
A HIGHER-ORDER LOGIC AS THE BASIS FOR

LOGIC PROGRAMMING

Gopalan Nadathur

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania in Partial

Ful�llment of the Requirements for the Degree of Doctor of Philosophy

1987

Supervisor of Dissertation

Graduate Group Chairperson

COPYRIGHT

c

Gopalan Nadathur

1987

Acknowledgements

Many people have contributed towards making my experience at the University of Penn-

sylvania a valuable one, and I am grateful to them.

First of all, I would like to thank Dale Miller for being a constant source of encourage-

ment and intellectual input, a patient and tolerant listener and, most importantly, a good

friend. The many discussions I have had with my professors and colleagues on matters

both pertaining to and unrelated to my thesis research have been valuable to my intellec-

tual development, and for this I thank, especially, Hassan A��t-Kaci, Peter Buneman, Will

Dowling, Jean Gallier, Aravind Joshi and Lokendra Shastri. I am indebted to Scott Wein-

stein for having taught the two courses that I consider the most stimulating in my graduate

career. Also, his con�dence in me was greatly uplifting during my bouts of melancholic

introspection. Thanks are also due Ramesh, Sitaram, Hendrik, Ravi, Bhagi and Chacha,

among many others, who have been responsible, in one way or the other, for making my

stay in Philadelphia an enjoyable one. These acknowledgements would not be complete

without a mention of Ameeta, who has always been there when I needed her. Her editorial

comments and careful proof-reading of this thesis are but one manifestation of this fact.

This research has been supported in part by the NSF grants MCS-78-08401, MCS-

81-07190 and MCS-82-19196.

i

ABSTRACT

A Higher-Order Logic as the Basis for Logic Programming

Gopalan Nadathur

Supervisor: Dale A. Miller

The objective of this thesis is to provide a formal basis for higher-order features in the

paradigm of logic programming. Towards this end, a non-extensional form of higher-order

logic that is based on Church's simple theory of types is used to provide a generalisation to

the de�nite clauses of �rst-order logic. Speci�cally, a class of formulas that are called higher-

order de�nite sentences is described. These formulas extend de�nite clauses by replacing

�rst-order terms by the terms of a typed �-calculus and by providing for quanti�cation over

predicate and function variables. It is shown that these formulas, together with the notion

of a proof in the higher-order logic, provide an abstract description of computation that is

akin to the one in the �rst-order case. While the construction of a proof in a higher-order

logic is often complicated by the task of �nding appropriate substitutions for predicate

variables, it is shown that the necessary substitutions for predicate variables can be tightly

constrained in the context of higher-order de�nite sentences. This observation enables the

description of a complete theorem-proving procedure for these formulas. The procedure

constructs proofs essentially by interweaving higher-order uni�cation with backchaining

on implication, and constitutes a generalisation, to the higher-order context, of the well-

known SLD-resolution procedure for de�nite clauses. The results of these investigations are

used to describe a logic programming language called �Prolog. This language contains all

the features of a language such as Prolog, and, in addition, possesses certain higher-order

features. The nature of these additional features is illustrated, and it is shown how the use

of the terms of a (typed) �-calculus as data structures provides a source of richness to the

logic programming paradigm.

ii

Table of Contents

1. Introduction :1

1. Outline of Thesis : 3

1. Description of a Higher-Order Logic : 3

2. Generalising De�nite Clauses : 3

3. A Higher-Order Logic Programming Language : 5

2. A Higher-Order Logic : 7

1. The Language of T

�

: 7

1. Types : 7

2. Well-Formed Formulas :8

2. �-Conversion and Substitution : 10

1. The Calculus of �-Conversion :11

2. Substitutions : 14

3. The Formal System :16

4. A Gentzen-Style System : 19

5. The Equivalence of LKH� and T

�

: :23

6. Discussion : 27

3. A Class of Higher-Order Formulas :29

1. Higher-Order De�nite Sentences : 29

2. A Simpli�ed Sequent System for De�nite Sentences : 33

1. LKH� Proof Figures for De�nite Sentences : 34

2. The Sequent Calculus LKHD : 42

3. Properties of De�nite Sentences :43

1. Proofs from De�nite Sentences :44

2. De�nite Sentences as Programs : 48

4. Searching for Proofs from De�nite Sentences : 52

1. The Higher-Order Uni�cation Problem :52

2. P-Derivations : 59

4. The Logic Programming Language �Prolog :69

1. The Language of �Prolog : 70

1. Type Variables and Type Inference : 72

2. The Nature of Function and Predicate Variables :75

iii

3. �-terms as Data Structures : 79

1. Representing and Manipulating Logical Expressions :80

2. Representing and Manipulating Programs :86

4. An Experimental Interpreter for �Prolog : 92

5. Conclusion and Future Work :100

Appendix A: Abstract Consistency Properties for T

�

: 104

Bibliography :107

List of De�ned Terms :110

iv

Chapter 1

Introduction

In a logic programming language such as Prolog the data structures, i.e. the devices used

to represent objects that a program \computes" on or reasons about, are �rst-order terms.

It is easy to imagine an extension of these data structures to higher-order terms or, more

speci�cally, to the terms of a �-calculus in which predicate and function variables can

appear free. Let us, then, imagine such an extension and examine some of its bene�ts.

There are several kinds of objects whose representation, in a logically correct manner,

requires a term language that incorporates higher-order notions. Examples of these kinds

of objects are provided by programs and formulas. The task of describing the denotations

of programs, for instance, requires an allusion to the operations of abstraction and applica-

tion. In order to represent programs in a fashion closely related to their meanings requires

the data structures provided, for instance, by �-terms. In the same vein, an adequate char-

acterisation of the operation of quanti�cation in �rst-order formulas requires the use of data

structures in which the notions of bound variables and the scopes of variable bindings can

be represented. These notions cannot be captured easily in data structures that are based

only on �rst-order terms. They can, however, be represented in a rather direct manner

using data structures that provide the notion of variable abstraction in conjunction with

�rst-order terms.

The provision of �-terms in a logic programming language would, thus, provide us

with a facility in representing certain kinds of objects that cannot be adequately represented

by �rst-order terms. If function variables are also permitted in our �-terms, we could use

terms in which such variables appear free as schemata that represent classes of objects

whose meaning have a common \compositional structure." Clauses in our hypothetical

logic programming language could then be used to specify logically meaningful relationships

between classes of objects thus represented. For speci�c examples where such an ability

might be useful, consider the following.

(i) Rules of logical inference can be described as relationships between formula schemata.

Given that such schemata can be represented by the data structures of our hypo-

thetical logic programming language, the process of deduction in a particular logical

system can easily be speci�ed by clauses in our language. (Examples illustrating such

a possibility appear in [27] and [34].)

(ii) Certain kinds of program transformations [12] can be thought of as relationships

between program schemes. Program schemes can be represented by �-terms in which

function variables appear free [23]. Clauses in our hypothetical language may therefore

be used to encode, and thus specify, such program transformations.

If \speci�cations" in our language could also be executed, we would in e�ect have a lan-

1

guage that supports, amongst other things, the implementation of program transformation

systems and of inference systems in a clean and easily justi�able manner.

The provision of predicate variables in addition to other function variables would, on

the other hand, provide a di�erent kind of facility in our language. In the context of a

logic programming language, predicates correspond to names of procedures. If predicate

variables are permitted to appear as the arguments of predicates and also as the names

of predicates, our language would provide an ability to write procedures that abstracted

over other procedures. If our language also permits �-terms to contain logical connectives,

then such expressions could be used, in the course of an evaluation, to instantiate predicate

variables that appear as arguments. Since the predicate variables they instantiate may

themselves appear as the names of procedures, these expressions may later be \evaluated."

We would thus obtain in our language some of the facilities provided by a functional

language such as Lisp for constructing �-expressions that may be passed as parameters

and, later, invoked as programs.

