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Abstract: A structure which generalizes formulas by including substitution terms is used
to represent proofs in classical logic. These structures, called expansion trees, can be
most easily understood as describing a tautologous substitution instance of a theorem.
They also provide a computationally useful representation of classical proofs as first-class
values. As values they are compact and can easily be manipulated and transformed. For
example, we present an explicit transformations between expansion tree proofs and cut-
free sequential proofs. A theorem prover which represents proofs using expansion trees
can use this transformation to present its proofs in more human-readable form. Also a
very simple computation on expansion trees can transform them into Craig-style linear
reasoning and into interpolants when they exist. We have chosen a sublogic of the Simple
Theory of Types for our classical logic because it elegantly represents substitutions at all
finite types through the use of the typed ∏-calculus. Since all the proof-theoretic results we
shall study depend heavily on properties of substitutions, using this logic has allowed us
to strengthen and extend prior results: we are able to prove a strengthen form of the first-
order interpolation theorem as well as provide a correct description of Skolem functions
and the Herbrand Universe. The latter are not straightforward generalization of their
first-order definitions.
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1: Introduction

Section 1: Introduction

Most theorem proving paradigms for classical logic are centered around ad hoc proof
structures which are designed to support a particular search procedure. Proof structures,
such as resolution refutations or connection graphs, are not intended to be first-class values:
they are very large, implementation dependent structures which are generally discarded
after their discovery. This is very unfortunate since there is much information which
could automatically be extract from such proofs. Such theorem provers are, for example,
incapable of rendering natural justifications of their proofs to a human reader.

One obvious solution to this situation is to represent proofs by natural deduction
or sequential proof trees. Such proof structures have been extensively studied and many
structural manipulations are known. There are, however, at least two drawbacks to using
such proof trees in a classical logic setting. First, such trees are also very large and awkward
objects because they contain far more explicit information than is generally of interest.
For example, natural deduction proofs record the order in which every logical connective
and quantifier is introduced and eliminated. Secondly, Herbrand’s Theorem states that
it is substitution which is the key element in classical proofs; logical connectives play a
secondary and simplier role. Hence, it should be possible to greatly simplify representation
of proofs in classical logic by simply recording the role substitutions play in building proofs.

In this paper, we present just such a representation for classical proofs, called ex-
pansion tree proofs. These proof structures record in a very compact form the essential
information, namely substitutions, of classical proofs. We feel that these structures make
suitable values within computational settings, and we demonstrate this by presenting sev-
eral computations which can be performed directly on them. In particular, we show how to
convert expansion tree proofs to H-proofs [8] (derivations from tautologies using universal
and existential generalization), cut-free sequential proofs [7, 13, 16], and linear reasoning
[5]. In the latter system, when interpolants exist, a very simple computation on expan-
sion tree proofs will produce them. Finally, since many classical logic proof systems are
designed to use Skolem terms to simplify the role of quantifiers in proofs, we present a
version of expansion trees which use Skolem terms. We show that these two version are
equivalent by presenting the transformations between them.

For traditional theorem proving systems, the conversion of expansion tree proofs to
sequential proofs is very valuable. In particular, if a given resolution-style theorem prover
built an expansion tree from its resolution refutation, the transformation to the “natural”
proof structures described in Section 4 would provide a means by which a human readable
presentation of a resolution refutation could be generated. Just such a practical use of
expansion tree proofs has been demonstrated in [6, 11].

Since substitutions are central to understanding classical proofs and since the ∏-
calculus is an elegant formalism for representing substitutions, we have choose to use
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2: Logical Preliminaries

a version of classical logic which is based on Church’s Simple Theory of Types [3]. This
logic can represent quantification at all finite types, and, hence, all the results of this paper
are valid for higher-order logic as well as for first-order logic. Furthermore, we have been
able to provide two results for this higher-order logic which have not appeared before in
the literature: a strengthened form of the (first-order) interpolation theorem, and a correct
description of Skolem functions and the Herbrand Universe.

Section 2: Logical Preliminaries

The higher-order logic, T , which we shall consider here is essentially the Simple Theory
of Types described by Church in [3], except that we do not use the axioms of extension-
ality, choice, descriptions, or infinity. T contains two base types, o for boolean and ∂ for
individuals, although adding any number of other base types can easily be done. All other
types are functional types, i.e. the type (ØÆ) is the type of a function with domain type
Æ and codomain type Ø. Such types are often written elsewhere as Æ ! Ø. The type
(oÆ), being the type of a function from type Æ to booleans, i.e. a characteristic function,
is used in T to represent the type for sets and predicates of elements of type Æ. Formulas
are built up from logical constants, variables, and parameters (nonlogical constants) by ∏-
abstraction and function application. Hence, the type of [∏xÆAØ ] (where xÆ is a variable)
is (ØÆ) while the type for [A(ØÆ)BÆ] is Ø. (Here, type subscripts provide for type assign-
ments.) We shall seldom adorn formulas with type symbols, but rather, when the type of
a formula, say A, cannot be determined from context, we will add the phrase “where A is
a formulaÆ (variableÆ) (constantÆ)” to indicate that A has type Æ. When we do provides
types as subscripts within larger formulas, we shall only provide an explicit type for the
first occurrence of a variable or constant — we shall assume that all other occurrences
will be implicitly typed the same. The logical constants of T are ªoo (negation), _(oo)o

(disjunction), and, for each type Æ, 8o(oÆ) (the “universal Æ-type set recognizer”). We also
use the following abbreviations: A^B stands for ª[ªA_ªB], AæB stands for ªA_B,
8x P stands for 8[∏xP ], and 9x P stands for ª8[∏x ªP ]. Since the type of a set is of the
form (oÆ), we write LoÆxÆ to denote the set-theoretic expression x 2 L.

We shall present a few simple facts about ∏-conversion. The reader is referred to [3]
and [4] for more details. If x is a variableÆ and t is a formulaÆ, .S

x
t A denotes the formula

which is the result of replacing all free occurrences of x in A with t. We shall assume that
bound variable names are systematically changed to avoid variable capture. The operation
of replacing a subformula of A of the form [∏xC]E with .S

x
EC is called ∏-contraction. We

write A red B if B is the result of zero or more alphabetic changes in bound variables and
∏-contractions of A. The converse of ∏-contraction is ∏-expansion. We write A conv B

and say that A is ∏-convertible to B if B is the result of zero or more alphabetic changes
in bound variables, ∏-contractions, and ∏-expansions. A formula is in ∏-normal form if
it contains no contractible part, i.e. a subformula of the form [∏xC]E. For every typed
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∏-calculus formula A there is a formula B in ∏-normal form such that A red B. By
principle normal formula we shall mean a formula B such that for each subformula ∏xC

of B, x is the first variable in alphabetical order which is not free in C. Clearly, for every
formula A there is a unique principle normal formula B such that A red B. The left-most,
non-bracket symbol of the principle normal form of a formula A is called the head of A.

Definition 2.1. Let A be a ∏-normal formulao. An occurrence of a subformula B in A

is a boolean subformula occurrence if it is in the scope of only ª and _, or if A is B. A
boolean subformula occurrence is either positive or negative, depending on whether it is
in the scope of an even or odd number of occurrences of ª. The head of A is either ª, _,
8, or a variable or parameter. A is an atom if its head is a variable or parameter, and a
boolean atom (b-atom, for short) if its head is a variable, parameter, or 8.

