that B is a Σ-formula if Σ; `̀f B: o
(here, the Γ-signature is empty). Similary, we shall say that t is a Σ-term of type τ if
Σ; `̀f t: τ . Clearly, a Σ-term of type o is also a Σ-formula.

3.3 Programs, goals, and proof search

In order to specify computation in λProlog, a programmer will first specify a signature, say
Σ, that contains kind, type, and infix declarations for the non-logical constants used for
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Σ;Γ, x: τ `̀f B: o
Σ;Γ `̀f ∀τx B: o

Σ;Γ, x: τ `̀f B: o
Σ;Γ `̀f ∃τx B: o

provide that x is not declared as a type or kind in Σ0, Σ, or Γ.

Σ; Γ `̀f B: τ
Σ;Γ `̀f C: τ

provided B and C differ only in the names of bound variables.

Figure 3.3: Additional rules for dealing with quantifiers.

specifying a computation. These constants are then used to build a formulas. Formulas are
used in two roles. A logic program is a collection of formulas that specifies, at least partially,
the meaning of the constants in Σ. We can view formulas in logic programs as givens that
describe the meaning of the non-logical constants they use. When constructing proofs, we
reason from these formulas. A query or goal is a formula that serves as a question to ask of a
logic program: we reason to goals and use them to explore consequences of the specifications
given by programs.

Computation is then the process of attempting to prove that a given goal follows from
a given logic program. If this attempt is unsuccessful, the result of the computation is
simply an indication that there was such a failure. If the attempt is successful, the resulting
proof could be returned: however, since proofs in this setting are essentially traces of entire
computations, an extraction from this proof is returned instead. This extract is a substition
for certain of the variables found in the goal formula. This answer substitution is describe
more below.

Since computation is the search for a proof, we need to examine this notion more. To
this end, we can view an idealized interpreter for λProlog as having three components: a
signature Σ, a set of Σ-formulas P denoting a program, and a Σ-formula G denoting the
goal we wish to prove from P. We use the sequent notation Σ;P −→ G to denote the state
of this idealized interpreter: read this notation for now as simply a triple containing the
key elements of the interpreter’s state. If the program component is empty, we write simply
Σ;−→ G. We shall also consider just the pair 〈σ,P〉 and refer to this as a signature-program
pair: these supply the context for goals. For more detailed information about organizing
logical proofs using sequents, see [Gen69, Gal86, Mil90].

If the interpreter has state Σ;P −→ G, then how should a proof that G follows from P
be attempted? In general, logical derivation is complex and intricate, and to navigate to
a successful proof can demand cleverness and invention. A common technique in proving
mathematical theorems, for example, is the invention of a sequence of lemmas that breaks a
proof into small pieces. While attempting to automate the selection of lemmas is certainly
an interest problem, it would seem to fall outside the domain of programming language
executing, even in a high-level programming language like λProlog. Given results in the
theory of proofs, particularly the result known as cut-elimination [Gen69], it is always
possible, in principle, to search for proofs without looking for lemma: instead, only the
formulas in the current state of the interpreter (in P and G) need to be examined and
manipuated. Focusing on proofs that do not involve any use of lemma means that we
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are not really thinking of provability in the mathematical sense (since proofs of non-trivial
mathematical theorems involve numerous uses of lemmas) but in a simple computational
sense: λProlog will not attempt to proof theorems in point-set topology but will attempt
more modest goals such as sorting and merging lists using logic. This focus affords a great
deal of simplication in the search for proof, but even then, there is still a great deal of
richness attempting proofs. We now argue that we should make additional restrictions on
the kind of the search we will allow for proofs.

The principal restriction that we shall make in restricting the search for proofs is that
that search should be goal-directed: that is, if the goal formula has a logical connective as
its toplevel symbol, then the proof should be attempted by reducing that logical connective
in a specific fashion. The particular rule depends on the logical connective. (The notion
of goal-directed search can be formalized in the sequent calculus using the technical notion
of uniform proofs[MNPS91].) In particular, we shall have the following reduction strategies
for sequents.

AND Reduce Σ;P −→ B1 ∧B2 to the two sequents Σ;P −→ G1 and Σ;P −→ B2. Proofs
of both sequents must now be attempted.

OR Reduce Σ;P −→ B1 ∨ B2 to either Σ;P −→ B1 or Σ;P −→ B2. A proof on only one
of these needs will be sufficient.

INSTAN Reduce Σ;P −→ ∃τx.B to Σ;P −→ B[t/x], for some Σ-term t of type τ .

AUGMENT Reduce Σ;P −→ B1 ⊃ B2 to Σ;P ∪ {B1} −→ B2.

GENERIC Reduce Σ;P −→ ∀τx.B to {c : τ} ∪ Σ;P −→ B[c/x], where c is a token that
is not in the current signature Σ. We shall often refer to c as a “new constant”.

TRUE The sequent Σ;P −→ > is provable immediately and does not need to be reduced
further.

These reduction rules are goal-directed and do not consider either the signature or the
logic program. Thus logical connectives get reflected into the search for proofs in a fixed
fashion that cannot be modified by a program. For example, the connectives ∧ and ∨
are always mapped into AND and OR search steps. Logic programs are responsible for
determining the meaning of only the non-logical constants that are used to build atomic
formulas.

If these reduction rules are reversed, the result can be seen as inference rules of logic.
For example, if the sequent Σ;P −→ B[t/x] can be proved for some Σ-term t of type
τ , then we have a justification for the sequent Σ;P −→ ∃τx.B. Figure 3.4 displays the
inference rules corresponding to these reduction rules. These inference rules are also called
right-introduction rules since below the horizonal line there is an occurrence of a logical
connective on the right of the sequent arrow that does not occur above the line.

Since we are attempting to justify the design of a logic programming language, it is
natural to ask to what extent are these inference rules related to logic. There are also
choices to be made regarding which logic we should be considering. For now, we shall
assume that the reader is familar what is sometimes called classical logic: that is, the logic
used in informal mathematical arguments (also in the treatment of elementary syllogism
and in boolean circuits).
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Σ;P −→ > >R
Σ;P −→ B1 Σ;P −→ B2

Σ;P −→ B1 ∧B2
∧R

Σ;P −→ B1

Σ;P −→ B1 ∨B2
∨R

Σ;P −→ B2

Σ;P −→ B1 ∨B2
∨R

Σ;P ∪ {B1} −→ B2

Σ;P −→ B1 ⊃ B2
⊃R

Σ;P −→ B[t/x] Σ; `̀f t: τ
Σ;P −→ ∃τx.B

∃R {c : τ} ∪ Σ;P −→ B[c/x]
Σ;P −→ ∀τx.B

∀R

Figure 3.4: Right-introduction rules. The rule for universal quantification has the proviso
that c is not declared in Σ.

It is easy to see that each of these inference rules is sound: that is, if the premise sequents
(the sequents above the horizontal line in the inference rule) are true (in, say classical logic),
then the original sequent is true. Soundness can be established without knowing the exact
nature of signatures and programs.

The converse property, that of logical completeness of these rules, can be phrased as
follows: if a sequent with a non-atomic goal is true, are the sequents that it reduces to also
true? Achieving completeness is more involved and, in fact, dominates the design of the logic
programming languages we considered here. To see that these reductions are not generally
complete, consider the following examples. Here, let signature Σ contain the declarations
{p : o, q : o, r : i → o, a : i, b : i} (and the kind declaration for i).

1. The OR rule reduces the sequent Σ; p ∨ q −→ q ∨ p to either Σ; p ∨ q −→ q or
Σ; p ∨ q −→ p. Neither of these sequents is true while the original sequent is true.

2. The OR rule reduces the sequent Σ;−→ p∨ (p ⊃ q) to either Σ;−→ p or Σ;−→ p ⊃ q.
The first sequent is not provable and the second sequent would reduce to Σ; p −→ q,
which is also not provable. It is easy to see, however, that p ∨ (p ⊃ q) is a classical
logic tautology: if p is true, then the disjunction p ∨ (p ⊃ q) is true and if p is false,
then p ⊃ q is true and again the disjunction is true.

3. The INSTAN rule reduces the sequent

Σ; (ra ∧ rb) ⊃ q −→ ∃ix(r x ⊃ q)

to the sequent Σ; (r a ∧ r b) ⊃ q −→ r t ⊃ q, where t is a Σ-term of type i. But there
is not such term which makes this sequent provable. For example, if we used a for t,
we would have the sequent

Σ; (ra ∧ rb) ⊃ q, r a −→ q

and this is no longer represents a true statement. To see that the original sequent is
true classically, we know that r a is either true or false. If it is false, then ∃ix(r x ⊃ q)
is true (by picking a for x). If r a is true, then (ra ∧ rb) ⊃ q is equivalence to rb ⊃ q,
so once again we have shown ∃ix(r x ⊃ q).
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To achieve completeness for our logic programming languages, we shall need to either
restrict the formulas allowed to be programs and goals (so as to avoid these counterexamples)
or change our logic to be different from classical logic. In fact, we shall need to take both
of these steps to formally justify the completeness of the logical basis of λProlog. As the
first example illustrates, it seems likely that we will need to avoid having disjunctions in our
programs. In fact, the formulas we eventually allow in programs will also be called definite
formulas since they do not contain the indefinite information supplied by disjunctions. The
last two examples illustrate that this step will not be enough since classical logic itself has
built into it a kind of indefinite assumption, called the excluded middle: for every formula
B, classical logic makes the formula B ∨ ¬B true. Thus, we shall also need to move to
intuitionistic logic, a logic weaker than classical logic where the excluded middle does not
hold.

For the rest of this chapter, however, we shall consider a restriction of programs and
goals for which both classical and intuitionistic logics are complete. This restriction will be
based on first-order Horn clauses (fohc), the logical foundations of the Prolog language. In
Chapter 5 we shall extend the syntax of programs and goals to obtain a more expressive
language: the extended language will no longer be complete for classical logic. We shall
then rely on intuitionistic logic to supply us our logical foundations.

The discussion about proof search in this section is quite idealized in at least two senses.
First, the reduction rule INSTAN requires that a term be used to instantiate a existentially
quantified goal. Exactly what this term should be can be hard to determine, and finding
just such a term is generally considered the result of an entire computation. Second, the
eventual interpreter we describe for λProlog will be incomplete in practice. The λProlog
interpreter uses a rather simple strategy for finding proofs: although goal-directed search
will be complete with respect to intuitionistic logic for the logic underlying λProlog, its
interpreter uses a simple and inflexible search procedure. For now our interests have been
the design of a logic that can be used to provide a foundation for a logic programming
language. There might be many implementations of that design: in Section 3.9, we present
more information about how proof search is implemented in λProlog.

3.4 The syntax of first-order Horn clauses

There are several, roughly equivalent ways to describe first-order Horn clauses (fohc for
short). We present three here. In making these definitons, we make use of three syntactic
variables: A denotes atomic formulas, G denotes goal formulas, and D denotes program
formulas (also called definite formulas). Programs formulas are also called clauses.

A common definition of Horn clauses (see, for example, [AvE82]) is given using the
following grammar.

G ::= A | G ∧G

D ::= A | G ⊃ A | ∀τx D. (3.1)

(Here and in the rest of this chapter, we assume that the type τ is of order 0.) That is, goal
formulas are conjunctions of atomic formulas and program clauses are of the form

∀τ1x1 . . . ∀τ1xm[A1 ∧ . . . ∧An ⊃ A0]

for m,n ≥ 0. (If m = 0 then we do not write any universal quantifiers, and if n = 0 then
we do not write the implication.)
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A richer formulation is given by the following definition.

G ::= > | A | G ∧G | G ∨G | ∃τx G

D ::= A | G ⊃ D | D ∧D | ∀τx D. (3.2)

Here, the connectives >, ∨, and ∃ are permitted in goals and ∧ and ∀ can be mixed in
definite formulas. Also, the “head” of a definite clause does not need to be immediately
present at the top-level of a clause: it might be buried to the right of implications and
conjunctions and under universal quantifiers.

A compact presentation of Horn clauses can be given simply as

G ::= A

D ::= A | A ⊃ D | ∀τx D. (3.3)

Notice that in this definition, definite clauses are composed only of implications and universal
quantifiers where the nesting of implications and universal quantifiers is allowed only in the
conclusion of an implication and not in a premise.

It is the D-formulas that are considered Horn clauses. A Horn clause program is then a
finite set of closed D-formulas. The symbol P will often be used as a syntactic variable to
denote programs.

These three ways of defining program clauses give rise to programming languages of the
same expressive power: that is, if a program clause in one definitions is classically equivalent
(also intuitionistically equivalence) to a conjunction of program clauses in another definition.
This is easily shown by using suitable applications of the following classical equivalences.

∀x(B1 ∧B2) ≡ (∀x B1) ∧ (∀x B2)
B1 ⊃ (B2 ⊃ B3) ≡ (B1 ∧B2) ⊃ B3

B1 ∧ (B2 ∨B3) ≡ (B1 ∧B2) ∨ (B1 ∧B3)
B1 ∨ (B2 ∧B3) ≡ (B1 ∨B2) ∧ (B1 ∨B3)
(B1 ∨B2) ⊃ B3 ≡ (B1 ⊃ B3) ∧ (B2 ⊃ B3)
B1 ⊃ (B2 ∧B3) ≡ (B1 ⊃ B2) ∧ (B1 ⊃ B3)

B1 ⊃ (∀x B2) ≡ ∀x (B1 ⊃ B2)
(∃x B2) ⊃ B1 ≡ ∀x (B2 ⊃ B1)

In the last two equivalences, x is not free in B1. Since we shall have occasions to use all
eight of these equivalences again when we will be concerned with intuitionistic logic, it is
important to note that all of these equivalences hold in that logic also.

If we take the size of a program to be the number of occurrences of logical connectives
it contains, equivalent programs using (3.2) are generally smaller than those using (3.1) or
(3.3). For example, a Horn clause of the form G ⊃ (D1 ∧D2) is logically equivalent to the
formula (G ⊃ D1)∧ (G ⊃ D2), but since G is duplicated, this second formula could be much
larger than the first. Thus, removing conjunctions from the right of an implication in this
way can cause the size of the formula to grow exponentially. For another example, consider
the following propositional Horn clause given using (3.2):

((p ∨ r) ∧ (q ∨ t)) ⊃ s.
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If some of the equivalences above are used (most notably the distributivity of conjunction
over disjunction), this formula is equivalent to the conjunction of the following clauses given
using (3.1):

(p ∧ q) ⊃ s (r ∧ q) ⊃ s (p ∧ t) ⊃ s (r ∧ t) ⊃ s

The conjunction of these formulas can be much larger than the original formula since it
contains two occurrences each of p, r, q, and t, and each of these could be replaced with
large formulas. This doubling of subformulas can lead to a exponential growth in the size
of formulas. If new predicate constants are allowed, disjunctions can be replaced by new
propositional constants. For example, if the propositional constants pr and qt are introduced
to denote the disjunctions p ∨ r and q ∨ t, then the original clause can be written as

p ⊃ pr r ⊃ pr q ⊃ qt t ⊃ qt (pr ∧ qt) ⊃ s.

Replacing disjunctions in this fashion can cause at most a linear (in the number of disjunc-
tions) growth in the size of formulas. Since we have introduced new constants, the original
formula is not logically equivalent to the resulting formula. The following statement about
their relationship, however, can be made. Let D1 denote the original Horn clause and Let
Σ1 be a signature containing {p : o, q : o, r : o, s : o, t : o} and not containing declarations
for pr and qt: Let Σ2 be the result of adding {pr : o, qt : o} to Σ1. Then the sequent
Σ1;P ∪ {D1} −→ G is provable if and only Σ2;P ∪ {D2} −→ G is provable. If we are only
concerned with provability, this latter transformation on such clauses is acceptable. We
shall return to this transformation again after we introduce higher-order Horn clauses.

We shall usually assume that first-order Horn clauses are based on the richest of these
three definitions, namely (3.2).

3.5 Polarity and clausal order

In order to describe the structure of logical formulas, we use the notions of positive subfor-
mula occurrences and negative subformula occurrences.

If a subformula C of B occurs to the left of an even number of occurrences of implications
in a B, then C is a positive subformula occurrence of B. On the other hand, if a subformula
C occurs to the left of an odd number of occurrences of implication in a formula B, then C
is a negative subformula occurrence of B. More formally:

• B is a positive subformula occurrence of B.

• If C is a positive subformula occurrence of B then C is a positive subformula occurrence
in B ∧ B′, B′ ∧ B′, B ∨ B′, B ∨ B′, B′ ∧ B, B′ ⊃ B, ∀τx.B, and ∃τx.B; C is also a
negative subformula occurrence in B ⊃ B′.

• If C is a negative subformula occurrence of B then C is a negative subformula occur-
rence in B ∧ B′, B′ ∧ B′, B ∨ B′, B ∨ B′, B′ ∧ B, B′ ⊃ B, ∀τx.B, and ∃τx.B; C is
also a positive subformula occurrence in B ⊃ B′.

In all of the various subsystems of λProlog, the following invariance will always hold:
positive subformulas of G-formulas are G-formulas and negative subformulas of G-formulas
are D-formulas. Dualy, positive subformulas of D-formulas are D-formulas and negative
subformulas of D-formulas are G-formulas.
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Using any of the definitions for Horn clauses, we see also that a G-formula has no negative
subformulas.

Analogous to types, formulas can be given orders. We define clausal order using the
following recursion on first-order formulas.

clausal(A) = 0 provided A is atomic or >
clausal(B1 ∧B2) = max(clausal(B1), clausal(B2))
clausal(B1 ∨B2) = max(clausal(B1), clausal(B2))
clausal(B1 ⊃ B2) = max(clausal(B1) + 1, clausal(B2))

clausal(∀x.B) = clausal(B)
clausal(∃x.B) = clausal(B)

Notice that in all three variations, first-order Horn clauses have clausal order of either 0 or
1, and goal formulas have clausal order 0.

There are several different notions of order in the literature. Here we use order to simply
count the number of occurrences of function type constructor to the left of a function type
constructor, or the number of occurrences of an implication to the left of an implication.
For more about these other senses of order, see Section 6.5.1.

3.6 Proof search with first-order Horn clauses

Following the idealized model of computing introduced in Section 3.3, programming with
fohc means that we have constructed a first-order signature Σ and a program P (a finite set
of first-order Horn clauses) and that we wish to know if a certain goal formula G follows from
that program. (Of course, the formula G and all the formulas in the set P are Σ-formulas.)
In other words, we wish to search for a proof of the sequent Σ;P −→ G. In this setting,
goal-directed search is complete for classical logic. To give a more complete picture of proof
search within fohc, we need to describe how proof search deals with atomic goals.

For examples, if the goal G is the atomic formula A and the program P contains the
formula A, then we clearly have a proof and computation (search) finishes immediately with
a success. If P contains instead a clause of the form G′ ⊃ A then we know that if we can
prove G′ from P, then we have again found a proof for A: since G′ ⊃ A and G′ follow from
P, then so to does A. In this case, we have reduced the problem of proving Σ;P −→ A
to proving Σ;P −→ G′. Using a program clause in this manner to reduce the problem of
proving an atomic formula is generally called backchaining.

To describe backchaining we use the additional inference rules found in Figure 3.5. To
indicate that the interpreter is attempting to prove the atomic goal A by backchaining on
the program clause D, we use the expression Σ;P D−→ A. The first of the rules in Figure 3.5
specifies that when reducing the problem of finding a proof of Σ;P −→ A, we need first to
pick a member D of P and then attempt to backchain on it. The second rule in this figure
states the obvious: if the formula that we are using for backchaining is the formula we are
attempting to prove, then we are finished. If the formula fir backchaining is a conjunction,
then reduce this attempt to one using one of the conjuncts. If the backchain forumula is
universally quantified, then pick a Σ-term and continue backchaining with that instance of
the formula. Finally, if the the backchain formula is an implication, say G ⊃ D, then we
need to need to do two things: we must prove G and continue using D to do backchaining.
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Σ;P D−→ A

Σ;P −→ A
decide Σ;P A−→ A

initial
Σ;P D1−→ A

Σ;P D1∧D2−→ A
∧L

Σ;P D2−→ A

Σ;P D1∧D2−→ A
∧L

Σ;P D−→ A Σ;P −→ G

Σ;P G⊃D−→ A
⊃L

Σ;P D[t/x]−→ A Σ; `̀f t: τ

Σ;P ∀τ x.D−→ A
∀L

Figure 3.5: Rules for backchaining. In the first rule, D is a member of P.

If we restrict to using Horn clauses given by the first definition (3.1), that is, where
program clauses are of the form

∀τ1x1 . . . ∀τ1xm[A1 ∧ . . . ∧An ⊃ A0]

where m, n ≥ 0, then it is possible to simplify the inference rules for backchaining into one
rule. In particular, if D is a formula of the above form, then the inference rule

Σ;P −→ A1θ · · · Σ;P −→ Anθ

Σ;P D−→ A

suffices to describe backchaining. This rule has the proviso that θ is a substitution such that
for all i = 1, . . . , m θ maps the variable xi to the Σ-terms ti of type τi, and that A is equal to
A0θ. The soundness of this rule can be argued as follows: Assume that A1θ, . . . , Anθ follow
from P (that is, that the premises of the inference rule are provable). Scine P contains the
clause ∀τ1x1 . . . ∀τ1xm[A1 ∧ . . . ∧ An ⊃ A0] then the instance [A1θ ∧ . . . ∧ Anθ ⊃ A0θ] also
follow from P. Finally, using modus ponens, we know that A0θ follows from P.

The inference rules in Figure 3.5 are instances of left-introduction rules since below the
horizonal line there is an occurrence of a logical connective on the left of the sequent arrow
that does not occur above the line: note that a formula on top of the sequent arrow is
actually a distinquished formula that is taken from the left of the sequent arrow.

Combining the right and left introduction rules in Figure 3.4 and 3.5 now yields a
complete proof system for fohc with respect to classical logic. A proof of this fact can be
found in [NM90]. When read bottom-up, these inference rules provide a complete set of
reduction steps for finding a proof.

Consider a proof of the sequent Σ;P −→ G using these inference rules. It is easy to
see that every sequent that appears in such a proof will either be of the form Σ;P −→ G′

or Σ;P D−→ A, for some A, G, and D. Notice that all of these sequents contain the same
signature and program. Thus, during the search for such a proof, all goals will be attempted
from the same signature and program and all the selection of program clauses will be from
the same program and all instances of such clauses will be from the same signature. This
observation has important consequences for the large scale organization of code. If we
initiate a computation (that is, a search for a proof), all the program clauses that will ever
be needed to complete the proof must be present in the initial sequent. Similarly, every
constant, and hence the constructors for every data structure that might every need to be
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built, need to be present in the initial sequent. Thus, proof search using fohc provides no
mechanisms for hiding code or data constructors. Signatures and programs are global, flat
structures that do not change over the lifetime of a computation. Thus it will not be possible
in fohc to have auxillary programs available only when they are needed and it will not be
possible to build data structures (terms) that only certain code will be allowed to access.
If any code or term constructors are ever needed they must be available from the start on
equal footing with all other code and data constructors. This lack abstraction will be one
of the motivations for going beyond fohc, as we shall do starting in Chapter 5.

3.7 Concrete syntax for program clauses

Program clauses often have numerous universal quantifiers at their outermost level. To
make such clauses simpler to enter and display, λProlog uses the following conventions.

• A token in a program clause that is not explicitly quantified or otherwise reserved is
assumed to be either a constant or implicitly universally quantified with maximum
scope: if its initial letter is uppercase, it is assumed to be universally quantified;
otherwise, it is assumed to be constant. Of course, if it is assumed to be a constant,
its type should have been explicitly given. If it is a variable, the λProlog interpreter
will attempt to determine its type.

• The underscore _ can also be used as an anonymous variable. All occurrences of
an underscore denote different variables and their occurrences in program clauses are
assumed to be universally quantified with outermost scope.

• The names of bound variables can be tokens with an initial letter that is either lower
or upper case.

To illustrate these conventions, consider the following signature.

kind node type.
type adj node -> node -> o.
type path node -> node -> o.

Given this convention, the clause

path X Y :- adj X Z, path Z Y.

is intended to mean the clause

pi X\ pi Y\ pi Z\ path X Y :- adj X Z, path Z Y.

Notice that program clauses are terminated by a fullstop. Using equivalences mentioned
in Section 3.4 and the above conventions, this clause is equivalent to all of the following
clauses.

pi X\(pi y\(pi z\(path X y :- adj X z, path z y))).
path X Y :- sigma Z\(adj X Z, path Z Y).
path X Y :- sigma z\(adj X z & path z Y).
path X Y :- path Z Y :- adj X Z.
adj X Z => path Z Y => path X Y.
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adj X Z => pi Y\(path Z Y => path X Y).
(path Z Y => path X Y) :- adj X Z.
(pi Y\(path Z Y => path X Y)) :- adj X Z.
pi x\(pi y\(path x y :- sigma z\(adj x z, path z y))).

All occurrences of free and bound variables in these formulas can be inferred to have type
node.

As was mentioned in Section 3.2, λProlog has two symbols for conjunction, namely & and
the comma, and has one symbol for implies, namely =>, and one for implied-by :-. In this
text, we shall exploit this redundancy by using following the following conventions: when
forming the conjunction of two definite formulas, we use & and when forming the conjunction
of two goal formulas, we use the comma; when a definite formula is an implication, we use :-
and when a goal formula is an implication we use =>. (Goals related to Horn clauses do not
allow implications: this possibility does not happen until Chapter 5.) Notice that several
of the formulas above do not satisfy this convention: while they are still legal expressions,
following this convention often makes reading examples simplier.

For some additional examples of Horn clauses, consider the following signature

kind bool type.
type neg bool -> bool.
type and, or, imp bool -> bool -> bool.
type ident bool -> bool -> o.

and following clauses.

ident (neg B) (neg D) :- ident B D.
ident (and B C) (and D E) :- ident B D, ident C E.
ident (or B C) (or D E) :- ident B D, ident C E.
ident (imp B C) (imp D E) :- ident B D, ident C E.

Notice that several of these clauses have common parts. Using Horn clauses formulated with
definition (3.2), some of this redunancy can be factored as follows.

ident (neg B) (neg D) :- ident B D.
ident (and B C) (and D E) &
ident (or B C) (or D E) &
ident (imp B C) (imp D E) :- ident B D, ident C E.

Here, the binding of & is tighter than it is for :-. It is even possible to compress this
presentation of clauses further to obtain the following logically equivalent clause.

ident (neg B) (neg D) &
(ident (and B C) (and D E) &
ident (or B C) (or D E) &
ident (imp B C) (imp D E) :- ident C E) :- ident B D.

Of course, compression like this may not always improve readability of the resulting code.
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3.8 Read-prove-print loop

An implementation of λProlog will presumably provide programmers with various facilities
for tracing and debugging computations, reading and saving program code, etc. It is beyond
the scope of this text to attempt to describe many of these functions. Here, we focus on
just the read-prove-print loop, a facility for interacting with proof search (as outlined in
Section 3.3).

The search for a proof can only start once a sequent Σ;P −→ G is specified. Before
entering the read-prove-print loop, we shall assume that the left-hand side of the sequent has
been specified. The signature Σ is be composed of the ambient signature Σ0 (Section 3.1) and
declarations supplied by a programmer. The program P is composed of the ambient program
P0, a set of clauses that define predicates that are always available in λProlog, plus program
clauses provided by a programmer. The exact way that a programmer specifies signatures
and program clauses uses the module system of λProlog and is described in Chapter 4.
For our purposes now, we shall assume that the programmer has correctly described to the
λProlog interpreter what modules, and hence what signatures and program clauses, should
be used in our initial sequent. For example, assume that the following declarations and
clauses are added to the ambient signature and program to yield Σ and P.

type append list A -> list A -> list A -> o.

append nil L L.
append (X::L) K (X::M) :- append L K M.

Now that the signature Σ and program P has been determined, we enter a loop that requests
a goal G, attempts to prove the sequent Σ;P −→ G, prints out information regarding that
search, and then repeats.

3.8.1 The read phase

The read phase will prompt the user of the interpreter for a goal using the ?- prompt. The
text of the goal ends with a fullstop (a period followed by white space). In Section 3.7,
a convention was adopted so that not all universal quantifiers around a program clause
needed to actually be written: tokens that are not explicitly quantified and which start with
an initial capital letter are taken as implicitly universally quantified with outermost scope.
When entering goal formulas, we allow a dual convention: when a goal is entered in the
read phase, tokens that are not explicitly quantified and which start with an initial capital
letter are taken as implicitly existentially quantified with outermost scope. For example,
the follow three expressions will all be interpreted as the same goal formula.

?- sigma X\ sigma Y\ append X Y (1::nil).
?- sigma Y\ append X Y (1::nil).
?-append X Y (1::nil).

Similar also to program clauses, the underscore _ can also be used as an anonymous variable.
All occurrences of an underscore denote different variables and their occurrences in goal
formulas are assumed to be existentially quantified with outermost scope.
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3.8.2 The prove phase

This phase generally comprises the major effort of the interpreter: attempting to find a proof
of a sequent by attempting to use the inference rules displayed in Figures 3.4 and 3.5. This
phase is quite complicated and we have not provided many of the details needed to actually
understand what happens during this phase. Some details will be presented in the next
section (Section 3.9). For now, imagine that there is a simple search engine that attempts
to build a proof. Given the nature of the rules in Figures 3.4 and 3.5, certain aspects of this
phase are easy to describe. If the goal is a logical connective, then a right rule (Figure 3.4)
is attempted: for example, if the goal is a conjunction, two separate proofs much be found,
one for each conjunct. If the goal is atomic, then a backchain rule (Figure 3.5) is attempted.

Proof search can have three possible outcomes: the search might reveal that there are
no proofs of the given sequent, it might find a proof, and it might not terminate. The third
possibility exists necessarily because the problem of determining provability in logic, even
in as small a subset of logic as first-order Horn clauses, is undecidable. However, the search
strategy employed by λProlog is rather simple and incomplete: it will often not terminate
even for subsets of fohc that are theoretically decidable.

3.8.3 The print phase

If a proof has been found or if it is known that no proof can be found, then we need to report
this to the user who supplied the goal. In the event that no proof is found, the interpreter
will simply print a no. For example,

?- append (1::nil) (2::nil) (3::nil).

no
?-

We can interpret this response as saying that it is not the case that the result of appending
the list (1::nil) to the list (2::nil) is the list (3::nil). If a proof is found, the interpreter
can simply respond with solved. For example,

?- append (1::nil) (2::nil) (1::2::nil).

solved
?-

We can imagine, however, getting more information from a successful proof than the fact
that it was successful.

If a proof is found, that proof could be returned at the result of the proof search. Such
proofs are, however, essentially complete traces of computations and as such contain far too
much information to be useful. A similar situation exists with Turing Machines: when such
a machine halts, its entire computation trace could be seen as the result of its computation.
Since the entire trace is generally considered too much information, a convention is used
instead: when the machine halts, the result of a computation is the string that is left on
the tape. A similar convention is used here as well. When a proof is discovered, only terms
used to instantiate the implicitly existential quantifiers (via the ∃ right introduction rule) at
the root of the proof are reported as the result of a computation. Terms used to instantiate
quantifiers assocated to anonymous (underscore) variables are not printed.

Consider the following dialog with a λProlog interpreter.
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?- sigma X\ append (1::nil) (2::nil) X.

solved
?- append (1::nil) (2::nil) X.

X = (1::2::nil)

?- append (1::nil) (2::nil) _.

solved
?-

In the first query, there were no implicitly bound variables (X there is explicitly bound)
while in the second query X is implicitly bound. In the third, an anonymous variable is
used. These three formulas denote the same goal formula: the only difference is that the
second and third have a variable that is bound implicitly. Thus, while these goals have
proofs, a term is printed only for the second of these two goals. Similarly, consider the
following queries.

?- sigma X\ sigma Y\ append X Y (1::nil).

solved
?- sigma Y\ append X Y (1::nil).

X = nil

?- append X Y (1::nil).

X = nil
Y = (1::nil)

?-

All three queries result in the same sequent being attempted while all three have different
implicitly bound variables.

The listing of which terms are substituted for which implicitly quantified variable is also
called an answer substitution, and we often think of an answer substitution as the result of
proof search.

