
A Proof-Theoretic Approach to the
Static Analysis of Logic Programs

Dale Miller

Dedicated to Peter Andrews

on the occasion of his 70 th birthday.

1 Introduction

Static analysis of programs can provide useful information for programmers
and compilers. Type checking, a common form of static analysis, can help
identify errors during program compilation that might otherwise be found
only when the program is executed, possibly by someone other than the
programmer. The concise invariants that comes from static analysis can
also provide valuable documentation about the meaning of code.

We describe a method that approximates a data structure by a collection
of the elements it contains and statically determines whether or not the
relations computed by a logic program satisfy certain relations over those
approximations. More specifically, we shall use multisets and sets to ap-

proximate more structured data such as lists and binary trees. Consider,
for example, a list sorting program that maintains duplicates of elements
during sorting. Part of the correctness of a sort program includes the fact
that if the atomic formula (sort t s) is provable then s is a permutation of t
that is in-order. The proof of such a property is likely to involve inductive
arguments requiring the invention of invariants: in other words, this is not
likely to be a property that can be inferred statically. On the other hand,
if the lists t and s are approximated by multisets (that is, if we forget the
order of items in lists), then it might be possible to prove automatically
half of this property about the sorting program: namely, if the atomic for-
mula (sort t s) is provable then the multiset associated to t is equal to the
multiset associated to s. If that is so, then it is immediate that the lists t
and s are, in fact, permutations of one another (in other words, no elements
were dropped, duplicated, or created during sorting). As we shall see, such
properties based on using multisets to approximate lists can often be proved
statically.

This paper, which is based on [21], exploits three aspects of proof the-
ory to present a scheme for static analysis. First, logical formulas, even



2 Dale Miller

those comprising just first-order Horn clauses, are considered as part of a
higher-order logic, such as the Simple Theory of Types [4, 7]. In such a
setting, all constants, including predicate and function constants, can be
abstracted and instantiated by other logical expressions: such abstractions
and instantiations can be completely explained following the usual rules
for the λ-calculus. Second, traces of logic program executions can be seen
as cut-free sequent calculus proofs [22] and since sequent calculus proofs
also support rich notions of abstraction and instantiation, it is possible to
reason directly on logic program computations via standard proof-theoretic
notions. Third, linear logic can be seen as the computational logic be-
hind logic and via the instantiation mechanisms available for both formulas
and proofs, linear logic can be put behind-the-scenes of Horn clause com-
putation. In this background world, linear logic is used to perform basic
computations with sets and multisets.

2 The undercurrents

There are various themes that underlie this approach to inferring properties
of Horn clause programs. This section enumerates several such themes. The
rest of this paper can be seen as a particular manifestation of these themes.

2.1 If typing is important, why use only one?

Types and other static properties of programming languages have proved
important on a number of levels. Typing is useful to programmers since it
offers important invariants and documentation for code. Static analysis can
also be used by compilers to uncover useful structures that allow compilers
to improve program execution. While compilers might make use of multi-
ple static analyses, programmers do not have convenient access to multiple
static analyzes. Sometimes a programming language definition provides for
no static analysis, as is the case with Lisp and Prolog. Other program-
ming languages offer exactly one typing discipline, such as the polymorphic
typing disciplines of Standard ML and λProlog. Simple and fixed static
checks are occasionally also part of a language definition, as is the case in
SML where static checking is done to determine if a given function defini-
tion over concrete data structures covers all possible input values. It seems
clear, however, that static analysis of code, if it can be done quickly and
incrementally, should have significant benefits for programmers during the
process of writing code. For example, a programmer might find it valuable
to know that the recursive program that she has just written has linear or
quadratic run-time complexity, or that a relation she just specified actually
defines a function. The Ciao system pre-processor [14] provides for such
functionality by allowing a programmer to write various properties about



Static Analysis of Logic Programs 3

code that the pre-processor attempts to verify. Providing a flexible frame-
work for the integration of static analysis into programming languages is
an interesting direction of research in the design of programming languages.
The paper provides one possible scheme for such integration.

2.2 Abstracting over programs and computation traces

A computational system can be seen as encoding symbolic systems on a
number of levels: types, program expressions, static analysis expressions,
and computation traces. All of these can benefit from representations that
allow for natural notions of abstractions and instantiations. For example,
we shall consider first-order Horn clauses as part of the Church’s Simple
Theory of Types [4, 7]. As is well understood in that setting, quantifier
instantiation is completely described using the theory’s underlying rules for
λ-conversion. Similarly, traces of logic program computations can be seen as
cut-free proofs and such proof objects also have rich notions of abstraction
and application, given by the cut-elimination theorem for sequent calculus.
The fact that proofs and programs can be related simply in a setting where
substitution into both has well understood properties is certainly one of the
strengths of the proof-theoretic foundations of logic programming (see, for
example, [22]).

2.3 What good are atomic formulas?

In proof theory, there is an interesting problem of duality involving atomic
formulas. The initial rule and the cut rule, given as

C − C
Initial and

Γ1 − C, ∆1 Γ2, C − ∆2

Γ1, Γ2 − ∆1, ∆2

Cut,

can be seen as being dual to each other [13]. In particular, the initial rule
states that an occurrence of a formula on the left is stronger than the same
occurrence on the right, whereas the cut rule states the dual: an occurrence
of a formula on the right is strong enough to remove the same occurrence
from the left. In most well designed proof systems, atomic and non-atomic
occurrences of the cut-rule can be eliminated whereas only non-atomic initial
rules (where C is non-atomic) can be eliminated. Atoms seem to spoil the
elegant duality of the meta-theory of these inference rules.