The above observations reveal a potentially rich realm of applications for a higher-

order logic programming language. While the addition of higher-order features to a lan-

guage like Prolog has been previously considered, past work has been restricted to intro-

ducing some of these features through ad hoc mechanisms and has not understood the true

potential of the others. The value of predicate variables has, for instance, been realised by

analogy with Lisp-like languages. However, attempts to obtain their usefulness have either

been restricted to describing techniques for encoding them within the �rst-order language

[43] or have lead to the introduction of \extra-logical" predicates (like call and univ) into

logic programming languages. The value of function variables in conjunction with �-terms,

on the other hand, does not seem to have been recognised. It is common to dismiss their

addition with the observation that the uni�cation problem for higher-order terms is un-

decidable, without a proper analysis of why this is undesirable in a theoretical sense and

without considering whether its use in practice might actually lead to conceptually elegant

solutions to di�cult problems.

The above arguments provide the major motivation for the work undertaken in this

thesis. It is our goal to describe a logic programming language that realises the full com-

plement of higher-order features discussed above that is, at the same time, based on sound

theoretical principles, and to expose, in a more tangible fashion, the applications that exist

for such a language.

2

1.1: Outline of Thesis

Section 1: Outline of Thesis

Description of a Higher-Order Logic. Our primary focus in this thesis is to describe

a logical basis for the introduction into a logic programming language of the higher-order

features discussed above. The proper theoretical framework in which to seek such a basis

is obviously that of a higher-order logic. The term \higher-order logic," as it is often

understood, pertains to a logic whose language admits function and predicate variables,

and in which such variables are interpreted as ranging over arbitrary functions and relations

on any given domain. By virtue of G�odel's incompleteness theorem, it is known that a

logic of this kind is not recursively axiomatizable and that its set of valid sentences is not

e�ectively enumerable. Such a logic is not very interesting from our viewpoint, since our

purpose is to use theorem-proving as the method of computation. There is, however, a

higher-order logic that involves a weaker notion of quanti�cation that can be recursively

axiomatized. The Simple Theory of Types, presented by Church in [10], is a typed �-

calculus formulation of this logic, and it is a non-extensional version of this system that

we use as the basis for our analysis. There are several reasons to believe that this logic

is particularly apt for our purposes: The language of this logic provides the mechanism of

the typed �-calculus for constructing function and predicate terms and permits variables

that range over such constructions; this was the main reason for our quest for a higher-

order logic. The proof-theory for this logic bears a close resemblance to that of �rst-order

logic; there is, for instance a generalisation to Herbrand's Theorem [26, 4] that holds for

(a variant of) this logic. Finally, the problem of uni�cation for terms in this logic has been

studied, and a uni�cation procedure has been described for these terms [22]; this property

is of obvious importance when one considers the computational uses of a logic.

We describe this logic in Chapter 2, and present several of the logical notions that we

need in this thesis. Since we �nd it more convenient to cast our subsequent discussions in

the framework of a sequent calculus, this chapter also presents a Gentzen-style formulation

of the logical system. The chapter ends with a discussion that highlights the similarities

between theorem-proving in �rst-order logic and higher-order logic and points out the

manner in which predicate variables make it di�cult to naively extend theorem-proving

techniques developed in the context of �rst-order logic to higher-order logic.

Generalising De�nite Clauses. The basis of (�rst-order) logic programming

languages is in �rst-order formulas that may be called goal formulas and de�nite clauses*.

A goal formula is de�ned (recursively) as being either an atomic formula or the conjunction

of two goal formulas. A de�nite clause is the universal closure of an atomic formula or of a

formula of the form G � A, where A is an atomic formula and G is a goal formula. Let P

* It is more usual to describe these formulas jointly as Horn clauses [41] and to view logic

programming in a refutational setting. For the purposes of this thesis, we �nd it more

convenient to use the form of presentation adopted above.

3

1.1: Outline of Thesis

be a set of de�nite clauses and let G be a syntactic variable for a goal formula. Then, the

programming use of these formulas is dependent on the following property of provability

in �rst-order logic:

(i) P ` 9x

1

: : : 9x

n

G if and only if there is a substitution instance G

0

of G such that

P ` G

0

.

This property allows us to identify a collection of de�nite clauses as a program and a goal

formula as a query and to use the notion of provability to provide an abstract description

of a computation; the computation is to be the construction of a proof for the existential

closure of the query from the program, and the result of such a computation is to be a set

of substitutions for the free variables in the query. Within this paradigm, a de�nite clause

is interpreted as a procedure declaration and a goal formula is interpreted as a sequence

of procedure calls. The suitability of such an interpretation is justi�ed by the following

properties of provability:

(ii) P ` G

1

^G

2

if and only if P ` G

1

and P ` G

2

.

(iii) If A is an atomic formula, then P ` A if and only if

(a) A is a substitution instance of a de�nite clause in P, or

(b) there is a G such that G � A is a substitution instance of a de�nite clause in P

and P ` G.

Thus, an atomic formula corresponds to a procedure, the name of which is the head of the

formula. In this context, a de�nite clause 8�x(G � A) may be thought of as a (partial) dec-

laration of a procedure whose name is the head of A; it may be invoked nondeterministically

and would lead, in turn, to a sequence of procedure calls.

Our objective is to provide a basis for the introduction of higher-order features into

the paradigm of logic programming. Such a basis is obtained by using the formulas of

our higher-order logic to describe a generalisation of the �rst-order notions of de�nite

clauses and goal formulas. In very rough terms, the generalisation may be described as

the one obtained by permitting predicate and function variables and typed �-terms into

these formulas. Some restrictions are placed on the appearances of predicate variables in

de�nite clauses and of logical connectives in terms, but these restrictions are well motivated

in the programming context. The restrictions may, in fact, be understood in the following

fashion. First, the name of a procedure de�ned by a de�nite clause, i.e. the head of A

in a (generalised) de�nite clause 8�x(G � A), cannot be a variable. Second, only those

logical connectives that may appear in the top-level logical structure of a goal formula

are permitted in terms*. The intuitive picture here is that a term that appears as the

* In the context of the present discussion, this means that the only logical connective

permitted in terms is ^. It is, however, possible to generalise the syntax of goal formulas

to include the logical connective _ and existential quanti�cation, and we do this in

4

1.1: Outline of Thesis

argument of a procedure call may be used to instantiate a predicate variable in the body

of a procedure declaration; in such a case we expect the result of the instantiation to

be a query. With these restrictions, we shall observe that our generalisations, together

with the notion of provability in our higher-order logic, provide an abstract description of

computation in much the same way as in the �rst-order case.

The actual realisation of the computational paradigm of logic programming depends

on the description of a procedure for constructing proofs. In the �rst-order case such a

procedure, called SLD-resolution [5], is obtained directly from the properties (ii) and (iii)

above and the use of uni�cation. More care must be taken in the higher-order case, however.

There are two potentially complicating factors:

(1) Uni�cation alone does not su�ce as a means for �nding substitutions for variables in

a higher-order logic. Predicate variables may appear as the heads of formulas and, in

such cases, the terms that need to be substituted may include logical connectives and

quanti�ers. Uni�cation does not encompass this richer notion of substitution.

(2) Uni�cation for �rst-order terms is a simple operation. However, for higher-order terms

this is a more complex and, in fact, an undecidable operation.

Fortunately, the �rst problem is easily resolved in the context of our restricted sets of

formulas. For these formulas we �nd that the necessary substitutions for predicate variables

are, in most cases, provided through uni�cation. When uni�cation does not su�ce, the

appropriate substitution is rather easily determined. With regard to the second problem,

we note that the search space for a uni�er may be described by a �nitely branching tree,

the MATCHING tree of [22], and shares several characteristics with the search space for a

proof in the case of �rst-order de�nite clause logic which is described by an SLD-tree in [5].

With this observation it is possible to describe a theorem-prover in the higher-order case

whose search space may be seen as the amalgamation of an SLD-tree and a MATCHING

tree. The notion of a P-derivation that we shall describe (in Chapter 3) corresponds to a

branch through such a tree.

A precise description of the higher-order generalisation to de�nite clauses and an

investigation of the various properties of this generalisation is the subject of Chapter 3.

A Higher-Order Logic Programming Language. In Chapter 4 of this thesis we

describe an experimental logic programming system called �Prolog that, in its current

incarnation, is based largely on the generalisation to de�nite clauses discussed in this thesis.

This system may, in an informal sense, be described as a typed, higher-order version of

Prolog. The purpose of types in �Prolog, however, is mainly to distinguish between objects

of di�erent functional types. It is possible for a user of the system to treat all �rst-order

objects as objects of the same type, and, in this sense, the language of this system actually

Chapter 3.