3.8.4 Multiple proofs

There might, of course, be many different proofs of a sequent and these different proofs might
have associated with them different answer substitutions. When an answer substitution is
presented, as in the dialogs above, the interpreter will pause for input from the user. The
user can then enter either a carriage return (as in the example dialogs above) to signify that
no additional proofs are desired, or the user can enter a semicolon ; to request a search for
another proof. The following dialog illustrates this use of semicolon. In this case, additional
proofs provided additional answer substitutions.
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?- append L K (1::2::nil).
L = nil
K = 1::2::nil;

L = 1::nil
K = 2::nil;

L = 1::2::nil
K = nil;
no
?-

A total of three proofs have been found and the corresponding answer substitutions have
been printed. The final no is indicates that no additional proofs was found in response to
the third use of the semicolon.

3.9 Operational aspects of proof search

Since computation in λProlog is based on proof search, the actual steps that are taken in
searching for a proof must be understandable and predicable to a programmer of λProlog,
at least to a some level of detail. In this section, we supply some of these details. Unlike
automatic theorem provers where rich and sophisticated methods are often used to search
for proofs, λProlog employs a simple and rigid search strategy. Using a simple search
strategy has several implications. First, proof search will be incomplete: there will be many
sequents that have proofs that will not be found by λProlog. An implementation will loop
indefinitely where another more sophisticated search strategy would find a proof. Since the
search strategy is known and fixed, however, it will often be possible to write programs
in such ways as to avoid such incomplete behaviors. Second, since a search strategy is
the vehicle that carries a logic program into an actual series of computation steps, a simple
strategy means that a programmer can predict to a large degree the computational researchs
(time and space, for example) that a logical specifications will consume. This latter aspect
of the interpreter is, of course, particularly important.

When attempting to prove a sequent using the right- and left-introduction rules in Fig-
ures 3.4 and 3.5 there are several decisions that need to be made.

When the goal is a disjunction or the formula we are backchaining over is conjunction,
there are two rules that can be applied. The interpreter will always attempt to use the rule
that involves the left subformula before the right subformula.

When the goal is a conjunction or the formula we are backchaining over is an implication,
then there are two subproofs produced. The order in which the premises are attempted is
from left-to-right in the order that the premises are listed in the inference rules in Figures 3.4
and 3.5. Notice that this means that the operational reading of the clause G2 ⊃ G1 ⊃ A is
the same as that for the (logically equivalent clause) G1 ∧G2 ⊃ A: that is, there is a twist
in the way that goal formulas are written.. This is easy to understand if we examine the
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following two proof fragments.

Σ;P A−→ A Σ;P −→ G1

Σ;P G1⊃A−→ A Σ;P −→ G2

Σ;P G2⊃G1⊃A−→ A

Σ;P A−→ A

Σ;P −→ G1 Σ;P −→ G2

Σ;P −→ G1 ∧G2

Σ;P G1∧G2⊃A−→ A

If the first clause was written using the reverse implication, namely as A ⊂ G1 ⊂ G2, then
it would be operationally equivalent to A ⊂ G1 ∧G2: no twist is present.

When selecting the formula D from P in the decide rule (Figure 3.5), the order of
selection is important. For this reason, we must actually think of the program P as being
a list instead of a set: the order and multiplicity of formulas in P is important in the way
proofs are attempted. The search strategy will also attempt to select formulas from the list
in the order in which they occur in left-to-right fashion. This list order will derive from the
order of that clauses are presented in text file versions of programs (see Chapter 4).

Finally, the remaining search strategy issue involves determining what term t to in-
stantiate the existential quantifier in ∃R (Figure 3.4) or in the universal quantifier in ∀L
(Figure 3.5). Each of these inference rules are conjunctive in the sense that they have two
premises, one of which is Σ; `̀f t: τ . If there are a finite number of terms of type τ , then
replacing t with each member of that type might be a suitable way to attempt these rules.
Of course, there will generally be an infinite number of Σ-terms of type τ , so a more general
mechanism for handling these inference rules is needed. The more general mechanism that
is used is based on notions of logic variables and unification.

3.9.1 Logic variables

** To be written.

Σ; `̀f X: τ Σ;P −→ B[X/x]
Σ;P −→ ∃τx.B

∃R
Σ;P D[X/x]−→ A Σ; `̀f X: τ

Σ;P ∀τ x.D−→ A
∀L

3.9.2 Unification

** To be written.

3.10 The Uses and Roles for Types

λProlog is a strongly typed programming language in the style of the Standard ML pro-
gramming language [MTH90].

3.10.1 Types denote syntactic expressions

In λProlog, types are used to denote various classes of syntactic expressions and two elements
of a type are equal if they are the same syntactic expression. (When we introduce λ-terms,
this notion of “same syntactic expression” will grow to include λ-conversion.) For example,
the expressions 2 + 3, 3 + 2, and 5 all have type int, but they are different elements of
that type since they are different expressions. This is in contrast to the standard use of
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types in functional programming: there the three expressions 2 + 3, 3 + 2, and 5 all have
type int and are also equal in that type since they have the same expression. Thus, in
λProlog, the goal formula fails while in ML the expression (2 + 3 = 5) evaluates to true.
Similarly, the type o denotes the set of formulas and not some set of truth values. As
we shall see later, treating members of types as expression makes it possible for λProlog
to compute on expressions of functional type in ways that are not possible in functional
programming: testing equality at function type means checking equality of the “code”
and not the (possibly infinite) graph of the function (that is, the “value” of the function).
Computation in functional programming is the rewriting of an expression until its value
is uncovered. In λProlog, there is no rewriting phase: expressions of a given type are the
intended members of that type. Computation in λProlog is not based on rewriting by on
the search for proofs.

Of course, it is useful for λProlog to know that the expressions 2 + 3, 3 + 2, and 5 all
denote the same mathematical value (the number 5) and it is for this reason that λProlog
is equipped with a simple evaluator (described in Section 4.4) that is able to carry the
expression 2 + 3 to 5. While such evaluation and rewriting can be accommodated in logic
programming, they are not part of the logical foundation of λProlog.

3.10.2 Polymorphic typing

Type expressions can have type variables and this allows for a degree of polymorphic typing.
One way to understand type variables in a type declaration is to think of the keyword type
as a predicate relating a token and a type (ignoring the problem of how we might type the
predicate type). Thus, the declaration for nil in Section 3.1 can be viewed as the formula

∀A (type nil (list A))

instead of the clause
type nil (∀A (list A)).

The first interpretation of a polymorphic type declaration is closest to that used here. Thus,
nil has many types, although they are all substitution instances of a common expression.
Similar, a predicate, like append can be declared with a type containing a type variable; for
example,

type append list A -> list A -> list A -> o.

Thus, append can be applied to three lists but the type of the elements of those three lists
is not fixed: hence, append is an example of a predicate that can be applied to “many
structures”, hence, the name polymorphic typing.

Consider a type expression of order 1 of the form τ1 → · · · τn → τ0. A type variable that
is free in τ0 is called a transparent type variable for that expression. If all type variables in
a type are transparent, that expression is determinate . Knowing the target type of such a
determinate type allows the argument types to be determined uniquely. For example, the
types in the declarations

type :: A -> list A -> list A.
type nil list A.
type pr A -> B -> pair A B.

are all determinate while the type for cons in
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kind lst type.
type null lst.
type cons A -> lst -> lst.

is not transparent. Here, a term of type lst represent lists of possibly heterogeneous types.
(Type declarations such as the one for lst are not available in, say, Standard ML.)

3.10.3 Type checking and type inference

Type checking is a process that determines if a given term or formula can be built correctly
using the typed constants that have been declared. This process is essentially one of deter-
mining that the typing judgments described in Figures 3.1 and 3.3 can be established. It is
a common observation that type checking is useful for detecting statically many errors that
are only caught at runtime in languages without strong typing disciplines. A program that
successfully passes the type checking phase is likely to have all the arguments to predicates
present and in the right order and to have the correct spelling for constant symbols. Terms
that cannot be given a type are not admitted in either program clauses or queries. For
example, a parser should report that the term 1::(2::nil)::nil cannot be typed and it
should refuse to either interpret or compile a program or query in which it is embedded.

λProlog is a strongly typed language in the sense that all constants and variables must
be given a type. In this text, we assume that the programmer must supply the type of all
constants that are not built into λProlog. A λProlog parser is responsible for supplying types
to all (explicitly or implicitly) bound variables: the types for these are easily determined
from context since they can have exactly one type at all their occurrences within a given
scope, even if that type contains type variables. For example, in the formula

append (1::nil) (2::nil) X, append ("abc"::nil) ("efg"::nil) Y

the constant append (given the types declared earlier) can appear at two different types,
namely, list int -> list int -> list int -> o and list string -> list string ->
list string -> o. The variables X and Y are inferred to have the types list int and list
string, respectively. If the variable Y was, however, replaced with X then this expression
would not be typeable: it is not possible for two occurrences of the variable X to have two
different types. Thus λProlog does more than just check types, it also infers types for such
variables.

It is possible to supply the type of any occurrence of a subterm within a formula or term
using a colon. For example,

append X X Y:(list int)
append X:(list int) X Y
append:(list int -> list A -> list int -> o) X X Y
(append X):(list int -> list int -> o) X Y

all yield the same typing for the constant and two variables in these expressions. This is in
contrast to the types given the simple expression (append X X Y): here, X and Y are both
given the type (list A). When a type is explicitly provided using a colon, the actual type
attributed to that occurrence is some instance of that type. There is seldom a need to use
a colon in this fashion: it is used mostly to specify ad hoc polymorphism, as is illustrated
in Section 3.10.4.
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kind lst type.

type null lst.

type cons A -> lst -> lst.

type separate lst -> list int -> list real -> o.

separate (cons X:int L) (X::K) M :- separate L K M.

separate (cons X:real L) K (X::M) :- separate L K M.

separate null nil nil.

Figure 3.6: Heterogeneous lists.

kind numb type.

type inj_int int -> numb.

type inj_real real -> numb.

type separate list numb -> list int -> list real -> o.

separate ((inj_int X)::L) (X::K) M :- separate L K M.

separate ((inj_real X)::L) K (X::M) :- separate L K M.

separate nil nil nil.

Figure 3.7: Lists contains only integers and reals.

Type inference could be extended to the inference of types for constants as well. Although
we shall not consider such inference here, such type inference was implemented in an early
versions of λProlog[?, EP89] and is discussed in [NP92]. Other references for similar typing
can be found in [Han89, ?].

3.10.4 Runtime behavior of types

Types play a role in the runtime behavior of programs (another difference with types in
Standard ML). Consider, for example, the declarations and clauses in Figure 3.6 that declare
constructors for building heterogeneous lists. As we mentioned before, the type of cons is
not determinate. The predicate separate can be used to separate a heterogeneous list
containing only integers and reals into two homogeneous lists, one containing only integers
and one containing only reals. Here, explicit typing using a colon is required: the type
attributed to the first element of the list in the first argument of separate (the variable
X) determines which of the first two clauses of separate’s definition should be selected to
process that first element. In the search for a proof, type information is needed to determine
which clause of separate is used.

Figure 3.7 contains another specification of the separate predicate with a related func-
tionality. Here, the runtime determination of which clauses to select for processing the first
element of the list in the first argument of separate is provided by examining terms and
not types: if the first item of the list in the first argument has the top-level function sym-
bol inj_int (injection into int) then the first clause is selected; otherwise, if the top-level
function symbol inj_real then the second clause is selected.

For an example of using these two implementations, if the goal
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separate (cons 1.0 (cons 2 (cons 3.0 null))) L K

is attempted using the specification in Figure 3.6 and the goal

separate ((inj_real 1.0)::(inj_int 2)::(inj_real 3.0)::nil) L K

is attempted using the specification in Figure 3.7, both queries will bind K to (2::nil) and
L to (1.0::3.0::nil).

There are at least two reasons for preferring implementations that exclusively use data
structures for which all constructors are declared to have determinate types. These reasons
argue, for example, that the second implementation of separate above is to be preferred
over the first.

Better static analysis is possible. When data constructors have determinate types, the
type of subexpressions place constraints on the type of larger expressions. For example, in
the homogeneous list structure, if one element of the list is determined to be of a particular
type, all elements of that list must also be of that type. In these cases, the static properties
of type checking provide much more information about a program during the type checking
phase. In the example involving separate predicates, for example, we know that the second
separate specification will work only for lists of numbers (that is, lists of intergers and reals)
whereas the first specification allows for any kind of items to appear in lists.

Type information is often not needed during proof search. In many cases when
only determinate types are used for data structures, it is possible to determine that types
are, in fact, not needed during the execution of a logic program. Such a fact means that
execution of such logic programs can possibly be made more efficient. Of course, type
information is sometimes moved from types into terms, as is the case with the inj_int and
inj_real constants in Figure 3.7.

One model for understanding the nature of polymorphic types in λProlog is to think of
constants and variables as being record structures that contain at least their name and their
type. When checking the equality of two constants or variables, not only do their names
have to be equal, their types must be equal. In an implementation using unification, term
unification will then cause type unification and the instantiation of type variables. One
optimization of this is to store in that record not the type but the non-transparent type
variables in that type [?].

Given the flexibility of λProlog’s type system, it is possible to trivialize the typing sys-
tem. For example, it is possible to give constructors such as cons and null the type A, that
is, assert that both of these constants have every possible type. It would then be possible to
build arbitrary term structures from these constants, such as (null (cons cons) cons),
most of which have little to do with list structures. Of course, the use of such type declara-
tions is not helpful to either programmer or program analysis.

3.11 Prolog and λProlog

While Prolog and the fragment of λProlog described so far are implementations of first-order
Horn clause, there are many differences between these languages.

For example, there are syntactic differences. For example, Prolog uses [] and [X|L] to
denote nil and (X::L). Lists in Prolog can also be written using syntax such as [1,2,3]:
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in λProlog this would be written as as (1::2::3::nil) (the LP2.7 and Prolog/Mali im-
plementations of λProlog had Prolog-style list syntax). Also, formulas and term syntax is
written in a curried-style, similar to that used by other languages built on higher-order types,
such as the ML programming language. The symbol append denotes a predicate that takes
three arguments and then becomes an atomic formula. The use of curried syntax makes it
possible for these arguments to be applied one-by-one to yield meaningful structure: thus,
(append (1::nil)) denotes a predicate that must take 2 arguments before it becomes an
atomic formula. In the higher-order setting described in later chapters, this style of syntax
will prove natural and useful. As a result of these two differences, the comma, which serves
three roles within Prolog formulas — list separator, argument separator, and conjunction
— is used only for conjunction in λProlog.

More serious differences arise because of the typing discipline of λProlog. Some Prolog
programs will not be allowed in λProlog because they are not type correct for λProlog.
There are also many builtin features to Prolog that are not incorporated into λProlog.
Some Prolog builtins, such as =.. would not easily fit into a typed language and others,
such as var, assert, and retract, would need to be significantly modified in order to be
incorporated into λProlog (see, for example, [CM84] and [SS86] for a description of these
predicates).
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Chapter 4

Modules and Built-in Values

This chapter describes two aspects of how a λProlog implementation interacts with the
larger world of a computer system in which it is situated. Many of the components of such
systems — the operating system, file system, and the machine’s built-in values — are not
embraced by the logic underlying λProlog. Since the exact dependence of an interpreter on
its environment depended to a large extent on that environment, what are described here
are only those features that should be expected from any implementation of λProlog.

4.1 A desiderata for modular programming

Many modern programming languages are based on declarative, formal systems. In their
early stages of development, such languages generally focus on programming-in-the-small.
As they mature, problems with programming-in-the-large became more important and at
that point, a second language is often imposed over the initial language. To address the
problem of building large programs, parsing and compiler directives, such as use, import,
include, and local, are added. This imposed language generally has little connection with
the original declarative foundation of the initial language: it was born out of the necessity to
build large programs and its function was expediency. The meaning of the resulting hybrid
language is often complex and the declarative purity of the underlying language seldom
extends to the full language; the hybrid language might even interfer with the behaviour of
the core language.

When designing a module system for logic programming, we should ask more than that
it separates code elements and can be efficiently implemented. For example, it is desirable
that it satisfies several high-level principles, such as those listed below.

• Constructs for programming-in-the-large should not complicate the meaning of the
underlying, declarative core language.

• Modules should support transitions from high-level program specification to lower-level
program implementations.

• Modular programming should work smoothly with higher-order programming. For
example, a particular challenge in Prolog is getting the call/1 predicate to interact
correctly with modules.
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• Rich forms of abstraction, hiding, and parametrization should be possible.

• Modules should allow a rich calculus of transformations. These should include partial
evaluation, fold/unfold, and even compilation.

• Important aspects of a module’s meaning should be available and verified without
examining the module in detail. Notions of interfaces often support this property.

• The additional syntax for programming-in-the-large should be readable, natural, and
support separate compilation and re-usability.

• There should be a non-trivial notion of the equivalence of modules that would guar-
antee that a module can be replaced by an equivalent module with little to no impact
on the behavior of a larger program. This property is sometimes called representation
independence.

The module system of λProlog addresses all of these principles with varying degrees of
success.

One approach to developing a principled modular programming language is to reduce
programming-in-the-large to programming-in-the-small: in the logic programming setting,
this could mean that modular programming can be explained completely in terms of the
logical connectives of the underlying language. Thus, a collection of modules would be
mapped to a (possibly large) collection of (possibly large) formulas. Furthermore, we would
like the combinators for building modules to correspond closely to logical connectives.

4.2 Concrete syntax of modules

The text files containing λProlog code contains one or more modules. As text, modules
can contain three parts: a one-line header, a preamble, and a collection of declarations and
clauses. Taken together, the declarations comprise a signatures, and, therefore, they may
contain the four keywords kind, type, infixl, and infixr. The concrete syntax of modules
will introduce a total of 5 new keywords. Of these we introduce only two in this chapter;
the other three are introduced in Chapter 5.

Along with these, modules may also contain comments. There are two ways to enter
comments in a module. The percent sign % can be used as it is used in Prolog; that is, if a
% is found, then all characters from that character to the end of the line are ignored. The
symbols %( and )% can also be used to enclose comments.

The first line of the text for a module, the module’s header, is of the form

module moduleName.

The argument of the module keyword is the name of the module being defined, in this case,
the token moduleName. A module starts with the keyword module and ends with the end of
the file or when another module begins.

The preamble to a module contains just two kinds of entries, namely those that declare
that other modules can be either accumulated or imported, using the accumulate and import
keywords. The import keyword will be described in Chapter 5. The accumulate keyword
is used to incorporate other modules as if those other modules were actually typed at the
beginning of the current module. If this keyword appears in a module, it must follow
immediately after the module keyword. The line containing this keyword has the form
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accumulate mod1, mod2, mod3.

That is, accumulate is followed by one or more module names, separated by whitespace.
A module’s preamble can be empty; that is, it may not contain either the accumulate or
import keywords.

The remaining lines of a module are combinations of signature declarations, introduced
by the kind, type, infixl, and infixr keywords. Lines that start with no keywords are
program clauses. Signature declarations are intended to have global scope within a mod-
ule, and, for readability, it is possible to interleave signature declarations and programming
clauses. The only restriction on such interleaving is that if a token is given a kind, type,
or infix declaration, those declarations must appear prior to its first occurrence in a pro-
gram clause. It is always possible to move signature declarations to the top of a module,
immediately following the preamble.

Figure 4.1 lists one text file containing the specification of the two modules smlists and
smpairs. The preamble for smlists is empty and the preample for smpairs contains just
one line used to accumulate smlists. Notice also that in smlists all declarations are at
the top of the module and in smpairs they are mingled with the clauses.

4.3 Static semantics of modules

The meaning of modules is divided into two parts. The static semantics of a module de-
scribes what collection of constants and program clauses the module denotes. The dynamic
semantics of a collection of modules describes how the constants and clauses in those mod-
ules are used during the search for proofs of goal formulas. The static semantics of modules
is presented in this section: the remaining sections of this Chapter deal with their dynamic
semantics.

The process of converting the concrete syntax of modules into a signature-program pairs
is called module elaboration.

An important difference in the treatment of signatures and program clauses is that tokens
within a signature are associated with a kind or type in a functional fashion. For example,
a constant is given at most one type. Program clauses have no such restriction. Thus, when
two signatures are brought together, it is important that all tokens given declarations in
both signatures must, in fact, have the same declarations. In the case of bringing together
two lists of program clauses, no such check is required: a given predicate can have clauses
for various modules.

Two signatures can be merged if the following conditions are true.

• If a token has a kind declaration in both signatures, then those declarations must be
identical.

• If a token has a type declaration in both signatures, then those declarations must be
equal. Here, two type expressions are considered equal if they are differ only up to
alphabetic changes to the names of type variables.

• If a token has an infix declaration in one signature and some declaration in the other
signature, then that token must have exactly the same infix declarations in both
signatures.
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% This file contains two modules.

module smlists.

kind list type -> type.

type id list A -> list A -> o.

type memb, member A -> list A -> o.

type append list A -> list A -> list A -> o.

type member_and_rest A -> list A -> list A -> o.

id nil nil.

id (X::L) (X::K) :- id L K.

memb X (X::L).

memb X (Y::L) :- memb X L.

member X (X::L) :- !

member X (Y::L) :- member X L.

append nil K K.

append (X::L) K (X::M) :- append L K M.

member_and_rest X (X::L) L.

member_and_rest X (Y::K) (Y::L) :- member_and_rest X K L.

module smpairs.

%( The module smlists is accumulated here because

we use the memb and member predicates below. )%

accumulate smlists.

kind pair type -> type -> type.

type pr A -> B -> pair A B.

type assoc, assod A -> B -> list (pair A B) -> o.

assoc X Y L :- memb (pr X Y) L.

assod X Y L :- member (pr X Y) L.

type domain list (pair A B) -> list A -> o.

domain nil nil.

domain ((pr X Y)::Alist) (X::L) :- domain Alist L.

type range list (pair A B) -> list B -> o.

range nil nil.

range ((pr X Y)::Alist) (Y::L) :- range Alist L.

Figure 4.1: A text file containing two modules.
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module mod1.

kind item type.

type p,q item -> o.

p X :- q X.

module mod2.

accumulate mod1.

type a item.

q a.

module mod3.

kind item type.

type p,q item -> o.

type a item.

p X :- q X.

q a.

Figure 4.2: The modules mod2 and mod3 elaborate to the same signature-program pair.

Thus, when merging two modules, it is not possible for a token to have a kind or type
declaration in both modules but an infix declaraion in only one signature. It is also not
possible for a type to be given a polymorphic type in one module and an instance of that
polymorphic type in another module. The result of merging two signatures is the signature
that results from providing declarations for all tokens that appear in both signatures.

If a module does not contain any accumulate keyword, then the signature and list of
program clauses associated with that module are exactly those items enumerated within the
module, listed in the same order as they appear in the module’s text file. If the module con-
tains the accumulate keyword, all of the named modules must have been elaborated previ-
ously so that their associated signature-program pairs are known. Let 〈Σ1,P1〉, . . . , 〈Σn,Pn〉
be the signature-program pairs associated with all the modules provided by the accumulate
keyword and let Σ0 be the signature that is declared in the module. It is an error if the
signatures Σ0, . . . , Σn cannot be pairwise merged. The signature associated with the module
is then the result of merging all the signatures Σ0, . . . , Σn. The list of clauses associated
with the module is the result of appending the lists P1, . . . ,Pn,P0, in that order: here, P0

is the list of clauses explicitly written in the module.

Figure 4.2 shows a text file containing three simple modules. After elaboration, modules
mod2 and mod3 would yield indistinguishable signature-program pairs.

When elaborating a module, the initial context is needed to determine the types of logical
and built-in types and constants. Also, when a module is used in a computation, it will be
merged with a context that contains the initial context. Thus, it is also an error of module
elaboration if the given module declares symbols in such a way that they cannot later be
merged with the initial context.
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4.4 Built-ins Values

Several types are built into the λProlog interpreter. The types for formulas and for lists is
described in Chapter 3. There are a few additional builtin types listed here and describe
more in the remainder of this section.

Numbers. Both integers and reals and elementary functions on them. Both of these are
mapped directly to the underlying representation of numbers provided by a computer
processor.

String. Sequences of characters, including the empty sequence, with elementary string ma-
nipulation functions. There is no separate datatype for characters.

Streams. When a file is opened for input or output, a logical handle for that stream is
produced. Reading and writing can be directed on these channels.

Exceptions. When a error or exception situation is encountered, it should be possible to
abort and redirect a computation. Exceptions are a nonlogical feature of λProlog that
will allow us to do this kind of control. Generally we limit their use to interacting
with users, file processing, and errors from arithmetical operations.

4.4.1 Integers and Reals

The syntax and semantics numbers is similiar to that adopted by Standard ML [MTH90].
Thus, negative integers and real numbers use ~ for the negative sign — ~5 is “minus 5” and
~5.4 is “minus 5.4”. One major difference with Standard ML is that ad hoc polymorphism
is advoided with the built-in operations.

The intended meaning for all of these constants in Figure 4.3 should clear from their
name and type, except possibily for following: ~ and r~ denote the unary minus signs for
integer and real numbers; div is the quotient of x and y rounded down; and quot is the
quotient rounded towards zero.

4.4.2 Strings

Strings are delimited using double quotations. The exact syntax of strings, including escape
sequences and formating characters, is taken from the Standard ML definition. Figure 4.4
contains the built-in predicates and functions available in λProlog.

The circumflex ^ denotes string concatenation, size computes the length of a string,
chr returns a singleton string whose ascii value is its argument, ord returns the ascii value
of the first character in its argument, and substring, when applied to a string and the
interger arguments i and j returns the string starting at position i in the string (indexed
starts at 0), and ends at position i+ j. The four displayed predicates compare strings using
lexicographic ordering.

4.4.3 Files and Streams

The builtin constants and predicates for streams and files are presented in Figure 4.5. Files
can be open for input and output. To open them, a string is used to name them. In general,
this name is either the name of a file in the current directory or it is a full pathname. When
a file is open, it is associated to a channel and it on such channels that input or output is
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kind int, real type.

type ~ int -> int.

type +, -, *, div, quot, mod int -> int -> int.

type int_to_string int -> string.

type <, >, =<, >= int -> int -> o.

infixr <, >, =<, >= 4.

infixl +, - 6.

infixl *, div, mod 7.

type r+, r-, r*, r/ real -> real -> real.

type r~, sqrt, sin, cos, arctan, ln real -> real.

type floor, ceiling, truncate real -> int.

type int_to_real int -> real.

type real_to_string real -> string.

type r<, r>, r>=, r=< real -> real -> o.

infix r<, r>, r>=, r=< 4.

infixl r+, r- 6.

infixl r*, r/ 7.

Figure 4.3: Built-in functions and predicates for integers and real numbers.

kind string type.

type ^ string -> string -> string.

type size, ord string -> int.

type chr int -> string.

type substring string -> int -> int -> string.

type s>, s<, s>=, s=< string -> string -> o.

infixl ^ 6.

infix s>, s<, s>=, s=< 4.

Figure 4.4: Built-in functions and predicates for strings.
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kind in_stream, out_stream type.

type std_in in_stream.

type std_out, std_err out_stream.

type open_string string -> in_stream -> o.

type input in_stream -> int -> string -> o.

type output out_stream -> string -> o.

type input_line, lookahead in_stream -> string -> o.

type eof in_stream -> o.

type flush out_stream -> o.

type open_in string -> in_stream -> o.

type open_out, open_append string -> out_stream -> o.

type close_in in_stream -> o.

type close_out out_stream -> o.

Figure 4.5: Built-in functions and predicates for files and streams.

directed. The open_in predicate opens a file for input and associates with it an in_stream.
This in_stream can be closed using the close_in predicate. There are two predicates for
opening a file for output. The open_out and open_append both open the file and associate
it with an out_stream. In both cases, if the file does not already exist, it will be created.
If the file does exist, the open_out predicate will cause its contexts to be overwritten while
with the open_append predicate, its contents will kept and new output will be appended to
its end.

It is also possible to convert a string into an in_stream using the open_string predicate.
Doing input from a stream assocated to a string allows the contents of the string to be read
as if it were a file.

There is one builtin in_stream, named std_in, which is generally attached to the key-
board, and two builtin out_streams, named std_out and std_err, which are also generally
attached to the keyboard: the first is for outputing to the user of the λProlog system and
the second for printing error messages. These names and their semantics are derived from
Unix conventions.

The output predicated is used to output a string on an out_stream. On systems that
used buffered output, the predicate flush can be used to flush out any buffered output; on
other systems, this predicate has no affect.

There are two ways to read a string from an in_stream: the goal input InStream N String
will read at most N characters from the in_stream InStream, blocking until there are
N characters available or until an end-of-file is reached: the resulting string will be uni-
fied with String. The goal input_line InStream String will blocks until a newline or
end-of-file has been read from InStream and then unifies with String the string com-
posed of all characters up to and including that first newline or end-of-file. The goal
lookahead InStream String unifies with String the next character from InStream with-
out removing it from the stream or the empty string if at the end-of-file has been encountered.
The goal eof InStream can be used to check if InStream is at an end-of-file.
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kind exn type.

type exception exn -> o.

type handle exn -> o -> o -> o.

type divide_by_zero, overflow exn.

type index_out_of_bounds, not_chr exn.

type file_not_found string -> exn.

type file_unreadable string -> exn.

Figure 4.6: Built-in constants and predicates for exceptions.

4.4.4 Exceptions

In order to handle a certain class of errors and exceptional situations, we shall consider
version of λProlog that contains a mechanism for raising and handling exceptions. This
feature is not a logically motivated one and its exact operational semantics is probably
quite difficult to understand with respect to the rest of the language. None-the-less, we
shall make some use of the predicates and constants in Figure 4.6. The type exn is used
for naming exceptions. The goal exception E will cause the current computational context
to be aborted and to have the exception “thrown” to some handler “above” it. Exception
handlers are installed using a goal of the form handle F G H. The operational semantics of
this is intended to be the follow: attempt to prove the goal G. If its execution does not raise
an exception, then the entire handle goal should behave as G, whether it succeeds or fail.
If, however, the execution of G results in an exception being raised, say E, then check if E
and F unify. If they do, then call the goal F; otherwise, the exception E will be raised again
for other possible handers. If no handler is available, the top-level interpreter loop should
be entered with a suitable message being displayed.

In Figure 4.6, various builtin exceptions are listed. These exceptions are raised under
the following situations.

• divide_by_zero: when division by zero is attempted using either integer or real
division.

• overflow: when an overflow is detected in either integer or real arithmetic.

• index_out_of_bounds: when ord is given an empty string or substring is asked to
compute on a part of a string that is not present.

• not_chr: when chr is given an integer that is not in the range between 0 and 255,
inclusively.

• file_not_found: when open_in is given the name of a file that cannot be found. The
argument of the exception is the name given for the file.

• file_unreadable: when the file that open_in is attempting to open cannot be
opened, because, for example, file protections restrict access. The argument of the
exception is the name given for the file.

The program in Figure 4.7 contains an illustration of exceptions.
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4.4.5 Evaluation of built-in functions

In the description of built-in operations, the read may have noticed that some were pre-
sented as functions and some as predicates. For example, the length of a string is com-
puted using a function size of type string -> int instead as with a predicate of type
string -> int -> o, which is the usual vehicle in which computation is done in logic pro-
gramming. While the choice between these two presentations of size is largely ad hoc, the
choosing to the basic operations on integers, such as addition, as functions instead of pred-
icates is largely forced on us by programming convention. This convention and the desire
to make direct use of machine-supplied integers, reals, and strings, for example, leads us to
to add the following non-logical predicate to λProlog.

type is A -> A -> o.
infix is 4.

The intention of a goal of the form X is Exp, where Exp is some expression denoting a value
and X is some value or variable, is that Exp will be computed in a functional fashion and its
resulting value with be unified with X.

In order to more carefully describe the meaning of the is predicates, we need to make
distinctions between the various kinds of terms that can exist in a runtime system imple-
menting λProlog. A term can be open, that is, it can contain occurrences of logic variables.
A term that contains no logic variables will be called closed. The set of closed terms of type
int, for example, can further be classified as those that are genuine integers, that is, one of
the numbers

..., ~2, ~1, 0, 1, 2, ...

and those that are integer expressions, that is, a term built out of genuine integers and the
functions symbols in Figure 4.3. These include, for example, the following terms

4 * 5 ~4 + 5 * ~1 4 * 5 mod 3.

Of course, these integer expressions all denote genuine integers, namely 20, ~9, and 2. To
compute the correspondence between integer expressions and genuine integers, a predicate
external to the logical foundation of λProlog is used: this predicate is the is predicate.

The goal X is Exp has the following semantics: if Exp is an open term, this goal produces
a runtime error. Otherwise, Exp is a closed expression, the value of which is computed and
then unified with X. Thus, an attempt to prove the goal (N is 2 * 7, M is N + N) will
succeed and bind N to 14 and M to 28; the goal (15 is ~3 * ~5) will succeed; the goal (14
is 3 * 5) will fail; and the goal (P is Q + 1) will fail with an error reporting that the
second argument of is contains an unbound variable.