While the logic programming world is most comfortable with the exis-
tence of atomic formulas, there have been a couple of recent proof-theoretic
developments that try to eliminate them entirely. For example, in the work
on definitions and fixed points described in [11, 17, 26], atoms are defined
to be other formulas and the only primitive judgment involving terms is
that of equality. Furthermore, if fixed points are stratified (no recursion
through negations) and noetherian (no infinite descent in recursion), then



4 Dale Miller

all instances of cut and initial can be removed. Girard’s ludics [12] is a more
radical presentation of logic in which atomic formulas do not exist: formu-
las can be probed to arbitrary depth to uncover “subformulas”. Another
approach to atoms is to consider all constants as being variables: such an
approach is possible in a higher-order logic by, say, replacing constants with
universally quantified variables. On one hand this is a trivial position: if
there are no constants (thus, no predicate constants) there are no atomic
formulas (which are defined as formulas with non-logical constants at their
head). On the other hand, adopting a point-of-view that constants can vary
has some appeal. We describe this next.

2.4 Viewing constants and variables as one

The inference rule of ∀-generalization states that if B is provable then ∀x.B
is provable (with the appropriate proviso if the proof of B depends on hy-
potheses). In a first-order setting, only a free first-order variable, say x of B,
can become bound in ∀x.B by this inference rule. In a higher-order setting,
any variable in any expression, even those that play the role of predicates
or functions, can be quantified.

The difference between constants and variables can be seen as one of
“scope,” at least from a syntactic, proof-theoretic, and computational point
of view. For example, variables are intended as syntactic objects that can
“vary.” During the computation of, say, the relation of appending lists,
universal quantified variables surrounding Horn clauses change via substi-
tution (during back-chaining and unification) but the constructors for lists
as well as the symbol denoting the append relation do not change (are not
instantiated) and, hence, can be seen as constants. But from a compiling
and linking point-of-view, the append predicate might be considered some-
thing that varies: if append is in a module of Prolog that is separately
compiled, the append symbol might denote a particular object in the com-
piled code that is later changed when the code is loaded and linked. In a
similar fashion, we shall allow ourselves to instantiate constants with ex-
pressions during static analysis: that is, constants can be seen as varying
over different approximations of their intended meaning.

Substituting for constants allows us to “split the atom”: that is, by
substituting for the predicate p in the atom p(t1, . . . , tn), we can replace
that atom with a formula, which, in this paper, will be a linear logic formula
that accounts for some resources related to the arguments t1, . . . , tn.

2.5 Linear logic underlies computational logic

Linear logic [10] is able to explain the proof theory of usual Horn clause logic
programming (and even richer logic programming languages [15]). It is also
able to provide means to reason about resources, such as items in multi-



Static Analysis of Logic Programs 5

sets and sets. Thus, linear logic will allow us to sit within one declarative
framework to describe both usual logic programming as well as “sub-atomic”
reasoning about the resources implicit in the arguments of predicates.

3 A primer for linear logic

Linear logic connectives can be divided into the following groups: the mul-
tiplicatives O, ⊥, ⊗, 1; the additives ⊕, 0, &, ⊤; the exponentials !, ?; the
implications −◦ (where B −◦ C can be defined as B⊥

O C) and ⇒ (where
B ⇒ C can be defined as (! B)⊥ O C); and the quantifiers ∀ and ∃ (higher-
order quantification is allowed). The equivalence of formulas in linear logic,
B ◦−◦ C, is defined as the formula (B −◦ C) & (C −◦ B). The quantifiers
should be typed, say as ∀τ and ∃τ , where τ is a simple type: in general,
however, we will not write these type subscripts and assume that the reader
can reconstruct them from context when their value is important.

First-order Horn clauses are formulas of the form

∀x1 . . . ∀xm[A1 ∧ . . . ∧ An ⊃ A0] (n, m ≥ 0)

where ∧ and ⊃ are intuitionistic or classical logic conjunction and impli-
cation and x1, . . . , xm are variables of primitive types. There are at least
two natural mappings of Horn clauses into linear logic. The “multiplicative”
mapping uses the ⊗ and −◦ for the conjunction and implication: this encod-
ing is used in, say, the linear logic programming settings, such as Lolli [15],
where Horn clause programming can interact with the surrounding linear
aspects of the full programming language. Here, we are not interested in
linear logic programming per se but with using linear logic to help estab-
lish invariants about Horn clauses when these are interpreted in the usual,
classical setting. As a result, we shall encode Horn clauses into linear logic
using the “additive” conjunction & and the implication ⇒: that is, we take
Horn clauses to be formulas of the form

∀x1 . . . ∀xm[A1 & . . . & An ⇒ A0]. (n, m ≥ 0)

The usual proof search behavior of first-order Horn clauses in classical (and
intuitionistic) logic is captured precisely when this style of linear logic en-
coding is used. An example of a Horn clause logic program is given in
Figure 1.