5

1.1: Outline of Thesis

contains that of Prolog.

In a manner very similar to the �rst-order case, the task of designing an interpreter

for �Prolog involves making trade-o�s between completeness and practicality. The choices

in the context of a higher-order language are, however, somewhat more complex than in the

�rst-order case, and we discuss some aspects of these choices in Chapter 4. The current in-

terpreter for �Prolog performs a depth-�rst uni�cation-�rst search with backtracking when

attempting to solve a goal. This is very much like the search a standard Prolog interpreter

performs, the main di�erence being that uni�cation is a more di�cult operation in the

higher-order case, and may involve a branching search. The interpreter may, therefore,

need to backtrack not only over choice of clauses but also over uni�ers, and so must record

such choices in the course of its search.

Our experiences with �Prolog have revealed that it is useful to have the facility for

writing \polymorphic" procedures. We have provided such a facility by permitting type

variables to appear in the types of symbols in a procedure declaration. One of the virtues

of this provision is that a user may omit type declarations if she so wishes since such

declarations may generally be inferred by using the techniques of [29]. However, type

variables constitute a strictly metalinguistic facility since the underlying theory requires

that all such variables in a procedure declaration be instantiated before the procedure is

used. In our implementation of an interpreter for �Prolog we have adopted some techniques

that permit the instantiations of type variables to be delayed in the hope that they may

be uniquely determined at a later stage. We discuss these techniques in Chapter 4.

Our main interest in �Prolog is in that it constitutes a logic programming language

that it incorporates a set of data structures that are based on higher-order terms, and

we illustrate some of the uses for these in Chapter 4. We show here the use of predicate

variables to write procedures that may take complex queries as arguments. The more

novel and, consequently, more interesting additions, however, are the �-terms and function

variables. �-terms together with �-conversion provide us with a notion of substitution that

is useful in certain contexts. We illustrate this by considering the task of generating logical

forms from English sentences. Function variables, together with uni�cation, provide us

with a sophisticated mechanism for pattern matching, and we illustrate the use of this

mechanism by considering two di�erent tasks. One of these involves the task of writing an

interpreter for a logic programming language and, therefore, of performing manipulations on

logical formulas. The other involves the task of e�ecting transformations between programs.

These discussions also reveal the suitability of �-terms as data structures for representing

the kinds of objects that are being reasoned about.

6

Chapter 2

A Higher-Order Logic

The higher-order logic, T

�

, that we shall use in this thesis is related to Church's formulation

of the simple theory of types [10] and to the system T in [1]. The language of T

�

is essentially

the one Church uses in his formulation of a higher-order logic. This language is of interest

to us because it incorporates the rather elegant mechanism of the �-calculus for providing

an understanding of higher-order terms. The language, in addition, uses the notion of

types to provide explicit syntactic distinctions between expressions that denote di�erent

kinds of intuitive objects; we believe that these distinctions are useful when we consider

the programming applications of the logic. The formal system of T

�

corresponds closely

to that of [1], which is itself derived from Church's system principally by the exclusion of

the axioms concerning in�nity, choice, extensionality and description. Our interest in T is

motivated by a desire for a logic that generalises �rst-order logic by providing a stronger

notion of a variable, but at the same time encompasses only the most primitive logical

notions that are relevant in this context; again, it is our belief that only these notions are

of consequence in the computational applications that we envisage for a higher-order logic.

T

�

di�ers from the system in [1] primarily in that it incorporates an understanding of a

larger set of propositional connectives and in that existential quanti�cation is used as the

primitive notion in its formulation. These choices are motivated by the considerations in

Chapter 3. Despite these di�erences, the two systems are equivalent in a sense that may

be made precise, and several of the properties of T carry over to T

�

.

The purpose of this chapter is primarily to present the system T

�

and to review some

logical notions that are relevant either to its formulation or to an understanding of the

other parts of this thesis. In sections 2.1 and 2.2 below we present the language of T

�

and review some of the aspects of �-conversion. Following this, we present a Hilbert-style

axiomatisation of the logic. We �nd it more convenient to cast our subsequent discussions

of T

�

in the framework of a Gentzen-style sequent system. To facilitate such a discussion

we describe a sequent calculus in Section 2.4 and in Section 2.5 we relate this calculus to

T

�

.

Section 1: The Language of T

�

As mentioned earlier, the language of T

�

is derived from that of Church's simple theory of

types. This language is typed, in the sense that every well-formed expression in the language

has a type associated with it. The purpose of this type is to determine the position of the

expression in a functional hierarchy. The primary mechanisms for constructing higher-order

terms are those of function abstraction and application. We describe these notions below

and introduce some of the notations that we �nd useful in other parts of this thesis.

7

2.1: The Language of T

�

Types. We are initially supplied with a set S of sorts, containing the distinguished sort

o and at least one other sort. We are also provided with a set C of type constructors, each

speci�ed with a unique positive arity; formally, C is a set of pairs hc; ni where n is a positive

integer and for each c at most one such pair belongs to C. The class of types relative to C

and S is then the smallest collection that satis�es the following properties:

(i) Each sort is a type.

(ii) If hc; ni 2 C and �

1

; : : : ; �

n

are types then (c �

1

: : : �

n

) is a type.

(iii) If � and � are types, then (�! �) is a type.

In the rest of this thesis, we shall use the letters � and �, perhaps with subscripts, as

syntactic variables for types. In writing types, we often omit the surrounding parentheses;

in restoring such an expression to a uniquely readable form, we assume that the parentheses

around those types formed by virtue of (ii) are to be inserted �rst and that ! is right

associative. We refer to the types obtained by virtue of (i) and (ii) as atomic types and to

those obtained by virtue of (iii) as function types. Evidently every type may be written

in the form (�

1

! � � ��

n

! �) where � is an atomic type. Given such a representation

of a type, we refer to �

1

; : : : ; �

n

as its argument types and to � as its target type. In an

informal sense, each type may be construed as corresponding to a set of objects. Under

such a construal, the type �

1

! �

2

corresponds to the collection of functions each of whose

domain and range is determined by �

1

and �

2

, respectively.

2.1.1. Example. Let us assume that int 2 S and hlist; 1i 2 C. The following are then

legitimate types: int, list int and list int! int! int. The last of these in an unambiguous

form is the type ((list int) ! (int ! int)). The argument types of this expression are

list int and int, and its target type is int. We may construe the listed types as the types of

integers, of lists of integers, and of functions from lists of integers to functions on integers,

respectively. Such a reading is a little misleading, though, since no a priori interpretation

is accorded to the type constructors, and the only sort, as we shall see presently, that has

an initial interpretation is o.

Well-Formed Formulas. We now assume that for each type � we are provided with a

denumerable set, Var

�

, of variables of type �. We also assume that we are supplied with

a collection of constants of arbitrary given types, such that the subcollection at each type

� is denumerable and disjoint from Var

�

. This collection contains at least one constant of

each atomic type, and also includes the following in�nite list of symbols called the logical

constants: > of type o, � of type o ! o, ^ and _ of type o ! o ! o, and, for each �, �

of type (� ! o)! o. The remaining constants are called the parameters of T

�

. The class

of well-formed formulas (w�s) or terms, relative to the given collections, is now de�ned

inductively by the following rules:

8

2.1: The Language of T

�

(i) A variable or a constant of type � is a w� of type �.

(ii) If x is a variable of type �

1

and F is a w� of type �

2

then [�x:F] is a formula of type

�

1

! �

2

.

(iii) If F

1

is a w� of type �

1

! �

2

and F

2

is a w� of type �

1

then [F

1

F

2

] is a w� of type

�

2

.

In the interpretation intended for the language, � is to be the abstraction operator, and

juxtaposition is to be the operation of function application. In keeping with this intention

we refer to the w� in (ii) as the abstraction of F by x, and to the w� in (iii) as the application

of F

1

to F

2

. In the former case we also say that the abstraction binds x and that its scope

is F .

There are certain conventions concerning w�s that we shall �nd useful in this thesis.

First, we shall occasionally �nd it necessary to distinguish between variables and other w�s.