The is predicate will work as an evaluator at types int, real, and string: that is, the
polymorphic typing given to it is really a kind of ad hoc polymorphism.

4.4.6 A simple program using various builtin operations

The module readints in Figure 4.7 illustrates a simple program that will read integers from
one file and print into another file the result of adding up those integers.
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module readints.

type string_to_int, digit string -> int -> o.

type aux string -> int -> int -> o.

type bad_int_exp exn.

digit Str N :-

N is (ord Str) - 48, (0 =< N, N =< 9, !; exception bad_int_exp).

string_to_int "" _ :- exception bad_int_exp.

string_to_int Str N :- Size is (size Str), aux Str N Size.

aux Str N 1 :- !, digit Str N.

aux Str N Size :-

Size’ is Size - 1, Digit is (substring Str Size’ 1),

digit Digit D, Str’ is (substring Str 0 Size’),

aux Str’ N’ Size’, N is 10 * N’ + D.

type add_numbers string -> o.

type read_and_acc in_stream -> int -> int -> o.

add_numbers File :-

InFile is File ^ ".list", OutFile is File ^ ".report",

open_in InFile InC, read_and_acc InC 0 Total, close_in Inc,

open_out OutFile OutC,

output OutC "The sum of the numbers in the file ",

output OutC InFile, output OutC " is ",

String is (int_to_string Total),

output OutC String, output OutC "./n", close_out OutC.

read_and_acc Chan Acc Result :-

input_line Chan String,

(String = "", !, Acc = Result;

string_to_int String Num, Acc’ is Acc + Num,

read_and_acc Chan Acc’ Result).

Figure 4.7: A simple program for reading in a file of integers and writting out their sum.
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Chapter 5

First-order hereditary Harrop
formulas

The first extension to the logic of first-order Horn clauses we consider is to allow implications
and universal quantification in goals and the body of clauses. The resulting formulas, the
first-order hereditary Harrop formulas (fohh, for short) are formulas with clause order greater
than 1.

5.1 Three presentations of fohh

In this section we present the first-order hereditary Harrop formulas or fohh, for short.
These formulas extend Horn clauses by allowing implications and universal quantifiers in
goals (and, thus, in the body of program clauses). Parallel to the three presentations of fohc
in Section 3.4, there are the following three presentations of goals and program clauses for
fohh. The first presentation is similar to that of definition 3.1 in Section 3.4.

G ::= A | G ∧G | D ⊃ G | ∀τx.G

D ::= A | G ⊃ A | ∀x.D (5.1)

Notice now that the definitions of G- and D-formulas are mutually recursive, that a nega-
tive (positive) subformula of a G-formula is a D-formula (G-formula), and that a negative
(positive) subformula of a D-formula is a G-formula (D-formula). A richer formulation is
given by the following definition.

G ::= > | A | G ∧G | G ∨G | ∃x.G | D ⊃ G | ∀x.G

D ::= A | G ⊃ D | D ∧D | ∀x.D (5.2)

It will be this set of richer D-formulas that we shall consider the proper definition of first-
order hereditary Harrop formulas.

A simple presentation of a class of definite formulas similar to the one above is given by
the definition

D ::= A | D ⊃ D | D ∧D | ∀x.D (5.3)
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Any first-order formula that does not contain occurrences of disjunction and existential
quantification is an example of both a D-formula and G-formula in the sense of definitions 5.2
and 5.3. The formula (p ∨ q) ⊃ (p ∨ q) is neither a D-formula and G-formula in any of the
definitions above.

Classical logic does not support a goal-directed search interpretation of logical connec-
tives for any interesting uses of⊃ and ∀ in goal formulas. For example, the formula p∨(p ⊃ q)
is a classical tautology but it is not provable using the search operations given above: p is
not provable and q does not follow from p. Similarly, if the current program P contains the
single formula (p a ∧ p b) ⊃ q then the formula ∃x.(p x ⊃ q) is a classical conclusion but it
cannot be found using the search reductions described above.

The three presentations of fohh given above are not related using intuitionistic equiva-
lence. First notice that the definite formulas of definition 5.2 strictly contain the definite
formulas of definitions 5.1 and 5.3. In particular, the formula

(p ⊃ (q ∨ r)) ⊃ s

is a legal definite clause using Definition 5.2, but it is not logically equivalent to a formula
or conjunction of formulas using either 5.1 or 5.3. While it is the case that the displayed
formula above does imply the conjunction

((p ⊃ q) ⊃ s) ∧ ((p ⊃ r) ⊃ s),

the converse is not true (although the converse is a classical logic entailment). As program
clauses, however, these two formulas can be used interchangeably since they can be used to
prove exactly the same goal formulas.

The existential quantifiers allowed in goals in Definition 5.2 cannot always be eliminated
as was possible with fohc. In fohc, an existential quantifier in a goal can be given a larger
scope until it can be converted to a universal quantifier surrounding a Horn clause. There
are two ways that an existential quantifier in a goal can be “stuck” within a goal. First,
it is possible for it to be to the right of an implication, as in the goal formula D ⊃ ∃x G.
Even if x is not free in D, this formula is not intuitionistically equivalent to ∃x(D ⊃ G). It
is also possible for an existential quantifier to be inside the scope of a universal quantifier.
For example, consider the program clauses

p X :- pi y\(sigma Z\(q X y Z)).

The existential quantifier for Z cannot be removed by simple logical equivalences of first-
order logic. It is possible, however, to introduce a new predicate constant (similar to that
done for disjunctions in Section 3.4) to obtain a program that proves the same goals (not
involving the new predicate constants). In particular, the two clauses

p X :- pi y\(r X y).
r X Y :- q X Y Z.

can be used instead of the above clause. In Chapter 7 we will introduce an extension to fohh
for which it will be possible to use a higher-order variable to move an existential quantifier
from inside to outside the scope of a universal quantifier.

In the rest of this chapter, programs will be assumed to be finite sets of D-formulas
as given by 5.2 above. Similarly, goals will be given by G-formulas using the recursive
definition. Notice that in this case, a pair 〈Σ,P〉 is such that Σ is first-order and P is of
arbitrary clausal order.
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5.2 Substitution and quantification

As we have seen, the program clauses and goals for first-order Horn clauses can be simplified
so that neither of these classes of formulas require explicit quantification. As a result, the
notion of substitution into goals and clauses of fohc is a particularly simple operation. To
compute the result of substituting the term t for the free occurrences of x in a Horn clause,
say D, where D has no explicit quantification, simply replace all occurrences of x in D with
t.

In the richer logic programming language fohh, substitutions must occasionally be ap-
plied to a formula containing bound variables. The simple replacement operation that works
for fohc will not provide a logically meaningful operation. For example, consider the formula

p X :- pi y\(q X y).

and consider substituting the term (f a) for X. The result is simply

p (f a) :- pi y\(q (f a) y).

Clearly, if the first clause is true, so is the second clause. On the other hand, consider
substituting the term (f y) for X. The result of simply replacing instances of X with (f y)
would be the formula

p (f y) :- pi y\(q (f y) y).

Notice that the token y occurs both as a constant and as a bound variable. In fact, where
there was only one occurrence of y bound in the original formula, there are two occurrences
bound in this latter formula. In fact, this formula is not a logical consequence of the
original clause. The reason for this failure is that a variable capture has occurred. Proper
substitution must avoid such captures.

Let x be an occurrence of a free variable in a formula B, and let t be some term of the
same type as x. The term t is free for x in B if every free occurrence of x in B is not in
the scope of a quantifier that binds a variable free in t. The operation of replacing x with
t in B, written as B[t/x], is sound substitution if t is free for x in B. If t is not free for x
in B, it is always possible to change bound variables names in B to obtain a formula B′ for
which t is free for x in B′. Of course, there are many choices for B′, but they only differ up
to bound variable names.

In the example above, the result of substituting (f y) for X is a formula such as

p (f y) :- pi z\(q (f y) z).

where many other tokens could have been used instead of z. We shall always assume that
substitution is performed in this logically sound fashion.

5.3 The core of a logic programming language

Given the distinctions we have made between the program clauses and the goal formulas of a
given logic programming language it is interesting to identify that class of formulas that can
be in both classes. The core of a logic programming language is the intersection of its goal
formulas and its program clauses. For example, using the definitions of logic programming
based on first-order Horn clauses given in Section 3.4, the core of fohc is either the set
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of atomic formulas (using definitions (3.1) or (3.3)) or the set of conjunctions of atomic
formulas (using definition (3.2)).

The core of fohh is, however, much richer. Using either definition (5.2) or (5.3), the
core is the set of formulas built from atomic formulas using ∧, ⊃, and ∀: only ∨ and ∃
are excluded. The core of fohh coincides with the definition of program clauses given by
(5.3). Notice, however, that first-order Horn clauses defined using either (3.1) or (3.3) are
contained within the core of fohh.

Formulas in the core of logic programming language can be both proved and used as
program clause. Since the core of fohh contains a rich set of formulas, it will sometimes
be possible to use fohh to reason about programs directly, a theme that we shall turn to
frequently in this chapter.

5.4 Proving implicational goals

As we mentioned above, the goal D ⊃ G follows from program P if G follows from the
augmented program P ∪ {D}. After the success or failure of G, the increment D must be
removed from the program. Thus the current program part of the current context is actually
a stack: it is possible using fohh for the current context to change during the search for a
proof of a goal. For example, proving the query

(D0 ⊃ ((D1 ⊃ G1) ∧ (D2 ⊃ G2))) ∧G3

from the program P will require that G1 be solved with the current program being equal
to {D1, D0} ∪ P, that G2 be solved with the current program being equal to {D2, D0} ∪ P,
and that G3 be solved with the current program being simply P.

In the depth-first interpretation of program clauses that is used in λProlog interpreters,
the order in which clauses appear is important: different orders of the same clauses can
produce different results. Thus, when new clauses are added to the current context, it is
important to be explicit about where these new clauses are with respect to those in the
current context. There seems to be only two natural choices: clauses should be appended
either to the front or rear of the list of clauses in the current program. λProlog uses the
rule that clauses are appended to the front: that is, the most recently added clauses are the
first to be used in backchaining. To illustrate this, assume that the current context contains
just the following.

type p int -> o.

p 1.

Then the following queries should yield the following answer substitutions in the order that
they appear.

?- p 2 => p 3 => p X.
X == 3;
X == 2;
X == 1
yes

?- (p 2 & p 3) => p X.
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type q, r, s, t, u o.

s :- r, q.

t :- q, u.

q :- r.

Figure 5.1: Some propositional Horn clauses.

X == 2;
X == 3;
X == 1
yes

?-

5.4.1 Inferences among propositional clauses

Consider a module that contains just the type declarations and propositional Horn clauses
displayed in Figure 5.1. While these clauses do not have any atomic consequences, other
clauses can be proved from them. For example, the two Horn Clauses

t :- r, u.
s :- r.

are both provable from the three clauses in Figure 5.1. In particular, the query

?- s :- r.

(which could also be written as r => s) would be replaced by the query s but where the
additional clause r is added to the current program. At this point, traditional Horn clause
reasoning would provide a proof of s. As a result, the implication s :- r follows from the
original set of clauses. In a similar fashion, the clause

(r => u) => (r => t)

is provable from the clauses in Figure 5.1: in this case, the query t is attempted from the
original clauses plus the two propositional Horn clauses r and r => u.

Of course, depth-first search is incomplete and can easily fail to prove obvious inferences.
For example, not all instances of G ⊃ G are provable by λProlog’s depth-first interpreter.
For example, the query

?- (p :- (p => p)) => (p :- (p => p)).

does not terminate, although it is clearly a logically correct deduction.

5.4.2 Natural deduction for propositional logic

λProlog provides a convenient setting for specifying and implementing various proof systems.
Since λProlog is itself a logic with a proof system, it will be convenient at times to make
a distinction between the meta-level logic of λProlog and a given, application dependent
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A A ⊃ B
B

(A)
...
B

A ⊃ B
A ∧B

A
A ∧B

B
A B
A ∧B

A ∨B

(A)
...
C

(B)
...
C

C
A

A ∨B
B

A ∨B

Figure 5.2: Natural deduction rules for a simple propositional logic.

object-level logic. For example, consider a propositional logic built from the propositional
letters p, q, r, and s and logical connectives for conjunction, disjunction, and implication. A
natural deduction style proof system for this object-level logic is given in Figure 5.2 and a
direct encoding of this proof system is given in Figure 5.3. In this encoding, we have used
the λProlog predicate pv to indicate the proposition that its argument, which encodes an
object-level propositional formula, has an object-level proof. Several of the inference rules
in Figure 5.2 have the form

C D
B

for some formulas B, C, and D. Such an inference rule translates directly into a first-order
Horn clause

pv B :- pv C, pv D.

Thus the horizontal bar corresponds to the :-. Other rules have more complex premises
since they include a hypothetical, written as

(A)
...
B.

Here, the vertical dots correspond naturally to =>: the rule for proving a implication A ⊃ B
states that if whenever A is provable, B is provable, then A ⊃ B is provable. Similarly, the
rule of cases, that is, the rule for how to prove a formula C from the disjunction A ∨ B,
specifies that C is provable if the disjunction A ∨B is provable and two hypothetical cases
hold: if A is provable then C is provable and if B is provable then C is provable.

It should be clear that the λProlog code in Figure 5.3 correctly specifies the object-level
syntax and the inference rules in Figure 5.2. While the code in Figure 5.3 provides a simple
specification of a proof system, a depth-first interpretation of this code (as is supplied by
the λProlog interpreter) is almost worthless. For example, consider an attempt to prove the
query

?- pv (imp p p).

If the second clause in Figure 5.3 is used first, a proof could be discovered quickly. However,
the simple-minded, depth-first search that is part of a λProlog interpreter will not be able



5.4. PROVING IMPLICATIONAL GOALS 67

kind bool type.

type p, q, r, s bool.

type and, or, imp bool -> bool -> bool.

type pv bool -> o.

pv B :- pv A, pv (imp A B).

pv (imp A B) :- pv A => pv B.

pv A :- pv (and A B).

pv B :- pv (and A B).

pv (and A B) :- pv A, pv B.

pv C :- pv (or A B), (pv A => pv C), (pv B => pv C).

pv (or A B) :- pv A.

pv (or A B) :- pv B.

Figure 5.3: A specification of natural deduction rules for ∧, ∨, and ⊃.

to find this proof. The first clause in Figure 5.3 will first be used to find a proof of this goal.
Backchaining on this rule, however, generates the query

?- pv A, pv (imp A (imp p p)).

where A is a new variable denoting some object-level formula yet to be determined. When
the first of these goals is attempted, the first clause would again be used and the resulting
backchaining will generate goals that are not closer to establishing a proof. In fact, the
λProlog interpreter will neither succeed nor fail but will loop on this simple query.

Re-organizing the clauses in Figure 5.3 can help in guiding the interpreter on some simple
queries, but, in general, a depth-first interpretation of these clause is of little practical use.
We shall return to this example of implementing inference rules. With a combination of
additional information about the structure of object-level proofs (normal form proofs) and
a more explicit management of hypotheses, we will be able to construct a complete theorem
prover for this object-logic on top of a depth-first interpreter for the meta-logic. The point
of this example is to illustrate that the notion of hypothetical reasoning familiar to natural
forms of reasoning can be directly encoded using implications in goal formulas.

5.4.3 Minimal versus intuitionistic negation

A common way to define a logical connective for negation is to first introduce a symbol for
falsehood, say ⊥, and then to define the negation of B as the implication B ⊃ ⊥.

Thus, within λProlog a weak form of negation can be accommodated by picking an
propositional symbol, say incon, to denote inconsistency, and to use that with implication
to define a negation. Since incon is a non-logical constant, the rule “from false, anything
can be proved” (ex falso guod libet) is not available for this proxy of falsehood. The negation
arising from this simple approach to incon is called minimal logic negation: if the ex falso
guod libet rule is used to interpret incon, the result is the intuitionistic logic notion of
negation.

Although the λProlog interpreter does not support intuitionistic negation directly, an
interpreter can be designed to do so: before such an interpreter can fail to prove a query,
the interpreter must make certain that incon is not provable. If incon is provable then any
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goal is provable. Such a check for inconsistency might be made whenever the program is
augmented.

Clearly, the negation of a goal formula is a definite clause; the negation of a definite
clause is a goal formula; and the negation of a core formula of fohh is again a core formula
of fohh.

Minimal logic is weak but does satisfy some laws generally connected with negation. For
example, the following implications (half of the contrapositive rule and half of the double
negation rule) are provable queries in λProlog (assuming that p and q are constants of type
o)

(p => q) => ((q => incon) => (p => incon)).
p => ((p => incon) => incon).

The converse of each of these implications is not provable within minimal logic negation
(nor within intuitionistic negation: they are provable, however, in classical logic). Clearly
the query

?- p; (p => incon).

which encodes a particular instance of the classical logic law of the excluded middle, is not
provable in the logic of fohh. The doubly negated version of this formula, written as the
goal formula,

?- ((p; (p => incon)) => incon) => incon.

is provable. A proof of this is interesting to see and is displayed as a list of some of the
queries that arise from attempting this goal (given an initially empty program). Formulas
to the left of ?- are the formulas that are augmented to the current program context (the
interpreter does not display such formulas in this way).

(p; (p => incon)) => incon ?- incon.
(p; (p => incon)) => incon ?- p; (p => incon).
(p; (p => incon)) => incon ?- p => incon.

p, (p; (p => incon)) => incon ?- incon.
p, (p; (p => incon)) => incon ?- p; (p => incon).
p, (p; (p => incon)) => incon ?- p.

This last query immediately succeeds since the goal p is also in the current program.
This use of double negation will reappear in Subsections 5.4.6 and 5.4.7.

5.4.4 Hypothetical reasoning

Implications in goals can be used to formulate hypothetical reasoning. For example, consider
the modules in Figure 5.4. Here, db is a simple looping program that reads a command from
the keyboard and performs that command. (As with many interative programs, this one
uses several nonlogical features of λProlog.) Most of the commands will call the db programs
when they finish. Using also the small example database in Figure 5.5, the following queries
are possible (assuming that the modules hyp_db, comp_sci_int, and comp_sci_ext are in
the current context).
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?- db.
Command? query (enrolled dana 101).
yes
Command? query (graduates dana).
no
Command? whatif (enrolled dana 301).
Command? query (graduates dana).
yes
Command? query (cs_major dana).
yes
Command? quit.
Command? query (enrolled kim 101).
no
Command? query (graduates kim).
no
Command? whatif (enrolled kim 301).
Command? query (graduates kim).
yes
Command? query (cs_major kim).
no
Command? quit.
Command? quit.
?-

This example illustrates how it is possible to use the current context to implement a small
database. Here the operations of adding a fact, inferring facts, and doing hypothetical
reasoning are successfully specified in the logic of fohh.

A simple notion of database constraint can be given elementary support using fohh.
Consider the clauses in Figure 5.6. The minimal logic negation of a goal formula is used as
a constraint. If incon is provable, the database evolved into an inconsistent database. In
this example, this is only possible if a person has enrolled in both 210 and 250.

The additional database command consis reports whether or not the current database
is inconsistent. To give the meaning of the check command, assume that it is used only
when the database is consistent. The command (check Entry) prints “yes” if Entry is
present in the database. If Entry is not present, then there are two possibilities: either
every extension of the current database in which Entry is present is inconsistent or some
such extension is consistent. In the first case, the check command prints “no” and in the
second case this command prints “no, but it could be true.” Consider the following
uses of this code (assuming that the module hyp_neg_db is in the current context).

?- db.
Command? whatif (enrolled kim 301).
Command? query (graduates kim).
yes
Command? query (cs_major kim).
no
Command? whatif (enrolled kim 250).
Command? query (cs_major kim).
no
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module db_sig.

kind entry type.

type fact entry -> o.

module hyp_db.

accumulate db_sig.

kind command type.

type db o.

type do command -> o.

type enter, query, whatif entry -> command.

type quit command.

db :- print "Command?", read Command, do Command.

db :- print "Try again.", nl, db.

do (enter Fact) :- fact Fact => db.

do (query Q) :- (fact Q, !, print "Yes", nl; print "No", nl), db.

do (whatif Conjecture) :- (fact Conjecture => db), db.

do quit.

Figure 5.4: The two modules db sig and hyp db.
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module comp_sci_ext.

accumulate db_sig.

kind person type.

type enrolled person -> int -> entry.

type kim, dana person.

fact (enrolled kim 102).

fact (enrolled dana 101).

fact (enrolled kim 210).

fact (enrolled dana 250).

module comp_sci_int.

accumulate comp_sci_ext.

type cs_major, graduates person -> entry.

fact (cs_major X) :-

(fact (enrolled X 101); fact (enrolled X 102)),

fact (enrolled X 250), fact (enrolled X 301).

fact (graduates X) :-

(fact (enrolled X 101); fact (enrolled X 102)),

(fact (enrolled X 210); fact (enrolled X 250)),

fact (enrolled X 301).

Figure 5.5: The extensional (top) and intensional (bottom) parts of a sample database.
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module hyp_neg_db.

accumulate hyp_db.

type check entry -> command.

type quit, consis command.

type incon o.

do consis :- incon, print "no", nl, !; print "yes".

do (check Entry) :-

(fact Entry, print "yes", nl, !;

fact Entry => incon, print "no", nl, !;

print "no, but it could be true", nl),

db.

incon :- fact (enrolled X 210), fact (enrolled X 250).

Figure 5.6: Some clauses to help in using database constraints.

Command? consis.
no
Command? quit.
Command? quit.
?-

A little reflection on the structure of this database shows that there is no consistent way for
Kim to simultaneously graduate and be a CS major.

5.4.5 Quantifiers in goals and logic variables in programs

Program clauses are, by definition, closed formulas: if quantification is missing when clauses
are presented, outer-most universal quantifiers are assumed. An implementation technique
used by λProlog interpreters as well as most logic programming interpreters is that of
using a combination of free variables (called logic variables) and unification to delay the
determination of instances for some quantifiers. Thus, although a query and program may
start a computation as closed formulas, an interpreter may consider open versions of both
of these. While in Prolog, logic variables only find their way into goal formulas and not into
the program, in λProlog, logic variables may appear in both. λProlog and Prolog also differ
in that program and goals in λProlog occasionally must have quantifiers in them, where as
in Prolog, there is no syntax for expressing even the implicit quantification that is present
there. The following example illustrates both of these aspects of λProlog.

Consider the two modules in Figure 5.7. They both present tail-recursive implemen-
tations of the list reversal predicate. In each case, these implementations make use of an
auxiliary predicate rev and the code specifying the meaning rev is assumed only for the
scope of its use. For example, assuming that the reverse1 module is in the current context,
the query

?- reverse (1::2::nil) P.

reduces to the query
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module reverse1.

accumulate lists.

type reverse list A -> list A -> o.

type rev list A -> list A -> list A -> o.

reverse L K :-

(pi L\(rev nil L L) &

pi X\(pi L\(pi K\(pi M\(rev (X::L) K M :- rev L K (X::M))))))

=> rev L K nil.

module reverse2.

accumulate lists.

type reverse, rev list A -> list A -> o.

reverse L K :-

(rev nil K &

pi X\(pi L\(pi K\(rev (X::L) K :- rev L (X::K)))))

=> rev L nil.

Figure 5.7: Two implementations of the list reversal predicate.

?- rev (1::2::nil) P nil.

where the following two clauses for rev

rev nil L L.
rev (X::L) K M :- rev L K (X::M).

are also added to the current program for the duration of the reversing process. Thus the
code for the auxiliary predicate rev is available only for a specific part of the computation.
Furthermore, the universal quantification explicitly written into the reverse clause cannot
be dropped: if it were, the assumed scope of the quantification for the variables in embedded
clauses for rev would be on the outside of the reverse clause and thus it would not work.

Given this style of programming, there is another way that reverse can be written. One
way to reverse a list, say (a::b::c::nil), is to start with the program

rv nil (a::b::c::nil).
pi X\(pi N\(pi M\(rv (X::N) M :- rv N (X::M)))).

from which the goal (rv (c::b::a::nil) nil) is provable. Obviously, if we replace
(a::b::c::nil) with any list L, we can prove the atomic goal (rv K nil) if and only
if L and K are reverses of each other. While this is a natural approach to specifying reverse
(more natural it seems than the first one described above), it is not possible to code it
directly in Horn clauses since it describes the reverse predicate as relating a list contained
in a program and one contained in a goal. It is easy to write this relation in fohh. Consider
the second specification of reverse in the reverse2 module. Here, the query
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?- reverse (1::2::nil) P.

reduces to the (closed!) query

?- rev (1::2::nil) nil.

The variable into which the answer substitution for this computation will be placed is
actually within the program, since the program was augmented with the clauses

rev nil K.
rev (X::L) K :- rev L (X::K).

Here, the variable K in the first clause is free in that clause. Our convention for displaying
clauses using implicit quantification breaks down in displaying such clauses. The above
rev goal is reduced using the second rev clause to (rev (2::nil) (1::nil)) and then to
(rev nil (2::1::nil)). This final goal then succeeds by binding the variable P to the list
(2::1::nil). Since P was originally free in the initial query, this binding for P is reported
as the result of reversing the list (1::2::nil).

5.4.6 Partial control of clause selection

Using a technique similar to that of forming double negations in minimal logic, we can
partially specify the selection of clauses in the search for proofs. Given that controlling
deduction is difficult to do from within logic, any logical technique for achieving some
aspects of control is of interest. Since we shall use these techniques only within this chapter,
our interest here is mostly with illustrating embedded implications.

In this section, fix Σ to be a first-order signature and let q : o be a propositional constant
not in Σ. Let B be a Σ-formula. The Σ ∪ {q : o}-formula (B ⊃ q) ⊃ q, expressing a double
negation of B using q as the marker for inconsistency, will be denoted as simply Bq. If B is
a set of Σ-formulas, then Bq is defined as {Bq | B ∈ B}.

Let n ≥ 1, let P ∪ {D1, . . . , Dn} be a finite set of fohh program clauses, and let G
be a fohh goal, all of which are Σ-formulas. Furthermore, let q1, . . . , qn be propositional
constants not contained in Σ and let Σ′ be Σ ∪ {q1 : o, . . . , qn : o}. We shall argue that
Gqi follows from 〈Σ′,P ∪ {Dq1

1 , . . . , Dqn
n }〉 if and only if G follows from 〈Σ,P ∪ {Di}〉.

Thus, the propositional constant qi can be used to mark the clause Di in such a way that
the goal Gqi will be able to access only that marked clause. To see why this is the case,
first assume that G follows from 〈Σ,P ∪ {Di}〉. Then it is easy to build a proof that
Gqi follows from 〈Σ′,P ∪ {Dq1

1 , . . . , Dqn
n }〉 using backchaining and the AUGMENT rule.

Conversely, consider a goal-directed proof of Gqi from 〈Σ′,P ∪{Dq1
1 , . . . , Dqn

n }〉, and for the
sake of the following argument, assume that this proof is the shortest one possible. This
proof must end in an AUGMENT rule, and so contains a subproof showing that qi follows
from 〈Σ′,P ∪ {Dq1

1 , . . . , Dqn
n }, G ⊃ qi}〉. The last rule in this subproof is a backchaining

over either G ⊃ qi or over Dqi

i . In the first case, our proof has a subproof of G from
〈Σ′,P ∪{Dq1

1 , . . . , Dqn
n , G ⊃ qi}〉. Since G and P do not contain occurrences of q1, . . . , qn, G

is provable from that context if and only if G is provable from 〈Σ,P〉. In the second choice,
we have a subproof of qi from 〈Σ′,P ∪ {Dq1

1 , . . . , Dqn
n , G ⊃ qi, Di}〉. Again, this proof could

have been proved by backchain over either G ⊃ qi or Dqi

i . The first case leads to a subproof
of G from 〈Σ′,P ∪{Dq1

1 , . . . , Dqn
n , Di}〉 and, by the observation made above, this is possible

if and only if G is provable from 〈Σ,P〉. In the second case, that of backchaining over Dqi

i ,
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kind i type.

type a i.

type f,g i -> i.

type p i -> o.

type q1,q2 o.

p a.

((pi X\ p (f X) :- p X) => q1) => q1.

((pi X\ p (g X) :- p X) => q2) => q2.

Figure 5.8: Using the double negation construction for specifying clause selection.

we again have a proof of qi from 〈Σ′,P ∪ {Dq1
1 , . . . , Dqn

n , G ⊃ qi, Di}〉. This case, however,
is not possible since we assumed that we had started with the shortest possible proof.

For example, assume that we need to use the clauses

p a.
p (f X) :- p X.
p (g X) :- p X.

in a controlled fashion. In particular, we may want to sometimes use the first and second
clause only, or sometimes the first and third, or sometimes all three clauses. The clauses in
Figure 5.8 provide for a way to realize this control. The goal (p U => q1) => q1 will only
access the first two clauses; the goal (p U => q2) => q2 will only access the first and third
clauses, and the more complex goal

(p U => q1) => (p U => q2) => (q1 ; q2).

will access all three clause.
In general, if we allow the formulas D1, . . . , Dn to contain certain occurrences of the

symbols q1, . . . , qn, more subtle clause selection can be managed. For example, consider the
module in Figure 5.9. The adj predicate describes a small graph containing cycles. If we
simply used the two clauses

path U V :- adj U V.
path U W :- adj U V, path V W.

for specifying the path relation in this graph, a depth-first interpreter would generally not
terminate in computing the path relationship since the cycle in the graph would lead to a
looping computation. The above technique can be used to partially ameliorate this problem
by specifying a kind of stratified path predicate. The stratification, which is only specified
for paths of length 3 or less, is achieved by labeling path clauses using special proposi-
tional constants. In particular, if t and s are particular nodes in this graph, the goal
(path t s => q3) => q3 is provable if and only if there is a path of length 3 from t to s.

While this technique of labeling and selecting clauses is of interest, its use is reminiscent
of those unfortunate programming languages where statements are numbered and control is
specified with goto statements. In the next subsection, we employ this labeling technique
in a less drastic way.
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module path.

kind node type.

type a,b,c,d,e node.

adj a b.

adj b a.

adj b c.

adj c a.

adj b d.

type q0,q1,q2,q3 o.

((pi U\(path U U)) => q0) => q0.

(pi U\(pi V\(pi W\(path U W :- (adj U V, ((path V W) => q0) => q0

)))) => q1) => q1.

(pi U\(pi V\(pi W\(path U W :- (adj U V, ((path V W) => q1) => q1

)))) => q2) => q2.

(pi U\(pi V\(pi W\(path U W :- (adj U V, ((path V W) => q2) => q2

)))) => q3) => q3.

Figure 5.9: Cascading control in the computation of a path in a cyclic graph.

5.4.7 Bottom-up interpretation and memoization

Given the dynamically changing nature of the current program when embedded implications
are used, it should be possible to store goal formulas in programs once they have been proved.
This is at least true when the goal formula is in the core of fohh. Such a memoization
technique, however, does not generally work well in practice. Consider, for example, the
two goal formulas

A ∧G and A ∧ (A ⊃ G).

Although these two are intuitionistically equivalent, they have different behaviors in a depth-
first theorem prover. For example, assume that the goal G may generate A as a subgoal
many times. In the first goal above, those subproofs would be recomputed each time A is
generated. In the second goal, however, A is stored away in the program and can be used to
produce an immediate proof of A. While the second goal can therefore have shorter proofs,
all of the (long) proofs of the first goal still exist to prove the second goal: the additional
assumption A need not be used. Thus the second goal has many more proofs and only some
are shorter than for the first goal. Memoization will be successful if the interpreter can be
directed to find only these shorter proofs. Below we show one technique that can sometimes
be used to do just this. This technique again relies on the use of “double-negation.”

Let Σ be a first-order signature and assume that first-order Horn clauses satisfy Definition
3.1 in Section 3.4. Furthermore, assume that q is some token not in Σ. Let P be a finite set
of first-order Horn clauses over Σ. Define

Pq = {∀x̄(G ⊃ Aq) | ∀x̄(G ⊃ A) ∈ P}.
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Notice that the formula ∀x̄(G ⊃ Aq) is intuitionistically equivalent to ∀x̄[(G∧(A ⊃ q)) ⊃ q].
These are all Σ ∪ {q : o}-formulas of clausal order of 2: no formula in Pq is a Horn clause
but they are all hereditary Harrop formulas.