4 A primer for proof theory

A sequent is a triple of the form Σ; Γ − ∆ where Σ, the signature, is a list
of non-logical constants and eigenvariables paired with a simple type, and
where both Γ and ∆ are multisets of Σ-formulas (i.e., formulas all of whose



6 Dale Miller

∀K. [append nil K K]
∀X, L, K, M. [append L K M ⇒ append (cons X L) K (cons X M)]

∀X. [split X nil nil nil]
∀X, A, B, R, S.[le A X & split X R S B ⇒ split X (cons A R) (cons A S) B]
∀X, A, B, R, S.[gr A X & split X R S B ⇒ split X (cons A R) S (cons A B)]

sort nil nil

∀F, R, S, Sm, B, SS, BS. [
split F R Sm B & sort Sm SS& sort B BS& append SS (cons F BS) S

⇒ sort (cons F R) S]

Figure 1. Some Horn clauses for specifying a sorting relation.

non-logical symbols are in Σ). The rules for linear logic are the standard
ones [10], except here signatures have been added to sequents. The rules
for quantifier introduction are the only rules that require the signature and
they are reproduced here.

Σ, y: τ ; B[y/x], Γ − ∆

Σ; ∃τx.B,Γ − ∆
∃L

Σ ⊢ t: τ Σ; Γ − B[t/x], ∆

Σ; Γ − ∃τx.B,∆
∃R

Σ ⊢ t: τ Σ; B[t/x], Γ − ∆

Σ; ∀τx.B,Γ − ∆
∀L

Σ, y : τ ; Γ − B[y/x], ∆

Σ; Γ − ∀τx.B,∆
∀R

The premise Σ ⊢ t: τ is the judgment that the term t has the (simple) type
τ given the typing declaration contained in Σ.

We now outline three ways to do instantiation within the sequent calculus.

4.1 Substituting for types

Following Church [7], we shall assume that formulas are given the simple
type o (omicron). Simple type expressions appear within sequent calculus
proofs (in particular, within signatures and subscripts to quantifiers) with-
out abstractions: that is, they are global and (in this setting) admit no
bindings. As a result, it is an easy matter to show that if one replaces every
occurrence of a type constant (different from o) in a proof with another
type expressions, the result is another valid proof. We shall do this kind of
substitution for type constants later when we replace a list by a multiset
that approximates it: since we use linear logic formulas to encode multisets,
we shall replace the type constant list with o.



Static Analysis of Logic Programs 7

4.2 Substituting for non-logical constants

Consider the linear logic sequent

Σ, p: τ ; ! D1, ! D2, ! Γ − p(t1, . . . , tm),

where the type τ is a predicate type (that is, it is of the form τ1 → · · · →
τm → o) and where p appears in, say, D1 and D2 and in no formula of Γ. The
linear logic exponential ! is used here to encode the fact that the formulas
D1 and D2 are available for arbitrary reuse within a proof (the usual case
for program clauses). Using the right introduction rules for implication and
the universal quantifier, it follows that the sequent

Σ; ! Γ − ∀p[D1 ⇒ D2 ⇒ p(t1, . . . , tm)]

is also provable. Using the rules for universal quantifiers, there must be
proofs for all instances of this quantifier. Let θ be the substitution [p 7→
λx1 . . . λxm.S], where S is a formula over the signature Σ∪ {x1, . . . , xm} of
type o. A consequence of the proof theory of linear logic is that there is a
proof also of

Σ; ! Γ − D1θ ⇒ D2θ ⇒ S[t1/x1, . . . , tm/xm]

and of the sequent

Σ; !D1θ, ! D2θ, ! Γ − S[t1/x1, . . . , tm/xm].

As this example illustrates, it is possible to instantiate a predicate (here p)
with an abstraction of a formula (here, λx1 . . . λxm. S): such an instantia-
tion carries a provable sequent to a provable sequent.

4.3 Substituting for assumptions

An instance of the cut-rule (mentioned earlier) is the following:

Σ; Γ1 − B Σ; B, Γ2 − C

Σ; Γ1, Γ2 − C

This inference rule (especially when associated with the cut-elimination pro-
cedure) provides a way to instantiate a hypothetical use of a formula (here,
B) with a proof of that formula. For example, consider the following situa-
tion. Given the example in the Section 4.2, assume that we can prove

Σ; ! Γ − ! D1θ and Σ; ! Γ − ! D2θ.

Using two instances of the cut rule and the proofs of these sequent, it is
possible to obtain a proof of the sequent

Σ; ! Γ − S[t1/x1, . . . , tm/xm]



8 Dale Miller

(contraction on the left for !’ed formulas must be applied).
Thus, by a series of instantiations of proofs, it is possible to move from

a proof of, say,
Σ, p: τ ; ! D1, !D2, ! Γ − p(t1, . . . , tm)

to a proof of
Σ; ! Γ − S[t1/x1, . . . , tm/xm].

Such reasoning about proofs allows us to “split the atom” p(t1, . . . , tm) into
a formula S[t1/x1, . . . , tm/xm] and to transform proofs involving that atom
into proofs involving that formula. In what follows, the formula S will be a
linear logic formula that provides an encoding of some judgment about the
data structures encoded in the terms t1, . . . , tm.

A few simple examples of using higher-order instantiations of logic pro-
grams in order to support reasoning about them appear in [20].

5 Encoding multisets as formulas

Linear logic can encode multisets and sets as well as simple judgments about
them (such as inclusion and equality). We consider multisets first and tackle
sets in Section 8. Let the token item be a linear logic predicate of one
argument: the linear logic atomic formula item x will denote the multiset
containing the element x occurring once. There are two natural encoding of
multisets into formulas using this predicate. The conjunctive encoding uses
1 for the empty multiset and ⊗ to combine two multisets. For example, the
multiset {1, 2, 2} is encoded by the linear logic formula item 1 ⊗ item 2 ⊗
item 2. Proofs search using this style encoding places multisets on the left
of the sequent arrow. This approach is favored when an intuitionistic subset
of linear logic is used, such as in Lolli [15], LinearLF [6], and MSR [5]. The
dual encoding, the disjunctive encoding, uses ⊥ for the empty multiset and
O to combine two multisets. Proofs search using this style encoding places
multisets on the right of the sequent arrow and, hence, multiple conclusion
sequents are now required. Systems such as LO [2] and Forum [19] use this
style of encoding. If negation is available, then the choice of which encoding
one chooses is mostly a matter of style. We pick the disjunctive encoding
for the rather shallow reason that the inclusion judgment for multisets and
sets is encoded as an implication instead of a reverse implication, as we shall
now see.