Definition 2.2. Let B be a boolean atom occurrence in the formulao A. If the head of
B is not a 8, then we say that B is neutral. Otherwise, we say that B is existential if it is
in the scope of an odd number of negations and universal if it is in the scope of an even
number of negations.

Below we list the axioms and rules of inference for the logical calculus T . First the
axioms:

(1) All propositional tautologies.
(2) 8o(oÆ)foÆæ fxÆ

(3) 8xÆ [p _ foÆx]æ p _ 8o(oÆ)f

The rules of inference are the following:
(1) ∏-conversion: From A to infer B provided that A conv B.
(2) Substitution: From FoÆxÆ to infer FoÆAÆ provided that xÆ is not a free variable

of FoÆ.
(3) Modus Ponens: From AæB and A to infer B.
(4) Generalization: From FoÆxÆ to infer 8o(oÆ)FoÆ, provided that xÆ is not a free

variable of FoÆ.
Those axioms and rules of inference which contain the type variable Æ are considered

schemata. We say that a formulao, A, is a theorem of T , written T̀ A, if there is a list of
formulaso, A1, . . . , An = A (n ∏ 1) such that for each i, 1 ∑ i ∑ n, Ai is either an axiom
or is derived from one or two previous formulas by a rule of inference. The deduction
theorem holds for T .

The axioms and inferences of T are different from those for a first-order system only
in the inclusion of ∏-conversion and the richer structure of formulas. These two extensions,
however, substantially change the character of inferences. Consider the following example
of the interaction between ∏-contractions and the logical connectives in higher-order logic.
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Let Y be a variableo∂, and let D and T be variableso(o∂). If we are given the formula

8D [DY æTY ]

and we wished to do a universal instantiation of this formula with the term ∏Zo∂[TZ ^
8x∂ [ZxæAx]], i.e. the term representing the set of all sets of individuals which are
members of T and are subsets of A, we would then have

[∏Z[TZ ^ 8x [ZxæAx]]]Y æTY.

A ∏-normal form of this formula is then

[TY ^ 8x [Y xæAx]]æTY.

The structure of this last formula is much more complex than that of the formula from
which it was deduced, since it contains occurrences of logical connectives and quantifiers
which are not present in the original formula. Also, Y now has the role of a predicate
where this was not the case in the first formula. None of these structural changes can
occur in first-order logic.

Also consider the problems of extending Herbrand’s Fundamental Theorem [8] to
higher-order logic. In first-order logic, Skolem functions and prenex normal forms can
be used to reduce theoremhood for any formula to theoremhood of a formula of the
form 9x1 . . .9xn A(x1, . . . , xn) where A contains no quantifiers. Herbrand’s Theorem
then states that this formula is a theorem if and only if there is a collection of n-tuples
(t11, . . . , t1n), . . . , (tm1 , . . . , tmn ) of substitution terms from the Herbrand Universe, such that
the compound Herbrand instance A(t11, . . . , t1n) _ . . . _ A(tm1 , . . . , tmn ) is tautologous. In
the higher-order setting, there are two important problems with this formulation of Her-
brand’s Theorem. The first is that the Herbrand Universe of terms can not be constructed
as simply a free term algebra. The interaction between ∏-abstraction and Skolem functions
must be restricted. We avoid using Skolem functions entirely until this issue is clarified in
Section 6.

The second, more difficult problem in extending the first-order version of Herbrand’s
Theorem is that in higher-order logic, the result of substituting terms for quantified vari-
ables in a given formula may yield new quantifiers which were not in the original formula,
and hence have not been provided with a substitution term. For example, A(ti1, . . . , tin)
may contain quantifiers even if A(x1, . . . , xn) did not. Some of these quantifiers could also
contribute new Skolem functions to the Herbrand Universe which might be required in
some other substitution term, say tj1 for j 6= i. None of these possibilities are anticipated
by the first-order version of this theorem.

This form of Herbrand’s Theorem fails to generalize to higher-order logic because it
relies on two normal forms — prenex normal form and Skolem normal form — neither of
which are preserved under substitution and ∏-contraction. Our generalization of compound
Herbrand instances, called expansion trees, will abandon these normal forms.
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Section 3: Expansion Tree Proofs

In this section, structures which generalize formulas are defined. These structures,
called expansion trees, may contain logical connectives as well as the new connective +t,
where t is a formula. Informally, an expression of the kind 8B +t1 Q1 +t2 . . . +tn Qn, for
n ∏ 0, represents the result of instantiating the quantified expression 8B with the terms ti
to get the structure Qi, i = 1, . . . , n. Such an expression represents a labeled, ordered tree
in which the root, labeled with the formula 8B, has n out-arcs, each labeled in left-to-right
fashion with the formulas t1, . . . , tn, which connect the root to the structures Q1, . . . , Qn.
Such structures which contain no labeled arcs are interpreted as formulaso.

Definition 3.1. Expansion trees, dual expansion trees, selected variables, expansion terms,
and two functions Sh and Dp (for shallow and deep, resp.) which both map expansion
trees and dual expansion trees to formulas are defined by the following mutual recursion.

(1) Let A be a ∏-normal b-atom. If A is of the form 8B then A is a dual expansion
tree, otherwise it is both an expansion tree and a dual expansion tree. In either
case, Sh(A) := A and Dp(A) := A.

(2) If Q is an expansion tree, then ªQ is a dual expansion tree. If Q is a dual
expansion tree, then ªQ is an expansion tree. In either case, Sh(ªQ) := ªSh(Q)
and Dp(ªQ) := ªDp(Q).

(3) Assume that Q1 and Q2 do not share selected variables. If Q1 and Q2 are
expansion trees then so is Q1 _ Q2. If Q1 and Q2 are dual expansion trees
then so is Q1 _ Q2. In either case Sh(Q1 _ Q2) := Sh(Q1) _ Sh(Q2) and
Dp(Q1 _Q2) := Dp(Q1) _Dp(Q2).

(4) If Q is an expansion tree and Sh(Q) is a ∏-normal form of By for some ∏-normal
formulaoÆ B and some variableÆ y which is not selected in Q, then Q0 := 8B+y Q

is an expansion tree. The variable y is a selected variable of Q0. Also, Sh(Q0) :=
8B and Dp(Q0) := Dp(Q).

(5) Let B be a ∏-normal formulaoÆ and let t1, . . . , tn be a list of ∏-normal formulasÆ

(n ∏ 1). If Q1, . . . , Qn is a list of dual expansion tree where no variable occurs
selected more than once in all these trees, and for each i = 1, . . . n, Sh(Qi) is a
∏-normal form of Bti, then Q0 := 8B +t1 Q1 +t2 . . . +tn Qn is a dual expansion
tree. The formulas t1, . . . , tn are expansion terms of Q0. Also, Sh(Q0) := 8B and
Dp(Q0) := Dp(Q1) ^ . . . ^Dp(Qn).