For this purpose we employ the convention that w�s indicated by lower-case letters corre-

spond to variables, unless accompanied by an explicit statement to the contrary. Second,

we observe that every w� is de�ned as being of a unique type. This type may be indicated

by employing it as a subscript or by an explicit statement; in the latter case we may write

\F is a w�

�

(variable

�

)" as an abbreviation for \F is a w� (variable) of type �". Often the

type of the w� is either discernable from the context in which it appears or is inessential to

the discussion at hand and in such cases we shall omit its mention. Finally, in displaying

w�s, we shall often omit the brackets that surround the expressions formed by virtue of

(ii) and (iii) above; such an expression may be restored to a uniquely readable form using

the conventions that it is well-formed and that application is left associative.

Based on the rules of formation, we may identify the well-formed subparts of each w�.

Speci�cally, let F be a w�. Then G occurs in, or is a subformula of, F if (a) G is F , or (b) F

is �x:F

1

and G occurs in F

1

, or (c) F is F

1

F

2

and G occurs in either F

1

or F

2

; note that

G may have several distinct occurrences in F . An occurrence of a variable x is considered

to be either bound or free depending on whether it is or is not an occurrence in the scope

of an abstraction that binds x in F . x is then considered a bound (free) variable of F if it

has at least one bound (free) occurrence in F . F is said to be closed just in case no free

variables occur in it. We use the expression F(F) to denote the set of free variables of a

w� F . This notation is generalised to sets of w�s and sets of pairs of w�s in the following

way: If D is a set of w�s then F(D) =

S

fF(F) j F 2 Dg and if D is a set of pairs of w�s

then F(D) =

S

fF(F

1

) [F(F

2

) j hF

1

; F

2

i 2 Dg.

2.1.2. Example. Let cons be a parameter of type int! (list int)! (list int), and let 1

and 2 be parameters, where list and int are as in Example 2.1.1. Then

�l.[cons 1 [cons 2 l]]

9

2.1: The Language of T

�

is an abbreviated representation of the w�

[�l.[[cons 1] [[cons 2] l]]].

The type of this w� is evidently (list int)! (list int). The types of 1 and 2 are clearly int

| we shall henceforth implicitly assume that the symbols representing the natural numbers

are parameters of type int. The above w� has one bound variable, l, of type (list int).

There are no free variables in this w�, although l has a free occurrence in the subformula

[cons 1 [cons 2 l]].

The type o has a special signi�cance in T

�

. W�s that are of this type are proposi-

tions, and a w� that has the type �

1

! � � � ! �

n

! o is a predicate of n arguments whose

i

th

argument is of type �

i

. In keeping with our construal of types, predicates of single

arguments may informally be thought of as representing sets and predicates of multiple

arguments may be thought of as representing relations. In Section 2.3, we describe a for-

mal system that is based on an intention to interpret the logical constants in the following

manner: > corresponds to the tautologous proposition, the (propositional) connectives �,

_ and ^ correspond respectively to the operations of negation, disjunction and conjunc-

tion on propositions, and the family of constants � are existential quanti�ers, viewed as

propositional functions of propositional functions. In writing w�s that contain the logical

constants, we shall �nd the following abbreviations useful:

[F _G] for [_F G]

[F ^G] for [^F G]

[F � G] for [[�F] _G]

[9x:F] for [��x:F]

[8x:F] for [���x:�F]

The �rst two of these abbreviations correspond to the more common practice of writing

conjunction and disjunction as in�x operations, and the last two illustrate the use of �

along with an abstraction to create the operations of existential and universal quanti�ca-

tion that are familiar in the context of �rst-order languages. The brackets present in these

abbreviations may again be omitted. In restoring an expression so written into an unam-

biguous form, use is made of the conventions that the brackets that surround �F have the

smallest scope, followed by those around F _ G and F ^ G, and, �nally, by those around

9x:F . We shall sometimes use �x as an abbreviation for a sequence of variables x

1

; : : : ; x

n

.

In such cases, the expression 9�x:F is to be construed as a shorthand for 9x

1

: : : : 9x

n

:F ,

and a similar interpretation is to be bestowed upon 8�x:F .

10

2.2: �-Conversion and Substitution

Section 2: �-Conversion and Substitution

Based on the intended interpretation of � and of juxtaposition, there are certain logi-

cally meaningful operations de�ned on w�s. These operations are given by the rules of

�-conversion. The primary purpose of these, as rules of inference, is to specify circum-

stances under which two di�erent w�s may be considered equal. Since �-conversion plays

an intrinsic role in the formulation of T

�

, we review these rules, and the associated notions

of equality, in this section. �-conversion also provides us with the means to describe a

generalised notion of substitution, and we do this towards the end of this section.

The Calculus of �-Conversion. We begin by de�ning a notion of substitution per-

taining to w�s. Let x be a variable

�

, let G be a w�

�

and let F be an arbitrary w�. We

then write S

x

G

F to denote the result of replacing all the free occurrences of x in F by G.

This operation may be made explicit by the following recursive de�nition:

(i) F is a variable or a constant. If F is x then S

x

G

F = G. Otherwise S

x

G

F = F .

(ii) F is of the form �y:C. If y is x then S

x

G

F = F . Otherwise S

x

G

F = �y:S

x

G

F .

(iii) F is of the form [C D]. Then S

x

G

F = [(S

x

G

C) (S

x

G

D)].

In performing this operation of replacement, there is the danger that the free variables of

G may become inadvertently bound. We use the term \G is free for x in F" to describe

the situations in which the operation is logically correct; G is free for x in F just in case x

does not occur free in a subformula �y:C of F where y is a free variable of G.

The rules of �-conversion may now be described. These comprise the following op-

erations on w�s; these operations are referred to individually as the rules of �-conversion,

�-reduction, �-expansion, �-reduction, and �-expansion, respectively.

(1) Replacing a subformula �x:F by �y:S

x

y

F provided y is free for x in F and y =2 F(F).

(2) Replacing a subformula [�x:F]G by S

x

G

F provided G is free for x in F .

(3) The converse of (2), i.e. if G results from a subformula F of A by (2), then replacing

F by G in A.

(4) Replacing a subformula �x:[F x] by F provided x does not occur free in F .

(5) The converse of (4), i.e. replacing a subformula F of type � ! � by the subformula

�x:[F x] where x is a variable

�

that is not free in F .

The two � rules above are often collectively referred to as the �-conversion rules, and

the two � rules are, likewise, referred to as the �-conversion rules. The rules of �-conversion

may be informally understood in the following manner. There is a certain sense in which

the choice of name for the variable bound by an abstraction is unimportant, and the �-

conversion rule makes this precise. Given the interpretation intended for the mechanisms

for constructing w�s, we may consider a notion of function evaluation, and �-conversion

provides a syntactic correlate for this notion; in this context, �-conversion enables bound

11

2.2: �-Conversion and Substitution

variables to be renamed to permit �-conversions in certain situations. Finally, �-conversion

corresponds to a weak notion of extensionality for w�s*.

Based on the rules above, we de�ne the following three relations between w�s.

2.2.1. De�nition. F �-conv (�-conv, �) G just in case there is a sequence of applications

of the �-conversion (respectively �- and �-conversion, �-conversion) rules that transforms

F into G.

It is apparent that these three relations hold only between w�s that have the same type.

Furthermore, each of these are equivalence relations; each application of �-conversion is

clearly invertible, and the �- and �-conversion rules each constitute invertible pairs. Thus,

these relations de�ne three notions of equality between w�s. In this thesis we shall use the

strongest of these notions, i.e. we consider F and G equal just in case F �-conv G. There

are certain distinctions to be made between w�s by omitting the rules of �-conversion, but

we feel that these distinctions are not important in our context. We note, however, that

most of the later discussions go through with minor changes even if we choose this weaker

notion of equality.

In our discussions concerning w�s, we shall �nd the notion of a normal form useful.