Let P be some finite set of fohh formulas and let Q be a set of fohc formulas, both over
the signature Σ. Consider proving q from the context Σ ∪ {q : o};P ∪ Qq ∪ {H ⊃ q}. The
first step in such a proof is a backchaining over some clause in Qq or over the clause H ⊃ q.
In the first case, assume that the backchaining rule used the formula ∀x̄[G ⊃ Aq], where
∀x̄[G ⊃ A] is a Σ-formula in Q. Thus, there is some closed substitution θ so that there are
proofs of θG from P ∪Qq ∪ {H ⊃ q} and of q from P ∪Qq ∪ {H ⊃ q, θA}. Since q does not
appear in θG, it must be the case that θG follows, in fact, from P. Thus, the context for the
subproof for q is the same as for the full proof except that a logical consequent of P, namely
θA, has been added to its context. If this subproof was proved by backchaining on a clause
from Qq, say ∀x̄[(G′ ∧ (A′ ⊃ q)) ⊃ q], then there would be some closed substitution θ′ for
which θ′G′ is provable from P ∪ {θ′A′} and q is provable from P ∪Qq ∪ {H ⊃ q, θA, θ′A′}.

Eventually, a proof must backchain over the clause H ⊃ q. Thus, we would have a
subproof of H from P ∪ Qq ∪ A where A is a set of closed atomic Σ-formulas that are
consequences of P ∪ Q. Since H does not contain q, it must be true that H follows from
P ∪ A and therefore from P ∪ Q. Thus, we have achieved a kind of bottom-up style proof
(even using an depth-first interpreter).

Given the above discussion, the following is not difficult to prove: Let P be a set of fohh
formulas and let Q be a set of fohc formulas, both over the signature Σ. Let q be a token not
in Σ. Then for any Σ-formula goal G, Σ;P ∪Q `I G if and only if Σ∪{q : o};P ∪Qq `I Gq.

Consider applying these ideas to the computation of Fibonacci numbers as specified
in Figure 5.10. (To stay entirely within logic, a version of the non-negative integers are
represented here using terms: the built-in integers require using predicates that are not
fully explained by first-order logic (see Section 4.4.1).) As is well known, this specification
of the Fibonacci sequence is computationly expensive: to compute the nth Fibonacci number
requires an exponential number of recursive calls to fib. If we set P to the three clauses
specifying fib, then Pq would contain the clauses in Figure 5.11. Using the discussion
above, it is easy to see that the query

?- (fib N M => q) => q.

is provable from the code in Figure 5.11 if and only if fib N M is provable from the code
in Figure 5.10. While there are some proofs of (fib N M => q) => q that are linear in
the size of N, there are also a great number of large proofs. The program in Figure 5.11
is certainly a poor one to be used in a depth-first interpreter. This particular example,
however, can easily be improved by “driving” the interpreter to select particular clauses on
which to backchain. This can be done by elaborating the simple propositional letter q into
qq N, where N serves as an index that increases as a proof is built. Given this elaborated
program, there is only one proof of the query

?- (fib N M => qq (s N)) => qq z.

It is also interesting to note that if H is a goal that contains possibly many calls to fib with
their first argument in the range from 0 to N, then the query

?- (H => qq (s N)) => qq z.

will first generate a table of Fibonacci numbers and then evaluate H against that table.
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kind nat type.

type z nat.

type s nat -> nat.

type plus nat -> nat -> nat -> o.

plus z N N.

plus (s N) M (s P) :- plus N M P.

type fib nat -> nat -> o.

fib z z.

fib (s z) (s z).

fib (s (s N)) V :- fib N V1, fib (s N) V2, plus V1 V2 V.

Figure 5.10: A simple formulation of non-negative integer addition and a naive computation
of Fibonacci numbers.

type fib nat -> nat -> o.

type q o.

q :- fib z z => q.

q :- fib (s z) (s z) => q.

q :- fib N V1, fib (s N) V2, plus V1 V2 V, (fib (s (s N)) V => q).

Figure 5.11: A bottom-up, undirected computation of Fibonacci numbers.

type qq nat -> o.

qq z :- fib z z => qq (s z).

qq (s z) :- fib (s z) (s z) => qq (s (s z)).

qq (s (s N)) :- fib N V1, fib (s N) V2, plus V1 V2 V,

fib (s (s N)) V => qq (s (s (s N))).

Figure 5.12: A bottom-up, directed computation of Fibonacci numbers.
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module sterileJar.

kind bug, jar type.

type j jar.

type sterile, heated jar -> o.

type dead, bug bug -> o.

type in bug -> jar -> o.

sterile J :- pi x\(bug x => in x J => dead x).

dead B :- heated J, in B J, bug B.

heated j.

Figure 5.13: The file jar.mod.

5.5 Universal goals

λProlog allows universal quantifiers to also appear in goals. There are at least two different
ways to interpret the goal ∀x.G(x).

The extensional interpretation of this quantifier might be the first to come to mind.
Using this intepretation, a universal quantifier is true if it is true for all instances of that
quantifier. To be a bit more precise, assume that the type of the bound variable x above is
τ and assume that our intended notion of τ is a particular set of objects. For example, int
denotes the set of integers and list string denotes the set of lists of strings. Then this
quantified expression is true if all instances of the goal G(x) are true when x ranges over all
the elements of the domain denoted by τ .

There are at least three reasons why such an interpretation of universal quantification
is not used in λProlog. First, given a suitable definition of model, provability in logic is
generally tied to truth in all models and not truth in one model. Second, there can generally
be an infinite number of members of a type, in which case this check is computationally
intractable. (In some database applications, for example, types might be restricted in such
a way as to be finitary, so this kind of check is feasible.) Third, a type may not, in fact, be
closed or we might wish to draw conclusions without necessarily knowing all elements of a
type. As we shall see in this chapter and in Chapter 7, there are a number of applications
where a type should be considered open.

λProlog uses an intensional interpretation of universal quantification: ∀τx.G(x) follows
from the context Σ;P if G[c/x] follows the context Σ ∪ {c : τ};P for some token c that
does not occur in Σ. That is, ∀τx.G(x) follows if it follows generically. We have already
introduced this interpretation in Section 3.3. The new constant used in this computation will
be called a scoped constant. In the sequent calculus, these are called eigenvariables. Notice
that there is a strong similarity in the interpretation of implicational goals and universal
quantifiers: implicational goals require the current program to be augmented for a certain
scope and universal quantifiers require the current signature to be augmented for a certain
scope.

For a simple example of using universal quantifiers in goals, consider the following prob-
lem. Assume that a jar is sterile if every bug (germ) in it is dead, that a bug in a heated
jar is dead, and that a given jar has been heated. What reasoning is necessary to estab-
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lish that the given jar is sterile? The intensional interpretation of the quantification will
work here. Let 〈Σ,P〉 be the signature-program pair associated with the the module in
Figure 5.13. (Notice that there are no bugs provided by the sterileJar module: that is,
there are no Σ-terms of type bug.) Consider proving the goal sterile j from the context
Σ;P. Backchaining on the first clause in P yields the goal

?- pi x\(bug x => in x j => dead x).

Given the intensional interpretation of universal quantification, we proceed by selecting a
constant, say g, that does not occur in Σ. We now attempt to prove the goal

?- bug g => in g j => dead g.

This goal succeeds if the goal dead g follows from the program P augmented with bug g
and in g j. It is easy to see that this in fact follows by simple backchaining steps. After
this goal succeeds, the two clauses bug g and in g j are removed from the current program:
the constant g is similarly removed (discharged).

In order to use unification to implement an interpreter for fohh, unification must account
for the introduction of scoped constants. For example, there is no substitution for X such
that the goal

?- pi y\(p (f y) => p X).

succeeds from the empty program. If we naively simplify this goal as described above, we
would first generate a scoped constant, say c, and then try to prove (p X) from (p (f c)).
But this reduced problem is satisfied with the substitution of (f c) for X. Notice, however,
that the result of applying this substitution to the goal above, namely

?- pi y\(p (f y) => p (f c)).

does not yield a provable goal. This unsoundness arises from the fact that when c was
selected, the future instantiations of X must be restricted to be terms that cannot contain
the constant c. This restriction, which blocks the only route to a proof of the above goal,
is central to many uses of universals in goals made by λProlog programs.

In general, whenever a new constant is used to instantiate a universal goal, all free
variables, in the goal and the program, must be restricted so that the substitution terms that
will eventually instantiate them will not contain that new constant. Free variables generated
by subsequent backchaining steps, however, may be instantiated with terms containing this
new constant. For example, consider proving the goal

?- pi X\(p X) => (p Y) => pi Z\(p Z).

where the current program contains no clauses for p. The only free variable in this goal is Y.
After adding the clause pi X\(p X) and (p Y) to the current program, the goal pi Z\(p Z)
is attempted by first introducing the new constant c and attempting to prove (p c). The
first clause to be checked for backchain is (p Y). When c was introduced, however, Y was
constrainted so that it could not be instantiated with a term containing c. Thus, the clause
(p Y) cannot be used to prove this goal. The second clause to be attempted for backchaining
is pi X\(p X): first a new logic variable, say U, is introduced, and (p U) is unified with (p
c). Since U was introduced after c, there is no constraint on U being instantiated with a
term containing c. Thus, this goal has one proof.
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For some types τ , such as int and (list A), there is a third method for proving the
universal quantifier ∀τx.G: namely, induction. λProlog does not have induction built-in,
even for types such as int. Notice, however, that induction does make use of the intensional
interpretation of universal quantification. For example, to prove that a given formula, say
C(n), is true for all non-negative integers n, the implication ∀m(C(m) ⊃ C(m + 1)) must
be proved: this latter quantification is treated using the intensional interpretation. (The
base case C(0), of course, must also be proved.)

For example, assume that the lists module with the usual two clauses for append is in
the current program space. While the query

?- pi L\(append nil L L).

is provable (this is actually one of the clauses defining append), it is not the case that the
query

?- pi L\(append L nil L).

is provable. The generic reading of this quantifier is not strong enough to prove this query.
It is possible to use induction in a straightforward fashion to prove this query. In particular,
the following query, which states the base case and inductive case, is provable.

?- append nil nil nil,
pi L\(append L nil L => pi X\(append (X::L) nil (X::L))).

Generally, proofs using induction will not be so simple for λProlog’s depth-first interpreter
to complete.

5.5.1 Inferences among clauses

We generally think of λProlog as proving a relationship between programs and goals. How-
ever, if we restrict ourselves to the core of fohh, there is syntactically no difference between
these objects. Thus, it is natural, for example, to ask if one specification of a predicate can
prove another specification.

For example, consider the three different specifications of the Fibonacci relation given
in Figures 5.10, 5.11, and 5.12. In Figure 5.14 the initial, immediate specification of this
relation is given, while the other two specifications are placed within the body of the clauses
specifying the check1 and check2 predicates. It is a (surprisingly) simple λProlog com-
putation to show that check1 is provable, that is, that the first specification implies the
second. In particular, let F1 denote the three clauses in the first specification and let F2 be
the three clauses in the second specification. Then the computation of check1 demonstrates
that F1 `I F2. Let Q denote the program clause for qq in Figure 5.14. Then the fact that
check2 is provable from this module demonstrates that F1, Q `I F3 where F3 is the set of
clauses in the third specification of the Fibonacci relation.

These entailments of λProlog can be used to supply part of the arguments that F2 and
F3 specify the same relationship that is specified by F1. Assume that F2 `I (fib n m ⊃
q) ⊃ q. Since `I is transitive, F1 `I (fib n m ⊃ q) ⊃ q, which is possible if and only if
F1, (fib n m ⊃ q) `I q. However, the latter is provable if and only if F1 `I fib n m. Thus,
if F2 can prove (fib n m)q, then m is the nth Fibonacci number. Similarly, assume that

F3 `I (fib n m ⊃ qq (s n)) ⊃ qq z.
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By transitivity again, F1, Q `I (fib n m ⊃ qq (s n)) ⊃ qq z, which is possible if and
only if F1, Q, (fib n m ⊃ qq (s n)) `I qq z. However, the latter is provable if and only if
F1 `I fib n m has a proof.

The converses of these results, that is, if m is the nth Fibonacci number then

F2 `I (fib n m ⊃ q) ⊃ q and F3 `I (fib n m ⊃ qq (s n)) ⊃ qq z

is not addressed here. Instead of using transitivity of provability, induction on the structure
of goal-directed proofs is needed.

5.5.2 Hiding constants

Let fohh+ be the extension to fohh that allows universal quantifiers in goal formulas to bind
variables of order 1 types as well as at order 0. Furthermore, these types can be either of
the form τf or τp (see Subsection 2.7). The logical significance of this extension to fohh is
provided by the more general higher-order logic presented in Chapter 6.

One use of universal quantification in goals at predicate types is to introduce a predicate
symbol that can be hidden, that is, given local scope. A standard way to write the list
reversing program, reverse, in Prolog (see also Section 5.4.5) is to first write a tail recursive
auxiliary function rev of three arguments. Although this second predicate is intended to be
used only locally in the definition of reverse, there is no way in simple Horn clause logic
for the scope of rev to be localized to just the definition of reverse. Making use of the
universal quantification of predicates and of implications in goals, we can write a version of
reverse where rev is given local scope. Consider the program in Figure 5.15. First, notice
that the variables L and K are bound with different scopes in this clause: in particular, L
is bound with the outermost scope around this clause and twice on the internal clauses for
the local predicate rev. Three differently named variables could have been used to denote
these quantified variables.

In attempting to prove the goal (reverse (1::2::3::nil) K) from the clause in this
file, an interpreter would first generate a new predicate symbol, say c, then add the Horn
clauses

pi L\(c nil L L).
pi X\(pi L\(pi K\(pi M\(c (X::L) K M :- c L K (X::M))))).

to the current program, and then try to prove (c (1::2::3::nil) K nil). After the
answer substitution K == (1::2::3::nil) is discovered, both c and the new clauses per-
taining to c would be discharged.

Using fohh+, the second style of specifying reverse given in Section 5.4.5 can also be
written so that the auxiliary predicate and its Horn clause specification are given local
scope. See Figure 5.16.

5.5.3 Abstract data types

Support for abstract data types is present in fohh+ since it is possible to hide the constructors
of a given data structure as well as hide various procedures that help in processing their
internal structure.

For example, the bodies of each of the clauses in Figure 5.17 introduce local constants
and local definitions for the three predicates empty, enter, and remove, and then evaluate
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module fibimp.

kind nat type.

type z nat.

type s nat -> nat.

type plus nat -> nat -> nat -> o.

plus z N N.

plus (s N) M (s P) :- plus N M P.

type fib nat -> nat -> o.

fib z z.

fib (s z) (s z).

fib (s (s N)) V :- fib N V1, fib (s N) V2, plus V1 V2 V.

type q,check1 o.

check1 :-

(q :- fib z z => q),

(q :- fib (s z) (s z) => q),

pi N\(pi V1\(pi V2\(pi V\(

(q :- fib N V1, fib (s N) V2, plus V1 V2 V,

(fib (s (s N)) V => q)))))).

type check2 o.

type qq nat -> o.

qq X :- qq (s X).

check2 :-

(qq z :- fib z z => qq (s z)),

(qq (s z) :- fib (s z) (s z) => qq (s (s z))),

pi N\(pi V1\(pi V2\(pi V\(

qq (s (s N)) :- fib N V1, fib (s N) V2, plus V1 V2 V,

fib (s (s N)) V => qq (s (s (s N))))))).

Figure 5.14: The naive specification of the Fibonacci relation can prove two other specifi-
cations.
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type reverse list A -> list A -> o.

reverse L K :- pi rev\(

(pi L\(rev nil L L) &

pi X\(pi L\(pi K\(pi M\(rev (X::L) K M :- rev L K (X::M))))))

=> rev L K nil).

Figure 5.15: An implementation of reverse.

type reverse list A -> list A -> o.

reverse L K :- pi rv\(

( rv nil K &

pi X\(pi N\(pi M\( rv (X::N) M :- rv N (X::M)))))

=> rv L nil).

Figure 5.16: Another implementation of reverse.

a given goal. The first and third clauses implement a stack; the second implements a queue.
The data constructors for the stack and queue (given collectively the type bag) are hidden
by universal quantifiers around the bodies of these clauses. An attempt to carry these local
constants outside of their scope results in a failure. For example, we have the following
queries, assuming that the module stackqueue is in the current context.

?- test1 A B.
A == 2
B == 1.
?- test2 A B.
A == 1
B == 2.
?- test3 B.
no
?-

The last failure results from an attempt to carry the constructors emp and stk out of their
quantified scope.

These examples of specifying abstract data types are cumbersome. In Section 5.6 we
present a better syntax for this style of programming.

For two related but simpler examples, consider how to specify goals that fail in all
program contexts or that succeed only once in all program contexts. A predicate, say fail,
will fail if there are no clauses defining it. In a dynamic setting where implications allow
new clauses to be added, there is no guarantee that clauses defining fail are not added
during some computation. The goal pi p\p, however, will fail in all programming contexts:
when the interpreter encounters this goal, it must select a new null-ary predicate, say c,
and then attempt to prove c, an attempt that must fail since c is new. Similarly, the goal
pi p\(p => p) will succeed exactly once in all programming contexts: again the interpreter
will need to select a new null-ary predicate, say c, then assume c and then attempt to prove
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module stackqueue.

kind bag type.

type empty bag -> o.

type enter, remove int -> bag -> bag -> o.

type test1, test2 int -> int -> o.

type test3 bag -> o.

test1 A B :- pi emp\(pi stk\(

empty emp =>

pi S\(pi X\( enter X S (stk X S))) =>

pi S\(pi X\( remove X (stk X S) S)) =>

sigma S1\(sigma S2\(sigma S3\(sigma S4\(sigma S5\(

empty S1, enter 1 S1 S2, enter 2 S2 S3,

remove A S3 S4, remove B S4 S5 ))))))).

test2 A B :- pi qu\(pi

pi L\( empty (qu L L)) =>

pi X\(pi L\(pi K\( enter X (qu L (X::K)) (qu L K)))) =>

pi X\(pi L\(pi K\( remove X (qu (X::L) K) (qu L K)))) =>

sigma S1\(sigma S2\(sigma S3\(sigma S4\(sigma S5\(

empty S1, enter 1 S1 S2, enter 2 S2 S3,

remove A S3 S4, remove B S4 S5 )))))).

test3 V :- pi emp\(pi stk\(

empty emp =>

pi S\(pi X\( enter X S (stk X S))) =>

pi S\(pi X\( remove X (stk X S) S)) =>

sigma U\(empty U, enter 1 U V))).

Figure 5.17: Implementations for stacks and queues.
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c, which will, of course, have exactly one proof in all programming contexts. Similarly, the
goal pi p\((p :- p) => p) will cause the interpreter to loop.

5.6 Additional module directives

The additional expressiveness of fohh and fohh+ over that of fohc allows two more module
directives, import and local, to be defined in terms of embedded implications and universal
quantifiers.

5.6.1 Declaring a local scope to constants

In Sections 5.5.2 and 5.5.3 we frequently used a universal quantifier over an implication,
∀x(D ⊃ G) where x is not free in G, to introduce a scoped constant (instantiating x) and
new clauses describing the meaning of those constants (the appropriate instance of D).
This formula, however, is intuitionistically equivalent to (∃x.D) ⊃ G. This suggests that
existential quantification over program clauses can be used to establish local scoping of
constants. Unfortunately, formulas of the form ∃x.D are not program clauses in either fohh
or fohh+. We can resolve this lack by introducing a new class of formulas, for existentially
quantified program clauses:

E ::= D | ∃x.E | E ∧ E.

We shall now allow modules to denote E-formulas. When such a formula, say ∃x̄.D, is
merged with the current context, new scoped constants will be introduced to instantiate
the variables in the list x̄ and the current program will be expanded with the appropri-
ate instance of D. Such an interpretation of existential quantification is justified by the
equivalence

(∃x̄.D) ⊃ G ≡ ∀x̄(D ⊃ G).

The local declaration will exactly match this form of existential quantification over program
clauses.

The stack module in Figure 5.18 uses the local directive to declare that the scope of
the two constructors for the bag type, emp and stk, are local to this module. The syntax
for the local declaration is the same as for the type declaration, except that the keyword
local replaces the keyword type. (It is an error for the same token to be given a type
and local declaration within the same module.) The signature attached to this module is
exactly

kind bag type -> type.
type empty bag A -> o.
type enter, remove A -> bag A -> bag A -> o.

The hidden constants are not part of this signature. Because the intended meaning of local
is an existential quantifier and since these can be accounted for as universal quantification
over goals, the fact that a constant does not leave a locally-declared scope is enforced by
unification, as illustrated in Subsection 5.5.3.

The local keyword should appear prior to the first occurrence within the module of a
formula containing the constant it declares. The intended scope of local is, however, global
and can alway be written in the preamble of a module.
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module stack.

kind bag type -> type.

local emp bag A.

local stk A -> bag A -> bag A.

type empty bag A -> o.

type enter, remove A -> bag A -> bag A -> o.

empty emp.

enter X S (stk X S).

remove X (stk X S) S.

Figure 5.18: A module implementing stacks as an abstract data type.

module queue.

kind bag type -> type.

type empty bag A -> o.

type enter, remove A -> bag A -> bag A -> o.

local qu list A -> list A -> bag A.

empty (qu L L).

enter X (qu L (X::K)) (qu L K).

remove X (qu (X::L) K) (qu L K).

Figure 5.19: An abstract data type for a queue data structure.

The queue module in Figure 5.19 also makes use of the local directives. In Section 5.5.3
universal quantification over a propositional variable was used to describe goals that alway
succeed, fail, or diverge. These goals are named in Figure 5.20: there, local instead of
universal quantification is used to provide the scope for the propositional variable.

The match between existential quantification over program clauses and the local decla-
ration is not exact because of the presence of polymorphic typing. In particular, a quantified
variable can be used at only one type within its scope while a locally declared constant of
polymorphic type can be used at many different instances of its type.

5.6.2 Importing modules

The import directive is similar to the accumulate directive in syntax but its meaning is
more complex. If a module mod1 contains the line

import mod2, mod3.

then the modules mod2 and mod3 are made available (via implications) during the search
for proofs of the body of clauses listed in mod1. Thus, if the formulas E2 and E3 are
associated with mod2 and mod3, then a clause G ⊃ A listed in mod1 is elaborated to the
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module succfail.

local p o.

type fail, succeed, twice, repeat, diverge o.

fail :- p.

succeed :- p => p.

twice :- p => p => p.

repeat :- (p => p) => p => p.

diverge :- (p => p) => p.

Figure 5.20: Some simple definition of successes and failure.

module revmod.

import lists.

type reverse, nrev list A -> list A -> o.

local rev list A -> list A -> list A -> o.

reverse L K :- rev L K nil.

rev nil L L.

rev (X::L) K M :- rev L K (X::M).

nrev nil nil.

nrev (X::L) K :- nrev L M, append L (X::nil) K.

Figure 5.21: Hiding an auxiliary predicate using local.

clause ((E2 ∧ E3) ⊃ G) ⊃ A, or rather to the program clause that is equivalent to this
formula once the existential quantifiers surrounding E2 and E3 (if any) are changed to
universal quantification of the goal formula G (as described above). The signature of the
module mod1 is the result of merging the signatures for mod2 and mod3 with the declarations
explicitly declared in mod1.

Consider the module in Figure 5.21 that specifies the list reversal in two different ways.
Notice that the lists module is imported. Thus, the signature of the module revmod is
that of lists with the type declarations for reverse and nrev added. While all of the
constants in the lists module are part of revmod’s signature, the clauses in lists are not
made available via the revmod module.

To illustrate the nature of the importing further, consider the modules in Figure 5.22.
Here, modA simply declares that p is provable. Module modB imports modA and also con-
tains the clause p :- q. Consider the question: is p provable from modB? Given the def-
inition of importing, proving p leads to the attempt to prove q with modA added to the
current context. But even with modA available, there is no way to prove q, so the attempt
to prove p from modB fails. This illustrates the fact that importing is different from ac-
cumulating: if the accumulate keyword was used instead in modB, p would be provable
from modB. If modB is elaborated into a formula, that formula would be p :- (p => q),
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module modA.

type p o.

p.

module modB.

import modA.

type q o.

p :- q.

Figure 5.22: The modA clause p is available only locally in modB.

or equivalently, (p => q) => p. Asking the query p from this formula yields the formula
((p => q) => p) => p, which is the well-known formula called Peirce’s formula. It is an
example of a formula containing only implications that is classically and not intuitionisti-
cally provable. This supplies yet another example of that fact that if classical logic were
used as the proof system for fohh, the natural notions of scoping described here would not
be supported.

5.6.3 Declaring a local scope to type constructors

The localkind keyword can be used to provide a local scope to type constructors in a
fashion similar to the the local keyword. The localkind keyword, however, does not
correspond directly to an existential quantifier since the underlying logic used here does not
have explicit quantification at the level of types. Instead, the localkind keyword simply
declares that a certain type constructor should not appear in the signature of a module. It
is an error, however, if some constant in a module’s signature has a type that contains a
type constructor given this limited scope.
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Chapter 6

Simply typed λ-terms and
formulas

When there are notions of scoping at the level of logical connectives, as there are in fohh
and fohh+, notions of scoping within terms are forced upon us. We argue such a connection
between logic-level and term-level scoping in Section 7.1 when we identify λ-abstractions
as a way to overcome a kind of computational incompleteness within fohh. Besides this
“completion” role within fohh, λ-terms represent a valuable primitive concept for the ma-
nipulation of the syntax of programs and logics. Since λProlog has λ-terms built into it,
an important area of application for it is a wide range of meta-programming tasks. In this
Chapter we review some elementary facts about a logic that contains λ-abstractions.

6.1 Syntax for λ-terms and formulas

The simply typed λ-terms are built from typed versions of λ-abstraction and application.
Application, denoted by juxtaposition, has already been used extensively in first-order terms
and formulas. Abstraction is denoted by an infix backslash placed between the bound
variable and the body of the abstraction. When reading an expression containing such a
backslash symbol, the body of the abstraction goes as far to the right as is possible (given
the presence of other parentheses and the end of the expression). For example, the λ-terms
λx(f(gλy(hxy))x), λfλx(f(f(fx))), λxλy x are written in λProlog as

x\f (g y\(h x y)) x
f\x\f (f (f x))
x\y\x

Notice that \ binds more tightly than does application and that it is right associative.
Typing for λ-terms is a modification of the typing judgment Σ; Γ `̀f t: τ for first-order

terms given in Figures 3.1 and 3.3. The rules in Figure 6.1 are used to define Σ; Γ `̀ t: τ :
notice that the only difference between these rules and those in Figures 3.1 and 3.3 are that
the two rules for typing universal and existential quantification are replaced with a rule
for typing λ-abstraction instead. A consequence of this change is that the type τ in the
judgment Σ; Γ `̀t: τ many no longer be a primitive type.

91
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c:σ ∈ Σ0 τ / σ

Σ;Γ `̀c: τ
c: σ ∈ Σ τ / σ

Σ;Γ `̀c: τ
c: τ ∈ Γ

Σ; Γ `̀c: τ

Σ;Γ `̀g: τ1 → τ2 Σ; Γ `̀t: τ1

Σ;Γ `̀(g t): τ2

Σ;Γ, x: τ `̀t:σ
Σ;Γ `̀λx t: τ → σ

provide that x is not declared as a type or kind in Σ0, Σ, or Γ.

Σ; Γ `̀B: τ
Σ;Γ `̀C: τ

provided B and C differ only in the names of bound variables.

Figure 6.1: Rules for typing λ-terms.

The simply typed λ-terms are used in λProlog to replace the separate notions of term and
formula: in particular, a formula will be identified as a λ-term of type o. To accommodate
universal and existential quantification, the global context Σ0 will be assumed to have the
constants constants ∀ and ∃ are both given the type (τ → o) → o (where τ is a type
variable). In λProlog syntax, these would be declared with the typing declaration

type pi, sigma (A -> o) -> o.

The use of pi for ∀ and sigma for ∃ is taken directly from an early paper of Church [Chu40].
For an example of typing a quantified formula, assume that Σ is a signature such that the
judgment Σ; Γ, x : σ `̀B: o is provable (assume that σ is some type expression). Thus, B
is a formula that may contain the variable x free. Using the typing rule for λ-abstractions
we have Σ; Γ `̀λx B: σ → o. Since ∀ : (τ → o) → o is contained in Σ0, we can derive the
judgments Σ; Γ `̀∀: (σ → o) → o and, finally, Σ; Γ `̀∀λx B: o. We shall adopt the convention
that we shall write ∀x B for ∀λx B and ∃x B for ∃λx B. For another example using λProlog
syntax, consider the formula

pi y\ append (1::2::nil) y X.

the logical constant pi has type (list int -> o) -> o (in this context) and it is applied
to the abstraction

y\ append (1::2::nil) y X.

which has type list int -> o.
λProlog contains only one term-level binding operation: the one for λ. All other binders,

such as what we have seen for universal and existential quantification, as well as any that
a programmer wishes to have within various data structures, must all be reduced to λ-
abstraction. For a wide variety of binding operations, such a reduction is generally easy and
accomplished essentially the way it was for quantification.

Given the typing discipline we have chosen, it is possible for logical connectives to appear
within the scope of non-logical symbols. Higher-order programming (see Chapter 8) will
require just such a possibility. For example, assume that we have the constant
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type forevery (A -> o) -> list A -> o.

This constant takes two arguments to become an atomic formula: the first argument is a
predicate over one argument of type A and the second argument is a list of items of type A.
An example of an atomic formula using this constant is

forevery (x\ x > 5, x < 9) (3::10::6::8::nil).

Notice that this atomic formula contains a subterm, x > 5, x < 9, that is itself a formula.
The conjunction in this expression is a logical connective that occurs in the scope of the
nonlogical symbol forevery.

6.2 Equality and λ-conversion

The intended interpretation of λ-abstraction and juxtaposition are the operations of function
definition and function application. These intentions are partially formalized by the rules
of λ-conversion. First extend the notions of substitution and free-for given in Section 5.2
to terms: we write s[t/x] to denote the operation of replacing all free occurrences of a
variable x in the term s by a term t of the same type as x. In performing this operation
of replacement, there is the danger that the free variables of t become bound inadvertently.
As in Section 5.2, we say that t is free for x in s if the free occurrences of x are not in the
scope of an abstraction in s that binds a free variable of t. Since quantification is accounted
for by λ-binding, these definitions extend those given in Section 5.2.

The rules of α-conversion, β-conversion and η-conversion are then, respectively, the
following operations on terms:

• Replacing a subterm λx.s by λy.s[y/x], provided y is free for x in s and y is not free
in s, is called α-conversion.

• Replacing a subterm (λx.s)t by s[t/x], provided t is free for x in s, is called β-reduction.
The converse operation is call β-expansion. These two operations are both called β-
conversion.

• Replacing a subterm λx.(sx) by s, provided x is not free in s, is called η-reduction.
The converse operation is call η-expansion. These two operations are both called
η-conversion.

The rules above, collectively referred to as the λ-conversion rules, are used to define the
following relations on terms. A term t λ-converts to s if there is a sequence of applications
of α-conversion, β-conversion, and η-conversion that transforms t into s. This relation is
clearly an equivalence and congruence. λProlog implements λ-conversion as its notion of
equality. Thus, the following terms are equal within λProlog:

x\y\ f (g x) y
X\Y\ f (g X) Y
x\ f (g x)
x\y\ f ((u\v\v) (2 + 3) (g x)) y

The first two terms are related by α-conversions. The third term is the result of doing an
η-reduction on the first. Finally, doing a β-reduction on the fourth term yields
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x\y\ f ((v\v) (g x)) y

and doing a second β-conversion yields the first term. It is impossible for λProlog to tell
these four terms apart. For this reason also, it is impossible for λProlog to determine the
name of a bound variable since such a determination would change under α-conversion.

A term t is in β-normal form if it does not contain a β-redex (that is, a subterm of the
form (λx.t1)t2), and in λ-normal form if, in addition, it does not contain an η-redex (that
is, a subterm of the form λx.(t0x) with x not occurring free in t0). Sometimes, λ-normal is
also called βη-normal.

For convenience, we extend s[t/x] to the case where t is not necessarily free for x in s, by
first picking a term, say s′, that is α-convertible to s and for which t is free for x in s′ and
then set s[t/x] to the result of substituting t for x in s′. Although the result is dependent
on the actual formula s′ picked, all results will, themselves, be α-convertible. In this sense,
the extended definition of s[t/x] is well defined.