It is very natural to think of both expansion trees and dual expansion trees as finite,
ordered trees in which non-terminal nodes are labeled with either ª, _, or 8B, for some
formulaoÆ, B, and where terminal nodes are labeled with b-atoms. A non-terminal node
labeled with a formula of the form 8B will also have out-arcs labeled with either occurrences
of expansion terms or selected variables. These trees are viewed with their roots at the top
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and their leaves (terminal nodes) at the bottom. A node dominates another node if both
are on a common branch and the first node is higher in the tree than the second. Arcs
can dominate other arcs in the same fashion. This dominance relation will be considered
reflexive. Also, an arc dominates a node if the node which terminates the arc dominates
the given node. In particular, an arc dominates the node in which it terminates. Just as it
is possible to classify subformulao occurrences of formulaso as either positive or negative,
nodes in an expansion tree are classified as either positive if it is dominated by an even
number of occurrence of ª, or negative otherwise.

Definition 3.2. Let Q be either an expansion tree or a dual expansion tree, and let
N be a node in Q which is labeled with 8B for some formulaoÆ B. If Q is an expansion
tree (dual expansion tree) then N is universal if it occurs positively (negatively) in Q and
existential if it occurs negatively (positively) in Q.

In either an expansion tree or a dual expansion tree, a non-terminal node N labeled
with a formula of the form 8B is an instantiated node which is instantiated by the formulas
labeling its out-arcs. It is easy to see that universal nodes are instantiated by selected
variable and that existential nodes can only be instantiated by expansion terms. In the
first case, the node N is selected by the selected variable, and in the second case N is
expanded by the expansion terms. A universal (existential) node which is not dominated
by any other universal or existential node is called a top-level universal (existential) node.
A labeled arc is a top-level labeled arc if it is not dominated by any other labeled arc.

Definition 3.3. Let Q be an expansion tree or a dual expansion tree. SQ is the set of
all selected variables in Q and ΘQ is the set of occurrences of expansion terms in Q. Let
x be a variableÆ which is not selected in Q, and t a formulaÆ. .S

x
t Q is defined as the result

of applying .S
x
t to (and then normalizing) all formulas labeling either arcs or nodes in Q.

.S
x
t Q is an expansion tree (dual expansion) if Q is an expansion tree (dual expansion tree),

and Sh( .S
x
t Q) conv .S

x
t Sh(Q) and Dp( .S

x
t Q) conv .S

x
t Dp(Q). Finally, a variable is new to Q

if it has no occurrence in any formula which is a label in Q.
The following relation is needed for our definition of Herbrand instances since Skolem

functions are not being used.

Definition 3.4. Let A be an expansion tree and let <0
Q be the binary relation on ΘQ

such that t <0
Q s if there exists a variable which is selected for a node dominated by t and

which is free in s. <Q, the transitive closure of <0
Q, is called the dependency relation for

Q.
ET-proofs, which are our generalization of tautologous, compound, Herbrand in-

stances, is defined below.

Definition 3.5. An expansion tree or dual expansion tree is sound if the free variables of
Sh(Q) are not selected in Q. An expansion tree Q is an expansion tree for A if Sh(Q) is a
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∏-normal form of A and Q is sound. An expansion tree is grounded if none of its terminal
nodes are labeled with formulas of the form 8B. An ET-proof is an expansion tree Q such
that Dp(Q) is tautologous and <Q is acyclic. An ET-proof is a grounded ET-proof if it is
also a grounded expansion tree.

Sound expansion trees are those trees which are expansion trees for some formula. In
particular, if Q is a sound expansion tree, then Q is an expansion tree for Sh(Q).

Example 3.6. Let A be the theorem 9y 8x [PxæPy]. A grounded ET-proof for A

would be the tree Q given as:

[9y 8x [PxæPy]+u[8x [PxæPu] +v [PvæPu]]
+v[8x [PxæPv] +w [PwæPv]]].

Here, Dp(Q) = [PvæPu] _ [PwæPv], ΘQ = {u, v}, and SQ = {v, w}. The dependency
relation is given by the pair u <Q v. If u was used in place of w, <Q would have been
cyclic.

The following proposition is straightforward.

Proposition 3.7. Let B be a finite set of variables. If A has an ET-proof, then it has an

ET-proof in which no selected variable is a member of B.

A common way to present Herbrand’s Theorem is to show that any theorem can be
proved in a system which contains tautologies as axioms and universal and existential
generalizations as the sole inference rules [5, 8]. In particular, let H be the following
proof system. The axioms of H are instances of tautologies. The inference rules are
the following: anti-prenexing, existential and universal generalization, ∏-expansion, and
existential contraction (i.e. replace a negatively occurring subformula 8B ^ 8B with 8B).
The proof of the following theorem shows how to translate expansion tree proofs into
H-proofs.

Theorem 3.8. If the formulao A has an ET-proof then it has an H-proof.

ET-proofs can be seen as directly encoding an H-proof. To prove this requires the
following definitions and lemmas, many of which will also be used in the following section.

Definition 3.9. A term t is admissible in Q if no variable free in t is contained in SQ.
Let Q be either an expansion tree or a dual expansion tree, and let N be a top-level,
instantiated node in Q. A labeled out-arc of N can be eliminated in one of the following
two ways.

(1) If N is a universal node, then it is the root of a subtree of Q of the form 8B+y Q1.
The tree which results by replacing this subtree by Q1 is the result of eliminating
y from Q.

(2) If N is an existential node, then it is the root of a subtree Q0 := 8B +t1 Q1 +
. . . +tn Qn. If n = 1 and t1 is admissible in Q, then let Q0 be the result of

– 7 –



3: Expansion Tree Proofs

replacing Q0 with Q1. If n > 1 and for some i, 1 ∑ i ∑ n, ti is admissible in Q,
then let Q0 be the result of replacing Q0 with the tree

[8B +t1 Q1 + . . . +ti°1 Qi°1 +ti+1 Qi+1 + . . . +tn Qn] ^Qi.

If in the first case i := 1, then in either case, Q0 is the result of eliminating ti
from Q.

Lemma 3.10. If Q0
is the result of eliminating a top-level labeled arc from the expansion

tree Q then

(1) if <Q is acyclic, then so is <Q0 ,

(2) Dp(Q0) and Dp(Q) are truth-functionally equivalent,

(3) if Q is sound then Q0
is sound, and

(4) if Q is sound then Sh(Q) can be derived from Sh(Q0) by some combination of

rule from the proof system H.

Proof. Proofs of (1) and (2) are straightforward. To prove (3), assume that Q is sound.
If Q0 arises by eliminating a selected variable y 2 SQ, then Q0 must also be sound, since
the selected variable y, which may now be free in Sh(Q0), is not selected in Q0. Otherwise,
assume Q0 arises by eliminating an admissible expansion term t 2 ΘQ from Q. Sh(Q0) can
be formed by replacing an existential b-atom 8B with a ∏-normal form of either 8B ^Bt

or Bt. Assume that Q0 is not sound. Then there must be some z 2 SQ0 = SQ which is
free in Sh(Q0). But then z is free in t, which contradicts the fact that t was admissible.
Hence, Q0 is sound. Thus, if Q is an ET-proof then so is Q0.

Let Q be sound, so by (3), Q0 is sound. If Q0 is the result of eliminating a top-level
selected variable, then Sh(Q) follows from Sh(Q0) by universal generalization, ∏-expansion
and anti-prenexing. If Q0 is the result of eliminating a top-level admissible, expansion term,
then Sh(Q) can be derived from Sh(Q0) by using ∏-expansion, existential generalization,
anti-prenexing, and, possibly, existential contraction. Hence, (4) is proved. ut

Lemma 3.11. If the expansion tree Q has a labeled arc and <Q is acyclic, then some

top-level labeled arc can be eliminated.