Let S and T be the two formulas

item s1 O · · · O item sn and item t1 O · · · O item tm, (n, m ≥ 0)

respectively. Notice that ⊢ S −◦ T if and only if ⊢ T −◦ S if and only
if the two multisets {s1, . . . , sn} and {t1, . . . , tm} are equal. Consider the
following two ways for encoding the multiset inclusion S ⊑ T .



Static Analysis of Logic Programs 9

• S O 0 −◦ T . This formula mixes multiplicative connectives with the
additive connective 0: the latter allows items that are not matched
between S and T to be deleted.

• ∃q(S O q −◦ T ). This formula mixes multiplicative connectives with a
higher-order quantifier. While we can consider the instantiation for q
to be the multiset difference of S from T , there is no easy way in the
logic to enforce that interpretation of the quantifier.

As it turns out, these two approaches are equivalent in linear logic: in
particular, ⊢ 0 ◦−◦ ∀p.p (linear logic absurdity) and

⊢ ∀S∀T [(S O 0 −◦ T ) ◦−◦ ∃q(S O q −◦ T )].

Thus, below we can choose either one of these encodings for multiset inclu-
sion.

6 Multisets approximations

A multiset expression is a formula in linear logic built from the predicate
symbol item (denoting the singleton multiset), the linear logic multiplicative
disjunction O (for multiset union), and the unit ⊥ for O (used to denote the
empty multiset). We shall also allow a propositional variable (a variable of
type o) to be used to denote a (necessarily open) multiset expression. An
example of an open multiset expression is item f(X) O ⊥ O Y , where Y
is a variable of type o, X is a first-order variable, and f is some first-order
term constructor.

Let S and T be two multiset expressions. The two multiset judgments that
we wish to capture are multiset inclusion, written as S ⊑ T , and equality,
written as S

m
= T . We shall use the syntactic variable ρ to range over these

two judgments, which are formally binary relations of type o → o → o. A
multiset statement is a closed formula of the form

∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0],

where the quantified variables x̄ are either first-order or of type o and for-
mulas S0, T0, . . . , Sn, Tn are possibly open multiset expressions.

If S and T are closed multiset expressions, then we write |=m S ⊑ T
whenever the multiset (of closed first-order terms) denoted by S is con-

tained in the multiset denoted by T , and we write |=m S
m
= T whenever the

multisets denoted by S and T are equal. Similarly, we write

|=m ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]



10 Dale Miller

if for all multiset-valued closed substitutions θ such that |=m Siθ ρi Tiθ
for all i = 1, . . . , n, it is the case that |=m S0θ ρ0 T0θ. A multiset-valued

substitution is one where variables of propositional type (type o) are mapped
to multiset expressions.

The following proposition is central to our use of linear logic to establish
multiset statements for Horn clause programs. The proof of this proposition
is given in Section 9.2.

Proposition 1. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be multiset expressions all
of whose free variables are in the list of variables x̄. For each judgment s ρ t
we write s ρ̂ t to denote s O 0−◦ t if ρ is ⊑ and t ◦−◦ s if ρ is

m
=. If

∀x̄[S1 ρ̂
1

T1 & . . . & Sn ρ̂n Tn ⇒ S0 ρ̂
0

T0]

is provable in linear logic, then

|=m ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

This proposition shows that linear logic can be used in a sound way to
infer valid multiset statements. On the other hand, the converse (complete-
ness) does not hold: the statement

∀x∀y.(x ⊑ y) & (y ⊑ x) ⇒ (x
m
= y)

is valid but its translation into linear logic is not provable.
To illustrate how deduction in linear logic can be used to establish a

property of a logic program, consider the first-order Horn clause program in
Figure 1. The signature for this collection of clauses can be given as follows:

nil : list

cons : int -> list -> list

append : list -> list -> list -> o

split : int -> list -> list -> list -> o

sort : list -> list -> o

le, gr : int -> int -> o

The first two declarations provide constructors for empty and non-empty
lists; the next three are predicates defined by Horn clause in Figure 1; and
the last two are order relations that are apparently defined elsewhere.

If we think of lists as collections of items, then we might want to check
that the sort program as written does not drop, duplicate, or create any
elements. That is, if the atom (sort t s) is provable then the multiset
of items in the list denoted by t is equal to the multiset of items in the
list denoted by s. If this property holds then s and t are lists that are



Static Analysis of Logic Programs 11

permutations of each other: of course, this does not say that it is the correct
permutation but this more simple fact is one that, as we show, can be
inferred automatically.

Checking this property of our example logic programming follows the
following three steps.

First, we provide an approximation of lists as being, in fact, multisets:
more precisely, as linear logic formulas denoting multisets. The first step,
therefore, must be to substitute o for list in the signature above. Now we
can interpret the constructors for lists using the substitution

nil 7→ ⊥ cons 7→ λxλy. item x O y.

Under such a mapping, the list (cons 1 (cons 3 (cons 2 nil))) is mapped
to the multiset expression item 1 O item 3 O item 2 O ⊥.