This notion may be made precise as follows. Given a w� F , we refer to an occurrence of a

w� of the form [�x:A]B in F as a �-redex of F ; a �-redex is thus a subformula to which a

�-reduction step may be applied. Similarly, we refer to an occurrence of a w� of the form

�x:[Ax] as an �-redex of F just in case x does not occur free in A. A w� is then a �-normal

(�-normal) formula in the case that there are no �- or �-redexes (respv. no �-redexes) in

it. Evidently a �-normal formula is a w� that has the following form:

�x

1

: : : : �x

n

:[AF

1

: : : F

m

]

where A is a constant or variable, and, for 1 � i � m, F

i

also has the same form. We

refer to the sequence x

1

; : : : ; x

n

as the binder, to A as the head and to F

1

; : : : ; F

m

as the

arguments of the w�; in particular instances, the binder may be empty, and the w� may also

have no arguments. We shall say that such a w� is rigid if its head, A, is either a constant

or a variable that appears in the binder, and that it is
exible otherwisey. If �x denotes

the sequence x

1

; : : : ; x

n

, we shall sometimes �nd it convenient to use the abbreviation

��x:[AF

1

: : : F

2

] for the above w�. We note, �nally, that a w� of the above form is also a

* The notion of extensionality introduced by this rule is weaker than that provided by the

axiom of extensionality in [10]: [8x:[f x = g x]] � [f = g], where F = G is de�ned as

8p:p F � pG. This rule also has weaker connotations than the corresponding rule in the

untyped version of the language. In the latter case the rule has the e�ect of asserting

that everything is a function. In our context there are distinctions between various

kinds of objects that are provided by types, and this distinction is unchangeable.

y This terminology is motivated by the fact that applying a substitution to a rigid formula

in a certain sense leaves its head unchanged.

12

2.2: �-Conversion and Substitution

�-normal formula if F

m

is not identical to x

n

and, in addition, each of the F

i

s are also in

this form.

The following proposition assures us that there is a �-normal formula corresponding

to each w�.

2.2.2 (Normal-Form Theorem). For each w� there is a �-normal formula that may

be obtained from it by a sequence of �-reductions and �-conversions.

Proofs of this proposition may be found in [1] and in [13]. With regard to �-reductions we

observe that they reduce the number of symbols in a w� and they do not introduce any new

�-redexes or �-redexes into the w�. Any w� may therefore be transformed into a �-normal

formula by �rst converting it into a �-normal formula and then applying a sequence of

�-reductions to this formula.

We de�ne a �-normal form of a w� F to be a �-normal formula G such that F �-

conv G. Our earlier discussion assures us that such forms exist for every w�. While such

forms are not unique, they are nevertheless closely related as the following proposition

states. This proposition was originally proved for a system of �-conversion pertaining to a

language without type symbols. A proof for that system of conversion may be found in [6,

pp 59-67]. The results apply to the system under consideration as well, as can be veri�ed

by an examination of the mentioned proof.

2.2.3 (Church-Rosser Theorem). If F , G are �-normal formulas such that F �-conv

G, then F � G. In other words, a �-normal form of a w� is unique upto a renaming of

bound variables.

For the most part we shall be satis�ed with any one of these normal forms correspond-

ing to a w� F , and we shall write �norm(F) to denote such a form. In certain situations

we shall need to talk about a unique normal form and, in such cases, we shall use �(F) to

designate what we shall call the principal normal form of F ; i.e. � is a function from w�s

to �-normal formulas. There are several schemes that may be used to pick a representative

of the �-equivalence classes of �-normal formulas and the one implicitly assumed here is

that of [1]. (Under this scheme we �rst assume an ordering of the variables of each type.

We then de�ne a �-w� to be a �-normal formula in which, in each subformula of the form

�x

�

:G, x

�

is the �rst variable that is distinct from all the other free variables of type �

in G. It is an easy observation that there is a unique �-w� corresponding to each w� F

and it is this that we denote by �(F)). For our purposes the particular choice of scheme

is unimportant, and the only requirement that we place on � is that if F �-conv G then

�(F) = �(G).

2.2.4. Example. Let nil be a parameter (of type (list int)) and let the other symbols

below be as in Example 2.1.2. Then, the w�

[�l.[cons 1 [cons 2 l]]] [cons 3 nil]

13

2.2: �-Conversion and Substitution

has the �-normal form

[cons 1 [cons 2 [cons 3 nil]]].

The binder of the last w� is empty, its head is cons and its arguments are 1 and [cons 2

[cons 3 nil]]. This w� is also a rigid formula.

The notion of normal forms is useful for two reasons. First, the existence of a normal

form and of a mechanism to convert any w� into a normal form provides a means for deter-

mining whether two w�s are equal. Second, normal forms provide a means for discussing

the properties of w�s in terms of a representative for each of the equivalence classes that

has a convenient structure. As a particular instance, we shall have use for the structure of

�-normal formulas of type o that is described below.

2.2.5. De�nition. A w� of type o is an atom (is atomic) if its leftmost symbol that is

not a bracket is either a variable or a parameter.

A �-normal formula of type o, then, has one of the following forms:

(i) it is >,

(ii) it is an atom,

(iii) it is �F , where F is a �-normal formula of type o,

(iv) it is F _G or F ^G, where F and G are �-normal formulas of type o, or

(v) it is �P , where P is a �-normal formula.

Substitutions. �-conversion provides us with the facility for de�ning one other notion

pertaining to w�s, namely that of substituting w�s for some of the free variables in a given

w�. This notion is made precise as follows. First, we de�ne a substitution to be a �nite set

of pairs of the form

fhx

i

; F

i

i j 1 � i � ng,

where, for 1 � i � n, each x

i

is a distinct variable and F

i

is a w� in principal normal form*

of the same type as x

i

; we refer to such a substitution as a substitution for x

i

, and we say

that its range is fF

1

; : : : ; F

n

g. Now, we view a substitution as a type preserving mapping

on variables that is the identity almost everywhere. Thus, if � is a substitution and y is a

variable, the result of applying � to y is de�ned by the following equation:

�(y) =

�

F; if hy; F i 2 �;

y; otherwise.

Finally, we extend this mapping to the class of all w�s in a manner that is consistent with

the above view: If

* While it is not really necessary to place this restriction on F

i

, we do it mainly to

maintain a uniformity between the application of a substitution to a variable and to a

w�.

14

2.2: �-Conversion and Substitution

� = fhx

i

; F

i

i j 1 � i � ng

and G is an arbitrary w�, then

�(G) = �([�x

1

: : : : �x

n

:G]F

1

: : : F

n

).

It is easily seen that this de�nition is independent of the order in which we take the

pairs from �. Furthermore, given our notion of equality between w�s, the application of

a substitution to a w� G is evidently a formalisation of the idea of replacing the free

occurrences of x

1

; : : : ; x

n

in G simultaneously by the w�s F

1

; : : : ; F

n

.

2.2.6. Example.

(i) Let F be the w� [cons x [cons 2 l]], where x and l are variables and the other

symbols are as in Example 2.1.2. If � is the substitution fhx; 1i; hl; [cons x nil]ig,

then �(F) =[cons 1 [cons 2 [cons x nil]]]. Note that the order in which we

take the pairs from � is immaterial. Also note that the head of F remains unchanged

under the application of �.

(ii) Given a w�

o

F let us say that a predicate variable x occurs extensionally in F if

(a) x is the leftmost non-bracket symbol in F , or

(b) F is �F

1

and x occurs extensionally in F

1

, or

(c) F is F

1

_ F

2

or F

1

^ F

2

and x occurs extensionally in either F

1

or F

2

.

Assume that P is a parameter of type int! int! o, that A and B are parameters

of type int ! o, and that y is a variable of type int ! int ! o. Then y occurs

extensionally in the w� F = [P A] � [y A]. Let � be the substitution

fhy; �z:[[P z] ^ 8x:[[z x] � [B x]]]ig.

Then

�(F) � [P A] � [[P A] ^ 8x:[[Ax] � [B x]]].

The point to note in this example is that applying a substitution to a w�

o

in which a

predicate variable occurs extensionally has the potential of producing a w�

o

that has

a di�erent propositional and quanti�cational structure.

There are certain notational conventions and notions pertaining to substitutions that

we shall �nd useful in our later discussions, and we describe these below.

(i) Given a set of variables V, we shall often need to consider the restriction of a sub-

stitution � to V. This notion is denoted by the notation � " V, and is de�ned in the

usual manner, i.e.

� " V = fhx; F i j hx; F i 2 � and x 2 Vg.

15

2.3: The Formal System

From this de�nition, it is easy to show that �(G) = (� " F(G))(G).

(ii) We shall �nd use for the notion of the composition of two arbitrary substitutions

�

1

and �

2

. This is a substitution that is denoted by �

1

� �

2

and is precisely the

composition of �

1

and �

2

when these are viewed as mappings: �

1

� �

2

(G) = �

1

(�

2

(G)).