Proof. If Q has a top-level selected variable, then this arc can be eliminated. Assume
that Q has no top-level instantiated universal nodes. Let t1, . . . , tm be the list of all the
occurrences of top-level expansion terms of Q. Since <Q is acyclic, this list must contains
a <Q-minimal element. It is easy to verify that such minimal elements are admissible and
can, therefore, be eliminated. ut

The proof of Theorem 3.8 can now be completed. Let Q be an ET-proof for A. The
preceding lemmas guarantee the existence of a list of ET-proofs, Q1, . . . , Qm, such that
Q1 = Q, Qm contains no labeled arcs, and for 1 ∑ i < m, Qi+1 is the result of eliminating a
top-level, labeled arc from Qi. Clearly, Qm (= Sh(Qm)) is actually a tautologous formula
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and therefore has a (one line) H-proof. By induction and Lemma 3.10 (4), Sh(Q0) has an
H-proof. Since A is derivable from Sh(Q0) by ∏-expansion, A has an H-derivation.

This last theorem demonstrates how information in an ET-proof can be eliminated
to yield a simpler ET-proof. It is also possible to take two expansion trees and combine
their information to make a single expansion tree which collects their information. Such
combining is needed in the next section.

Definition 3.12. Let Q1 and Q2 be both either grounded expansion trees or grounded
dual expansion trees such that Sh(Q1) and Sh(Q2) are equal up to alphabetic changes
of bound variables. Assume that selected variables which label arcs not dominated by
expansion terms are the same in both trees. All other selected variables of Q1 and Q2 will
be assumed to be different. In each step of the following recursive definition of merging
Q1 and Q2 to get Q3, the following facts are easily verified.
(a) If Q1 and Q2 are expansion trees then Q3 is an expansion tree, Sh(Q1) = Sh(Q2) =

Sh(Q3), and [Dp(Q1) _Dp(Q2)]æDp(Q3) is tautologous.
(b) If Q1 and Q2 are dual expansion trees then Q3 is a dual expansion tree, Sh(Q1) =

Sh(Q2) = Sh(Q3), and Dp(Q3)æ[Dp(Q1) ^Dp(Q2)] is tautologous.
The following recursively describes how to construct the merge of trees Q1 and Q2.

(1) If Q1 is a one-node tree, then so is Q2, and Q3 := Q1 is the merge of Q1 and Q2.
(2) If Q1 = ªQ0

1 then Q2 = ªQ0
2. If Q0

3 is the merge of Q0
1 and Q0

2, then Q3 := ªQ0
3

is the merge of Q1 and Q2.
(3) If Q1 = Q0

1 _Q00
1 then Q2 = Q0

2 _Q00
2 . If Q0

3 and Q00
3 are the result of merging Q0

1

with Q0
2 and Q00

1 with Q00
2 , then merging Q1 with Q2 yields Q3 := Q0

3 _Q00
3 .

(4) If the root of Q1 is a existential node then Q1 = 8B1 +t1 Q1
1 + . . . +tn Qn

1 and
Q2 = 8B2 +s1 Q1

2 + . . . +sm Qm
2 , where B1 and B2 are equal up to alphabetic

change of bound variables, t1, . . . , tn, s1, . . . , sm are formulas, and n, m ∏ 1. The
result of merging Q1 and Q2 is then simply

Q3 := 8B1 +t1 Q1
1 + . . . +tn Qn

1 +s1 Q1
2 + . . . +sm Qm

2 .

(5) If the root of Q1 is a universal node then Q1 = 8B1 +y Q0
1 and Q2 = 8B2 +y Q0

2

where B1 and B2 are equal up to alphabetic changes of bound variables. If Q0
3 is

the result of merging Q0
1 and Q0

2 then Q3 := 8B1 +y Q0
3 is the result of merging

Q1 and Q2.

Lemma 3.13. Let A, B, and C be formulaso. We then have the following:

(1) If A _ B has a grounded ET-proof and C _ B has a grounded ET-proof, then

[A ^ C] _B has a grounded ET-proof.

(2) If A _B _B has a grounded ET-proof, then A _B has a grounded ET-proof.
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4: Sequential Proofs

Proof. Only the proof of (1) is given since the proof of (2) is similar and easier. Thus,
assume that A _ B and C _ B have grounded ET-proofs Q1 _ Q2 and Q3 _ Q4. These
expansion trees can be picked so that Q1 and Q3 can be merged to obtain Q5 and that
Q := Q5_ [Q2^Q4] contains no variable selected twice. Clearly, Q is a grounded expansion
tree for S _ [A ^ B]. Since Q1 _ Q2 and Q3 _ Q4 are ET-proofs, Dp(Q1) _ Dp(Q2)
and Dp(Q3) _ Dp(Q4) are tautologous. By the facts noted in the definition of merging,
[Dp(Q1)_Dp(Q3)]æDp(Q5) is tautologous. Hence, so too is Dp(Q) = Dp(Q5)_[Dp(Q2)^
Dp(Q4)]. Finally, if the dependency relation for Q contains a cycle, it is easy to show that
that cycle must appear in either Q1 _Q2 or Q3 _Q4. Hence, the dependency relation for
Q is acyclic, and Q is indeed a grounded ET-proof of [A ^ C] _B. ut

Section 4: Sequential Proofs

Our higher-order version of the sequential calculus, called L, is very similar to the
L-systems given in [7, 13, 16]. For convenience the succedent and antecedent of sequents
will be multisets. The structural inference figures for L are listed in Figure 1 and the
introduction inference figures for ª and _ are listed in Figure 2. Here, Γ and Θ denote
(possibly empty) multisets of formulaso.

Γ °! Θ Thinning
A,Γ °! Θ

Γ °! Θ Thinning
Γ °! Θ, A

A,A, Γ °! Θ
Contraction

A, Γ °! Θ

Γ °! Θ, A,A
Contraction

Γ °! Θ, A

Figure 1: Structural inference figures.

A, Γ °! Θ C, Γ °! Θ
_°IA

A _ C, Γ °! Θ

Γ °! Θ, A,C
_°IS

Γ °! Θ, A _ C

Γ °! Θ, A
ª°IA

ªA,Γ °! Θ

A, Γ °! Θ
ª°IS

Γ °! Θ,ªA

Figure 2: Inference figures for introducing _ and ª.

Figure 3 lists the inference figures for the introduction of 8 and the use of ∏-convertibility.
Here, A conv A0. The inference figure 8°IS must be restricted so that y is not free in any
of the formulas in its lower sequent. An L-derivation is defined, in the usual fashion, to
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4: Sequential Proofs

be a tree structure of instances of these inference figures. An L-derivation is said to be
an L-proof of its root sequent (endsequent) if its leaves are all axioms, i.e. they are of the
form A ! A, where A is any formulao. A formula B has an L-proof if ! B is the root
sequent of an L-proof.

A, Γ °! Θ
∏

A0,Γ °! Θ

Γ °! Θ, A
∏

Γ °! Θ, A0

Bt,Γ °! Θ
8°IA

8B, Γ °! Θ

Γ °! Θ, By
8°IS

Γ °! Θ,8B

Figure 3: Inference figures for ∏ and 8.