Second, we associate with each predicate in Figure 1 a multiset judg-
ment that encodes an invariant concerning the multisets denoted by the
predicate’s arguments. For example, if (append r s t) or (split u t r s) is
provable then the multiset union of the items in r with those in s is equal
to the multiset of items in t, and if (sort t s) is provable then the multisets
of items in lists s and t are equal. This association of multiset judgments to
atomic formulas can be achieved formally using the following substitutions
for constants:

append 7→ λxλyλz. (x O y) ◦−◦ z split 7→ λuλxλyλz. (y O z) ◦−◦ x
sort 7→ λxλy. x ◦−◦ y

The predicates le and gr (for the less-than-or-equal-to and greater-than
relations) make no statement about collections of items: thus they can
be mapped to the trivial tautology 1 (the multiplicative truth) via the
substitution

le 7→ λxλy. 1 gr 7→ λxλy. 1.

Figure 2 presents the result of applying these mappings to Figure 1.
Third, we must now attempt to prove each of the resulting formulas. In

the case of Figure 2, all the displayed formulas are trivial theorems of linear
logic.

Having taken these three steps, we now claim that we have proved the
intended collection judgments associate to each of the logic programming
predicates above: in particular, we have now shown that our particular sort
program computes a permutation.

7 Formalizing the method

The formal correctness of this three stage approach is easily justified given
the substitution properties we presented in Section 4 for the sequent calculus



12 Dale Miller

∀K. [⊥ O K ◦−◦ K]
∀X, L, K, M. [L O K ◦−◦ M ⇒ item X O L O K ◦−◦ item X O M]

∀X. [⊥ O ⊥ ◦−◦⊥]
∀X, A, B, R, S. [(S O B) ◦−◦ R ⇒ 1 ⇒ item A O S O B ◦−◦ item A O R

∀X, A, B, R, S. [(S O B) ◦−◦ R ⇒ 1 ⇒ S O item A O B ◦−◦ item A O R

[⊥ ◦−◦⊥]
∀F, R, S, Sm, Bg, SS, BS. [
Sm O B ◦−◦ R & Sm ◦−◦ SS & B ◦−◦ BS& SS O item F O BS ◦−◦ S ⇒

item F O R ◦−◦ S]

Figure 2. The linear logic formulas that result from instantiating the non-
logical constants in the Horn clauses in Figure 1.

presentation of linear logic.
Let Γ denote a set of formulas displayed in Figure 1 and let Σ be the

signature for Γ. Let θ denote the substitution described above for the type
list, for the constructors nil and cons, and for the predicates in Figure 1.
Finally, let Σ′ be the signature of the range of θ (in this case, it just contains
the constant item). Then, Γθ is the set of formula in Figure 2.

Assume now that Σ; Γ − (sort t s) is provable. Given the discussion in
Sections 4.1 and 4.2, we know that

Σ′; Γθ − tθ ◦−◦ sθ

is provable. Since the formulas in Γθ are provable, we can use substitution
into proofs (Section 4.3) to conclude that Σ′; − tθ ◦−◦ sθ is provable. Given

Proposition 1, we can conclude that |=m tθ
m
= sθ: that is, that tθ and sθ

encode the same multiset.
Consider the following model theoretic argument for establishing similar

properties of Horn clauses. Let M be the Herbrand model that captures
the invariants that we have in mind. In particular, M contains the atoms
(append r s t) and (split u t r s) if the items in the list r added to the
items in list s are the same as the items in t. Furthermore, M contains all
closed atoms of the form (le t s) and (gr t s), and closed atoms (sort t s)
where s and t are lists that are permutations of one another. One can now
show that M satisfies all the Horn clauses in Figure 1. As a consequence
of the soundness of first-order classical logic, any atom provable from the
clauses in Figure 1, must be true in M. By construction of M, this means
that the desired invariant holds for all atoms proved from the program.

The approach of this paper essentially replaces the construction of a



Static Analysis of Logic Programs 13

model and the determination of truth in that model with deduction in linear
logic.

8 Sets approximations

Linear logic can also be used to encode sets and the judgments of set equal-
ity and inclusion. In fact, the transition to sets from multisets is provided
by the use of the linear logic exponential: since we are using the disjunc-
tive encoding of collections (see the discussion in Section 5), we use the ?
exponential (if we were using the conjunctive encoding, we would use the !
exponential).

The expression ? item t can be seen as describing the presence of an item
for which the exact multiplicity does not matter: this formula represents the
capacity to be used any number of times. Thus, the set {x1, . . . , xn} can be
encoded as ? item x1 O · · · O ? item xn. Using logical equivalences of linear
logic, this formula is also equivalent to the formula ?(item x1⊕· · ·⊕item xn).
This latter encoding is the one that we shall use for building our encoding
of sets.

A set expression is a formula in linear logic built from the predicate sym-
bol item (denoting the singleton set), the linear logic additive disjunction
⊕ (for set union), and the unit 0 for ⊕ (used to denote the empty set). We
shall also allow a propositional variable (a variable of type o) to be used
to denote a (necessarily open) set expression. An example of an open set
expression is item f(X) ⊕ 0 ⊕ Y , where Y is a variable of type o, X is a
first-order variable, and f is some first-order term constructor.

Let S and T be two set expressions. The two set judgments that we
wish to capture are set inclusion, written as S ⊆ T , and equality, written
as S

s
= T . We shall use the syntactic variable ρ to range over these two

judgments, which are formally binary relations of type o → o → o. A set

statement is a formula of the form

∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

where the quantified variables x̄ are either first-order or of type o and for-
mulas T0, S0, . . . , Tn, Sn are possibly open set expressions.