Alternatively, this may be described as a �nite set of pairs given in the following

manner:

�

1

� �

2

= fhx; �

1

(�

2

(x))i j x is a variable and �

1

(�

2

(x)) 6= xg.

(iii) We shall also need to compare substitutions. For this purpose, we de�ne �rst a notion

of equality between substitutions relative to a set of variables as follows:

�

1

=

V

�

2

if and only if �

1

" V = �

2

" V.

We then say that a substitution �

1

is less general than a substitution �

2

relative to V

just in case there is a substitution � such that �

1

=

V

� � �

2

. We denote this relation

by writing �

1

�

V

�

2

.

Finally, we shall sometimes talk of the result of applying a substitution to sets of w�s

and to sets of pairs of w�s. In the �rst case, we mean the set that results from applying

the substitution to each w� in the set, and, in the latter case, we mean the set of pairs that

results from the application of the substitution to each element in each pair.

Section 3: The Formal System

Let p; q; r 2 Var

o

, x 2 Var

�

and for each � let f 2 Var

�!o

. The w�s

o

in the following

in�nite list then constitute the formal axioms of the system*.

1. >

2. p ^ q � p

3. p ^ q � q ^ p

4. p � (q � (p ^ q))

5. p _ p � p

6. p � p _ q

7. p _ q � q _ p

8. p � q � [r _ p � r _ q]

9

�

. f x � 9x:f x

* 9

�

is to be interpreted as a schema; it determines w�s

o

depending on the particular

choice for �.

16

2.3: The Formal System

The following operations now comprise the rules of inference of the system. In these

statements, upper-case letters constitute syntactic variables for w�s of the indicated types.

(I) (�-Conversion) To infer G from F if G results from F by a single application of one

of the rules of �-, �-, or �-conversion to F .

(II) (Substitution) To infer [F A] from [F x], if x is a variable

�

that does not occur free in

F and A is a w�

�

.

(III) (Modus Ponens) To infer G from F and F � G.

(IV) (Existential Rule) To infer [9x:F x] � G from [F x] � G, provided x does not occur

free in F or G.

The theorems of the system are those w�s that may be obtained from the formal

axioms by a succession of applications of the rules of inference; we write `

T

� F to indicate

that F is a theorem of the system. A proof of a theorem, F , is a list, F

1

; : : : ; F

n

, of w�s

o

such that F

n

is F and for 1 � i � n, F

i

is either an axiom or derived from one or two of

the previous w�s in the list by a rule of inference.

The system described by the above axioms and rules of inference is closely related to

the system in [1]. The relationship may be explicated by the statement that we have for-

mulated the logic using existential quanti�cation as the primitive notion, we have included

�-conversion as a rule of inference, and we have, in addition, chosen as primitives certain

symbols that may be introduced via de�nitions in the system of [1]. Indeed, the replace-

ment of each occurrence of � by �b:���x:�[b x], of each occurrence of > by p � p and of

each occurrence of ^ by �p:�q:�[�p_�q] in a theorem of this system produces a theorem

of the latter system augmented with the rule of �-conversion. Conversely, a theorem of the

latter system may be rendered into a theorem of this system by the replacement of each

occurrence of � by �b:���x:�[b x].

In subsequent discussions, we shall �nd useful the notion of a proof of a w�

o

G on the

assumption of the w�s

o

F

1

; : : : ; F

n

. This notion corresponds to a list of w�s

o

, G

1

; : : : ; G

m

,

such that G

m

is G and, for 1 � i � m, each G

i

is either an axiom or is in the list F

1

; : : : ; F

n

or is obtainable from preceding w�s by an application of a rule of inference subject to the

condition that no variable that occurs free in any of the assumption w�s

o

is acted upon by

the rule of substitution or the existential rule. The fact that there is a proof for G on the

assumption of F

1

; : : : ; F

n

is expressed by the use of the notation

F

1

; : : : ; F

n

`

T

�G:

The proof of the following proposition may be obtained by an adaptation of its proof

in [10] for the related system.

2.3.1 (Deduction Theorem). For n � 1 let F

1

; : : : ; F

n

, andG be w�s

o

. If F

1

; : : : ; F

n

`

T

�G then F

1

; : : : ; F

n�1

`

T

� F

n

� G.

17

2.3: The Formal System

Our presentation of a Hilbert-style axiomatisation is motivated by a desire to place our

endeavour within the framework of a well-studied higher-order logic. In discussing certain

proof-theoretic properties of this system, however, we �nd it more convenient to employ a

Gentzen-style formulation of the same system. We describe this formulation in the next

section. In establishing a correspondence between the two formulations of the logic, we

shall make use of the fact, already implicit, that the tautologous w�s are theorems of T

�

;

a veri�cation of this fact may be supplied by the technique used, for example, in ([24] pp

45 { 48). We shall also �nd useful the following notion of an abstract derivability property

that is based on the notion in [26] for the related system.

2.3.2. De�nition. A property � of �nite sets of w�s

o

is an abstract derivability property

if, for all �nite sets S of w�s

o

, the following holds:

ADP1 If > 2 S, then �(S).

ADP2 If there is an atomic formula F such that F 2 S and �F 2 S, then �(S).

ADP3 If �(S [f�(F)g), then �(S [fFg).

ADP4 �(S [fFg) if and only if �(S [f��Fg).

ADP5 If �(S [fF;Gg), then �(S [fF _Gg).

ADP6 If �(S [f�Fg) and �(S [f�Gg), then �(S [f�[F _G]g).

ADP7 If �(S [fFg) and �(S [fGg), then �(S [fF ^G)g.

ADP8 If �(S [f�F;�Gg), then �(S [f�[F ^G]g).

ADP9 If �(S [f�P yg) where y is a parameter (variable) that does not occur (occur

free) in P or in any w� in S, then �(S [f��Pg).

ADP10 If �(S [f�P; P Cg) for some w� C, then �(S [f�Pg).

Let _S denote the disjunction of the members of any �nite set S of w�s

o

taken in

an arbitrary order. Then the use that we shall �nd for the above notion is based on the

following proposition.

2.3.3 (Relative Completeness of Abstract Derivability Properties). Let S be a

�nite set of w�s

o

and let � be an abstract derivability property. If `

T

� _ S then �(S).

The proof of this proposition may be obtained from a modi�ed version of the abstract

consistency property of [1], which is a generalisation to T of the analytic consistency prop-

erty described in [39]. For the sake of the sceptical reader, we present this property and

then outline the changes necessary to the arguments in [1] in Appendix A.

Before concluding this section, we note the similarity between well known formulations

of the �rst-order functional calculus and the higher-order logic that we study in this thesis

| as is manifest in our presentation of the formal system. From one perspective the

logic that we study here is apparently a many-sorted version of �rst-order logic. The key

18

2.4: A Gentzen-Style System

di�erences, though, are the richer syntax of w�s, and the presence of �-conversion as a rule

of inference.

Section 4: A Gentzen-Style System

In this section we present a sequential calculus, LKH�, for our higher-order logic. LKH�

constitutes a higher-order extension to a system derived from the logistic classical calculus

LK of [15]; in this regard the main modi�cation is an incorporation of the result pertain-

ing to cut-elimination for LK in the formulation of the calculus. We use LKH� in our

arguments in Chapter 3, and our formulation of the calculus is designed so as to provide

a facility in the discussions therein. For the sake of completeness, in our presentation of

LKH� we summarise some of the notions in [15] that are relevant to sequent systems. In

the next section we shall show that the sequent calculus that we present below is actually

equivalent to T

�

.

A central notion in a Gentzen-style system is that of a sequent. A sequent is an

expression of the form

F

1

; : : : ; F

n

�! G

1

; : : : ; G

m

where n � 0, m � 0, and, for 1 � i � n and 1 � j � m, F

i

and G

j

are terms from some

prede�ned language. The terms F

1

; : : : ; F

n

form what is known as the antecedent of the

sequent, and the terms G

1

; : : : ; G

m

form its succedent. From the description above, it is

clear that both the antecedent and the succedent may be empty in any given sequent.

A sequent calculus is characterised by its inference �gures, which are arrangements

of sequents of the following form:

�

1

�! �

1

: : : �

n

�! �

n

n � 1

� �! �

where the letters �

i

and �

i

denote �nite sequences of terms. Given an inference �gure of

the above sort, the sequents �

i

�! �

i

, for 1 � i � n, are called the upper sequents and

the sequent � �! � is called the lower sequent of the �gure.