6.3 The meta-theory of λ-conversion

If t is a λ-normal form and s is λ-convertible to t, then t is said to be a λ-normal form
of s. It is well known that every simply typed λ-term has a λ-normal form and that this
normal form is unique up to α-conversion (see [Bar84, HS86]). This normal form can be
computed by repeatedly replacing subterms of the form (λx.s)t by s[t/x] and subterms of
the form λx.(sx) with s (provided x is not free in s). We denote the λ-normal form of s
by λnorm(s). Thus it is possible to determine if two λ-terms of the same type are equal
(modulo λ-conversion) by first computing their λ-normal forms and then checking to see if
these are equal up to α-conversion.

The computation of λ-normal forms is a rich operation, largely because of the presence
of β-conversion. When (λx.s)t is replaced by s[t/x], there may be many or no occurrences
of x in s. If there are many, then s[t/x] may contain many copies of the term t. Also,
while both t and s may be λ-normal, the term s[t/x] may not be in λ-normal form. Given
this complexity, it is not surprising that λ-normalization can be used as a computing device
itself. In particular, consider the simple signature

kind i type.

The only closed, simply typed, λ-normal terms of second-order type (i -> i) -> i -> i
are terms λ-convertible to one of the following terms

f\x\x f\x\ f x f\x\ f (f x) f\x\ f (f (f x)) ... .

These terms are called the Church numerals and can be used to denote the non-negative
integers: the series above represents the numbers 0, 1, 2, and 3.

It is an easy matter to compute the successor, addition, and multiplication functions for
non-negative integers using this encoding of integers. The λ-term

n\f\x\ f (n f x)

can be used to compute successor. For example, the successor of the Church numeral for 3
is the λ-normal form of

(n\f\x\ f (n f x)) (f\x\ f (f (f x)))
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which is the Church numeral 4, namely the term f\x\ f (f (f (f x))). Similarly, addi-
tion and multiplication can be implemented using the two λ-terms n\m\f\x\ n f (m f x)
and n\m\f\x\(n (m f) x), respectively. Since a λProlog interpreter computes the λ-normal
form of expressions prior to printing them out, we can compute the multiplication of 2 with
2, using Church numerals, by simply using the query

?- N = ((n\m\f\x\ n (m f) x)(f\x\ f (f x)) (f\x\ f (f x))).
N == f\x\ f (f (f (f x))).

yes
?-

The result is, of course, the Church numeral for 4. The functions over non-negative integers
that can be computed in this fashion are limited to essentially polynomials. The presence
of simple types restrict the computational power of such computations greatly.

Define the size of a λ-term to be the number of occurrences of application within the
term. The previous example can be used to show that the size of a λ-term can be made
polynomially larger by passing to its λ-normal form. For a more dramatic example of the
increase in size, consider the series of λ-terms of which the following are the first four:

(g\e\e) (e\f\ e (e f)) (f\x\ f (f x)).
(g\e\ g e) (e\f\ e (e f)) (f\x\ f (f x)).
(g\e\ g (g e)) (e\f\ e (e f)) (f\x\ f (f x)).
(g\e\ g (g (g e))) (e\f\ e (e f)) (f\x\ f (f x)).

Here the type of the bound variables are

x : i
f : i -> i
e : (i -> i) -> i -> i
g : ((i -> i) -> i -> i) -> (i -> i) -> i -> i.

The subterms that start with g\e\ are a version of Church numeral but with the type i
replaced with the type (i -> i) -> i -> i: for example, the term g\e\(g (g e)) has
the fourth-order type

(((i -> i) -> i -> i) -> (i -> i) -> i -> i) ->
((i -> i) -> i -> i) -> (i -> i) -> i -> i .

The nth term of this series has a size n + 6. The normal form of the first term in this series
is f\x\(f (f x)), encoding the numeral 2, while the normal form for the second term is
the encoding of the numeral 4. The third λ-term normalizes to

f\x\ f (f (f (f (f (f (f (f (f (f (f (f (f (f (f (f x)))))))))))))))

which encodes the numeral 16. The fourth λ-term normalizes to the encoding of the numeral
256. It is easy to show that the nth term of this series has a λ-normal form that is of size

222··
·2

}
n

For small values of n, this increase in the size of terms is dramatic. Statman has further
analyzed the computational costs of λ-conversion within the simply typed λ-calculus in
[Sta79].
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In most of the λProlog programs we shall consider, such blow-ups in the size of λ-normal
terms is the exception. There are several reasons for this.

• When computing with structures such as integers, we make use of built-in integers
instead of those constructed as above. Thus, computations on integers are efficient
and familiar. Similarly, it is possible to specify other structures, such as binary trees,
using simply typed λ-terms to construct them. We shall not do so, however, since we
shall prefer the usual practice of introducing non-logical constants to represent such
structures.

• In most examples, it is rare to need λ-abstraction within a term to bind a variable
of order 1 or more. If all bound variables are of order 0 (primitive types), then β-
conversion has the following property: if in the expression (λx.s)t both s and t are
λ-normal, then the β-redex, s[t/x] is in λ-normal form. In other words, although t
may be duplicated into several different positions, no new β-redexes are created.

• A large number of λProlog programs actually belong to the sublanguage Lλ, which is
described in Chapter 7. In this setting, all occurrences of β-conversion are instances
of a simpler form of β-conversion called β0-conversion: replace a subterm of the form
(λx.s)x with s. Notice that in such a case, passage to the λ-normal form actually
produces smaller terms.

As a further example of computing with λ-terms, consider the problem of representing
and computing with the two element domain of Booleans. We can represent true with
x\y\x and false with x\y\y both at type i -> i -> i. The conjunction and disjunction
of booleans can then both be modelled as λ-terms that take the representation of two
booleans and returns the representation of either their conjunction or disjunction. These
two boolean-valued functions can be represented, respectively, as

r\s\x\y\ r (s x y) y r\s\x\y\ r y (s x y)

each having type (i -> i -> i) -> (i -> i -> i) -> i -> i -> i. The conditional
for type i, that is the function of type (i -> i -> i) -> i -> i -> i that returns the
second argument if the first argument represents true and returns the third argument if the
first argument represents false, can be represented simply as the the λ-term r\x\y\ r x y.

The declarative underpinning of functional programming can be viewed as a setting
where programs are identified with λ-terms and computation is a process for computing λ-
normal forms. Thus λProlog can be used to evaluate some functional programs, as some of
the examples above illustrate. λProlog was never intended as a language that combines logic
and functional programming, which is fortunate since it does a poor job of realizing such
a combination. For example, while λProlog contains λ-terms, these terms cannot express
general recursion: as we mentioned, all terms in λProlog have normal forms so it would
be impossible to represent non-terminating programs using such terms. Of course, it is
the role of the logic to provide for general computation. The intended role of λ-terms in
computations will be discussed in the next chapter.

For an even more direct example of the weakness of the term language for capturing
functions, assume that the given a signature contains the declarations

kind i type.
type a, b, c, d i.



6.4. TYPING CONSTANTS AND VARIABLES 97

there is no λ-term F of type i -> i such that (F a) reduces to c and (F b) reduces to d.
There clearly is a functional program that would do such an operation, name one that can
be written in Scheme syntax as

(lambda (x) (if (equal x a) c d)).

Thus, the λ-terms of λProlog are not adequate to express even simple functional programs.

6.4 Typing constants and variables

The process of converting a string representation of a program clause or a goal (say, as is
found in a text file) into an actual logical formula is a complex process. In this section, we
shall focus on how it is determined that a given token is a constant or a variable and what
its type should be.

The following sequence of checks are used to determine which tokens within a program
clause or goal are constants, free variables, or bound variables.

1. Is the given token in the scope of a binding occurrence for that token? If so, that
token is a variable bound by the closest occurrence of a binding for it.

2. Does the token have an initial uppercase letter? If so, then this token is a free variable.

3. Otherwise, this token must be a constant declared in the relevant signature.

The types of constants and variables must also be determined. A signature declares
the types of constants and context within a term determines the types of free and bound
variables. It is also possible to attribute a typing to a subexpression of a formula by using
a colon (see Subsection 3.10.3).

To describe how λProlog determines which tokens are variables and constants and at
which types, we shall use the λProlog program in Figure 6.2. Here, we must be careful: to
what extent can a polymorphic λProlog program be used to define how to resolve syntactic
issues about λProlog? First, the program in Figure 6.2 is essentially a fohc program except
for several (important) uses of cut. Second, while polymorphic typing is used in this example,
it could be dropped entirely. In fact, the program here is essentially a Prolog program: typing
in this example makes it easier to read. Thus, we are essentially using a Prolog program to
describe syntactic aspects of λProlog.

The type lptype is used to encode types of λProlog: the constructor arr denotes the
function type arrow and the constants o and int denote the type of the same name: re-
member that types and constants can have common names (Section 2.4). For example, the
λProlog type int -> int -> o would be represented by the term (arr int (arr int o))
of type lptype.

The type preterm is used for the result of parsing a string representation of a formula:
the parser lexicalized the input and identified three special constructions: applications,
abstraction (via \), and type attribution (via :). Tokens and these three constructions are
denoted by the four constructors for preterm: tok, ap, ab, and colon, respectively.

The type lpterm is used to record the result of elaborating a preterm with the deter-
mination of which tokens denote constants and variables and at what type. This is done by
converting each preterm of the form tok String into an lpterm of the form v String Type
or c String Type: the first of which denotes a variable and the second, a constant. The
value Type is then the inferred type for that variable or constant.
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module lp_typing.

import pairs.

kind lptype type.

type arr lptype -> lptype -> lptype.

type o, int lptype.

kind preterm type.

type tok string -> preterm.

type ap, ab preterm -> preterm -> preterm.

type colon preterm -> lptype -> preterm.

kind lpterm type.

type c, v string -> lptype -> lpterm.

type app, abs lpterm -> lpterm -> lpterm.

type con_type string -> lptype -> o.

type ty_infer list (pair string lptype) ->

list (pair string lptype) ->

list (pair string lptype) ->

preterm -> lptype -> lpterm -> o.

con_type ":-" (arr o (arr o o)).

con_type "=>" (arr o (arr o o)).

con_type "," (arr o (arr o o)).

con_type ";" (arr o (arr o o)).

con_type "pi" (arr (arr A o) o).

con_type "sigma" (arr (arr A o) o).

ty_infer Vs In Out (colon M Ty) Ty P :- ty_infer Vs In Out M Ty P.

ty_infer Vs In Out (ap M N) Ty (app P Q) :-

ty_infer Vs In Mid M (arr Ty1 Ty) P, ty_infer Vs Mid Out N Ty1 Q.

ty_infer Vs In Out (ab B M) (arr Ty1 Ty) (abs (v Str Ty1) P) :-

B = (tok Str), ty_infer ((pr Str Ty1)::Vs) In Out M Ty P.

ty_infer Vs In In (tok Str) Ty (v Str Ty) :- assoc Str Ty Vs, !.

ty_infer Vs In In (tok Str) Ty (v Str Ty) :- assoc Str Ty In, !.

ty_infer Vs In ((pr Str Ty)::In) (tok Str) Ty (v Str Ty) :-

uppercase Str, !.

ty_infer Vs In In (tok Str) Ty (c Str Ty) :- con_type Str Ty.

Figure 6.2: A model of some simple type inference.
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The binary predicate con_type is used to declare the types of all constants in which
a given term is to be processed. Finally, the predicate ty_infer is used to elaborate a
preterm into an lpterm. The first argument of ty_infer is used to accumulate the tokens
that are to be matched to bound variables. The second and third arguments are used to
accumulate the typing judgments for the free variables encountered. To illustrate ty_infer,
consider the encoding of various constants that are contained in Figure 6.3. The predicate,
uppercase, over strings is assumed to be defined elsewhere: it succeeds if and only if its
argument is a string with an initial uppercase letter.

Consider attempting to prove the goal

?- test 3 Out Tm.

from the signature-program pair associated with the lists_signature pair in Figure 6.3.
Here, Out will be bound to the association list that attributes types to the free variables of
example 3, and Tm will be bound to the result of elaborating example 3. The binding for
Out will be the list

(pr "Y" (list A)) :: nil

and Tm will be bound to the term in Figure 6.4. Consider also attempting to prove the query

?- ty_infer nil nil Out (ab (tok "x")(ap (tok "x") (tok "x"))) Tm.

This query attempts to give a typing for the expression written x\(x x). This term has no
typing and the above query will fail. Failure is caused by the so-called occurs check within
unification: this check involves noticing that it is possible for a variable, say, x to unify
with the term (assumed not to be the variable x, if and only if x does not occur free in t.
Since the occurs check can be costly, many Prolog systems do not have the occurs check
implemented. Thus we need to modify our claim above: the program in Figure 6.2 should
be thought of as a Prolog program in which occurs check is employed.)

6.5 Higher-order logics

Many philosophical and mathematical concepts are naturally expressed in logic using quan-
tification over functions and predicates. Leibniz’s principle of equality, for example, states
that two objects are to be taken as equal if they share the same properties; that is, a = b
can be defined using quantification of predicates as ∀P [P (a) ≡ P (b)]. Unfortunately, naive
mixing of such quantification and logical connectives gives rise to inconsistent systems, con-
taining, for example, Russell’s paradox.

One approach for avoiding such a paradox is to adopt first-order logic and then to describe
theories on top of it that capture various mathematical and philosophical structures. For
example, Leibniz’s principle can be captured in multisorted first-order logic by letting app
be a first-order predicate symbol of arity two that denotes the application of a property
to an individual. Intuitively, app(P, x) means that the property P satisfies x or that the
extension of the property P contains x. The first argument of app would range over the sort
of properties while the second argument would range over the sort of individuals. Leibniz’s
property can then be expressed as the first-order expression ∀P [app(P, a) ≡ app(P, b)],
where appropriate axioms for describing app are specified. Set-theory is another first-order
language that encodes such higher-order concepts using membership ∈ as the (sort-less)
converse of app.
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module lists_signature.

import lp_typing.

% kind int type.

% kind list type -> type.

% type nil list A.

% type :: A -> list A -> list A.

% type append list A -> list A -> list A -> o.

type int lptype.

type list lptype -> lptype.

con_type "nil" (list A).

con_type "::" (arr A (arr (list A) (list A))).

con_type "append" (arr (list A) (arr (list A) (arr (list A) o))).

type example int -> preterm -> o.

example 1 % append nil L L.

(ap (ap (ap (tok "append") (tok "nil")) (tok "L")) (tok "L")).

example 2 % append (X::L) K (X::M) :- append L K M.

(ap (ap (tok ":-")

(ap (ap (ap (tok "append") (ap (ap (tok "::") (tok "X"))

(tok "L"))) (tok "K"))

(ap (ap (tok "::") (tok "X")) (tok "M"))))

(ap (ap (ap (tok "append") (tok "L")) (tok "K")) (tok "M"))).

example 3 % sigma x\(append nil x x, append x x Y)).

(ap (tok "sigma") (ab (tok "x") (ap (ap (tok ",")

(ap (ap (ap (tok "append") (tok "nil")) (tok "x")) (tok "x")))

(ap (ap (ap (tok "append") (tok "x")) (tok "x")) (tok "Y"))))).

example 4 % sigma x\(append nil (x:i) x, append x x x)).

(ap (tok "sigma") (ab (tok "x") (ap (ap (tok ",")

(ap (ap (ap (tok "append") (tok "nil"))

(colon (tok "x") (list i))) (tok "x")))

(ap (ap (ap (tok "append") (tok "x")) (tok "x"))

(tok "x"))))).

type test int -> list (pair string lptype) -> lpterm -> o.

test N Out Tm :- example N Pre, ty_infer nil nil Out Pre o Tm.

Figure 6.3: Example expressions for use in type inference of λProlog.
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(app (c "sigma" (arr (arr (list A) o) o))

(abs (v "x" (list A))

(app (app (c "," (arr o (arr o o)))

(app (app

(app (c "append" (arr (list A) (arr (list A) (arr (list A) o))))

(c "nil" (list A)))

(v "x" (list A)))

(v "x" (list A))))

(app (app

(app (c "append" (arr (list A) (arr (list A) (arr (list A) o))))

(v "x" (list A))) (v "x" (list A))) (v "Y" (list A)))))).

Figure 6.4: The elaboration of a preterm into an lpterm.

Higher-order logics are another approach to avoiding the paradoxes. In such logics,
quantification over functions and predicates is directly available and is not achieved via an
encoding. Types, however, are generally introduced to restrict the nature of quantification.
There are several typing schemes that have been employed. One approach types first-order
individuals with ι, sets of individuals with 〈ι〉, sets of pairs of individuals with 〈ιι〉, sets of
sets of individuals with 〈〈ι〉〉, etc. Such a typing scheme does not provide types for function
symbols: often higher-order logics have been used to formalize mathematics and in that
setting, functions can be represented by their graphs, i.e. certain kinds of sets of ordered
pairs.

6.5.1 Several senses to “higher-order logic”

The term “higher-order logic” is often used in different senses in the literature of compu-
tational logic, a fact that leads to some confusions. It is possible to identify at least three
different readings for this term.

1. Philosophers of mathematics usually divide logic into first-order logic and second-
order logic. The latter is a formal basis for all of mathematics and, as a consequence
of Gödel’s first incompleteness theorem [Goe65], cannot be recursively axiomatized.
Thus, higher-order logic in this sense is basically a model theoretic study [Sha85].

2. To a proof theorist, all logics correspond to formal systems that are recursively pre-
sented and a higher-order logic is no different. The main distinction between a
higher-order and a first-order logic is the presence in the former of predicate variables
and comprehension, i.e., the ability to form abstractions over formula expressions.
Cut-elimination proofs for higher-order logics differ qualitatively from those for first-
order logic in that they need techniques such as Girard’s “candidats de réductibilité,”
whereas proofs in first-order logics can generally be done by induction [GTL89]. Se-
mantic arguments can be employed in this setting, but general models (including
non-standard models) in the sense of Henkin [Hen50] must be considered.

3. To many working in automated deduction, higher-order logic refers to any computa-
tional logic that contains typed λ-terms and/or variables of some higher-order type,
although not necessarily of predicate type. Occasionally, such a logic may incorporate
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the rules of λ-conversion, and then unification of expressions would have to be carried
out relative to these rules.

Clearly, it is not sensible to base a programming language on a higher-order logic in
the first sense. λProlog is higher-order in the second and third senses. Notice that these
two senses are distinct. That is, a logic can be higher-order in the second sense but not
in the third: there have been proposals for adding forms of predicate quantification to
computational logics that do not use λ-terms and in which the equality of expressions
continues to be based on the identity relation (see, for example, [Wad91]). Conversely,
a logic that is higher-order in the third sense may well not permit a quantification over
predicates and, thus, may not be higher-order in the second sense. An example of this kind
is the specification logic that is used by the Isabelle proof system [Pau90].

6.5.2 The Simple Theory of Types

Church in [Chu40] introduced a typing system containing function types and a special type
for booleans used to represent formulas and predicates. The logic introduced in [Chu40],
called the Simple Theory of Types also contains simply typed λ-term and λ-conversion.

The logical foundation of λProlog is based on the Simple Theory of Types, partly be-
cause it is an elegant and succinct logic for incorporating higher-order features and partially
because it has a well developed meta-theory (an overview of which is given below). The syn-
tax of λProlog terms and formulas is directly inspired by the syntax of term and formulas in
[Chu40]. The three main differences between the logic employed in λProlog and the Simple
Theory of Types are (i) the choice of logical connectives to take as primitive, (ii) reliance on
intuitionistic logic in λProlog instead of classical logic, and (iii) the structure of types: the
Simple Theory of Types contains neither type constructors nor type variables. These have
been added to λProlog to provide for flexible polymorphic typing of some programs. The
use of o as the type of formulas and the use of pi and sigma as quantifiers comes directly
from [Chu40].

6.5.3 Semantics for the Simple Theory of Types

There are many ways to interpret higher-order logic with category theory providing one of
the richest possibilities [LS86]. Here we outline an early approach used by Henkin [Hen50].
Higher-order logic can be interpreted over a pair 〈{Dσ}σ,J 〉, where σ ranges over all types.
The set Dσ is the collection of all semantic values of type σ and J maps (logical and non-
logical) constants to particular objects in their respectively typed domain. Thus, Dι is the
set of all first-order individuals, Do is the set {true, false}, Dι→o is the set of characteristic
functions of subsets of Dι, etc. The mapping J must send the logical constants to their
intended meanings; for example, J (∧) is the curried function that returns true when its
arguments are both true, and false otherwise. A standard model is one in which the set
Dσ→τ is the set of all functions from Dσ to Dτ . Such models are completely determined by
supplying only Dι and J . If Dι is denumerably infinite, then Dι→o is uncountable: standard
models can be large. In fact, if Dι is infinite, it is possible to build a model of Peano’s axioms
for the non-negative integers. As a corollary of Gödel’s incompleteness theorem, the set of
true formulas in such a standard model is not recursively axiomatizable; that is, there is no
theorem proving procedure that could (even theoretically) uncover all true formulas.
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A key property of a higher-logic logics is whether or not it is extensional, that is, whether
or not the formula

∀τx(pz ≡ qz) ⊃ p = q

holds for all predicates p and q. This formula holds if whenever two predicates have the same
truth values on the same arguments implies that they are equal predicates. The logic under-
lying λProlog is not extensional: we wish to limit equality to be more syntactic. Equality
should be solvable by unification and not by checking the equivalence of two predicates on
all of their arguments. Another form of extensionality, namely,

∀τx(fz = gz) ⊃ f = g

does hold for the logic underlying λProlog. In the context of unification, this requires the
addition of the η-conversion rule.

It is possible to interpret terms and formulas over domains other than the standard one.
Henkin [Hen50] developed a notion of general model that included non-standard as well as
standard models. In the general setting, it is possible for Dσ→τ to be a proper subset of the
set of all functions from Dσ to Dτ as long as there are enough functions to properly interpret
all expressions of the language of type σ → τ . Henkin’s completeness result is then: a higher-
order formula is valid in all general models if and only if it has a proof (possibly involving
the axiom of extensionality). Thus, considered from the point of view of general models,
higher-order logic with extensionality can be given a completeness result and this avoids
the negative result due to Gödel’s incompleteness results. The cost of this completeness
result is giving up the desire to model only the standard model. Since the standard model
is uncountable and includes functions and predicates that are not computable, such a cost
is acceptable in many areas of computer science.

The focused semantics above is on classical logic versions of the Simple Theory of Types.
Intuitionistic variations of such models, based on Kripke models [MM91, Mil92a] or topoi
[LS86], might be employed to study the more general versions of higher-order hereditary
Harrop formulas presented in Chapter 9.

6.5.4 Proof theory for the Simple Theory of Types

In [Chu40], a series of axioms were presented to describe the Simple Theory of Types. The
first six axioms (which do not include extensionality) describe a logic that extends first-
order logic by permitting quantification at all types and by replacing first-order terms by
simply typed λ-terms modulo β and η-conversion. Many standard proof-theoretic results
– such as cut-elimination [Tak67] and [Gir86], unification [Hue75], resolution [And71], and
Skolemization and Herbrand’s Theorem [Mil87b] – have been formulated for this fragment.
Using these results as a foundation, it is possible to write theorem provers for this fragment
of higher-order logic [ACMP84]. The presence of predicate quantification, however, makes
theorem proving particularly challenging. In first-order logic, the result of substituting into
an expression does not change its logical structure. In the higher-order setting, however,
universal instantiation may increase the number of logical connectives and quantifiers in
a formulas. For example, if P , in the expression [. . . ∧ (Pc) ∧ . . .], is substituted with
λx[∃w(Axw ⊃ Bww)] then the resulting expression (after doing λ-conversion) would be
[. . .∧ [∃w(Acw ⊃ Bww)]∧ . . .], which has one new occurrence each of a quantifier and logi-
cal connective. Theorem provers in first-order logic need to only consider substitutions that
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are generated by the unification of atomic formulas. Since logical connectives within substi-
tutions are possible in higher-order logic, as this example shows, atomic formula unification
does not suggest enough substitution terms.

The textbook [And86] and the handbook article [Lei94] are good sources for getting more
information on higher-order logic.



Chapter 7

Computing with λ-terms

In this chapter we describe a fragment of λProlog in which λ-terms first appear within terms.
The logic underlying this fragment, called Lλ, extends fohh with an elementary treatment
of simply typed λ-terms. Lλ appears to be the weakest extension to fohh that contains a
principled and flexible treatment of λ-terms. Many of the interesting meta-programming
features of λProlog appear first within this fragment. Also, unification within Lλ is decidable
(in fact, linear) and when two terms are unifiable, they have a most general unifier. When
we consider a richer setting for λ-terms in Chapter 8, unification will become a radically
harder problem involving numerous complications to the operational behavior of programs.
Fortunately, a large number of λProlog programs actually fall within Lλ, and those programs
that do not lie in this weaker language can be translated simply into Lλ programs.

7.1 Discharging a constant from a term

Let Σ be the signature for the smlists module given in Figure 4.1. Consider the problem
of finding a substitution term over Σ for the variable X so that the query

?- pi y\ append (1::2::nil) y X.

can be proved. The first step in building a proof of this goal is to introduce a constant, say
k of type list int, that is not declared in Σ and then attempting a proof of

append (1::2::nil) k X.

After backchaining thrice on the definition of append, we find that this goal is provable if
and only if X is instantiated with (1::2::k). This is not possible, however, since X can
be instantiated with terms over Σ, but k was picked not to be in Σ. Such a failure here is
quite sensible since the value of X should be independent of the choice of the constant used
to instantiate pi y\. It might be desirable, however, to have this computation succeed if
this particular choice of constant could be abstracted away. That is, an interesting value is
computed here but it cannot be used since it is not well defined. Admitting λ-abstraction
into this logic provides a representation of such a value.

Now consider proving the goal

?- pi y\ append (1::2::nil) y (H y).

105
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where H is a functional variable that may be instantiated with a λ-term whose constants are
again from the set Σ. Here, H is a variable of type list int -> list int. Assume that
pi y\ is again instantiated with the constant k. This time, (H k) must equal (1::2::k).
There are two simply-typed λ-terms (up to λ-conversion) that when substituted for H into
(H k) and then λ-normalized yields (1::2::k), namely, the terms (w\ 1::2::k) and
(w\ 1::2::w). Since H cannot contain k free, only the second of these possible substitutions
will succeed in being a legal solution for this goal. In a sense, the λ-term (w\ 1::2::w) is
the result of discharging the constant k from the term (1::2::k). Notice, however, that
discharging a first-order constant from a first-order term is now a λ-term: it can be used to
instantiate a function variable.

The higher-order variable H in this example is restricted in such a way that when it
is involved in a solvable unification problem, there is a single, most general unifier for it.
We shall define Lλ so that this is the only kind of non-first-order unification problem that
can occur. All such uses of a higher-order variable in unification will be associated with
discharging a constant from a term.

It is interesting to note that the query

?- pi y\ append y (1::2::nil) (H y)

is also not provable in Lλ (nor in full λProlog). A description of a function that satisfies
this query requires recursion over list structures and such recursion is not available within
the terms of Lλ. Consider how the function that satisfies this query can be described in
Scheme.

(define (H y)
(if (null y) (cons 1 (cons 2 nil))

(cons (car y) (H (cdr y)))))

While this definition can be considered a λ-term, that λ-term contains both recursion and
a conditional, neither of these are built into the theory of λ-terms within λProlog. (See
related comments at the end of Section 6.3.) List induction could be employed to prove
the universally quantified query displayed above, but that is beyond the scope of λProlog’s
interpreter.

7.2 The syntax for Lλ

Let Σ be a signature and let B be a Σ-formula. A bound variable occurrence in B is
essentially universal if it is bound by a positive occurrence of a universal quantifier, by an
negative occurrence of an existential quantifier, or by a (term-level) λ-abstraction; otherwise,
it is essentially existential ; that is, it is either bound by a negative universal quantifier or
a positive existential quantifier. (See Section 3.5 for the definition of postive and negative
occurrences of subformulas.) Within the context of logic programming, it is essentially
existential bound variables that can be instantiated with general terms (via logic variables
and unification) while essentially universal bound variables can be instantiated with only
scoped constants. The “polarity” of bound variable occurrences defined here is with respect
to goal formulas: to get the proper classification of bound variables within a program clause,
dualize the above definition.

The logic programming language Lλ is the result of extending fohh by allowing all
quantifiers to be over any non-predicate type while also imposing the following restriction
on variables:
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for every subterm in B of the form (x y1 . . . yn) (n ≥ 0) where x is essentially
existentially quantified in B, it must be the case that y1, . . . , yn is a list of
distinct variables that are essentially universally quantified within the scope of
the binding for x.

This restriction ensures that if x is ever instantiated by some term, say t, then the only β-
redexes that appear after that substitution are of the form (t y1 . . . yn) where the variables
y1, . . . , yn are not free in t. Using α and η-conversions, we can assume that t is of the
form λy1 . . . λyn.t′. Thus, β-reduction simply reduces (λy1 . . . λyn.t′)y1 . . . yn to t′. Let β0-
conversion be that subcase of β-conversion that relates redexes of the form (λx.s)x with s.

All goals and program clauses in fohh are also goals and program clauses in Lλ. If the
constant p has type i → o and f has type i → i then the formula

∀i→ix∀iy(p (x y) ⊃ p (f y))

is an example of a goal in Lλ but not a program clause. As a program clause of Lλ, it has
a subterm occurrence (x y) where both x and y are essentially existential, and this is ruled
out by Lλ restriction on variables.

Notice that the core of Lλ is the same as the core of fohh. Later we shall present the
logic hohh that contains Lλ in its core.

7.3 Simplifying quantifier alternation with raising

It was mentioned in Section 5.1 that existential quantification cannot be removed from
program clauses using the second presentation of fohh without the introduction of extra
predicates and clauses. Given the presence of higher-order variables, there is a logical
transformation that allows existential quantifiers in the body of clauses to be moved to a
larger scope. Consider the two goals

∀y∃x.G and ∃h∀y.G[hy/x]

where the bound variables x, y, h have types τ , σ, and σ → τ , respectively. It is easy to show
that one of these goals can be proved if and only if the other goal can be proved. Assume
that the first goal is proved by substituting the new constant c for y and the term t for x.
Here, t may contain occurrences of c. Then the second goal is proved by substituting λc.t
for h and c for y. Notice that c is not free in λc.t. For the converse, assume that the second
goal is proved by substituting the term s for h and the new constant c for y. In this case,
c cannot be free in s. The first goal is then proved by substituting c for y and substituting
the term (s c) for x.

In the two goals above, the second is said to be the result of raising the first goal at
∃x. Raising can increase the scope of an existential quantifier. Consider again the following
program clause taken from Section 5.1.

p X :- pi y\ sigma Z\ q X y Z.

By raising on the quantifier for Z in the body of this clause, we get the clause

p X :- sigma H\ pi y\ q X y (H y).
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which is equivalent to the clause

p X :- pi y\ q X y (H y).

This clause and the original, although not logically equivalent, do, in fact, prove the same
goal formulas.

As this example shows, raising can often be used to simplify quantifier alternation. This
technique is, in a sense, dual to the familiar technique of Skolemization that is often used
in automated reasoning systems. To illustrate this difference, first recall how Skolemization
is used. If ∀x∃y.D is an assumption, the result of Skolemizing this pair of quantifiers is
the formula ∀x.D[fx/y], where f is a new function constant, called a skolem constant.
(Assume that x, y, f have types σ, τ , and σ → τ , respectively.) Since goals are the dual
of assumptions, the Skolemization of a goal formula is the result of switching around the
quantifiers. That is, the goal ∃x∀y.G is Skolemized to form ∃x.G[fx/y], where again f is a
new function constant. Since we are able to quantify at higher-types, it is possible to phrase
this last goal and the restriction on f as simply the goal ∀f∃x.G[fx/y]. It is possible to show
that the correctness of Skolemization must be qualified, and its proof is more complex than
that used for raising. Skolemization is dual to raising in two senses. First, Skolemization
moves an existential quantifier to a larger scope while raising moves a universal quantifier
to a larger scope. Second, Skolemization causes an introduction of a new constant of type
σ → τ instead of type σ, while raising causes an introduction of a new free variable of type
σ → τ instead of type σ. Skolemization is not used further here: see [Mil92b] for more
about both raising and Skolemization.

7.4 Specifying an object-logic

Much of the formal and technical detail of a complete specification of Lλ [Mil91] is caused
by needing to keep track of bound variable names and scope. Since all these details are
formally incorporated into Lλ, programs written using Lλ should be relieved of much of the
need to deal with such details. The following examples attempt to illustrate this point.