If S and T are closed set expressions, then we write |=s S ⊆ T whenever
the set (of closed first-order terms) denoted by S is contained in the set

denoted by T , and we write |=s S
s
= T whenever the sets denoted by S and

T are equal. Similarly, we write

|=s ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

if for all set-valued closed substitutions θ such that |=s Siθ ρi Tiθ for all
i = 1, . . . , n, it is the case that |=s S0θ ρ0 T0θ. A set-valued substitution



14 Dale Miller

is one where variables of propositional type (type o) are mapped to set
expressions.

The following proposition is central to our use of linear logic to establish
set statements for Horn clause programs. The proof of this proposition in
Section 9.1.

Proposition 2. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be set expressions all of
whose free variables are in the list of variables x̄. For each judgment s ρ t
we write s ρ̂ t to denote ? s −◦ ? t if ρ is ⊆ and (? s −◦ ? t) & (? t −◦ ? s) if ρ

is
s
=. If

∀x̄[S1 ρ̂
1

T1 & . . . & Sn ρ̂n Tn ⇒ S0 ρ̂
0

T0]

is provable in linear logic, then

|=s ∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

Lists can be approximated by sets by using the following substitution:

nil 7→ 0 cons 7→ λxλy. item x ⊕ y.

Under such a mapping, the list (cons 1 (cons 2 (cons 2 nil))) is mapped to
the set expression item 1⊕ item 2⊕ item 2⊕0. This expression is equivalent
(◦−◦) to the set expression item 1 ⊕ item 2.

For a simple example of using set approximations, consider modifying
the sorting program provided before so that duplicates are not kept in the
sorted list. Do this modification by replacing the previous definition for
splitting a list with the clauses in Figure 3. That figure contains a new
definition of splitting that contains three clauses for deciding whether or
not the “pivot” X for the splitting is equal to, less than, or greater than the
first member of the list being split. Using the following substitutions for
predicates

append 7→ λxλyλz. ?(x ⊕ y) ◦−◦ ? z
split 7→ λuλxλyλz. ?(item u ⊕ x) ◦−◦ ?(item u ⊕ y ⊕ z)
sort 7→ λxλy. ?x ◦−◦ ? y

(as well as the trivial substitution for gr), we can show that sort relates two
lists only if those lists are approximated by the same set. Figure 4 contains
the result of instantiating the split specification in Figure 3.

In the case of determining the validity of a set statement, the use of linear
logic here appears to be rather weak when compared to the large body of
results for solving set-based constraint systems [1, 25].



Static Analysis of Logic Programs 15

∀X. [split X nil nil nil]
∀X, B, R, S. [split X R S B ⇒ split X (cons X R) S B]

∀X, A, B, R, S.[gr X A & split X R S B ⇒ split X (cons A R) (cons A S) B]
∀X, A, B, R, S.[gr A X & split X R S B ⇒ split X (cons A R) S (cons A B)]

Figure 3. A specification of splitting lists that drops duplicates.

∀X. [(?(item X⊕ 0) ◦−◦ ?(item X⊕ 0⊕ 0))]
∀X, B, R, S. [(?(item X⊕ R) ◦−◦ ?(item X⊕ S⊕ B)) ⇒

(?(item X⊕ item X⊕ R) ◦−◦ ?(item X⊕ S ⊕ B))]
∀X, A, B, R, S. [1&(?(item X⊕ R) ◦−◦ ?(item X⊕ S⊕ B)) ⇒

(?(item X⊕ item A⊕ R) ◦−◦ ?(item X⊕ item A⊕ S ⊕ B))]
∀X, A, B, R, S. [1&(?(item X⊕ R) ◦−◦ ?(item X⊕ S⊕ B)) ⇒

(?(item X⊕ item A⊕ R) ◦−◦ ?(item X⊕ S⊕ item A ⊕ B))]

Figure 4. The result of substituting set approximations into the split

program.

9 Automation of deduction

We describe some proof theory results that can be used to automate deduc-
tion for the linear logic formulas that occur in Propositions 1 and 2. The
key result of linear logic surrounding the search for cut-free proofs is given
by the completeness of focused proofs [3]. Focused proofs are a normal
form that significantly generalizes standard completeness results in logic
programming, including the completeness of SLD-resolution and uniform
proofs as well as various forms of bottom-up and top-down reasoning [16].

9.1 An proof system for additive connectives

We first analyze the nature of proof search for the linear logic translation of
set statements. Note that when considering provability of set statements,
there is no loss of generality if the only set judgment it contains is the
subset judgment since set equality can be expressed as two inclusions. We
now prove that the proof system in Figure 5 is sound and complete for
proving set statements.

Proposition 3. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be set expressions all of
whose free variables are in the list of variables x̄. The formula

∀x̄[(?S1 −◦ ?T1) & . . . & (?Sn −◦ ?Tn) ⇒ (?S0 −◦ ?T0)]



16 Dale Miller

Γ; Ai − A1 ⊕ · · · ⊕ An

⊕ R
Γ; A1 − C . . . Γ; An − C

Γ; A1 ⊕ · · · ⊕ An − C
⊕ L

Γ; B1 ⊕ · · · ⊕ Bm − C

Γ; A − C
FC

Figure 5. Specialized proof rules for proving set statements. Here, n, m ≥ 0,
1 ≤ i ≤ n, and in the FC (forward-chaining) inference rule, the formula
?(A1 ⊕ · · · ⊕ An) −◦ ?(B1 ⊕ · · · ⊕ Bm) must be a member of Γ and A ∈
{A1, . . . , An}.

is provable in linear logic if and only if the sequent

(?S1 −◦ ?T1), . . . , (? Sn −◦ ?Tn); S0 − T0

is provable using the proof system in Figure 5.