The transformation from ET-proofs to sequent proofs is based on q-sequents, which
are structures

P1, . . . , Pr ! Q1, . . . , Qs

where {Q1, . . . , Qr} is a possibly empty multiset of expansion trees and {P1, . . . , Pr} is a
possibly empty multiset of dual expansion trees, and ªP1 _ . . . _ ªPr _ Q1 _ . . . _ Qs is
an ET-proof. (The choice of how these multisets are enumerated is not important.) This
ET-proof is the ET-proof associated with this q-sequent, and the sequent

Sh(P1), . . . , Sh(Pr) ! Sh(Q1), . . . , Sh(Qs)

is the sequent associated with this q-sequent. Notice that if Q is an ET-proof for A then
! Q is a q-sequent, and the associated sequent would be ! A0, where A0 is a ∏-normal
form of A. A q-sequent is grounded if its associated ET-proof is grounded.

Now let Σ be a (possibly empty) multiset of dual expansion trees, and let Ω be a
(possibly empty) multiset of expansion trees. The following statements are true for q-
sequents.

(1) If P1 _ P2, Σ ! Ω is a q-sequent then both P1, Σ ! Ω and P2,Σ ! Ω are
q-sequents.

(2) If Σ ! Ω, Q1 _Q2 is a q-sequent then Σ ! Ω, Q1, Q2 is a q-sequent.
(3) If Σ ! Ω,ªP is a q-sequent then P,Σ ! Ω is a q-sequent.
(4) If ªQ,Σ ! Ω is a q-sequent then Σ ! Ω, Q is a q-sequent.
These facts can be considered q-inference figures and are represented as such in Figure

4.
The following facts about q-sequents follow easily from the property of elimination of

top-level selected variables and expansion terms (see Proposition 3.10).
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P1, Σ °! Ω P2,Σ °! Ω
_°IAq

P1 _ P2, Σ °! Ω

Σ °! Ω, Q1, Q2 _°ISq

Σ °! Ω, Q1 _Q2

Σ °! Ω, Q
ª°IAq

ªQ,Σ °! Ω

P, Σ °! Ω
ª°ISq

Σ °! Ω,ªP

Figure 4: The q-analogs for the inference figures in Figure 2.

(1) If Σ ! Ω,8B +y Q is a q-sequent then Σ ! Ω, Q is a q-sequent.
(2) If 8B +t1 P1, Σ ! Ω is a q-sequent and if t1 is admissible in the associated ET-

proof, then P1,Σ ! Ω is a q-sequent. Similarly, if [8B +t1 P1 + . . . +tn Pn], Σ !
Ω (n > 1) is a q-sequent and ti is admissible for some i, 1 ∑ i ∑ n, then

Pi, [8B +t1 P1 + . . . +ti°1 Pi°1 +ti+1 Pi+1 + . . . +tn Pn], Σ ! Ω

is a q-sequent.
Figure 5 shows the q-inference figures based on these relationships between q-sequents.

A q-derivation is a tree structure of q-sequents, each of whose nonterminal nodes are
instances of one of these seven q-inference figures.

Σ °! Ω, Q
8°ISq

Σ °! Ω,8B +y Q

P1, Σ °! Ω
8°IAq

8B +t1 P1,Σ °! Ω

Pi, [8B +t1 P1 + . . . +ti°1 Pi°1 +ti+1 Pi+1 + . . . +tn Pn],Σ °! Ω
8°IA§

q

[8B +t1 P1 + . . . +tn Pn], Σ °! Ω
Figure 5: The q-analogs for the 8 inferences figures.

Let the degree of a q-sequent be the number of nonterminal nodes labeled with _ or ª
plus the number of selected variables and occurrences of expansion terms in its expansion
trees and dual expansion trees. In all the q-inference figures in Figures 4 and 5, the upper q-
sequents have strictly smaller degree than the lower sequents. Thus, any q-sequent Σ ! Ω
can be placed at the root of a q-derivation where all its leaves are q-sequents with zero
degree. Theorem 3.11 must be used to ensure that if any expansion terms are present in
a q-sequent then at least one of them is admissible. The following theorem now follows
easily.
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Theorem 4.1. If A is a formulao with a grounded ET-proof, then there is an L-derivation

of the sequent ! A.

Proof. Let Q be a grounded ET-proof for A. From the above discussion, ! Q is the
end q-sequent of a q-derivation, Ξq, in which the leaves are q-sequents of zero degree and
in which the only q-inference figures used are those in Figures 4 and 5. Below, Ξq is
transformed into an L-derivation tree Ξ whose endsequent is ! A0, where A0 is some
∏-normal form of A, and whose leaves contain only atomic formulas.

For any q-inference figure in Ξq in Figure 4, replace it with the L inference figure
obtained by replacing the upper and lower q-sequents with their associated sequent and
dropping the “q” subscript from the name of the inference figure. Hence, if a q-inference
figure in Ξq is _°IAq then the corresponding figure is Ξ is

Sh(P1), Sh(Σ) °! Sh(Ω) Sh(P2), Sh(Σ) °! Sh(Ω)
_°IA

Sh(P1) _ Sh(P2), Sh(Σ) °! Sh(Ω)
Here, Sh(Σ) and Sh(Ω) are the multisets whose elements are the shallow formulas of the
trees in Σ and Ω, respectively.

Now consider the inference figures in Figure 5. For any occurrence of a 8°ISq inference
figure in Ξq, place in Ξ the inference figures

Sh(Σ) °! Sh(Ω), A0
∏

Sh(Σ) °! Sh(Ω), By
8°IS

Sh(Σ) °! Sh(Ω),8B
where A0 is a ∏-normal form of By. Similarly, for any occurrence of a 8°IAq inference
figure in Ξq, place in Ξ the inference figures

A0, Sh(Σ) °! Sh(Ω)
∏

Bt1, Sh(Σ) °! Sh(Ω)
8°IA

8B,Sh(Σ) °! Sh(Ω)
where A0 is a ∏-normal form of Bt1. Finally, for any occurrence of a 8°IA§

q inference figure
in Ξq, place in Ξ the inference figures

A0,8B,Sh(Σ) °! Sh(Ω)
∏

Bti,8B,Sh(Σ) °! Sh(Ω)
8°IA

8B, 8B,Sh(Σ) °! Sh(Ω)
Contraction

8B,Sh(Σ) °! Sh(Ω)
where A0 is a ∏-normal form of Bti.

Ξ is an L-derivation of ! A0 (where A0 is a ∏-normal form of A) in which the leaves
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are sequents containing only atoms. Let Ξ0 be the L-derivation which results from placing
at the endsequent of Ξ the inference figure

°! A0
∏.

°! A

Each leaf of Ξ0 is a sequent of the form Γ ! Θ in which Γ and Θ are multisets of atomic
formulaso and [_ªΓ] _ [_Θ] is tautologous. Thus Γ and Θ contain a common atomic
formula, i.e. Γ ! Θ is the result of thinning an axiom. Let Ξ00 be the L-proof of ! A

which is constructed from Ξ0 by placing above each leaf of Ξ0 an axiom sequent and enough
thinning inferences to infer that leaf. Ξ00 is then an L-proof of ! A. ut

Now consider the converse of this theorem.

Theorem 4.2. If the sequent Γ ! Θ has an L-proof, there is a grounded q-sequent

Σ ! Ω such that Γ = Sh(Σ) and Θ = Sh(Ω). Thus, if A has an L-proof, it has a grounded

ET-proof.