Three meta-programs — substitution, Horn clause interpretation, and the computation
of prenex normal forms — are presented in this section and all compute with the same
first-order, object-logic which is specified in the module ot_logic.mod in Figure 7.1. This
object-logic contains two primitive types, one for typing object-level terms (the type term)
and one for typing object-level formulas (the type form). It also contains logical constants
for truth, conjunction, disjunction, implication, and universal and existential quantification,
which are denoted by the non-logical, meta-level constants truth, and, or, imp, all, and
some. The object-logic contains just five non-logical constants: an individual constant, a,
a function symbol of one argument, f, and another of two arguments, g, and a predicate
symbol of one argument, p, and another of two arguments q. Terms over this signature of
type form denote object-logic formulas and those of type term denote object-logic terms.
The predicate atom is provable of a meta-level term if and only if that term denotes an
object-level atomic formula, that is, a formula that is not a top-level logical connective. The
predicate quant_free is true if its argument denotes a quantifier-free object-level formula.

The module in Figure 7.2 contains the definition of several λProlog (meta-level) pred-
icates that determine various classes of object-level formulas. Most of the clauses in that
module are Horn clauses except for the few that deal with quantification at the object-level.
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module ot_logic.

kind term, form type.

type truth, false form.

type neg form -> form.

type or, and, imp form -> form -> form.

type all, some (term -> form) -> form.

type atom, quant_free form -> o.

quant_free truth.

quant_free false.

quant_free A :- atom A.

quant_free (neg B) :- quant_free B.

quant_free (and B C) &

quant_free (or B C) &

quant_free (imp B C) :- quant_free B, quant_free C.

module ot_constants.

accumulate ot_logic.

type a term.

type f term -> term.

type g term -> term -> term.

type p term -> form.

type q term -> term -> form.

atom (p X).

atom (q X Y).

Figure 7.1: Specification of a first-order object-logic.
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module formula_classes.

accumulate ot_logic.

type fohcG, fohcD, fohhG, fohhD form -> o.

fohcG truth.

fohcG A :- atom A.

fohcG (and B C) &

fohcG (or B C) :- fohcG B, fohcG C.

fohcG (some B) :- pi x\ fohcG (B x).

fohcD A :- atom A.

fohcD (imp G D) :- fohcG G, fohcD D.

fohcD (and D1 D2) :- fohcD D1, fohcD D2.

fohcD (all D) :- pi x\ fohcD (D x).

fohhG truth.

fohhG A :- atom A.

fohhG (and B C) &

fohhG (or B C) :- fohhG B, fohhG C.

fohhG (imp D G) :- fohhD D, fohhG G.

fohhG (some B) &

fohhG (all B) :- pi x\ fohhG (B x).

fohhD A :- atom A.

fohhD (and D1 D2) :- fohhD D1, fohhD D2.

fohhD (imp G D) :- fohhG G, fohhD D.

fohhD (all D) :- pi x\ fohhD (D x).

Figure 7.2: Specifying various syntactic classes of object-level formulas.
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The meaning for most of the predicates specified in that module should be clear. The pred-
icates fohcG and fohcD can be used to determine if an object-level formula is either a goal
or program clause within fohc (using Definition 3.2 of Section 3.4). Similarly, the predicates
fohhG and fohhD can be used to determine if an object-level formula is either a goal or
program clause within fohh (using Definition 5.2 of Section 5.1).

To illustrate how object-level quantification is handled within Lλ, consider using the
fohcD predicate to verify that the meta-level term

all u\ all v\ imp (and (q v a) (q a u)) (p u).

denotes an object-level Horn clause. To prove the query

?- fohcD (all u\ all v\ imp (and (q v a) (q a u)) (p u)).

the last of the fohcD clauses causes the goal

pi x\ fohcD ((u\ all v\ imp (and (q v a) (q a u)) (p u)) x).

to be attempted. Here, the higher-order, meta-level variable D of type term -> form is
bound to the abstraction

u\ all v\ imp (and (q v a) (q a u)) (p u).

By doing a β0 reduction on the above goal (done automatically by a λProlog interpreter)
the above goal reduces to

pi x\ fohcD (all v\ imp (and (q v a) (q a x)) (p x)).

Notice now that the variable u, which denoted an object-level universal quantification, is
now replaced with the meta-level, universally quantified variable x. Proceeding to establish
this goal, λProlog will now pick a new constant, say d, and attempt to prove the following
instance of this goal

fohcD (all v\ imp (and (q v a) (q a d)) (p d))).

In a similar manner, this goal will reduce to

fohcD (imp (and (q e a) (q a d)) (p d))).

where the new constant e is added to the current signature. Processing of this goal now
follows standard first-order Horn clause reasoning as long as this extended signature is used.

Consider unifying the following two λ-terms

u\ all v\ imp (q a v) (p u) x\B.

Here, the only free variable is B, which is of type form. Notice that in the term on the left,
the outer-most bound variable u occurs within the body of the abstraction. On the other
hand, every instantiation of B in x\B yields a term for which the outer-most bound variable
is a vacuous abstraction. This results from the fact that substitutions are not allowed to
capture free variables. For example, if B is substituted with the term (p x), the result would
be a term equal to (x1\ p x): that is, the outer-most variable would need to be renamed
prior to instantiating B. Thus all instances of x\B are vacuous abstractions, and as a result,
the above two terms cannot be unified. On the other hand, the two terms
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module rem_vacuous.

accumulate ot_logic.

type vacuous form -> o.

type rem_vac form -> form -> o.

vacuous (all x\B).

vacuous (some x\B).

rem_vac A A :- atom A.

rem_vac (and B1 B2) (and C1 C2) &

rem_vac (or B1 B2) (or C1 C2) &

rem_vac (imp B1 B2) (imp C1 C2) :- rem_vac B1 C1, rem_vac B2 C2.

rem_vac (some x\B) C & rem_vac (all x\B) C :- !, rem_vac B C.

rem_vac (some B) (some C) &

rem_vac (all B) (all C) :- pi x\ rem_vac (B x) (C x).

Figure 7.3: Removing vacuous quantifiers from formulas.

u\ all v\ imp (q a v) (p v) x\B.

can be unified by substituting the term (all v\ imp (q a v) (p v)) for B.
Using these observations about vacuous abstractions, we can write programs that can

recognize vacuous abstractions in an object-logic. For example, the predicate vacuous
specified in Figure 7.3 succeeds with a closed argument of type form if and only if its
argument is an object-level, vacuously quantified formula. Similarly, the procedure rem_vac
can remove vacuous quantifiers from an object-level formula: for example, the goal

?- rem_vac (some x\ some y\ all x\imp (p x) (p x)) B.

will succeed once in λProlog with the answer substitution for B equal to

(all x\ imp (p x) (p x)).

If the cuts were removed from this program, this query has 4 solutions, in which each of the
vacuous object-level quantifiers may or may not be removed.

For another example of manipulating object-level formulas, consider the computation of
two kinds of normal form presentations of formulas in classical logic: negation normal form
and prenex normal form. A formula is in negation normal form if it contains no occurrences
of implications and every occurrence of a negation has only an atom in its scope. A formula
is in prenex normal form if no quantifier occurrence is in the scope of any propositional
connectives: that is, quantifiers occur at the outer-most level only. It is a theorem of first-
order classical logic (not of intuitionistic logic) that a formula is equivalent to one in negation
normal form and to one in prenex normal form and to one in both negation normal and
prenex normal forms.

The computation of a formula in negation normal form that is equivalent to a given
formula can be done using the following classical equivalences.

B1 ⊃ B2 ≡ ¬B1 ∨B2
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module nnf.

accumulate ot_logic.

type nnf form -> form -> o.

nnf A A & nnf (neg A) (neg A) :- atom A.

nnf (neg (neg B)) D :- nnf B D.

nnf (neg (and B C)) (or D E) &

nnf (neg (or B C)) (and D E) :- nnf (neg B) D, nnf (neg C) E.

nnf (imp B C) (or D E) :- nnf (neg B) D, nnf C E.

nnf (or B C) (or D E) &

nnf (and B C) (and D E) :- nnf B D, nnf C E.

nnf (neg (all B)) (some D) &

nnf (neg (some B)) (all D) :- pi x\ nnf (neg (B x)) (D x).

nnf (all B) (all D) &

nnf (some B) (some D) :- pi x\ nnf (B x) (D x).

Figure 7.4: Relating a formula to its negation normal form.

¬¬B ≡ B

¬(B1 ∧B2) ≡ ¬B1 ∨ ¬B2

¬(B1 ∨B2) ≡ ¬B1 ∧ ¬B2

¬∀x B ≡ ∃x ¬B

¬∃x B ≡ ∀x ¬B

These equivalences can be used directly to specify the nnf relationship of Figure 7.4. Since
no two heads of the clauses for nnf overlap, it is easy to see that the relation nnf specifies
a partial function. A simple argument by induction shows that the function represented is
total.

Finally, consider computing prenex normal forms of formulas that are in negation normal
form (this restriction is only to shorten the specification of this relation). This computation
makes use of the following equivalences of classical logic.

(∀x B1) ∧ (∀x B2) ≡ ∀x(B1 ∧B2)
(∃x B1) ∨ (∃x B2) ≡ ∃x(B1 ∨B2)

B1 ∧ (∀x B2) ≡ ∀x (B1 ∧B2)
(∀x B2) ∧B1 ≡ ∀x (B2 ∧B1)
B1 ∧ (∃x B2) ≡ ∃x (B1 ∧B2)
(∃x B2) ∧B1 ≡ ∃x (B2 ∧B1)
B1 ∨ (∀x B2) ≡ ∀x (B1 ∨B2)
(∀x B2) ∨B1 ≡ ∀x (B2 ∨B1)
B1 ∨ (∃x B2) ≡ ∃x (B1 ∨B2)
(∃x B2) ∨B1 ≡ ∃x (B2 ∨B1)
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Incorporation of the forward equivalences as rewriting rules is not as straightforward as it
was for computing negation normal forms. A suitable specification is given in Figure 7.5.
Notice that an auxiliary and local predicate is used to merge two formulas that are already
in prenex normal form. Given a specification of prenex, the unique prenex normal form of
the formula

imp (all x\ and (p x) (and (all y\ q x y) (p (f x)))) (p a)

is the formula

some x\ some y\ imp (and (p x) (and (q x y) (p (f x)))) (p a).

In general, the predicate prenex is not functional: that is, a single formula can have multiple
prenex normal forms to which it is equivalent using the above equivalences. For example,
the λProlog query

?- prenex (and (all x\ q x x) (all z\ all y\ q z y)) P

will generate the following five answer substitutions for P (in this order).

all z\ all y\ and (q z z) (q z y)
all x\ all z\ all y\ and (q x x) (q z y)
all z\ all x\ and (q x x) (q z x)
all z\ all x\ all y\ and (q x x) (q z y)
all z\ all y\ all x\ and (q x x) (q z y)

7.5 Implementing object-level substitution

The preceding section contained examples of manipulating first-order formulas as data val-
ues. One manipulation that was not demonstrated in that section was doing object-level
substitution. For example, we have not yet seen how to instantiate an object-level universal
quantifier with an object-level term. We address such instantiation in this section.

Equality and substitution for object-level terms and formulas can be specified by using
the copy-clauses contained in Figure 7.6. These clauses can be derived directly from the
object-level signature using the following function. Let [[t, s : τ ]]± be a formula defined by
recursion on the structure of the type τ , which is assumed to be built only from the base
types term and form, with the following clauses:

[[t, s : term]]+ = [[t, s : term]]− = copyterm t s

[[t, s : form]]+ = [[t, s : form]]− = copyform t s

[[t, s : τ → σ]]+ = ∀x([[x, x : τ ]]− ⊃ [[t x, s x : σ]]+)
[[t, s : τ → σ]]− = ∀x∀y([[x, y : τ ]]+ ⊃ [[t x, s y : σ]]−)

The copy-clauses displayed in Figure 7.6 are essentially those clauses that are equal to
[[c, c : τ ]]− where the signature for representing the object-logic contains c : τ .

These clauses are given the rather operational name copy since they are used to specify
both equality and substitution for the object-level logic. That is, (copyterm t s) is prov-
able from these clauses if and only if t and s are the same term. Similarly (copyform t s)
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module prenex.

import ot_logic.

type prenex form -> form -> o.

local merge form -> form -> o.

prenex A A &

prenex (neg A) (neg A) :- atom A.

prenex (and B C) D :- prenex B U, prenex C V, merge (and U V) D.

prenex (or B C) D :- prenex B U, prenex C V, merge (or U V) D.

prenex (all B) (all D) &

prenex (some B) (some D) :- pi x\ prenex (B x) (D x).

merge (and (all B) (all C)) (all D) :- pi x\ merge (and (B x) (C x)) (D x).

merge (and (all B) C) (all D) &

merge (and (some B) C) (some D) :- pi x\ merge (and (B x) C) (D x).

merge (and B (all C)) (all D) &

merge (and B (some C)) (some D) :- pi x\ merge (and B (C x)) (D x).

merge (or (some B) (some C)) (some D) :- pi x\ merge (or (B x) (C x)) (D x).

merge (or (some B) C) (some D) &

merge (or (all B) C) (all D) :- pi x\ merge (or (B x) C) (D x).

merge (or B (some C)) (some D) &

merge (or B (all C)) (all D) :- pi x\ merge (or B (C x)) (D x).

merge B B :- quant_free B.

Figure 7.5: Specification of the prenex normal relation for formulas in negation normal form.
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module ot_subst.

accumulate ot_constants.

type copyterm term -> term -> o.

type copyform form -> form -> o.

copyterm a a.

copyterm (f X) (f U) :- copyterm X U.

copyterm (g X Y) (g U V) :- copyterm X U, copyterm Y V.

copyform truth truth.

copyform false false.

copyform (neg B) (neg D) :- copyform B D.

copyform (and B C) (and D E) &

copyform (or B C) (or D E) &

copyform (imp B C) (imp D E) :- copyform B D, copyform C E.

copyform (all B) (all D) &

copyform (some B) (some D) :- pi y\ copyterm y y => copyform (B y) (D y).

copyform (p X) (p U) :- copyterm X U.

copyform (q X Y) (q U V) :- copyterm X U, copyterm Y V.

type subst (term -> form) -> term -> form -> o.

subst M T N :- pi x\ copyterm x T => copyform (M x) N.

type uni_instan form -> term -> form -> o.

uni_instan (all B) T C :- subst B T C.

Figure 7.6: Specifying object-level substitution.
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is provable from these clauses if and only if t and s are the same formula. If equality
had been all that we wanted to specify, there is, of course, a more direct and less explicit
specification we could have used, namely,

copyterm T T.
copyform T T.

These clauses can, however, be used to also specify object-level substitution. Consider
adding a new constant, say c of type term, to the current signature. If this constant
were to be considered a proper constant of our object-level logic, we should add the clause
(copyterm c c) to the current program. Instead, add the clause (copyterm c (f a)).
Given this extended set of copy-clauses, (copyterm t s) is provable if and only if s is
the result of replacing every occurrence of c in t with (f a): in other words, we have
just specified object-level substitution. The subst predicate formalizes this substitution
relationship. Here, the first argument of subst is an abstraction over formulas, the second
argument is some term, and the third argument is the result of substituting the second
argument into the first abstraction. Notice the type of subst: if B has type term -> form,
then the expression (subst B) has the type term -> form -> o; that is, subst carries the
functional type to the corresponding predicate type denoting that function.

The clause for uni_instan in Figure 7.6 specifies how to instantiate an object-level
universal quantifier with a given term. It is also possible to substitute for several bound
variables simultaneously. For example, consider the following two clauses.

instan (all A) B :- pi x\ copyterm x T => instan (A x) B.
instan B C :- copyform B C.

The predicate instan relates an object-level formula to the result of instantiating 0 or more
of its outermost universal quantifiers.

Consider the computation initiated by the query

?- subst (x\ all y\ q x y) (f a) S.

when the module ot_subst is in the current context. This query reduces to the query

pi x\ copyterm x (f a) => copyform (all y\ q x y) S.

Assume that the new constant introduced is c and that the clause (copyterm c (f a)) is
added to the current program. The next query to be attempted is

copyform (all y\ q c y) S.

The copy-clause for all is the only clause that can be used to reduce this goal. Backchaining
using it yields the goal

pi y\ copyterm y y => copyform (q c y) (S1 y).

Here, S1 is a new logic variable and S is bound to (all S1). This goal then reduces to

copyform (q c d) (S1 d).

At this point, the original context has been extended with the two constants c and d of type
term and with the two clauses
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copyterm c (f a).
copyterm d d.

Notice that d, which is now playing the role of the name of a bound variable, is specified in
exactly the same way as other constants of type term in the object-level. The specification
for c is, in a sense, “impure”: that clause specifies that c does not copy to c but some other
term, in this case (f a). Now backchaining on the copy-clause for q yields the goal

copyterm c S2, copyterm d S3.

where (S1 d) = (q S2 S3). These two goals are uniquely solvable and bind S2 to (f a)
and bind S3 to d. Thus, S1 must be bound to (d\ q (f a) d) and S must be bound to
(all d\ q (f a) d).

The copy-clauses presented here are important for at least the following four reasons.
First, they are our first example of an important example of using signature dependent

clauses. One approach to specify meta-level manipulations of object-level logics makes
frequent use of clauses that are parameterized via the object-level’s signature.

Second, object-level substitution is a particularly important operation and our specifi-
cation of substitution can be generalized to signatures involving arbitrary kinds and type
orders. We return to this in a later chapter.

Third, this example illustrates the central method available in λProlog for processing
λ-abstraction in terms: to “descend” through an abstraction, a universally quantified goal is
used to generate a new constant and that new constant is used to name the bound variable.
A β0 redex is used to insert this new constant into the body of the λ-abstraction. Since
this new constant is now temporarily part of the object-logic, clauses that were determined
from the signature of the object-logic may need to be extended to account for this new
constant. Thus, the definition of the copyterm predicate needs to be extended using an
implication in a goal when copyform recurses through an object-level quantifier: the new
constant that names the object-level bound variable must be treated as another constant of
the object-level.

Finally, βη-unification (“higher-order” unification) can be accounted for making use of
copy-clauses. For now, we only indicate this connection by presenting a simple example.
Consider the problem of existentially generalizing (at the object-level) a from the formula
(q a a). There are four possible such generalizations, namely,

(some x\ q x x) (some x\ q x a)
(some x\ q a x) (some x\ q a a).

Computing these generalizations can be done by asking the question: for what terms B of
type term -> form is the formula (B a) equal, modulo βη-conversion, to the term (q a a)?
This is an example of βη-unification, which in this setting simplifies down to the question: If
we substitute a into what abstraction B do we get the term (q a a)? Since our specification
of substitution above is completely declarative, we should be able to get the required four
answers by asking the query

?- subst B a (q a a).

This query will reduce to the query

pi x\ copyterm x a => copyform (B x) (q a a).
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After the introduction of a new constant, say c of type term, and the addition of the clause
(copyterm c a) to the current program, the next query attempted is

copyform (B c) (q a a).

There is exactly one way to prove this goal, and that is to backchain over the copy-clause
for q. This yields the conjunctive goal

copyterm (B1 c) a, copyterm (B2 c) a.

Here, B1 and B2 are new free variables such that

(B c) = (q (B1 c) (B2 c)).

Each of these conjunctive goals has two solutions. The first can be proved by backchaining
on the clause (copyterm a a) that is part of the original set of copy-clauses. In this
case, B1 is instantiated to the λ-term c\a. This goal can also be proved by backchaining
over the added clause (copyterm c a) in which case B2 is instantiated to the λ-term c\c.
Combining these two sets of independent choices together yields the following four possible
instantiations for B:

(x\ q x x) (x\ q x a) (x\ q a x) (x\ q a a).

It is possible to specify object-level substitution without using the copy-clauses directly.
The module in Figure 7.7 provides such a specification, which is based loosely on the equa-
tional presentation of λ-conversion found in [And71, And86]. The clauses in that module are
also signature dependent. The specification using the copy-clauses, however, seems more
natural and flexible.

The above description of the behavior of the meta-level universal quantifier and impli-
cation sounds particularly operational and it may appear to have little to do with a logical
or declarative reading of these connectives. In fact, the declarative interpretation for these
logical constants given by intuitionistic logic matches exactly this operational reading. To
illustrate, it is indeed trivial to prove that the universal instantiation of a Horn clause is
another Horn clause.

7.6 Interpreters for object-level fohc and fohh

In order to specify an interpreter for object-level fohc and fohh, it is necessary to make use of
object-level substitution. Such an interpreter for fohc is presented in Figure 7.8: it assumes
that syntax of program clauses and goals follow the richest definition of fohc (definition 3.2
given in Section 3.4). The interpreter for fohh in Figure 7.9 results from adding two clauses to
the specification for the fohc interpreter. This interpreter also assumes the richest definition
of fohh (definition 5.2 given in Section 5.1).

Let D and G be a fohc program clause and goal, respectively, in the object-level. Then
the query

?- interp D G

is provable if and only if the formula denoted by G follows intuitionistically from the formula
denoted by D. In fact, the operational behavior of the λProlog interpreter on this goal
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module subst_only.

import ot_constants.

type subst (term -> form) -> term -> form -> o.

type substterm (term -> term) -> term -> term -> o.

subst (x\ truth) T truth.

subst (x\ false) T false.

subst (x\ neg (B x)) T (neg D) :- subst B T D.

subst (x\ and (B x) (C x)) T (and D E) &

subst (x\ or (B x) (C x)) T (or D E) &

subst (x\ imp (B x) (C x)) T (imp D E) :- subst B T D, subst C T E.

subst (x\ all (B x)) T (all D) &

subst (x\ some (B x)) T (some D) :-

pi y\ subst x\y T y => subst (x\ B x y) T (D y).

subst (x\ p (X x)) T (p U) :- subst X T U.

subst (x\ q (X x) (Y x)) T (q U V) :- subst X T U, subst Y T V.

substterm (x\ x) T T.

substterm (x\ a) T a.

substterm (x\ f (F x)) T (f S) :- substterm F T S.

substterm (x\ g (F x) (G x)) T (g S1 S2) :-

substterm F T S1, substterm F T S2.

Figure 7.7: Specification of substitution without using the auxiliary copy-clauses.
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module fohc_interp.

import ot_logic, ot_subst.

type interp form -> form -> o.

type backchain form -> form -> form -> o.

interp D truth.

interp D (and G1 G2) :- interp D G1, interp D G2.

interp D (or G1 G2) :- interp D G1; interp D G2.

interp D (some G) :- subst G X H, interp D H.

interp D A :- atom A, backchain D D A.

backchain D A A.

backchain D (and D1 D2) A :- backchain D D1 A; backchain D D2 A.

backchain D (imp G D1) A :- backchain D D1 A, interp D G.

backchain D (all D1) A :- subst D1 X D2, backchain D D2 A.

Figure 7.8: An interpreter for object-level fohc.

module fohh_interp.

accumulate fohc_interp.

interp D (imp D1 G) :- interp (and D1 D) G.

interp D (all G) :- pi x\ copyterm x x => interp D (G x).

Figure 7.9: An interpreter for object-level fohh.

matches the operational behavior of the λProlog interpreter if given meta-level versions of
these object-level formulas.

Notice that in these two interpreters, object-level substitution is used twice: once to
instantiate an existentially quantified goal formula and once to instantiate a universally
quantified program clause. In each case, the instantiation is made with a logic variable
which will be interpreted later via the meta-level unification that is implicit in the first
clause specifying backchain.

Object-level substitution can be delayed to the point where object-level unification is
done, as is shown by the modules in Figure 7.10 and 7.11. Here, instead of doing a sub-
stitution of a logic variable for a bound variable when attempting an existential goal or
backchaining over a universal program clause, both a new logic variable X and a scoped con-
stant (naming the meta-level universal quantified variable x) are introduced and associated
via the hypothetical assumption (copyterm x X). (This will then be another example of
having logic variables stored in program clauses.) When using the first of the backchain
clauses, the goal (copyform A1 A, copyform A2 A) will be called. In the operational set-
ting, the only free variable in this goal is A: A1 and A2 will be instantiated with closed terms
that may contain scoped constants that have been associated with logic variables in the
current program.

For an example of using this interpreter, consider an interpreter for the following fohc



122 CHAPTER 7. COMPUTING WITH λ-TERMS

module fohc_interp_exp.

import ot_logic, ot_subst.

type interp form -> form -> o.

type backchain form -> form -> form -> o.

interp D truth.

interp D (and G1 G2) :- interp D G1, interp D G2.

interp D (or G1 G2) :- interp D G1; interp D G2.

interp D (some G) :- pi x\ copyterm x X => interp D (G x).

interp D A :- atom A, backchain D D A.

backchain D A1 A2 :- copyform A1 A, copyform A2 A.

backchain D (and D1 D2) A :- backchain D D1 A; backchain D D2 A.

backchain D (imp G D1) A :- backchain D D1 A, interp D G.

backchain D (all D1) A :- pi x\ copyterm x X => backchain D (D1 x) A.

Figure 7.10: An interpreter for object-level fohc.

module fohh_interp_exp.

accumulate fohc_interp_exp.

interp D (imp D1 G) :- interp (and D1 D) G.

interp D (all G) :- pi x\ copyterm x x => interp D (G x).

Figure 7.11: An interpreter for object-level fohh.
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program.

adj a b.
adj b c.
path X Y :- adj X Y.
path X Z :- adj X Y, path Y Z.

To be used by the interpreter in Figure 7.8 or Figure 7.10, we must encode these clauses
into the object-logic by taking the following steps.

1. Declare all the constants in this program to have the correct types over term and
form. These declarations extended those in the module ot_constants in Figure 7.1.

2. Add the appropriate clauses extending the definition of the atom predicate. There
is one clause for each object-level predicate. These clauses extend those clauses in
Figure 7.1.

3. Add the appropriate clauses to extend the definition of copyterm and copyform. These
clauses extend those clauses in Figure 7.6.

4. Encode the object-level Horn clauses as a conjunction at the object-level (of type
form).

Figure 7.12 contains all of these declarations and clauses. Given that module ot_path.mod
is part of the current context, the following query yields the following answer substitutions.

?- prog Cs, interp Cs (path a X).
X == b;
X == c;
no

?-

There are several observations to be made about this interpreter. First, the object-level
clauses are not polymorphically typed. For example, in Section 3.7 we presented both adj
and path as being binary predicates over the type node. Object-level types are not part
of this specification of the object-level code, although there is no particular difficulty in
incorporating them.

These interpreters for object-level fohc and fohh involve no non-logical features and the
specifications that needed to be made — those of atom, copyterm, and copyform — are
completely natural and of logical significance themselves. Furthermore, the implementation
of object-level substitution is particularly simple and natural, in contrast to the complexities
involved in implementing substitution in more conventional programming languages.

In Subsection 8.3.3 we shall present another approach to the specification of object-level
substitution.

7.7 Unification in Lλ

Unification in Lλ is an extension to unification over first-order terms in which the complexi-
ties of λ-bound variables are incorporated. We shall only present Lλ-unification by example.
Consider the following equations.
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module ot_path.
accumulate ot_logic.

type a, b, c term.
type adj, path term -> term -> form.

atom (adj X Y).
atom (path X Y).

copyterm a a.
copyterm b b.
copyterm c c.
copyform (adj X Y) (adj U V) &
copyform (path X Y) (path U V) :- copyterm X U, copyterm Y V.

type prog form -> o.

prog (and (adj a b)
(and (adj b c)
(and (all x\ all y\ imp (adj x y) (path x y))

(all x\ all y\ all z\ imp (and (adj x y) (path y z))
(path x z))))).

Figure 7.12: Object-level specification of a small fohc program.
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(x\y\ g (U x y) (V y)) = (v\w\ X w)
(all x\ some y\ q x y) = (all x\ some y\ B y x)

(all x\ imp (B x) (q x x)) = (all y\ imp (p y) (C y))
(all x\ some y\ q x y)) = (all x\ some y\ B x)
(all x\ imp B (q x x)) = (all y\ imp (p y) (C y))

The last two do not have unifiers while the first three have the following unifiers:

U == x\y\ U1 y X == w\ g (U1 w) (V w)
B == y\x\ q x y
B == x\ p x C == y\ q y y

We use the name Lλ-unification and not β0η-unification since the latter does not capture
the restrictions on terms that is an important part of Lλ. For example, the equation

(x\ F (G x) (H x)) = x\x.

(where F has type i -> i -> i) has the two unifiers

F == w1\w2\ w1 G == v\v H == H
F == w1\w2\ w2 G == G H == v\v.

If reductions are chosen in the correct order, only β0 is required to solve this unification
problem. Notice, however, that this problem has two, incomparable unifiers. Of course, this
unification problem does not satisfy the Lλ-restrictions about arguments for the occurrences
of logic variables.

7.8 Three notions of syntactic representation

In this chapter we have shown some examples of computing with λ-terms and have illustrated
how programs involved with manipulating object-level logical expressions can benefit from
seeing such object-level expressions as meta-level λ-terms. This observation can be expanded
to a more general way of representing syntax within a programming language.

Consider writing programs in which the data objects to be computed are syntactic struc-
tures, such as programs, formulas, types, and proofs, involve notions of abstractions, scope,
bound and free variables, substitution instances, and equality up to alphabetic changes of
bound variables. Although the data types available in most computer programming lan-
guages are, of course, rich enough to represent all these kinds of structures, such data types
do not have direct support for these common characteristics. Instead, “packages” need to
be implemented to support such data structures. For example, although it is trivial to rep-
resent first-order formulas in Lisp, it is a more complex matter to write Lisp code to test
for the equality of formulas up to alphabetic variation, to determine if a certain variable’s
occurrence is free or bound, and to correctly substitute a term into a formula (being careful
not to capture bound variables). This situation is the same when structures like programs
or (natural deduction) proofs are to be manipulated and if other programming languages,
such as Pascal, Prolog, and ML, replace Lisp.

Generally, syntax is divided into concrete and abstract syntax. The first is the linear
form of syntax that is readable and typable by a human. Figure 7.13 characterizes some
properties of concrete syntax. The costs listed in that figure can be overcome by parsing
concrete syntax into parse trees. Figure 7.14 characterizes some properties of parse trees.
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Implementation Strings, text (arrays or lists of characters)
Access Parsers, editors
Advantages 1. Readable, publishable.

2. Simple computational models for implementation
(arrays, iteration).

Costs 1. Contains too much information not important for
many manipulations: white space, infix/prefix nota-
tion, keywords.

2. Important information is not represented explicitly:
recursive structure, function–argument relationship,
term–subterm relationship.

Figure 7.13: Characteristics of concrete syntax

Implementation first-order terms, linked lists
Access car/cdr/cons in Lisp, first-order unification in Prolog,

or matching in ML.
Advantages 1. Recursive structure is immediate.

2. Recursion over syntax is easy to specify.
3. Term–subterm relationship is identified with tree-

subtree relationship.
4. Algebra provides a model for many operations on

syntax.
Costs 1. Requires higher-level language support: pointers,

linked lists, garbage collection, structure sharing.
2. Notions of scope, abstraction, substitution, and free

and bound variables occurrences are not supported.

Figure 7.14: Characteristics of parse trees

The costs concerning concrete syntax are now properly addressed, although at significant
costs. For example, higher levels of support are required for the programming language and
runtime system that encode parse trees. Parse trees, however, are so much more convenient
and natural to compute with than strings that these additional costs are outweighed by the
advantages to the programmer who must write programs to manipulate syntax. The term
abstract syntax is often identified with parse trees: we shall reserve the former term for the
more “abstract” form of syntax described below.

As Figure 7.14 shows, parse trees are not without their costs also. In particular, notions
of abstraction within syntax are not supported directly. In particular, the following are
unfortunate properties of parse trees for representing syntax containing bound variables.

• Bound variables are, like constants, treated as global objects.

• Concepts such as free and bound occurrences of variables are derivative notions, sup-
ported not by programming languages but by programs added on top of the data type
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Implementation α-equivalence classes of βη-normal λ-terms of simple
types

Access βη-unification or a restriction of it, such as in Lλ

Advantages 1. Bound variable names are inaccessible so many tech-
nical problems regarding them disappear.

2. Substitution is easy to support for every data struc-
ture containing abstracted variables.

3. Semantics is provided by proof theory, logical rela-
tions, and Kripke models.

Costs 1. Requires higher-level support: dynamic contexts, ex-
tensions to first-order unification, and a richer notion
of equality.

2. Few modern programming languages currently sup-
port this representation: λProlog being probably the
only one. Some specification languages, such as Is-
abelle and Elf, do support it as well.

Figure 7.15: Characteristics of abstract syntax.

for parse trees.

• Although alphabetic variants generally denote the same intended object, the correct
choice of such variants is unfortunately very often important.