Proof. The soundness part of this proposition (“if”) is easy to show. For
completeness (“only if”), we use the completeness of focused proofs in [3].
In order to use that result, we need to give a polarity to all atomic formulas.
We do this by assigning all atomic formulas (those of the form item (·) and
those symbols in x̄ of type o) positive polarity. Second, we need to translate
the two-sided sequent Γ; S − T to Γ⊥, T ;⇑ S⊥ when S is not atomic and to
Γ⊥, T ; S⊥ ⇑ · when S is a atom. Completeness then follows directly from
the structure of focused proofs.

Notice that when building proofs in a bottom-to-top fashion using the
inference rules in Figure 5, the left-hand-side of sequents change until one
reaches the top inference rule.

We can now provide a proof of Proposition 2. Assume that

∀x̄[S1 ρ1 T1 & · · · & Sn ρn Tn ⇒ S0 ρ0 T0]

is provable in linear logic and let θ be a set-valued substitution for x̄. Thus,
the formula

S1θ ρ1 T1θ & · · · & Snθ ρn Tnθ ⇒ S0θ ρ0 T0θ

is provable. By Proposition 3, it follows by a simple induction on the struc-
ture of proofs in Figure 5 that

|=s S1θ ρ1 T1θ & · · · & Snθ ρn Tnθ ⇒ S0θ ρ0 T0θ.



Static Analysis of Logic Programs 17

Γ; A1 O · · · O An − A1, . . . , An

O L

Γ; A1 O · · · O An O 0 − A1, . . . , An, ∆
O0L

Γ; S − T1, T2, ∆

Γ; S − T1 O T2, ∆
O R

Γ; S − T, ∆

Γ; S − A1, . . . , An, ∆
BC

Figure 6. Specialized proof rules for proving multiset statements. Here,
n ≥ 0 and A1, . . . , An are atomic (in particular, they are not 0). In the BC
inference rule, T −◦ (A1 O · · · O Am) must be a member of Γ.

9.2 A proof system for multiplicative connectives

The proof system in Figure 6 can be used to characterize the structure of
proofs of the linear logic encoding of multiset statements. Let

∀x̄[S1 ρ̂
1

T1 & . . . & Sn ρ̂n Tn ⇒ S0 ρ̂
0

T0]

be the translation of a multiset statement into linear logic. Provability of
this formula can be reduced to attempting to prove S0 ρ̂

0
T0 from assump-

tions of one of the following two forms:

(B1 O · · · O Bn) −◦ (A1 O · · · O Am)

(B1 O · · · O Bn O 0) −◦ (A1 O · · · O Am)

Here, A1, . . . , Am, B1, . . . , Bn are atomic formulas.

Proposition 4. Let S0 and T0 be multiset expressions all of whose free
variables are in the list of variables x̄ and let Γ be a set of (linear logic
encodings of) multiset judgments. The formula S0 −◦ T0 is a linear logic
consequence of Γ if and only if the sequent Γ;S0 − T0 is provable using the
inference rules in Figure 6. Similarly, the formula S0 O 0 −◦ T0 is a linear
logic consequence of Γ if and only if the sequent Γ;S0 O 0 − T0 is provable
using the inference rules in Figure 6.

Proof. The soundness part of this proposition (“if”) is easy to show. Com-
pleteness (“only if”) is proved elsewhere, for example, in [18, Proposition
2]. It is also an easy consequence of the the completeness of focused proofs
in [3]: fix the polarity to all atomic formulas to be negative.

Notice that proofs using the rules in Figure 6 are straight-line proofs (no
branching) and that they are goal-directed in the sense that the right-hand
side (the “goal”) changes during the bottom-to-top construction of a proof.

A proof of Proposition 1 follows from the Proposition 4 by a simple
induction on the structure of proofs using the proof system in Figure 6.



18 Dale Miller

9.3 Decidability and Practical Implementation

Determining whether or not the (additive) linear logic translation of a set
statement is provable is decidable. In particular, notice that in a proof of
the endsequent Γ; S − T using the inference rules in Figure 5, all sequents
in the proof have the form Γ;S′ − T , where S is either an atomic formula
or the conclusion of some implication in Γ. Thus, the search for a proof
either succeeds (proof search ends by placing ⊕ R on top), or fails to find
a proof, or it cycles, a case we can always detect since there is only a finite
number of different formulas that can be S′.

Decidability for the proof system of Figure 6 is currently open. If all
judgments in a multiset statement are equivalences (

m
=) then deduction in

the multiplicative proof system is an example of multiset rewriting and, as
such, is a subset of the Petri net reachability problem, which is know to be
decidable [9].

A simple prototype implementation of the proof systems in this section
within the λProlog programming language [23] illustrates that a naive im-
plementation of provability can be effective in finding proofs of provable
linear logic statements generated by the examples in this paper. Also, when
proofs existed, they existed under the assumption that any given assumed
implication is used at most once. Exploiting such an observation allows one
to search for short proofs first will a high chance of success.

10 Extensions

Various extensions of the basic scheme described here are natural to con-
sider. In particular, it should be easy to consider approximating data struc-
tures that contain items of differing types: each of these types could be
mapped into different itemα(·) predicates, one for each type α.