Proof. Assume that the sequent Γ ! Θ has an L-proof Ξ. This L-proof can be assumed
to have axioms which involve only ∏-normal atomic formulas, since otherwise it could be
reduced to such a proof by applying various inference figures to the non-atomic axioms.
We prove by induction on the height of Ξ that there is a grounded q-sequent, Σ ! Ω, such
that Γ = Sh(Σ) and Θ = Sh(Ω).

If the height of Ξ is 0, then Ξ is an axiom instance, say C ! C. If C 0 is a ∏-normal
form of C, then C 0 ! C 0 is the desired grounded q-sequent.

Now assume the height of Ξ is greater than 0. We need to show how a q-sequent for the
final sequent of Ξ can be constructed from the q-sequent(s) associated with the premise(s)
of that sequent. To do this, we need to consider 12 cases; one for each inference rule which
may terminate the proof tree Ξ. The construction for most of these cases is very simple.
For example, the q-sequent for the premise of either ∏ inference rule is also a q-sequent for
its conclusion. For the 8 introduction rules, the q-sequent for the conclusion is simply the
result of adding a labeled arc and new root node to the q-sequent for the premise. It is
only the contraction and _°IA rule where the construction is not immediate. Both these
cases, however, were already anticipated and solved by Lemma 3.13.

Thus there is a quite simple inductive algorithm which can construct a ground q-
sequent for the root sequent of an L-proof. Hence, if Ξ is an L-proof of the sequent ! A,
this algorithm constructs a q-sequent, say ! Q, such that Q is grounded and A red Sh(Q).
Hence, Q is a grounded ET-proof for A. ut

Another way to state the cut-elimination result for T is that for any formulao A,

T̀ A if and only if there is a (cut-free) proof of A in L. Using the above two theorems,
the soundness and completeness for ET-proofs follows immediately, i.e. T̀ A if and only
if A has a grounded ET-proof.
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The proof transformation algorithms presented in this section have very practical
value for the implementation of theorem proving systems. If a resolution-style theorem
prover recorded its substitution information in an expansion tree, the transformation from
ET-proofs to L-proof could be used to constitute a “natural” rendering of a resolution
refutation. Also, consider the following kind of theorem proving system: let a user interac-
tively edit a sequent-style proof. Once a proof is completed, the transformation of L-proofs
to ET-proofs could be applied. The resulting ET-proof would record just the “essential”
information of the proof. If this latter ET-proof was to be transformed back to a sequential
proof, there are many such proofs which could be produced: the orginal sequential proof
is only one of many. If the sequential proof builder encompassed notions of good proof
style, the newly created sequential proof could be a stylistically improved version of the
orginally entered sequential proof. Such proof revision has been experimented with in [6].

Section 5: Linear Reasoning

If the formula C æD has an ET-proof, it is of the form P æQ, where P is a dual
expansion tree for C and Q is an expansion tree for D. (For convenience, expansion trees
shall be denoted by a (possibly) ornamented “Q” while a dual expansion tree shall be
denoted by a (possibly) ornamented “P .”) As was shown in the proof of Theorem 3.8,
there is a list of ET-proofs

P æQ = P1æQ1, . . . , PnæQn

such that Dp(Pn)æDp(Qn) is tautologous, and for 1 ∑ i < n, either Pi+1 is equal to Pi

and Qi+1 is the result of eliminating a top-level labeled arc from Qi, or Qi+1 is equal to Qi

and Pi+1 is the result of eliminating a top-level labeled arc from Pi. In the first case, either

T̀ Sh(Qi+1)æSh(Qi) or T̀ 8y Sh(Qi+1)æSh(Qi), depending on whether Qi+1 is the
result of eliminating an expansion term or a universal variable y from Qi. In the latter
case, either T̀ Sh(Pi)æSh(Pi+1) or T̀ Sh(Pi)æ9y Sh(Pi+1), depending on whether
Pi+1 is the result of eliminating an expansion term or a universal variable y from Pi. It is
this relationship between Sh(Pi) and Sh(Pi+1) and between Sh(Qi+1) and Sh(Qi) which
is the basis of Craig’s system of linear reasoning.

Let A be a formulao and √ be a (possibly empty) list of quantifier occurrences, 8x or
9x, for any variable x. We define a prefixed formula to be a pair h√, Ai, also written as
√A. A prefixed formula h√, Ai represents the formula B if B is the result of attaching to
A the quantifiers listed in √. While h√, Ai represents a unique formula, the converse is not
true. For example, the formula 9x8y Pxy is represented by the three prefixed formulas
h9x8y, Pxyi, h9x,8y Pxyi, and h;,9x8y Pxyi.

Let A be a formulao and let B be a boolean subformula occurrence in A. We will use
the symbol A[B]± to denote this fact. The symbol ± will be + if the occurrence of B is
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positive and will be ° otherwise. Once the position and sign of an occurrence of B in A

is established, that occurrence of B can be changed. This is done by using the symbol
A[C]±, i.e. the instance of B which was marked out in A[B]± is now changed to C. The
symbols A[B]± and A[C]± only make sense when they occur in pairs.

Below is the list of L-deductions used in linear reasoning. Each L-deduction takes one
prefixed formula as a premise and yields one prefixed formula as a conclusion.
Duplication: From √ A[8B]+ infer √ A[8B ^ 8B]+.
Simplication: From √ A[8B ^ 8B]° infer √ A[8B]°.
9-exportation: From √ A[8B]° infer √9y A[By]°.
8-importation: From √8y A[By]+ infer √ A[8B]+, when y is not free in A[8B].
8-vacuous-introduction: From √1√2 A infer √18y√2 A.
9-vacuous-removal: From √19y√2 A infer √1√2 A, when y is not free in √2A.
9-generalization: From √ A[Bt]° infer √ A[8B]°.
8-instantiation: From √ A[8B]+ infer √ A[Bt]+.
Matrix-change: From √ A infer √ A0, provided that AæA0 is tautologous.
∏-conversion: From √ A infer √ A0, provided that A conv A0.

Notice that if √ A, √0 A0 is a L-deduction then for any variable y, both 8y√ A,

8y√0 A0 and 9y√ A,9y√0 A0 are justified by the same L-deduction. Furthermore, in the
deductions 8-instantiation, 9-generalization, and matrix-change, the premise implies the
conclusion. In all the remaining deductions, the premise is equivalent to conclusion. A
list of prefixed formulas √1A1 . . . ,√nAn is called an L-derivation of √nAn from √1A1 if
for each i, 1 ∑ i < n, √i Ai,√i+1 Ai+1 is one of the above L-deductions. If B1 represents
√1A1 and Bn represents √nAn, then T̀ B1æBn.

Definition 5.1. An L-derivation is balanced if there exists exactly one matrix-change
deduction and all 8-instantiations and Duplications occur before and all 9-generalization
and Simplications after this matrix-change, and all ∏-conversions prior to the matrix-
change are ∏-contractions while all those after the matrix-change are ∏-expansions. Given
a balanced L-derivation there is a prefix √ and two formulaso M1 and M2 such that the
L-deduction √M1, √M2 is the matrix-change deduction for this L-derivation. We shall call
√ the matrix prefix, M1 the left matrix formula, and M2 the right matrix formula of this
L-derivation.