• Substitution is generally difficult to implement correctly.

• An implementation of substitution for one data structure, say first-order formulas, will
not work for another, say functional programs.

Given that all of these notions are intimately related to logic, it is natural to believe that
a logic programming language might be able to support all of these notions directly, in-
stead of via some programmer supplied package. In fact, Lλ and, more generally, λProlog
are examples of logic programming languages that do support such notions directly: the
resulting representation of syntax we shall call abstract syntax. This approach to syntax is
characterized in Figure 7.15. Thus, we have identified three levels of syntactic description:
concrete syntax, parse trees, and finally abstract abstract. When using abstract syntax,
details of object-level bound variables and about substitution are handled declaratively by
λProlog.

Behind the concept of abstract syntax are two notions. First, λ-terms and their equa-
tional theory should be used uniformly to represent syntax containing bound variables.
Already in [Chu40], Church was doing exactly this to encode the universal and existential
quantifiers as well as the definite description operator. Following this approach, instantiation
of quantifiers can be specified using β-reduction, much as will be done in Subsection 8.3.3.

The second important notion behind abstract syntact is that of defining operations for
composing and decomposing syntax that respect α-equivalence classes. This appears to
have first been done by Huet and Lang in [HL78] where the authors clearly discuss the
advantages of using simply typed λ-terms and with doing matching modulo the equational
rules for λ-conversion. Their approach, however, was limited since it only used matching
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(not unification more generally). Their approach was extended by Miller and Nadathur in
[MN87b] (also see earlier papers [MN86a] and [MN86b]) by moving to a logic programming
setting that contained βη-unification of simply typed λ-terms. In that paper the central
ideas and advantages behind abstract syntax are discussed. Further examples were also
contained in the paper [FM88] by Felty and Miller. In the context of theorem proving,
Paulson also independently proposed similar ideas [Pau86].

In [PE88] Pfenning and Elliot extended the observations in [MN87b] by producing ex-
amples where the meta-language that incorporated λ-abstractions contained not just simple
types but also product types. In that paper they coined the expression higher-order abstract
syntax. Also at about this time, Harper, Honsell, and Plotkin in [HHP87] proposed repre-
senting logics in a dependent typed λ-calculus. While they did not deal with the issue of
the computational treatment of syntax directly, this was addressed later by considering the
unification of dependent typed λ-expressions by Elliott [Ell89] and Pym [Pym90].

The treatment of abstract syntax in the above mentioned papers had a couple of unfor-
tunate aspects. First, the treatments involve unification with respect to the full βη-theory
of the λ-calculus, and this general theory is computationally expensive. In the case, of
[HL78], only second-order matching was used and this is NP-complete. In the later papers,
full unification was used and this is an undecidable operation. Second, various different
type systems were employed to illustrate abstract syntax: simple types, product types, and
dependent types. However, if abstract syntax is essentially just about a treatment of bound
variables in syntax, it should have a form that is independent from typing.

The introduction of Lλ in [Mil91] provided solutions to both of these problems regarding
abstract syntax. First, Lλ provides a setting where the unification of λ-terms is compu-
tational cheap: it was shown by Qian [Qia93] that Lλ-unification can be done in linear
time and space (as with first-order unification). Also, Nipkow showed that the exponential
unification algorithm presented in [Mil91] can be effectively used [Nip93]. Second, it was
also shown in [Mil91] that Lλ-unification can be described for untyped λ-terms: that is, typ-
ing may impose additional constraints on unification, but the Lλ-unification can be defined
without types. Thus, it is possible then to define Lλ-like unification for various typed calculi
[Pfe91].

Thus Lλ seems to be a natural setting for supporting abstract syntax. Since types are
not necessary, it seems best to avoid the adjective “higher-order” with respect to abstract
syntax, since orders are generally calculated from types. The version of Lλ that we have
discussed in this chapter involved simple types.



Chapter 8

Higher-order Horn clauses

While first-order hereditary Harrop formulas and Lλ are much more expressive than first-
order Horn clauses, neither of these classes of formulas directly support what is generally
called higher-order programming. λProlog supports higher-order programming by allowing
logical connectives to appear in terms and by allowing quantification of some occurrences of
predicate variables. We describe this aspect of λProlog by first considering in this chapter
a higher-order version of Horn clauses.

8.1 Higher-order programming examples

There have been several proposals for higher-order programming within logic programming
and they do not generally agree. Thus it is good to consider some examples of programming
that should clearly be considered higher-order. All of the following examples are captured
simply and declaratively within higher-order Horn clauses (hohc).

1. Given a predicate of one argument and a list, check that every (some) element of that
list satisfies that predicate.

2. Given a predicate of two arguments and two lists, check that corresponding elements
of these two lists are related by the given predicate.

3. Given a predicate and two lists, check that all of the elements of the second list satisfy
the given predicate and are members of the first list.

4. Given a predicate of two arguments, construct its transitive closure.

5. Given two binary predicates, construct their relational composition (natural join).

Figure 8.1 contains λProlog code that specifies some of these higher-order predicates.
The intended meaning of these higher-order predicates is summarized as follows. If the goal
(mappred P L K) is provable given the clauses in the module in Figure 8.1 then L and K
are lists of equal length and corresponding members of these lists are P-related. If the goal
(forsome P L) is provable then L is a list in which some member satisfies the predicate
P. If the goal (forevery P L) is provable then L is a list all of whose members satisfy the
predicate P. If goal (trans R X Y) is provable then X and Y are members of the transitive
closure of the binary relation R. Finally, if the goal (sublist P L K) is provable then L is

129
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module maps.

type mappred (A -> B -> o) -> list A -> list B -> o.

type foreach, forsome (A -> o) -> list A -> o.

type trans (A -> A -> o) -> A -> A -> o.

type sublist (A -> o) -> list A -> list A -> o.

mappred P nil nil.

mappred P (X::L) (Y::K) :- P X Y, mappred P L K.

foreach P nil.

foreach P (X::L) :- P X, foreach P L.

forsome P (X::L) :- P X; forsome P L.

trans R X Y :- R X Y.

trans R X Z :- R X Y, trans R Y Z.

sublist P (X::L) (X::K) :- P X, sublist P L K.

sublist P (X::L) K :- sublist P L K.

sublist P nil nil.

Figure 8.1: Various examples of higher-order programs.

a sublist of K in which all elements satisfy P. (The order of the clauses in the specification
of sublist finds maximal solutions first.)

Given the small database of clauses in Figure 8.2, the following query and results are all
provable in λProlog.

?- mappred age (ned::bob::sue::nil) L.
L == (23::23::24::nil).
yes
?- mappred age L (23::24::nil).
L == (bob::sue::nil);

L == (ned::sue::nil).
yes
?- sublist male (ned::bob::sue::nil) L.
L == ned::bob::nil;
L == ned::nil;
L == bob::nil;
L == nil;
no
?- forsome female (ned::bob::sue::nil).
yes
?- trans adj a d.
yes.
?-
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These examples seem natural and should be present in any logic programming language
that admits higher-order programming.

Given the availability of λ-terms, it should be possible to build more complex expres-
sions denoting predicates and these should be allowable within higher-order programs. The
following queries are also possible within λProlog.

?- mappred (x\y\ age x y) (ned::bob::sue::nil) L.
L == (23::23::24::nil).
yes

?- mappred (x\y\ age y x) (23::24::nil) K.
K == (bob::sue::nil);

K == (ned::sue::nil).
yes
?- forevery (x\ sigma y\ age x y) (ned::bob::sue::nil).
yes

?- forevery (x\ age x A) (ned::bob::sue::nil).
no
?-

The second last query succeeds because every person in the list has an age. The last query
fails because it is not the case that every one in that list has the same age A. On the other
hand, the query

?- forevery (x\ age x A) (ned::bob::nil).
A == 23.
yes
?-

will succeeds and returns the age that is common to both ned and bob.
The use of variables of higher-order type and of λ-terms here exceeds those uses in

Lλ: the restriction on the application of function variables to distinct bound variables is
not followed in these examples. In fact, function variables, and hence the λ-terms that
instantiate them, can be applied to arbitrary terms (of the appropriate types, of course).
Thus full β-conversion (instead of just β0-conversion) may need to be used in computing
with hohc (see Section 6.2).

The higher-order predicates in Figure 8.3 permit some natural computations on relations.
For example, if R and S are two binary relations of the same type, then (union R S) is the
union of their extensions and (compose R S) is their relational composition (natural join).
Notice that since union and compose are not defined recursively, they can be expressed
using λ-expression: the predicate denoted by (union R S) can be written instead as the
expression

x\y\ R x y; S x y.

and the predicate denoted by (compose R S) can be written instead as the expression

x\z\ sigma Y\ R x Y, S Y z.
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module misc.

kind person type.

type bob, sue, ned person.

type age person -> int -> o.

type male, female person -> o.

age bob 23.

age sue 24.

age ned 23.

male bob.

female sue.

male ned.

kind node type.

type adj node -> node -> o.

adj a b.

adj b c.

adj b d.

adj d c.

Figure 8.2: A simple database of miscellaneous facts.

If P is an A-indexed set of binary relations over B, that is, if it has type

A -> B -> B -> o,

then (iter P) iterates P to get a predicate of type

list A -> B -> B -> o.

Such higher-order predicates often make it possible to avoid explicit uses of some quantifiers.
For example, reverse is defined in Figure 8.4 by repeatedly entering elements on to a stack
(similar to the one in Figure 5.18) and then removing them again. The pre_post predicates
is used to force the stack to be empty at the start and conclusion of the reversing operation.
(Using the local and localkind directives, it is possible to give local scope to stack, emp,
stk, empty, enter, and remove.

As a final example of a style of programming that should be available in a higher-
order version of Horn clauses, consider continuation passing style programming in the logic
programming setting. For example, in [Tar92], Horn clauses of the form

A1 ∧ . . . ∧An ⊃ A0 (n > 0)

are transformed to higher-order clauses of the form

(A1 (. . . (An G) . . .)) ⊃ (A0 G).

The simple clause A0 is transformed to the clause

G ⊃ (A0 G).
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module rels.

type union (A -> B -> o) -> (A -> B -> o) -> A -> B -> o.

type compose (A -> B -> o) -> (B -> C -> o) -> A -> C -> o.

type iter (A -> B -> B -> o) -> list A -> B -> B -> o.

type pre_post (A -> o) -> (A -> B -> o) -> (B -> o) -> o.

union R S X Y :- R X Y; S X Y.

compose R S X Y :- R X Z, S Z Y.

iter P nil X X.

iter P (Z::L) X Y :- P Z X M, iter P L M Y.

pre_post R S T :- R X, S X Y, T Y.

Figure 8.3: Some simple relational programs.

module reverse3.

import rels.

kind stack type -> type.

type emp stack A.

type stk A -> stack A -> stack A.

type empty stack A -> o.

type enter, remove int -> stack A -> stack A -> o.

empty emp.

enter X S (stk X S).

remove X (stk X S) S.

reverse L K :-

pre_post empty (compose (iter enter L) (iter remove K)) empty.

Figure 8.4: An implementation of list reverse.
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Of course, G is a variable of type o, and all the predicates on that atoms A0, . . . , An must
be modified to have an additional argument of type o. The definition of hohc that we give
now allows for such clauses as these.

8.2 Some design issues

All the above example programs illustrate natural candidates for higher-order programming
and are, in fact, examples of λProlog programs. Before defining higher-order Horn clauses,
we explore some aspects of predicate quantification that are not directly motivated by
principles of higher-order programming but which must be considered if they are to be
incorporated into a logic setting.

8.2.1 Flexible atoms as goals

Atomic formulas must have the form (h t1 . . . tn), where h is either a variable or non-logical
constant and t1, . . . , tn are terms. If h is a non-logical constant, this atom is a rigid atom;
if h is a variable, it is a flexible atom. As we have seen in the examples so far, atomic
formulas in the body of clauses can be flexible. Thus, flexible atoms can become complex
goals via substitution. Consider proving the flexible atom (P bob 23) from the clauses
in Figure 8.2. One answer substitution for this query is the substitution (x\y\ age x y)
for P (this substitution term is equal to age by η-conversation). Many other substitutions,
however, are also valid. For example, substituting

x\y\ age x 23, age ned y

will also lead to a provable goal. Furthermore, let G be any provable closed query. The sub-
stitution x\y\G for P is a legal answer substitution. Thus, substituting (x\y\ age sue 24)
and (x\y\ memb 4 (3::4::5::nil)) (if the basic list operations are in the current context)
are both answer substitutions. Clearly, there are a large number of answer substitutions for
this goal, most of which will not be interesting: it would be undesirable for an interpreter
to systematically search for all of them.

There appears to be three different approaches to treating flexible goals in a λProlog
interpreter.

1. Suspend such goals in the hope that processing other goals further instantiates the
predicate variable at the head of the goal. In that case, resume processing that goal.
In the event that all goals are reduced leaving only flexible goals, then instantiate the
predicate variables in the head of all suspended goals as follows: if such a predicate
variables has a type with n ≥ 0 argument types, then substitute λx1 . . . λxn.> for that
predicate variable. That is, instantiate such predicate variables with the universally
true relation of the correct type.

2. Do not suspend the flexible goal. Instead simply instantiate the predicate variable
head with the substitution described above.

3. Produce an error message.

The first option can be shown to be complete [Nad87, NM90]: the other two are incom-
plete. An early implementation of λProlog [MN87a] chose not to reorder or suspend goals
and used the second option. Experience with that implementation suggested that in the
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module primrel.

kind i type.

type primrel, rel (i -> i -> o) -> o.

primrel father.

primrel mother.

primrel wife.

primrel husband.

rel R :- primrel R.

rel (x\y\ sigma z\ R x z, S z y) :- primrel R, primrel S.

mother jane mary.

wife john jane.

Figure 8.5: An example of building predicates from other predicates.

vast majority of times that this option needed to be employed, the program being executed
contained errors, which, when removed, no longer gave rise to this situation. More recent
implementations have, thus, chosen the third option. The choice of implementation strate-
gies used will not be important for us here since none of our examples will be sensitive to
them.

The range of a predicate variable can, however, be usefully restricted by a program.
For example, given the clauses in Figure 8.5, it is not sensible to ask for the predicates R
over the current signature that are true when applied to john and mary. The programmer,
however, can specify some collection of predicates that are considered relevant and then
restrict the predicate variable head of the flexible goal to be in that collection. For example,
the ill-posed query above can be qualified to be the query

?- rel R, R john mary.

This query is only solvable if R is substituted for by the term

x\y\ sigma Z\ wife x Z, mother Z y.

The second-order predicate rel specifies a domain of “relevant” predicates: this specification
of relevance must be done by the programmer.

8.2.2 Flexible atoms as heads of clauses

All examples of clauses so far have allowed flexible atoms to appear in the body of clauses
but not as the head of a clause. This is because λProlog does not permit the head of a
clause to be a flexible atom. There are two major reasons for this design choice.

First, if a Horn clause has a flexible atom as its head, it is possible that all goal formulas
can be proved from that clause. Consider, for example, the two clauses

P 5 :- q.
q.
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Let Σ be the current signature and let G be a Σ-formula. To prove G, simply backchain
over the first clause above, instantiating P with λx.G. This then gives rise to the attempt
to prove q. Since this is provable, we have a proof of G. Thus, if the current context
contains these two clauses, all goals over the current signature can be proved: that is, the
current context has become inconsistent. As further proof: the goal (pi p\p) described in
Section 5.5.3 as denoting false can also be proved from these two clauses. When clauses can
only have rigid atoms at their head then all programs are consistent: that is, they do not
prove all goals.

Second, a clause can be seen as being part of a specification for a given predicate, in
particular, the one that is the head of a clause. If that head is a variable, then such a clause
could be considered as adding meaning to every predicate, a possibility that seems to be
too liberal to allow [NM90].

For these two reasons, it seems best to define a higher-order version of Horn clauses so
that flexible atoms are not the head of any clause. This restriction is made, however, largely
because we wish to avoid the operational problems just mentioned. There are, however,
meaningful uses to be made of predicates at the head of a clause. For example, Felty has
provided an encoding of the Calculus of Constructions [CH88] into higher-order logic that
makes use of flexible atoms in the heads of clauses [Fel93]. Also, Leibniz defined equality
by stating that two terms are equal if they satisfy the same predicates. Thus, the equation
x + 0 = x could be specified using the two clauses

P (X + 0) :- P X.
P X :- P (X + 0).

Thus, any attempt to prove a goal containing an occurrence of a subterm of the form X + 0
can be replaced by the attempt to prove the same goal but with that subterm replaced with
X. This style of implemetation of equality reasoning is problematic for other reasons (see
Section 8.6).

8.2.3 Logical connectives in terms

Besides addressing the issue of where predicate variables can appear within formulas, it
is also important to decide to what extent logical connectives can appear within atomic
formula. To address this question, notice that the predicate variables at the head of flexible
atoms in goals can be instantiated via unification: somewhere two atomic formulas are
unified and the resulting substitution will be applied to the flexible atom. Thus, any logical
connectives that appear within atomic formulas can then appear in a goal. For example,
using the code in Figure 8.1, the query

?- mappred (x\y\ p x y => q x y) (1::nil) (2::nil).

would give rise to the query

?- p 1 2 => q 2 1.

which is not a query within the usual Horn clause setting. Thus, if we are not careful in
our definition, a computation that starts out within a Horn clause setting may not remain
in that setting. While this example can be made sensible by referring to hereditary Harrop
formulas, we would like to restrict the definition of higher-order Horn clauses in such a way
that the computation process remains within the Horn clause framework. If the only logical
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constants that appear in atomic formulas are the same as those that can appear in goals
(namely, >, ∨, ∧, and ∃) then it is possible to arrange the search for proofs in higher-order
Horn clauses so that the only instances of such clauses that need to be considered are again
higher-order Horn clauses.

8.2.4 Definition of hohc

Given the above design decisions, we now define hohc so as to meet them. Let Σ be a
signature (of any order) and let H1 be the set of all λ-normal Σ-terms in which the only
logical constants these terms may contain are >,∧,∨, and ∃. Note that H1 contains terms
of all types, including o. Let the syntactic variable A now denote an atomic formula in H1.
The syntactic variable Ar is used to denote rigid atomic formulas in H1.

It is possible to supply three definitions of the program clauses and goals for hohc
that parallel the three definitions for fohc given in Section 3.4. Below we supply only one
definition; the one that parallels definition 3.2. A goal formula of hohc is any formula in
H1. Notice that goal formulas satisfy the clause

G ::= > | A | G1 ∧G2 | G1 ∨G2 | ∃τx G.

This clause alone does not serve to define the entire structure of these goals since it does
not reveal the structure of logical connectives that can appear inside atomic formulas. The
program clauses of hohc are defined by:

D ::= Ar | G ⊃ D | D1 ∧D2 | ∀τx D.

The quantification in both G- and D-formulas may be over variables of any type and bound
variables may be applied to any terms, as long as typing restrictions are correct: the restric-
tion from Lλ is not enforced in hohc. The use of rigid atomic formulas in the definition of
program clauses rules out the possibility of having flexible atoms as the head of a program
clause.

Let hohc be formally defined as the logic programming language in which goals and
definite formulas are defined as above and provability is identified with classical provability.
As is the case in fohc, the logic used in this setting is weak enough that provability could
also be taken to be intuitionistic: this weaker provability relation would still coincide with
the operation behavior of hohc. Furthermore, in constructing proofs involving hohc, the
only substitutions that need to be considered are contained in the set H1: hence, we refer
to this set as the Herbrand universe for hohc.

The proof of this latter fact is not straightforward. Consider, for example, the following
declarations and hohc program clause.

kind i type.
type a,b i.
type p i -> o.

p a :- Q b.

There is a classical logic proof of the query sigma x\p x) from this clause in which the
proof does not prove a particular instance of the existential quantifier: that is, the proof
is not goal directed, as in the sense described in Section 3.3. Such a proof can arise by
instantiating Q in this clause with the λ-term (x\ neg (p b)), where neg is used here
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to denote classical logic negation (this term is, of course, not in H1). This instance of
that clause is classically equivalent to p a; p b: that is, the substitution instance of a Horn
clause would not be a Horn clause but a disjunction. It is possible to prove (sigma x\ p x)
from this disjunction although no instance of this existential quantifier are provable from
the disjunction (provability could be either classical or intuitionistic).

Fortunately, it turns out that this apparent problem can be overcome. It was shown in
[Nad87] (and later in [NM90]) that whenever there is any proof that a certain goal follows
from a set of higher-order Horn clauses, there is a goal directed proof, and furthermore,
all instances of Horn clauses in that proof will again be Horn clauses (substitution terms
only need to be selected from H1). In the example above, there is a goal-directed proof of
(sigma x\ p x) in which the variable Q is instantiated with the term x\true.

The core of hohc, in the sense of Section 5.3, is a disappointing small set, namely the set
of closed atoms or conjunctions of atoms. This is the same as the core for fohc except that
the atoms can now contain λ-abstractions and non-logical constants of higher-order type.

8.2.5 Comparison with functional programming

At this point it is worth comparing how the higher-order programming supported by hohc
compares with that supported in functional programming languages like Scheme and ML.
As the examples using mappred and sublist, for example, show, most of the functionality
of higher-order programming in functional programming can naturally be transfered to the
logic programming setting. If our goal had been to simply capture a suitable generaliza-
tion of the functionality behind higher-order programming in functional programming then
we should have restricted the structure of hohc greatly. For example, quantification over
higher-order but non-predicate types would not be necessary. For more on such restrictions,
see [Wad91]. While such a restriction has its interest and merits, it only provides logic
programming with a concept (higher-order programming) that is already familiar. With
the stronger definition above, new programming features emerge that did not appear in any
existing programming language. These new features — the presence of λ-abstraction and
functional quantification — have been at the center of much of the development of λProlog
(historically speaking, hohc was the first extension of fohc that was studied in the context
of λProlog).

There are at least two ways in which the notion of higher-order programming in hohc
is stronger than the notion found in functional programming. First, although predicate
variables in λProlog correspond naturally to function variables in functional programming,
the general notion of function variables in λProlog corresponds to nothing in conventional
functional programming languages. Since predicate variables are essentially just special
cases of function variables and since the proof theory of quantification at higher-types is
well understood, it was natural to design λProlog to include this more general notion.
While the notion of function variable quantification does not correspond to anything in
functional programming, it also supplies λProlog with computational expressiveness not
found in functional programming. For example, the ability to directly manipulate λ-terms
as in Chapter 7 is not available in functional programming languages.

Second, hohc allows two predicate expressions to be compared for equality: in an imple-
mentation, this would give rise to the unification of predicate expressions. For example, the
following clause is a legal hohc clause.

type eq_pred (A -> o) -> (A -> o) -> o.
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eq_pred R R.

A goal with eq_pred as its head would succeed if its two arguments are equal (unifiable)
predicates. Such an operation is not possible in such higher-order functional programming
languages as ML and Scheme. Note, however, that such a check on equality is based on the
intension and not the extension of the predicates. For example, the query

?- eq_pred (x\ p x, q x) (x\ q x, p x).

will fail no matter the definitions of p and q: equality is decided only at the level of the
λ-terms: the fact that these λ-terms may denote sets and that these sets may be equal is
not considered. Functional programming does not allow for such checks between functions,
chiefly because the intended semantics of functional programming languages is an exten-
sional one and determining extensional equality is, in general, undecidable. Clearly, the
semantics of hohc and λProlog is not extensional: the weaker intensional check of closed
terms is decidable (reduces to βη-conversion).

8.3 Computations on λ-terms in hohc

We now explore to what extent hohc can compute with terms containing λ-abstractions.
The logical structure of program clauses in hohc is weaker than for Lλ: the former has
formulas limited to clausal order 0 or 1 whereas the latter has no limit on order. However,
hohc has no restrictions on how quantifier variables can be applied. An implementation of
hohc must, therefore, employ a much stronger form of unification to deal with the more
general structure of terms. This unification, βη-unification, is illustrated with examples in
this section.

8.3.1 Computing with functional expressions

The mapfun predicate in Figure 8.6 is a natural parallel to the mappred predicate . This
predicate relates a term of functional type to two list of equal length if the elements of
the second list are the result of applying that functional term to corresponding elements of
the first list. Here, of course, function application is simply βη-conversion for simply typed
λ-terms. Assume that the constants a, b, c, and d have type, say i, and that g has type
i -> i -> i and consider the query

?- mapfun (x\ g a x) (a::b::nil) L.

The unique answer substitution for L is ((g a a)::(g a b)::nil). In order to compute
this term an interpreter would form the terms ((x\ g a x) a) and ((x\ g a x) b) and
λ-reduce them. Thus, computation in mapfun arises chiefly from β-reductions whereas
computation in mappred arises from calling the goal that results from applying a predicate
to arguments: the latter is therefore capable of calling arbitrarily complex subcomputations.
Clearly, mappred is stronger than mapfun: the clause

mapfun F L K :- mappred (x\y\ y = F x) L K.

implements the latter using the former.
It is, of course, possible to ask an interpreter to construct a functional expression that

will satisfy a mapfun goal. The query
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module funprog.

type mapfun (A -> B) -> list A -> list B -> o.

mapfun F nil nil.

mapfun F (X::L) ((F X)::K) :- mapfun F L K.

type reducefun (A -> B -> B) -> list A -> B -> B -> o.

reducefun F nil Z Z.

reducefun F (H::T) Z (F H R) :- reducefun F T Z R.

Figure 8.6: Two programs for manipulating function expressions.

?- mapfun F (a::b::nil) ((g a a)::(g a b)::nil).

is provable and has one answer substitution, namely, that which substitutes (x\ g a x)
for F. An interpreter for λProlog would need to consider first unifying the pair of terms
(F a) and (g a a). This particular unification problems has four unifiers, namely, the
substitutions where F is replaced with the following terms.

(x\ g x x) (x\ g a x) (x\ g x a) (x\ g a a)

If the second substitution term is not selected first, the interpreter will need to backtrack
until it does in fact select the second substitution term, which is the only substitution term
that also unifies the pair (F b) and (g a b). Notice that the following goal is not provable:

?- mapfun F (a::b::nil) (c::d::nil).

There is no simply typed λ-term which maps a to c and maps b to d. There are, clearly,
an infinite number of functions that would map a to c and b to d, but none of them are
expressible in this rarefied setting (see related discussion in Section 6.3).

Consider also the reducefun predicate in Figure 8.6. Below are two examples of queries
using this predicate.

?- reducefun (x\y\ x + y) (3::4::8::nil) 6 R.
R == 3 + (4 + (8 + 6)) .
yes

?- reducefun F (4::8::nil) 6 (1 + (4 + (1 + (8 + 6)))).
F == x\y\ 1 + (4 + (1 + (8 + 6))) ;
F == x\y\ 1 + (x + (1 + (8 + 6))) ;
F == x\y\ 1 + (x + y) ;
no

?-

The second query has three answer substitutions. It is possible to get only the third if the
query is rewritten using a universal quantifiers as follows.
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?- pi z\ reducefun F (4::8::nil) z (1 + (4 + (1 + (8 + z)))).
F == x\y\ 1 + (x + y) ;
no

?-

Technically speaking, universally quantified goals are not part of hohc. We shall, however,
be presenting a common extension of both hohc and Lλ in Chapter 9. Since λProlog is
based on that common extension, the above query is appropriate in λProlog.

8.3.2 A functional version of difference lists

A common programming technique in Prolog is to use logic variables in data structures
not to denote a partial description of that structure but as a site into which additional
information can be inserted. One such data structures is called difference lists (see, for
example, [SS86]). Difference lists can be represented simply in λProlog as terms of type
(pr (list A) (list A)) where the second list of the pair is a tail of the first list; for
example,

(pr (a::b::c::L) L).

A difference list is intended to be a representation of the list which precedes the designated
tail: in this example, the intended list is simply (a::b::c::nil). One use of difference lists
is to implement concatenation, using the predicate

type concat pr (list A) (list A) ->
pr (list A) (list A) ->
pr (list A) (list A) -> o.

concat (pr L1 L2) (pr L2 L3) (pr L1 L3).

One problem with this approach to appending lists is that a given difference list can only
be used in a concat once: after that, the logic variable representing the tail of a list is set.

It is possible, however, to use abstracted variables instead of logic variables for inserting
information into a data structure [BR91]. Forexample, a functional difference list will be a
list with its tail abstracted. For example, given the following declarations

kind i type.
type a,b i.
type f i -> list i -> i.

the term (l\ a::b::c::l), of type list A -> list A, denotes the difference list above.
Clearly, not all terms of type list A -> list A are functional difference lists: for example

(l\ a::b::c::nil) (l\ a::(f a l)::nil)

are both of this type but neither are abstractions over only their tail. The module in
Figure 8.7 specifies some predicates over such functional different lists.

The list_dlist predicate can be used to convert between lists and difference lists.
Lλ provides another implementation of list_dlist, namely replace the specification in
Figure 8.7 of list_dlist with
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module diff_lists.

type concat (list A -> list A) ->

(list A -> list A) -> (list A -> list A) -> o.

type insert_front, insert_rear

A -> (list A -> list A) -> (list A -> list A) -> o.

type list_dlist list A -> (list A -> list A) -> o.

type palindrome (list A -> list A) -> o.

concat F G (x\ F (G x)).

insert_front Y F (x\ Y::(F x)).

insert_rear Y F (x\ F (Y::x)).

list_dlist nil x\x.

list_dlist (H::T) (x\ H::(D x)) :- list_dlist T D.

palindrome (x\x).

palindrome (x\ Y::x).

palindrome (x\ Y::(F (Y::x))) :- palindrome F.

Figure 8.7: A specification of functional difference lists.

list_dlist L D :- pi x\ append L x (D x).

assuming, of course, that the lists module is either imported or accumulated into the
diff_lists module. Consider the following predicate of a type similar to that for list_dlist.

type convert_list list A -> (list A -> list A) -> o.
convert_list (F nil) F.

This predicate does not faithfully relate lists to functional difference lists: it specifies a one-
to-many relationship. That is, given a list as it first argument, there are various functional
structures that can be in the second argument position, only one of which is the intended
difference list. For example, consider the following two queries:

?- convert_list (a::b::nil) F.
F == x\ a::b::nil;
F == x\ a::b::x;
no

?- convert_list (a::(f (b::nil))::c::nil) F.
F == x\ a::(f (b::nil))::c::nil;
F == x\ a::(f (b::x))::c::nil;
F == x\ a::(f (b::nil))::c::x;
F == x\ a::(f (b::x))::c::x;
no

?-



8.3. COMPUTATIONS ON λ-TERMS IN HOHC 143

In each case, only one of the various answers is, in fact, the intended difference list. Unifi-
cation alone cannot be used to produce a functional different list from a list: recursion as
in the specifications of list_dlist above is necessary.

For a final example of functional difference lists, consider the predicate that determines
whether or not the list intended by a functional difference list is a palindrome, that is, a list
that can be read the same forwards and backwards. Since it is possible to access the first
and last element of a difference list in one unification step, this predicate has a particularly
simple specification. Consider the following two queries to palidrome.

?- palindrome (x\ a::b::c::b::a::x).
yes

?- palindrome (x\ a::b::a::(F x)).
F == x\ x ;
F == x\ b::a::x ;
F == x\ a::b::a::x ;
F == x\ Y::a::b::a::x ;
F == x\ Z::Z::a::b::a::x ;
F == x\ Y::Z::Y::a::b::a::x ;
F == x\ Y::Z::Z::Y::a::b::a::x ;
F == x\ Y::Z::U::Z::Y::a::b::a::x ;
F == x\ Y::Z::U::U::Z::Y::a::b::a::x .
yes
?-

The second query is asked to compute the functional difference list, F, so that the result
after concatenating with the difference list (x\ a::b::a::x) is a palindrome. There are an
infinite number of answers to this query, several of which are displayed above.

8.3.3 Object-Level Substitution

Given the presence of β-conversion in the meta-theory of hohc (in contrast to just having
β0-conversion in Lλ) and the fact that β-conversion involves substitution, it is possible to
recode the interpreter for fohc written in Lλ in Section 7.6 in a simpler fashion. In particular,
object-level substitution can be specified simply using the atomic clause

type subst (term -> form) -> term -> form -> o.
subst M T (M T).

Notice that substitution can now be defined without using copy-clauses. Given this approach
to object-level substitution, the signature of object-level, non-logical constants is needed
only for the specification of the atom predicate. The modules in Figure 8.8 actually drops
even this reliance on the object-level signature. The module ot_logic1 specifies the only
aspect about the object-level logic that is needed to write an interpreter in hohc. The
module fohc_in_hohc contains the hohc code for specifying the interpreter and the module
ot_path represents the object-level adj and path clauses.