It should also be simple to construct approximating mappings given the
polymorphic typing of a given constructor’s type. For example, if we are
given the following declaration of binary trees (written here in λProlog
syntax)

kind btree type -> type.

type emp btree A.

type bt A -> btree A -> btree A -> btree A.

it should be possible to automatically construct the mapping

btree 7→ λx.o
emp 7→ ⊥
bt 7→ λxλyλz. itemA(x) O y O z



Static Analysis of Logic Programs 19

that can, for example, approximate a binary tree with the multiset of the
labels for internal nodes.

Extending this work to do static analysis for higher-order Horn clauses
[24] also seems most natural to consider. In the paper [21], collections based
on lists and (functional) difference lists are also considered.

Abstract interpretation [8] associates to a program an approximation to
its semantics. Such approximations can help to determine various kinds of
properties of programs. It will be interesting to see how well the particular
notions of collection analysis described here can be related to abstract in-
terpretation. More challenging would be to see to what extent the general
methodology described here – the substitution into proofs (computation
traces) and use of linear logic – can be related to the general methodology
of abstract interpretation.

BIBLIOGRAPHY
[1] Alexander Aiken. Set constraints: results, applications, and future directions. In

PPCP94: Principles and Practice of Constraint Programming, LNCS 874, pages 171–
179, 1994.

[2] J. M. Andreoli and R. Pareschi. Linear Objects: Logical Processes with Built-in
Inheritance. New Generation Computing, 9(3-4):445–473, 1991.

[3] Jean-Marc Andreoli. Logic Programming with Focusing Proofs in Linear Logic. J. of
Logic and Computation, 2(3):297–347, 1992.

[4] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory. Aca-
demic Press, 1986.

[5] Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and Andre
Scedrov. A Meta-Notation for Protocol Analysis. In R. Gorrieri, editor, Proceedings of
the 12th IEEE Computer Security Foundations Workshop — CSFW’99, pages 55–69,
Mordano, Italy, 28–30 June 1999. IEEE Computer Society Press.

[6] Iliano Cervesato and Frank Pfenning. A Linear Logic Framework. In Proceedings,
Eleventh Annual IEEE Symposium on Logic in Computer Science, pages 264–275,
New Brunswick, New Jersey, July 1996. IEEE Computer Society Press.

[7] Alonzo Church. A Formulation of the Simple Theory of Types. J. of Symbolic Logic,
5:56–68, 1940.

[8] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints. In
POPL, pages 238–252, 1977.

[9] Javier Esparza and Mogens Nielsen. Decidability Issues for Petri Nets - a survey.
Bulletin of the EATCS, 52:244–262, 1994.

[10] Jean-Yves Girard. Linear Logic. Theoretical Computer Science, 50:1–102, 1987.
[11] Jean-Yves Girard. A Fixpoint Theorem in Linear Logic. An email posting to the

mailing list linear@cs.stanford.edu, February 1992.
[12] Jean-Yves Girard. Locus solum. Mathematical Structures in Computer Science,

11(3):301–506, June 2001.
[13] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge

University Press, 1989.
[14] Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-Garćıa.

Integrated program debugging, verification, and optimization using abstract interpre-
tation (and the Ciao system preprocessor). Sci. Comput. Program., 58(1-2):115–140,
2005.



20 Dale Miller

[15] Joshua Hodas and Dale Miller. Logic Programming in a Fragment of Intuitionistic
Linear Logic. Information and Computation, 110(2):327–365, 1994.

[16] Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic. In
J. Duparc and T. A. Henzinger, editors, CSL 2007: Computer Science Logic, LNCS
4646, pages 451–465. Springer-Verlag, 2007.

[17] Raymond McDowell and Dale Miller. Cut-elimination for a logic with definitions and
induction. Theoretical Computer Science, 232:91–119, 2000.

[18] Dale Miller. The π-calculus as a theory in linear logic: Preliminary results. In
E. Lamma and P. Mello, editors, 3rd Workshop on Extensions to Logic Program-
ming, LNCS 660, pages 242–265, Bologna, Italy, 1993. Springer-Verlag.

[19] Dale Miller. Forum: A Multiple-Conclusion Specification Logic. Theoretical Computer
Science, 165(1):201–232, September 1996.

[20] Dale Miller. Higher-order quantification and proof search. In Hélène Kirchner and
Christophe Ringeissen, editors, Proceedings of AMAST 2002, LNCS 2422, pages 60–
74, 2002.

[21] Dale Miller. Collection analysis for Horn clause programs. In Proceedings of PPDP
2006: 8th International ACM SIGPLAN Conference on Principles and Practice of
Declarative Programming, pages 179–188, July 2006.

[22] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform Proofs
as a Foundation for Logic Programming. Annals of Pure and Applied Logic, 51:125–
157, 1991.

[23] Gopalan Nadathur and Dale Miller. An Overview of λProlog. In Fifth International
Logic Programming Conference, pages 810–827, Seattle, August 1988. MIT Press.

[24] Gopalan Nadathur and Dale Miller. Higher-order Horn Clauses. Journal of the ACM,
37(4):777–814, October 1990.

[25] Leszek Pacholski and Andreas Podelski. Set Constraints: A Pearl in Research on
Constraints. In Principles and Practice of Constraint Programming - CP97, LNCS
1330, pages 549–562. Springer, 1997.

[26] Peter Schroeder-Heister. Rules of Definitional Reflection. In M. Vardi, editor, Eighth
Annual Symposium on Logic in Computer Science, pages 222–232. IEEE Computer
Society Press, IEEE, June 1993.