We are interested in \tree-like" arrangements of sequents which combine to form

inference �gures in the following way:

(i) Each sequent, with the exception of exactly one that is called the end sequent, is the

upper sequent of exactly one inference �gure.

(ii) Each sequent is the lower sequent of at most one inference �gure; those sequents that

are not the lower sequents of any inference �gure are called the leaf sequents of the

arrangement.

19

2.4: A Gentzen-Style System

(iii) There are no cycles in the arrangement in that there is no sequence of sequents, where

each member is an upper sequent of an inference �gure whose lower sequent is the

preceding member, whose last member is again succeeded by the �rst member.

Each calculus is also characterised by a set of sequents designated as initial sequents. A

proof �gure in a given calculus is then an arrangement of the above sort in which each leaf

sequent is also an initial sequent. If the end sequent of such a �gure is � �! �, then this

�gure is also referred to as a proof �gure for � �! �. A path in a proof �gure is a sequence

of sequents, the �rst member being the end sequent, and every other member being the

upper sequent of an inference �gure whose lower sequent is the preceding member*. Each

sequent in a proof �gure is evidently on a unique path, and we refer to the number of

elements that precede it on this path as the distance of the sequent from the end sequent.

The height of the proof �gure is the length of the longest path in the �gure.

With these preliminary remarks, we turn to the speci�c characterisation of the calculus

LKH�. The terms in the sequents of LKH� are the w�s

o

of T

�

. The initial sequents of

this calculus are the sequents that result from the schemata

�

1

; A;�

2

�! �

1

; A;�

2

� �! �

1

;>;�

2

by replacing � and, for i = 1; 2, �

i

and �

i

by �nite sequences of w�s

o

and A by an

atomic w�

o

. The inference �gures are those that result from the schemata in Figure 2.4.1

by a substitution of the following kind: Replace the �s and �s by �nite sequences of

w�s

o

. Replace F and G by w�s

o

. In the schemata designated by �, replace F

0

by a w�

o

resulting from the w� that replaces F in the lower sequent of the schema by a sequence of

�-conversions. Finally, in the schemata designated by ��IA and ��IS, replace P by a w�

of type �! o, C by a w�

�

and y by a parameter or variable of type � for some choice of

�; in the last case, we also stipulate that the parameter or variable that replaces y should

not occur free in any of the w�s that are substituted in the lower sequent.

We distinguish the �gures that result from the �rst two schemata as the structural

�gures, and those that result from the remaining as operational �gures. In each of these

�gures, we designate a w� in the lower sequent as the principal formula of the �gure:

In the structural �gures, this is the w� that replaces the symbol F in the corresponding

schema. In the operational �gures, this is the w� substituted for the expression containing

the logical constant in the corresponding schema. We also note that two upper sequents

appear in some of the operational �gures, and we distinguish between these by referring to

them as as the left and right upper sequents of the �gure.

* Since there may be distinct occurrences of the same sequent in a given proof �gure,

we need to make the quali�cation that what we actually refer to is the sequent as

characterised by its occurrence in the �gure. We implicitly assume this quali�cation

wherever it is necessary.

20

2.4: A Gentzen-Style System

Contraction in the antecedent

�

1

; F; F;�

2

�! �

�

1

; F;�

2

�! �

Contraction in the succedent

� �! �

1

; F; F;�

2

� �! �

1

; F;�

2

� in the antecedent

�

1

; F

0

;�

2

�! �

�

1

; F;�

2

�! �

� in the succedent

� �! �

1

; F

0

;�

2

� �! �

1

; F;�

2

�

1

;�

2

�! �

1

; F;�

2

��IA

�

1

;�F;�

2

�! �

1

;�

2

�

1

; F;�

2

�! �

1

;�

2

��IS

�

1

;�

2

�! �

1

;�F;�

2

�

1

; F;�

2

�! � �

1

; G;�

2

�! �

_�IA

�

1

; F _G;�

2

�! �

�

1

; F;G;�

2

�! �

^�IA

�

1

; F ^G;�

2

�! �

� �! �

1

; F;G;�

2

_�IS

� �! �

1

; F _G;�

2

� �! �

1

; F;�

2

� �! �

1

; G;�

2

^�IS

� �! �

1

; F ^G;�

2

�

1

; �(P y);�

2

�! �

��IA

�

1

;�P;�

2

�! �

� �! �

1

; �(P C);�

2

��IS

� �! �

1

;�P;�

2

Figure 2.4.1: The LKH� Inference Figure Schemata

In the remainder of this section we observe some simple properties of LKH� proof

�gures that we shall �nd useful in later discussions.

2.4.1 Lemma. Let �

1

;�

2

= �

0

1

;�

0

2

. Then, there is a proof �gure of height h for a

sequent �

1

; F

1

; : : : ; F

n

;�

2

�! � if and only if there is a proof �gure of height h for the

sequent �

0

1

; F

1

; : : : ; F

n

;�

0

2

�! �. A corresponding relationship holds for the succedent.

Proof. By an induction on the height of the purported proof �gure for either sequent.

21

2.4: A Gentzen-Style System

We shall often �nd it convenient to consider proof �gures in which the appearances

of the inference �gure � are prior to the other inference �gures. This is the reason for our

incorporation of �-conversion into the schemata ��IA and ��IS. The following lemma

guarantees that we may restrict our attention to such proof �gures.

2.4.2 Lemma. Let �

0

�! �

0

result from � �! � by replacing each w� F in the

latter sequent by its principal normal form. Then, the second sequent has a proof �gure

of height h only if the �rst has one of height � h in which the inference �gure � does not

appear.

Proof. By an easy induction on the height of the proof �gure for the second sequent.

2.4.3 Lemma. A sequent of the form �

1

;�F;�

2

�! �

1

;�

2

has a proof �gure of height

h only if the sequent �

1

;�

2

�! �

1

; F;�

2

has a proof �gure of height � h. A similar

relationship holds between the sequents �

1

;�

2

�! �

1

;�F;�

2

and �

1

; F;�

2

�! �

1

;�

2

.

Proof. We only show the �rst part of the lemma; the proof of the second part is similar.

For this part, we claim that if F

1

�-conv �F and if there is a proof �gure of height h

for the sequent �

1

; F

1

;�

2

�! �

1

;�

2

, then there is a proof �gure of height � h for the

sequent �

1

;�

2

�! �

1

; F;�

2

. It is apparent that the lemma follows from this claim.

We show this claim by an induction on the height of the proof �gure for the �rst

sequent. In the case that this height is 1, the �rst sequent is evidently an initial sequent.

But then, so also is the second sequent. Let us, therefore, assume that the height is h+ 1.

Consider now the inference �gure for which the lower sequent is the end sequent. Evidently

the upper sequent(s) of this inference �gure have proof �gures of height � h. In the cases

when the principal formula of the inference �gure under consideration is not F

1

, it is easy

to see how a proof �gure of height � h for the second sequent may be obtained by a use of

the inductive hypothesis and the same inference �gure schemata.

Thus, the only cases that require further consideration are those in which the inference �g-

ure is a Contraction in the antecedent, a � in the antecedent or a��IA, the principal formula

in each case being F

1

. In the �rst case, we observe that �

1

; F

1

; F

1

;�

2

�! �

1

;�

2

has a

proof �gure of height h. From the hypothesis we see that �

1

; F

1

;�

2

�! �

1

; F;�

2

has a

proof �gure of height � h. But then, the claim follows from another use of the hypothesis.

In the second case we see that there is a proof �gure of height h for �

1

; F

2

;�

2

�! �

1

;�

2

where F

2

�-conv �F , and so the claim follows directly from the hypothesis. In the last

case, we see that the upper sequent is �

1

;�

2

�! �

0

1

; F

0

;�

0

2

, where �

0

1

;�

0

2

= �

1

;�

2

and

F

0

�-conv F . But then by Lemma 2.4.1 we see that �

1

;�

2

�! �

1

; F

0

;�

2

has a proof

�gure of height h. By using an inference �gure � in the succedent in conjunction with this

proof �gure, we obtain a proof �gure of height h+1 for the sequent �

1

;�

2

�! �

1

; F;�

2

.