Theorem 5.2. If T̀ C æD then there is a balanced L-derivation of D from C. In fact,

let P æQ be an ET-proof of C æD and let S be the set of selected variables of P æQ

which are free in Dp(P æQ) and let ¡ be the embedding relation for P æQ. There is a

balanced L-derivation of D from C such that its left and right matrix formulas are equal

(modulo associativity of conjunction) to Dp(P ) and Dp(Q), respectively, and its matrix

prefix is

Qmym, . . . ,Q1y1,
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where y1, . . . , ym is a topological sort of S with respect to ¡ (i.e. if yi ¡ yj then i < j) and

Qi is 9 if yi is selected in the tree P and is 8 if yi is selected in the tree Q, for i = 1, . . . , m.

The proof of this theorem closely parallels the one given by Craig in [5]. There are two
main differences, however. The first is the obvious addition of ∏-formulas and ∏-conversion.
This complicates the nature of 8-instantiation and 9-generalization deductions and forces
the second difference. Since the substitution of higher-order terms can result in the ap-
pearance of embedded quantifiers, formulas in an L-derivation cannot be required to be in
prenex normal form. Dropping prenex normal forms, although necessary, does not make
doing linear reasoning any harder. L-derivations cannot, however, be require to satisfy
the property that any Duplication, 9-exportation, and 8-vacuous-introduction precedes
any 8-instantiation deduction and that any Simplication, 8-importation, and 9-vacuous-
removal deduction follows any 9-generalization deduction. Although this is possible in the
first-order setting, here these various deductions may well need to get mixed on the left
side (for the first four deductions) and the right side (for the second four deductions) of
the matrix-change.

Let M1 and M2 be two formulas such that M1æM2 is tautologous. From [5] it is
easy to see that there is a third formula M such that both M1æM and M æM2 are
tautologous, and that every parameter or free variable occurring in M occurs in both M1

and M2. Such a formula M is a propositional interpolant for M1æM2. The following weak
interpolation theorem holds for T .

Theorem 5.3. If the closed formula C æD has an ET-proof P æQ then there exists a

formulas X such that T̀ C æX, T̀ X æD, and if a parameter c occurs in X and not

in both C and D, then c occurred either in D and some expansion term of P or in C and

some expansion term of Q.

Proof. Let P æQ be an ET-proof for C æD, M be a propositional interpolant for
Dp(P )æDp(Q), and √ be the prefix described in Theorem 5.2. Then √M is a formula
such that T̀ C æ√M and T̀ √M æD. The only parameters occurring in M must be in
both Dp(P ) and Dp(Q). Since the only parameters occurring in Dp(P ) occur in either C

or expansion terms of P and the only parameters occurring in Dp(Q) occur in either D or
an expansion term of Q, √M satisfies the conditions of the theorem. ut

This theorem can be viewed as an extension of the interpolation theorem for first-order
logic since it immediately yields that theorem: Since expansion terms in first-order logic
can not contain predicates, the predicates in the formula √M must be common to both C

and D, no matter which ET-proof was used to construct √M .

Section 6: Skolemization

The nature of Skolem functions in higher-order logic is more complex than it is for
first-order logic. In first-order logic, the Herbrand Universe of terms is freely generated
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from Skolem functions using application. Terms containing Skolem functions can be used
identical to terms not containing Skolem functions. In higher-order logic, however, the use
of Skolem functions must be modified. For example, the formula

8x∂ 9y∂ P(o∂)∂xyæ9f∂∂ 8z∂ Pz[fz]

is not provable in T , although the following Skolemized form of it is provable:

8x∂ P(o∂)∂x[gx]æ9f∂∂ P [hf ][f [hf ]].

Here, g is a Skolem function∂∂ and h is a Skolem function∂(∂∂). If such functions are not
restricted, this latter formula would have an ET-proof in which f would be substituted
with either g or ∏x gx. The lack of such a restriction in the resolution refutation system
in [1] caused that system to be unsound. Assuming the Axiom of Choice would have made
that refutation system sound but then not complete.

Skolem functions should simply play the syntactic role of providing for a parametric
collection of new “objects.” They should not be used as an actual function such as g is
when used in the substitution terms g and ∏x gx in the above example. The necessary
restriction on Skolem functions is given in the following definition.

Definition 6.1. The list æ := hÆ, Ø1, . . . , Øpi, where Æ, Ø1, . . . ,Øp are type symbols
(p ∏ 0), is called a signature (for a Skolem function). For each signature, æ, let Kæ be a
denumerably infinite set of function symbols all of type (. . . (ÆØ1) . . .Øp) which are not in
the formulation of T and such that if æ1 and æ2 are two different signatures then Kæ1 and
Kæ2 are disjoint. f 2 Kæ is called a Skolem function of signature æ with arity p. Let T § be
the formulation of T in which these Skolem functions are added. The Herbrand Universe
of terms for T § is the set, U , of all formulas A of T § such that whenever a Skolem function
of arity p has an occurrence in A, it is applied to at least p arguments. These arguments
are called its necessary arguments, and a formula with a Skolem function of arity p with p

argument attached is called a Skolem term. Furthermore, if a variable has a free occurrence
in any of these necessary arguments, that occurrence is also free in A. UÆ will denote the
set of all formulas in U of type Æ.

Two Skolem functions may have the same type while they have different arities. For
example, if Æ is of the form Æ0Ø0, then a Skolem term with signature hÆ, Ø1, . . . ,Øpi and
one with the signature hÆ0,Ø0, Ø1, . . . , Øpi have different arities but have the same type.
Since types can generally be determined from context while arity often cannot be, Skolem
functions are frequently written with a superscripted nonnegative integer to denote its
arity, i.e. fp.

Example 6.2. If f, g are Skolem terms with signature h∂, ∂i, x, w are variables∂, and A is
a variableo(o∂) then f [gx] 2 U∂, ∏xx 2 U∂∂, and ∏w[Aw[gx]] 2 Uo∂, while f /2 U , ∏x[fx] /2 U ,
and ∏w[A[gx][fw]] /2 U .
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The following proposition can easily be established using standard methods of the
∏-calculus.

Proposition 6.3. If A 2 UÆ and A red B then B 2 UÆ.

Expansion trees can now be modified to use Skolem functions in place of selected
variables.

Definition 6.4. Skolem expansion trees and dual Skolem expansion trees are defined
similarly to expansion trees and dual expansion trees, except as follows. When building
trees, Skolem terms are used to instantiate universal nodes in place of selected variables.
Second, expansion terms must be members of U . Finally, there are two global requirements.
Let fpt1 . . . tp be the Skolem term which labels the sole out-arc of a universal node, N .
Then fp appears as the head of no other Skolem term labeling the out arc of universal
node. Also, on the path from N to the root of the tree, there are exactly p expansion
terms t1, . . . , tp, in that order of dominance, which dominate N . The term fpt1 . . . tp is
said to be used to do a Skolem instantiation of the node N .

The definitions for the functions Dp and Sh are essentially the same as they are
presented in Definition 3.1. A Skolem expansion tree, Q, is a tree for a formula A of T if
Sh(Q) conv A and Q is an ST-proof if Dp(Q) is tautologous.