Since the signature dependent parts of the specification used in Chapter 7 are not re-
quired here, the specification of a fohc interpreter here is somewhat simpler. The interpreter
here is open in the sense that we do not need to know anything about the programs that
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we are going to interpret except that they are formulas that are correctly restricted to the
Horn clause definition (3.2) given in Section 3.4.

Since we have not implemented a predicate such as atom, the interpreter in Figure 8.8
does not have the behavior we would wish in all cases. For example, assume that we have
two constants p and q of type form and that we ask the query

?- interp (and p q) (and p q).

This query will succeed twice, where as we would have liked it to succeed once. The reason
for two success is that one arises from decomposing this query into the conjunctive query

?- interp (and p q) p, interp (and p q) q.

Each of these goals has one solution. However, there is another way to decompose this goal
and that is to decompose it into

?- backchain (and p q) (and p q) (and p q).

which again has one solution. Generally speaking, we would prefer that backchaining be
used only for atomic goals, but since we do not have a meta-level predicate for determining
this property of object-level goals, this use of backchaining is not stopped. We can, of course,
make use of cuts ! immediately after the :- in all but the last of the interp clauses. This
would also stop backchaining on non-atomic goals.

There appear to be three ways to introduce the atom predicate again to this interpreter.
The first is the positive approach where we declare what object-level formulas are to be con-
sidered atoms. Such a specification is exactly what is given in Figure 7.8: this re-introduces
a degree of signature-dependence again. There is, however, the negative approach: we can
describe what formulas are not atomic and then negate that predicate. This will, of course,
rely on features of λProlog that are outside the scope of the logics underlying λProlog. Such
a negative specification can be made by adding the following lines to the module ot_logic1
in Figure 8.8.

type atom, non_atom form -> o.

non_atom truth & non_atom (or _ _) & non_atom (and _ _) &
non_atom (imp _ _) & non_atom (all _) & non_atom (some _).

atom A :- not (non_atom A).

A third approach would be to introduce an explicit constructor for atoms. This might
be done as follows.

kind prop type
type atm prop -> form.
type adj, path term -> term -> prop.

Then we place atm around all atomic formulas. For example, the object-level formula
encoding the adjaceny and path clauses (see Figure 8.8) would then be written as

(and (atm (adj a b))
(and (atm (adj b c))

(and (all x\ all y\ imp (atm (adj x y)) (atm (path x y)))
all x\ all y\ all z\ imp (and (atm (adj x y)) (atm (path y z)))

(atm (path x z)))))).
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module ot_logic1.

kind term, form type.

type truth form.

type or, and, imp form -> form -> form.

type all, some (term -> form) -> form.

module fohc_in_hohc.

accumulate ot_logic1.

type interp form -> form -> o.

type backchain form -> form -> form -> o.

interp D truth.

interp D (and G1 G2) :- interp D G1, interp D G2.

interp D (or G1 G2) :- interp D G1; interp D G2.

interp D (some G) :- interp D (G X).

interp D A :- backchain D D A.

backchain D A A.

backchain D (and D1 D2) A :- backchain D D1 A; backchain D D2 A.

backchain D (all D1) A :- backchain D (D1 X) A.

backchain D (imp G D1) A :- backchain D D1 A, interp D G.

module ot_path.

accumulate ot_logic1.

type a, b, c term.

type adj, path term -> term -> form.

type prog form -> o.

prog (and (adj a b)

(and (adj b c)

(and (all x\ all y\ imp (adj x y) (path x y))

(all x\ all y\ all z\ imp (and (adj x y) (path y z))

(path x z))))).

Figure 8.8: Three modules specifying an object-level encoding of fohc for an interpreter in
written in hohc.
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We would also need to modify the interpreter in that module as well, by giving backchain
a different type and changing a couple clauses, as shown below.

type backchain form -> form -> prop -> o.
interp D (atm A) :- backchain D D A.
backchain D (atm A) A.

It does not seem possible to provide a direct implementation of object-level fohh within
hohc. In Figure 7.9 the object-level universal quantifier was implemented using a meta-
level universal quantifiers. Since hohc lacks this meta-level quantifier, this approach is not
available, and no other approach seems apparent. It is easy to provide for object-level
implications in this hohc interpreter by simply using the same technique used in Figure 7.9:
the first clause in Figure 7.9 can be used directly in this interpreter.

8.4 More on computing with λ-terms in hohc

Although hohc admits full β-conversion, it does not appear to be flexible enough to perform a
large number of operations on λ-terms. For example, consider writing meta-level predicates
for deciding whether or not an object-level formula is a goal or definite clause in fohc.
Figure 7.2 contains the simple specification of these predicates in Lλ: Figure 8.9 contains
a specification of these predicates in hohc. This later specification is unsatisfactory since
its meaning relies on an extra constant which must be added to deal with quantification.
(The predicate atom can be specified in the various ways described in the previous section.)
Since the universal quantifier pi is not available in the goal formulas of hohc, the treatment
of object-level quantifiers is different: to determine whether or not (all D) is a definite
clause, this code checks whether or not (D dummy) is a definite clause. While this reduction
is correct, it lacks the elegance of the implementation in Figure 7.2: while it was easy to show
that the substitution instance of a first-order Horn clause is another first-order Horn clause
using the Lλ implementation showing the similar properties here is less straightforward.

If we make dummy local to this module this specification improves somewhat: this new
object-level term is introduced only for a certain computation and is not inserted into the
object-logic as other constants. Technically, however, the use of local is not accounted for
by hohc alone.

While the use of dummy succeeded in producing an hohc specification of fohcG and fohcD,
such a technique does not work with more general computations on object-level formulas.
For example, it seems impossible to provide a simple specification of the nnf predicate in
Figure 7.4 in hohc. The lack of universal quantification in goals seriously restricts the ability
of hohc to compute on λ-terms by recursion.

It is worth contrasting the two specifications of interpreters for object-level fohc: the
one using Lλ (Figure 7.8) and the one using hohc (Figure 8.8). The one written in Lλ pro-
vides a specification of object-level substitution while the one in hohc uses βη-conversion to
affect object-level substitution: hence, the latter interpreter is more succinct. Such achieve
this succinctness, the λProlog interpreter (as an interperter for hohc) must implement the
powerful operation of βη-conversion and the associated operation of βη-unification. For
this task of implementing an interpreter for an object-level logic, it is an interesting ques-
tion if the complexity related to providing βη-conversion is really needed. Clearly, we only
need to handle declaratively object-level substitution for this problem, so the Lλ solution
seems more appropriate for this kind of task. It is possible to show, however, that, from a
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module fohc_check.

accumulate ot_logic1.

type fohcG, fohcD form -> o.

type dummy term.

fohcG truth.

fohcG (and B C) &

fohcG (or B C) :- fohcG B, fohcG C.

fohcG (some B) :- fohcG (B dummy).

fohcG A :- atom A.

fohcD (imp G D) :- fohcG G, fohcD D.

fohcD (and D1 D2) :- fohcD D1, fohcD D2.

fohcD (all D) :- fohcD (D dummy).

fohcD A :- atom A.

Figure 8.9: An hohc-based specification of the classes of goals and definite formulas for
object-level fohc.

high-level point-of-view, an interpreter for hohc, when given this problem, will behavior in
a “conservative” fashion: the unification problems it will attempt will be simple to compute
and can be related to operations that the Lλ interpreter will do with the specification it is
given. It is the case that a particular λProlog system may implement various parts of the
logic of λProlog differently: for example, if λ-conversion is well supported, the Lλ imple-
mentation may be less efficient, where as, if the logical connectives, particularly implications
and universal quantifiers in goals, are efficiently implemented, the Lλ specification may be
more efficient.

8.5 Partial definition of some logical connectives

In Section 5.5.3 we presented a goal formula that succeeds once and another that always
fails. In a certain sense, these were “definitions” of true and false. Using hohc it is
possible to define, in a certain, weak sense, the logical constants >, ∨, and ∃. The clauses
in Figure 8.10 describe an implementation of these three constants. This are not complete
definitions since these clauses only supply half of the meaning of logical connectives. In
particular, they describe how to prove a formula using that connective but they do not
describe how such formulas are used in a proof. For example, the rule of cases, which
describes how a disjunctive assumption can be used in a proof, is not specified by this
inference rule. In the language of the sequent calculus (Subsection 3.3), the clauses in
Figure 8.10 specify the right-introduction rules but not the left-introduction rules for those
connectives.

Let P and G be a hohc program and goal that have no occurrences of the constants
tt, or, exists, and let D be the set of clauses in Figure 8.10. Also, let P ′ and G′ be
the result of replacing all occurrences of true, ;, and sigma in P and G with tt, or, and
exists, respectively. Then G is provable from P if and only if G′ is provable from P ′ ∪ D.
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type tt o.

type or o -> o -> o.

type exists (A -> o) -> o.

tt.

or P Q :- P.

or P Q :- Q.

exists B :- B T.

Figure 8.10: The “definition” of some logical constants.

Furthermore, cut-free proofs that G follows from P correspond directly to cut-free proofs
that G′ follows from P ′ ∪D: the right-introduction of >, ∨, and ∃ in one proof corresponds
the backchaining over one of the clauses in Figure 8.10 in the other proof.

8.6 Two examples of bad programs

There are abysses within declarative programming which programmers must learn about and
avoid. In Prolog there is left-recursion. In λProlog there are additional pitfalls involving
higher-order quantification and βη-unification.

One common pitfall is an attempt to use βη-unification to perform “extraction”. For
example, given the signature

kind i type.
type a,b i.
type f i -> i -> i.

consider the problem of taking a term of type i and forming the λ-abstraction that results
from replacing all occurrences of a with the abstracted variables. For example, given the
term (f a (f a b)) the intended abstraction would be (x\ f x (f x b)). The specifica-
tion

type extract_a i -> (i -> i) -> o.
extract_a (F a) F.

will not, in general, compute the intended extraction. For example, given this specification,
the query

?- extract_a (f a (f a b)) F.
F == x\ f x (f x b);
F == x\ f x (f a b);
F == x\ f a (f x b);
F == x\ f a (f a b);
no

?-

produces four solutions, only the first of which is the intended expression. Of course, if
unifiers are produced in the order shown above, it would be possible to use cut to eliminate
all but the first result.
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extract_a (F a) F :- !.

Instead of using this non-logical aspect of λProlog, it is possible to be more explicit in the
specification of this predicate. The following specification performs the intended extraction.

extract_a a x\x.
extract_a b x\b.
extract_a (f T S) (x\ f (U x) (V x)) :-
extract_a T U, extract_a S V.

This specification is another example of a signature-dependent specification.
The specification of term rewriting is often attempted using a direct but naive use of

higher-order quantification. Consider, for example, the following predicate.

type rewrite int -> int -> o.

rewrite (0 + X) X.
rewrite (1 * X) X.
rewrite (X - X) 0.
rewrite (C X) (C Y) :- rewrite X Y.

The first three clauses specify certain rewriting steps. The last clause is a naive specification
of the fact that two terms are equal if a subexpression is replaced by an equal subexpression.
The following are provable instances of this predicate.

rewrite ((5 - 5) + 6) 6.
rewrite ((1 * 5) - 5) 0.

While these are all examples of the intended meaning of this predicate, this specification
has far too many proofs to be interesting. For example, any provable goal has an infinite
number of different proofs. Clearly, this specification gives rise to a poor implementation in
λProlog.
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Chapter 9

Higher-order hereditary Harrop
formulas

Each of the languages Lλ and hohc contain features not contained in the other. The only
remaining design issue for the logical foundation of λProlog is to come up with a single logic
programming language in which both of these languages exist. For this purpose, we present
the intuitionistic theory of higher-order hereditary Harrop formulas, or hohh for short, as
a logic programming language that contains both hohc and Lλ (and, hence, fohh). After
introducing hohh, we shall also strengthen it to hohh+ much as we did when fohh was
strengthened to fohh+. With this chapter we shall have finished describing the various logic
programming languages contained in Figure 1.1.

There are two logical features of hohc that are lacking from Lλ. First, there is no
restriction on what essentially existential variables are applied to in hohc, whereas in Lλ

they can be applied to at most distinct essentially universal variables. Second, it is possible
to quantify over predicates and to place logical connectives within terms within hohc, while
neither of these features were allowed in Lλ. We discuss each of these features in the next
two sections.

9.1 Removing restrictions from Lλ

One interesting aspect of the Lλ logic programming language is that it could compute on the
structure of λ-terms even though an implementation of it involved a unification algorithm
that had properties familiar to those of first-order unification: namely, such unification is
decidable and unary (most general unifiers exist when unifiers exist). If the restriction of
the application of essentially existential variables if removed from Lλ, an implementation
of the resulting language needs to invoke full βη-unification, which, as we have pointed out
before, is undecidable and not unary. Giving up these features of Lλ may seem like a high
price to pay, but there are at least three reasons to pursue such an extension to Lλ.

First, Lλ does not express object-level substitution directly: as we have seen in Sec-
tion 7.5, it must be implemented. Although such an implementation using copy-clauses
is simple and natural, it is sensible to consider a more direct treatment of something as
simple and declarative as object-level substitution. Allowing richer forms of application for
essentially existential variables requires β-redexes, not just β0-redexes to be reduced. As we
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have seen in Section 8.3.3, β-reduction can achieve such a direct specification of object-level
substitution. As a result, many calls to subst-goals can simply be replaced by meta-level ap-
plications. Consider, for example, the interpreter for object-level fohc in Figure 7.8, where
subst was used to do object-level substitution, and the interpreter in Figure 8.8, where
meta-level β-reduction achieved object-level substitution.

Second, it should be expected that any implementation of βη-unification will actually
provide an effective implementation of Lλ-unification. Huet’s procedure for βη-unification
[Hue75], can be easily modified to do Lλ-unification: the chief modification is that flexible-
flexible pairs in the Lλ-setting can be solved uniquely, where as Huet’s procedure do not
attempt to solve them. Thus, if one attempts to use an Lλ program in an interpreter
designed to handle all of hohh, the interpreter should provide an effective implementation
of the Lλ program in that it should decide all unification programs as well as pick only most
general unifiers when a unifier exists. Those, one should pay the price of using the richer
language only when one explicitly leaves the weaker language.

em The following statement is false. The following is in the core.

(pi x\ p (f x)) => p (abs F)

Third, the core of Lλ is unfortunately small, being the same as the core of fohh. Thus,
Lλ does not introduce any new programs that can be reasoned about (as opposed to only
being used in reasoning from). The logic of hohh, presented in this chapter, has a much
larger core; in fact that core contains Lλ.

9.2 Adding predicate quantification to Lλ

When fohc was extended to hohc in Chapter 8, two design problems were addressed: what
kind of logical connectives could appear in terms and whether or not the the head of a
clause could be an essentially existential variable. The resolution of these design problems
for hohc was to allow the logical connectives that were allowed within goals, namely >, ∧,
∨, and ∃, to appear within terms and to not allow the head of clauses to be essentially
existential variables. When considering a similar extension to fohh and Lλ to hohh, we need
to reconsider these design issues again.

9.2.1 Heads of clauses

The restriction that the head of a clause in hohc could not be an essentially existentially
quantified variable was made for two reasons: allowing such a variable to be the head of a
clause can lead to inconsistent programs and to program clauses that add meaning to all
predicates in the language.

While these are still important considerations in the design of a higher-order version of
hereditary Harrop formulas, if this ban on existentially quantified predicates is interpreted
broadly, it would rule out an interesting and useful programming technique. Consider, for
example, proving the goal

?- sigma P\ convert d P, P => g.

where g is some formula, P is a variable of type o, and d is some specification of a program
clause. Assume also that the current context contains clauses that define the binary predi-
cate convert that relates a specification of a clause to a program clause (a specific example
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of just such a computation is Section 9.4). Thus we have described a computation that com-
putes a λProlog program from the description d and then executes the resulting program
against the goal g. Such a computation is essentially a way to do Lisp’s eval operation: it
allows a term to be turned into a program. Notice, however, that the second occurrence of
P is in the above example is in the position of a definitive clause: that is, the entire clause
(not just its head) is an essentially existential variable. Imposing the constraint described
for hohc on hohh would rule out this example and this ability to do evaluation-like tasks.

Of course, having the ability to do this style of evaluation can be problematic as well
as powerful. In particular, it could be the case that the result of converting d in the above
example is, in fact, not a proper hohh clauses (whatever this is eventually defined to be).
Thus, after conversion is completed, an attempt to add an invalid formula to the current
context would be made and this would cause a run-time error in a λProlog implementation.
Avoiding such runtime errors is one of the motivations for defining hohh in Section 9.3 so
that the head of clauses cannot be existentially quantified predicates. That is, the above
example will not be allowed in the formal definition of hohh, but will be allowed in λProlog:
when code departs from the formal definition of hohh, runtime errors might be generated.

9.2.2 Logical connectives in terms

Consider the proposal to permit all the connectives that can appear as the top-level connec-
tive of goal formulas in fohh to appear within atomic formulas of hohh. This choice is similar
to that made for extending fohc to hohc. Thus consider allowing ⊃ and ∀ to appear within
atomic formulas, along with >, ∧, ∨, and ∃. The resulting language, unfortunately, does not
constitute a logic programming language in the sense that there are provable formulas that
do not have goal-directed proofs (Section 3.3). For example, consider the formula [MNPS91]

∃Q[∀p∀q[r(p ⊃ q) ⊃ r(Qpq)] ∧Q(t ∨ s)(s ∨ t)],

where r is a constant of type o → o, s and t are constants of type o, Q is a variable of
type o → o → o, and p and q are constants of type o. This formula has exactly one cut-
free proof, obtained by using λxλy(x ⊃ y) as the substitution term for the existentially
quantified variable Q. A proof of this goal must reduce to proving the goal (t∨ s) ⊃ (s∨ t).
Since this formula does not have a goal-directed proof, there can be no uniform proof for
the original sequent.

This example reveals the following problem with allowing, in particular, implications
within terms. When implications are not allowed in terms, as in hohc, it is easy to deter-
mine the polarity of all logical connectives within hohc; namely, following a higher-order
substitution, logical formulas within atomic formulas can possibility become goal formulas
but they can never become definite clauses. Thus in hohc, a substitution instance of the
goal Q(t ∨ s)(s ∨ t) will place both of these disjunctions into positions consistent with the
definition of goal formulas. Introducing implications into atomic formulas, however, makes
it impossible, in general, to determine the polarity of those logical connectives within atomic
formulas. In the above example, Q is instantiated with a formula containing an implication,
so the resulting instance of Q(t∨ s)(s∨ t), namely (t∨ s) ⊃ (s∨ t), is no longer a formula for
which goal-directed provability is complete. This example suggests that one way to maintain
completeness of goal-directed proofs, implications must be eliminated from within terms.
This is, indeed, the approach taken in the definition of hohh in the next section. A. Felty
has shown that if disjunctions and existentials are not allowed within formulas and terms,
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then it is possible to allow implications within terms and still maintain the completeness of
goal-directed provability [Fel93].

9.3 The definitions of hohh and hohh+

Two possible problems in designing hohh have been discussed. In each case, we can define
things so that the problems disappear but this also rules out some interesting and useful
programming techniques. Thus we take the following approach: we define two classes of
formulas, hohh and hohh+, which are restricted and for which no run-time errors can occur.
On the other hand, we allow λProlog to be based on a richer set of formulas than these,
a set that contains the more interesting programs but which could cause run-time errors.
The first languages provide a secure framework for the mixing of higher-order programming
features and Lλ, but we allow λProlog programmers to specify richer and possibly insecure
programs.

Let H2 be the set of λ-normal terms that do not contain occurrences of the logical
constants ⊃ and ⊥. In other words, the only logical constants that terms in H2 may contain
are >, ∧, ∨, ∀, and ∃. Let the syntactic variable A denote atomic formulas in H2 and let
the syntactic variable Ar denote rigid atomic formulas in H2. Then the goal formulas and
definite clause of hohh are defined by the following mutual recursion:

G := > | A | G1 ∧G2 | G1 ∨G2 | ∀x G | ∃x G | D ⊃ G

D := Ar | G ⊃ Ar | ∀x D | D1 ∧D2.

Quantification here may be over variables of any type. The D-formulas will be called higher-
order hereditary Harrop formulas. It is proved in [MNPS91] that goal-directed search in
intuitionistic logic is complete in this setting.

This definition can be liberalized a bit to hohh+, where richer quantification of predicates
is allowed and where goal-directed proof search is still complete for intuitionistic logic. For
this extension, remove the restriction on rigid atomic formulas in D, formulas, that is, use
the following clauses instead

G := > | A | G1 ∧G2 | G1 ∨G2 | ∀x G | ∃x G | D ⊃ G

D := A | G ⊃ A | ∀x D | D1 ∧D2,

but add the proviso that the head of any atom that appears in a D formula cannot be a
variable that is essentially existentially quantified. Let hohh+ be the result of using this
definition of D-formulas instead. The difference between hohh and hohh+ is that the head of
a clause in hohh can only be a constant while in hohh+ it can also be essentially universally
quantified.

In both of these settings, quantifiers need only be instantiated using terms from the
set H2: for this reason, we may think of H2 as the Herbrand Universe for higher-order
hereditary Harrop formulas.

We shall allow λProlog programs to be build from a set of formulas larger than hohh+,
in that atomic formulas can contain implications and goal formulas and definite clauses can
be defined using the same recursive clauses used for hohh+, except that the proviso is not
employed. We shall assume, however, that a λProlog interpreter for this language will refuse
to continue the search for a proof if a formula is being moved into the current program space
that does not have a top-level structure that conforms to the definition used for hohh+: that
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is, if the formula has positive occurrence of a disjunction or existential quantifier or if it has
a positive occurrence of an atomic formula whose head symbol is essentially existentially
quantified.

Consider the example of the convert query given above. While this is not a legal goal in
the sense of hohh+, a λProlog interpreter should process it, attempting to find an instance
of P that is the result of converting d. Once that instance is found, the interpreter will
attempt to add it to the current program, and it is then that it’s top-level structure will be
examined. If it does not satisfy the criterion mentioned about various positive subformulas,
the interpreter will produce a run-time error and stop searching for a proof. If, however, the
convert predicate is written so that if it is proved, its second argument is always a valid
definite clause, then no such runtime error will be caused.

The demands of a compiler on a programming language are often quite different from
those of an interpreter. In particular, compilers often examine program code much more
deeply in order to find ways to avoid various kinds of runtime checks. Thus, it seems sensible
that compilers of λProlog might require programs to be taken from hohh+, for example,
since no runtime errors of this kind can occur.

9.4 Examples of hohh+ programs

Since the design of hohh+ is based on the intuitionistic theory of hereditary Harrop for-
mulas, which supports modular programming, and on a higher-order theory of predicates
and λ-terms, which supports higher-order programming, hohh+ supports a mixing of such
programming styles. Such mixing is quite natural and unproblematic given that this design
has been carried out using logical notions. In contrast, most approaches to adding higher-
order and modular programming features to Prolog are based on non-logical and ad hoc
constructions. As a result, the mixing of these two styles of programming can cause serious
semantic problems. Below we illustrate examples of how these two styles of programming
can be mixed.

9.4.1 Mixing modular and higher-order programming

The program in Figure 9.1 computes part of the Fibonacci relation (see also Subsection 5.4.7),
loads that part into the current context, and calls a goal that is parameterized by the name
of the binary predicate that is used to store the Fibonacci relation. For example, using
this code, the following query could be used to search for all numbers N between 0 and 100
inclusively such that the Nth Fibonacci number is the square of N.

?- fib_memo 100 (fib\ fib N M, M is N * N).

(There are exactly three pairs of values for N and M that satisfies this predicate.) Using this
style of programming, the necessary Fibonacci relation is computed iteratively (using the
local predicate loop) prior to accessing parts of it.

Two simple hohh+ programs are presented in the modules given in Figures 9.2 and 9.3.
Both programs are similar in structure and attempt to mimic a notion of state encapsulation
and both programs make use of hohh+ along with the cut control operator.

In the first of these modules, a named switch that can be turned on and off is speci-
fied. The status of the switch is stored as in the current context using the atomic formula
(sw Name V), where sw is a predicate local to the module, Name is a string used to name
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module fibmemo.

type fib_memo int -> ((int -> int -> o) -> o) -> o.

local memo int -> int -> o.

local loop int -> int -> int -> o -> o.

fib_memo N G :- memo 0 0 => memo 1 1 => loop 0 1 N (G memo).

loop N1 N2 N2 G :- G.

loop N1 N2 M G :- N2 < M, memo N1 F1, memo N2 F2, N3 is N2 + 1,

F is F1 + F2, memo N3 F => loop N2 N3 M G.

Figure 9.1: An implementation of a memo-ized version of the Fibonacci predicate.

module switch.

kind onoff type.

type on, off onoff.

local sw string -> onoff -> o.

type setsw string -> onoff -> o -> o.

type getsw string -> onoff -> o.

type toggle string -> o -> o.

sw Name on.

setsw Name OnOff G :- sw Name OnOff => G.

getsw Name OnOff :- sw Name X, !, OnOff = X.

toggle Name G :- getsw Name on, setsw Name off G;

getsw Name off, setsw Name on G.

Figure 9.2: An implementation of named switches.
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module registers.

local reg string -> int -> o.

type setreg string -> int -> o -> o.

type getreg string -> int -> o.

reg Name 0.

setreg Name N G :- reg Name N => G.

getreg Name N :- reg Name M, !, N = M.

type modifyreg string -> (int -> int) -> o -> o.

type incremreg string -> o -> o.

modifyreg Name F G :- getreg Name V, U is (F V),

setreg Name U G.

incremreg Name G :- modifyreg Name (x\ x + 1) G.

Figure 9.3: An implementation of named registers.

this switch, and V is the value of the switch, either on or off. The only access that is given
to a switch is via the setsw, getsw, and toggle. The first of these predicates is used to set
the switch to a particular value, the second is used to read the value of the switch, and the
third toggles the switch. Notice that the two predicates that can change a switch’s value
are written in a continuation-passing style similar to that discussed briefly in Section 8.1.
As a switch’s value is changed, more and more assumptions about it’s setting are made; of
course, it is only the most recent setting which is the one that is ever desired: hence, the
cut (!) in the definition of getsw is necessary.

The code in Figure 9.3 is similar: in this case, registers store integer values and these
registers can be changed either by setting them to arbitary values (using setreg, doing an
increment (using incremreg), or by applying an arbitrary integer valued function (using
modifyreg).

9.4.2 Assuming computed clauses

Figure 9.4 contains an example of computing a program clause that is then assumed. Given
the clauses in that figure, the goal

?- define s (natjoin r (iter t (1::2::nil))) (s 1 X).

would first translate the “specification”

(natjoin r (iter t (1::2::nil)))

using trans_spec to the predicate expression

x\y\ sigma z\
r x z,
pi aux\

pi U\(aux nil U U),
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module reltrans.

type r, s, t int -> int -> o.

r 1 2.

r 2 3.

t 2 3.

t 3 4.

type trans_spec (A -> A -> o) -> (A -> A -> o) -> o.

type iter (A -> A -> o) -> list A -> (A -> A -> o) -> o.

type natjoin, union (A -> A -> o) -> (A -> A -> o) -> A -> A -> o.

trans_spec r r.

trans_spec t t.

trans_spec (natjoin R S) x\y\(sigma z\(G x z, H z y)) :-

trans_spec R G, trans_spec S H.

trans_spec (union R S) x\y\(G x z; H z y) :-

trans_spec R G, trans_spec S H.

trans_spec (iter R L)

x\y\( pi aux\( pi U\(aux nil U U) &

pi U\(pi V\(pi W\(pi Z\(pi M\(

aux (U::V) W Z :- G U W M, aux V M Z))))))

=> (aux L x y))

:- trans_spec R G.

type define (A -> A -> o) -> (A -> A -> o) -> o -> o.

define Name Spec Goal :-

trans_spec Spec G, (pi X\(pi Y\(Name X Y :- G X Y))) => Goal.

Figure 9.4: A translator for relational calculus specifications.

pi U\(pi V\(pi W\(pi Z\(aux (U::V) W Z :-
sigma M\(t U W M, aux V M Z))))))

=> aux (1::2::nil) z y

The action of the define clause will then extend the current program with the clause

s X Y :-
sigma z\ r X Z,
pi aux\

((pi U\ aux nil U U),
(pi U\ pi V\ pi W\ pi Z\ aux (U::V) W Z :-

sigma M\ t U W M, aux V M Z))
=> aux (1::2::nil) Z Y

and then evaluate the goal formula (s 1 X), the result of which will bind X to 4.
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While this computation seems sensible, there are at least two potential problems with
the clause for the define predicate in Figure 9.4. First, the first argument of define may
not be bound to a “name”, such as the constant s used in the above example. It could be
the case that a logic variable is used for the name. In this case, the current program will be
extended with a program clause with no fixed head. Such clauses can lead to inconsistent
current programs, as was described along with higher-order clauses (Chapter 8). Second,
this clause for define could produce a run-time error, in the sense that a formula other
than a hereditary Harrop formula might get added to the current program.

The first of these two problems can be repaired if we actually intend that the variable
Name ranges over only names. In that case, we should not give Name the type A -> A -> o
but rather the type string, in which case, we could need to use a new non-logical constant
pred of type string -> A -> A -> o to coerce a name into a binary predicate. Thus the
define clause could be changed to be

type define string -> (A -> A -> o) -> o -> o.

define Name Spec Goal :-
trans_spec Spec G, (pi X\ pi Y\ pred Name X Y :- G X Y) => Goal.

with the additional change that we need to invoke (pred Name) instead of simply Name.
The second problem, namely the fact that

pi X\ pi Y\ pred Name X Y :- G X Y

may not be a hohh clause is not so easily addressed since it depends on the behaviour of
define.

9.5 Logical properties of hohh+

The higher-order intuitionistic theory of hereditary Harrop formulas is a rich theory. To
the extent that λProlog actually implements part of this theory, we can make use of math-
ematical properties of that theory to conclude results about programs written in λProlog.
In this section, we illustrate some examples of using such mathematical properties of logic
to infer properties of λProlog programs.

In Section 3.3 we mentioned that the sequent calculus could be used to describe some
aspects of the run-time behavior of λProlog programs. As was mentioned there, an idealized
interpreter can be seen as building cut-free proofs. A consequence of the cut-elimination
result of sequent calculus can be stated as follows: if the goal M ⊃ G is provable from
program P1 and M is provable from program P2, then the goal G follows from the program
P1 ∪P2. (The formula M must be in the core of the language being considered.) A similar
result also holds for universal quantification: if the goal ∀x G is provable from program
〈Σ,P〉 and t is a Σ-term of the same type as x, then the goal [t/x]G follows from 〈Σ,P〉. Of
course, these facts cannot be inferred to be a property of λProlog in general since λProlog
is incomplete with respect to provability: it can only be used on those programs for which
it can be shown that λProlog will, in fact, be complete.

For a simple example of using these properties, consider the fohhD predicate in Figure 7.2.
This predicate can be used to determine whether or not its argument is an object-level first-
order hereditary Harrop formula. From the definition of this class of formulas (say, in
Section 5.1), it is clear that if a universally quantified formula is a fohh program clause, so



160 CHAPTER 9. HIGHER-ORDER HEREDITARY HARROP FORMULAS

is any instance of that formula. It is a nice observation that this is also true of the predicate
that we have specified in Figure 7.2. The proof of this fact goes as follows: Assume that
fohh (all D) is provable and let T be a term of type term. Then, since there is only one
way this goal can be proved, it must be the case that pi x\(fohhD (D x)) is provable.
Thus, using the property about universal quantification mentioned above, it is the case that
(fohhD (D T)) is provable. Given that the logic we are using contains βη-conversion, the
term (D T) is convertible (hence, equal) to the result of substituting T for the outermost
bound variable of D. Thus, if (forall D) is an object-level fohh, then so too is the instance
(D T).

For a more interesting example of such reasoning, consider the subst predicate in Fig-
ure 7.6. We shall show that if (subst M T S) is provable, then S is equal to the result
of substituting T for the bound variable in M. So, assume that (subst M T S) is provable.
Then it must be the case that

pi x\(copyterm x T => copyform (M x) S).

is probable. But clearly, the goal (copyterm T T) is also provable. Thus, using the obser-
vation about universal quantifiers above, we know that

copyterm T T => copyform (M T) S

is provable. Using the observation about implication above, we know that

copyform (M T) S

is provable. But this is provable if and only if the term (M T) and S are equal (modulo
βη-conversion). Thus, S is equal to the result of substituting t for the bound variable of M.
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