There are two fundamental differences between expansion trees and Skolem expansion
trees: First, subtrees of expansion trees are either expansion trees or dual expansion trees,
while subtrees of Skolem expansion trees are not necessarily Skolem expansion trees or
their duals. Second, a substitution instance of a Skolem expansion tree is another Skolem
expansion tree, while the substitution instance of an expansion tree with an acyclic depen-
dency relation may no longer be an expansion tree with an acyclic dependency relation.
This fact is the main reason why proof structures using Skolemization are frequently used
in automated proof systems. It is important in many of these automated systems that
proof systems remain proof systems under substitution.

Example 6.5. Let A be the theorem 9y 8x [PxæPy], and let f and g be Skolem
functions with signature h∂, ∂i. A Skolem expansion tree for A would then be the tree Q1

given as (compare with Example 3.6):

[9y 8x [PxæPy]+u[8x [PxæPu] +fu [P [fu]æPu]]
+v[8x [PxæPv] +gv [P [gv]æPv]]].

An ST-proof for A would then be the tree Q2 given as:

[9y 8x [PxæPy]+u[8x [PxæPu] +fu [P [fu]æPu]]
+v[8x [PxæPv] +g[fu] [P [g[fu]]æP [fu]]]].

Q2 is the result of substituting fu for v in Q1.
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6: Skolemization

The definition of ST-proofs has no condition similar the one for ET-proofs which
required the dependency relation be acyclic. The restriction it specified for ET-proofs
is explicitly encoded into Skolem terms used in ST-proofs. To make this relationship
more explicit, the following binary relation for the selected variables in expansion trees is
provided.

Definition 6.6. Let Q be an expansion tree. Let ¡0
Q be the binary relation on SQ such

that z ¡0
Q y if there exists a t 2 ΘQ such that z is free in t and a node dominated by

(the arc labeled with) t is selected by y. ¡Q, the transitive closure of ¡0
Q, is called the

embedding relation.
This relation is closely related to the dependency relation. The following proposition

and its proof reveals this connection.

Proposition 6.7. <Q is acyclic if and only if ¡Q is acyclic.

Proof. Let <Q be cyclic. That is, assume that there are expansion term occurrences
t1, . . . , tm 2 ΘQ such that t1 <0

Q . . . <0
Q tm <0

Q tm+1 = t1 for m ∏ 1. Let yi, for
i = 1, . . . , m, be chosen from SQ so that yi is selected for a node dominated by ti and
yi is free in ti+1. If ym+1 is identified with y1, then yi ¡0

Q yi+1, for i = 1, . . . , m, since
yi+1 is selected for a node dominated by ti+1 and yi is free in the formula ti+1. Hence,
y1 ¡0

Q . . . ¡0
Q ym ¡0

Q y1, and ¡Q is cyclic. The proof in the other direction is very
similar. ut

As will be shown, an ET-proof Q can be converted to an ST-proof Q0, and conversely.
In such a case, two selected variables z and y of Q satisfy z ¡Q y if and only if the Skolem
term corresponding to z is a subformula of the Skolem term corresponding to y. Since the
subformula relation is guaranteed to be acyclic, it is not necessary to assume any additional
acyclic conditions for ST-proofs.

Theorem 6.8. If A has an ET-proof then A has an ST-proof.

Proof. Let A have an ET-proof Q. For any selected variableÆ y 2 SQ define an associated
Skolem term as a term ft1 . . . tp, such that (a) t1, . . . , tp are the expansion terms in Q

which dominate the arc labeled with y, (b) these expansion terms are ordered so that
1 ∑ l < k ∑ p implies tl dominates tk, and (c) f is some Skolem function with signature
hÆ,Ø1, . . . ,Øpi, where Øj is the type of tj , j = 0, . . . , p. Since none of the formulas,
t1, . . . , tp contain Skolem functions, associated Skolem terms are all members of U .

Let hy1, . . . , yri be a list of the variables in SQ such that yi ¡Q yj implies i < j,
and let hs1, . . . , sri be a corresponding list of associated Skolem terms all of which have
different Skolem functions for their heads. Notice that 1 ∑ i ∑ j ∑ r implies that yj is not
free in si.

Let ' := .S
y1
s1
± · · · ± .S

yr

sr
. A simple induction argument shows that if C is a formula

of T , then 'C will be a formula of T § in which none of the variables y1, . . . , yr are free.
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6: Skolemization

Also, 'yi is a Skolem term with top-level Skolem function fi. It is easy to verify that '

commutes with Dp, Sh, and +t. From this it follows immediately that 'Q is an ST-proof
for A. ut

To convert ST-proofs to ET-proofs, Skolem terms must be replaced with selected
variables. The following operator is used to do this.

Definition 6.9. Let A 2 UÆ, s be a Skolem termØ , and y be a variableØ which does not
appear in A or in s. Let Ds

yA, the deskolemizing operator, be the result of replacing in A

every subformula, t, such that t conv s, by y. If Q is a Skolem expansion tree, then Ds
yQ

is the result of applying Ds
y to all formulas labeling arcs and nodes in Q.

Example 6.10. If f be a Skolem function with signature h∂∂, ∂i, then

Dfv
y [∏z∂[fv∂z]] = ∏z[y∂∂z] and Dfv

y Pz[f [[∏w∂ w]v]] = Pzy.

The following proposition can be proved using standard methods of ∏-calculus.

Lemma 6.11. Let A,B 2 UÆ, s be a Skolem termØ , and y be a variableØ which does not

appear in A, B, or s. The all the following are true.

(1) Ds
yA 2 UÆ and .S

s
yDs

yA conv A.

(2) A red B implies Ds
yA red Ds

yB.

(3) If B is a ∏-normal form of A, then Ds
yB is a ∏-normal form of Ds

yA.

The soundness of Skolem functions is proved by the following theorem.

Theorem 6.12. If A has an ST-proof then A has an ET-proof.

Proof. Let Q be an ST-proof for A and let V be the set of principle normal forms of
Skolem terms which are subformulas of formulas used to do expansions or Skolem instan-
tiations in Q. Let hs1, . . . , sri be an ordering of V such that whenever sj is an alphabetic
variant of a subformula of si then i < j. Let y1, . . . , yr be r distinct variables new to Q and
A such that yi has the same type as si, i = 1 . . . , r. Let Ω be the compound deskolemizing
operator

Ω := Dsn
yn
± · · · ±Ds1

y1
.

Now Ωsi = yi, for all i = 1, . . . , r, since j < i implies that D
sj
yj si = si. By Lemma 6.11,

it is easy to see that Ω commutes with Dp, Sh, and +t. Since Sh(Q) contains no Skolem
functions, Sh(ΩQ) = Sh(Q). Hence, ΩQ is an expansion tree for A. We need only show
that ¡ΩQ is acyclic.

Assume that yi ¡0
ΩQ yj for some yi, yj 2 SΩQ. Then the selection arc labeled with yj

in ΩQ is dominated by some expansion term t which contains a free occurrence of yi. Let
t0, s0j , s

0
i be the formula labeling the arcs in Q which correspond to the arc labeled with

t, yj , yi, respectively, in ΩQ. Here, the principle normal form of s0j and s0i are sj and si,
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respectively. Clearly, t0 would contain s0i as a subformula, while t0 is a subformula of s0j .
Thus si is an alphabetic variant of a subformula of sj and, therefore, j < i. Therefore, if
yi ¡ΩQ yj then j < i, and ¡ΩQ is acyclic. ut

The soundness and completeness for ST-proofs follow immediately from the above two
theorems.
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