22

2.4: A Gentzen-Style System

We now introduce into LKH� two new inference �gure schemata that we shall �nd

useful in Chapter 3.

�

1

;�

2

�! �

1

; F;�

2

�

1

; G;�

2

�! �

1

;�

2

imply� IA

�

1

;�F _G;�

2

�! �

1

;�

2

�

1

; �([�x:P]C);�

2

�! �

all� IA

�

1

;���x:�P;�

2

�! �

These schemata are \derived" in the following sense: their e�ect may be obtained by the

use of the other schemata. (The e�ect of the �rst may be obtained by a use of _�IA

whose left upper sequent is then the lower sequent of a ��IA. The e�ect of the second

may be obtained by a combination of �gures ��IA, ��IS and ��IS). The primary use

that we make of these �gures is in describing proof �gures that have a \normal-form." The

description of this normal form is contained in the following lemma.

2.4.4 Lemma. Let each w� in � and � be in principal normal form. Then there is a

proof �gure of height h for � �! � only if there is a proof �gure of height � h for the

same sequent in which

(i) the principal formula of a _�IA inference �gure is not a formula of the form �F _G,

(ii) the principal formula of a ��IA inference �gure is not a formula of the form

���x:�F , and

(iii) the inference �gures � in the antecedent and � in the succedent do not appear.

Proof. By an induction on the height of the given proof �gure. The only cases we need

to consider are those in which the end sequent is the lower sequent of an inference �gure

that violates (i), (ii) or (iii). In the �rst case we have

�

1

;�F;�

2

�! � �

1

; G;�

2

�! �

�

1

;�F _G;�

2

�! �

and the sequents �

1

;�F;�

2

�! � and �

1

; G;�

2

�! � each have proof �gures of height

< h. From Lemma 2.4.3 it follows that �

1

;�

2

�! �; F has a proof �gure of height < h.

We observe, now, that each w� H in the sequents �

1

;�

2

�! �; F and �

1

; G;�

2

�! �

is in principal normal form. From our hypothesis it follows, then, that these sequents

each have proof �gures of height < h that satisfy (i), (ii), and (iii). But then we use

these and an inference �gure imply� IA to obtain a proof �gure of the requisite sort for

�

1

;�F _G;�

2

�! �. A similar argument may be provided for the second case. In the

third case we use Lemma 2.4.2.

23

2.5: The Equivalence of LKH� and T

�

Section 5: The Equivalence of LKH� and T

�

We now consider the relationship between the calculus LKH� and T

�

. Our objective in

this section is to show that these two systems are equivalent in the sense obtained from

[15]. Readers familiar with this notion and to whom the equivalence of the two systems is

already apparent may desire to proceed directly to the next section.

Let � be a sequence of w�s

o

F

1

; : : : ; F

n�1

; F

n

. We shall, then, use the notation ^�

for the w� [F

1

^ : : : ^ F

n�1

] ^ F

n

and the notation _� for the w� [F

1

_ : : : _ F

n�1

]_ F

n

.

We now de�ne an association between w�s

o

and sequents in the following manner. Let

p 2 Var

o

be a designated propositional variable. Given a sequent � �! �, we then say

that its associated formula is ^� � _� if neither the antecedent nor the succedent is empty,

_� if only the antecedent is empty, ^� � p^�p if only the succedent is empty, and p^�p

if both the antecedent and the succedent are empty. The notion of equivalence that we are

interested in then is the following: We consider the calculus LKH� to be equivalent to T

�

if the existence of an LKH� proof �gure for a sequent implies that its associated formula

is a theorem of T

�

and if the converse is also true.

We show in this section that the two systems are, indeed, equivalent in the sense

made precise above. The proof of the �rst half of this equivalence is provided by outlining

a method for transforming an LKH� proof �gure into a proof in T

�

. In the proof of the

second half we make use of the abstract derivability property introduced in Section 2.3.

2.5.1 Lemma. There is an LKH� proof �gure for a sequent only if there is a proof in

T

�

for its associated formula.

Proof. The proof of this lemma is based on the methods in [15]. We shall present an

auxiliary calculus that has the following virtues: We shall see that an LKH� proof �gure

for a given sequent can be transformed into a proof �gure in the auxiliary calculus for a

sequent that has the same associated formula, ensuring, in so doing, that no sequent in the

latter proof �gure has an empty succedent. For the auxiliary calculus we shall readily see

that (i) proofs in T

�

exist for the associated formulas of the initial sequents, and (ii) if each

sequent in an inference �gure has a nonempty succedent and if proofs in T

�

exist for the

associated formula(s) of the upper sequent(s) of the �gure, then a proof in T

�

exists for

the associated formula of the lower sequent of the �gure. It is clear that the lemma follows

from these observations.

The auxiliary calculus is obtained from LKH� in the following manner. We replace

the initial sequents of LKH� by those obtained from the following schemata by substituting

atomic formulas for A and arbitrary w�s

o

for F :

A �! A �! > F;�F �! A

We restrict the the inference �gures obtained from the schemata in Figure 2.4.1 as follows:

Only the empty sequence may be substituted for �

2

and �

1

in all the schemata in which

24

2.5: The Equivalence of LKH� and T

�

these two symbols appear. In the schemata � in the succedent, Contraction in the succedent,

_�IS, ^�IS, ��IS, and ��IS the empty sequence must be substituted for �

2

as well. We

drop the schemata all� IA and imply� IA; from our previous discussions, it is clear that

these may be transformed into other LKH� �gures. Finally, we add the �ve new inference

�gure schemata listed below:

Thinning in the antecedent

� �! �

�; F �! �

Interchange in the antecedent

�; G; F �! �

�; F;G �! �

� �! F F �! �

Cut

� �! �

�;�F �! �

��EA

� �! F;�

� �! �F;�

��ES

�; F �! �

We observe, now, that the e�ect of each LKH� inference �gure may be obtained by a

sequence of inference �gures in the auxiliary calculus. Consider, for example, the following

instance of the schema Contraction in the antecedent for LKH�:

�

1

; F; F;�

2

�! �

�

1

; F;�

2

�! �

Denoting by �� the sequence of w�s that is obtained by negating each w� in �, we

see that the above LKH� inference �gure may be transformed into the following sequence

of inference �gures of the auxiliary calculus:

�

1

; F; F;�

2

�! �

sequence of ��IS

�

1

; F; F �! ��

2

;�

Contraction

�

1

; F �! ��

2

;�

sequence of ��ES

�

1

; F;�

2

�! �

A similar transformation may be e�ected on the �gures � in the antecedent, _�IA, ^�IA

and ��IA of LKH�. In transforming the remaining inference �gures we may need the

additional �gures ��EA and Interchange, but the scheme is clear. In a similar fashion, we

add a sequence of �gures \above" the LKH� initial sequents �

1

; A;�

2

�! �

1

; A;�

2

and

25

2.5: The Equivalence of LKH� and T

�

� �! �

1

;>;�

2

to obtain the initial sequents A �! A and �! > of the auxiliary

calculus; this time we may need the �gure Thinning in the antecedent as well.

From these observations, it is clear that any LKH� proof �gure may be transformed

into a proof �gure for the same end sequent in the auxiliary calculus. In the latter proof

�gure there may occur sequents whose succedents are empty. In such cases we write the

w� p ^ �p in the succedent. If the succedent of the end sequent was empty, we see that

this operation merely produces a sequent that has the same associated formula. However

there may result �gures of the following four kinds that need justi�cation:

� �! F

�;�F �! p ^ �p

�;�F �! p ^ �p

� �! F

�; F �! p ^ �p

� �! �F

� �! �F

�; F �! p ^�p

But such �gures may again be transformed into a sequence of inference �gures in the

auxiliary calculus by the use of the �gure Cut and the �nal new initial sequent, and in

performing this transformation we may ensure that the succedent of all sequents remain

nonempty. We illustrate the transformation for one case below.

� �! �F

F;�F �! p ^ �p

Interchange

�F; F �! p ^ �p

��IS

�F �! �F; p ^ �p

Cut

� �! �F; p ^ �p

��ES

�; F �! p ^ �p

Now it is easily seen that the associated formulas of the initial sequents of the aux-

iliary calculus are theorems of T

�

; for instance the associated formula of the sequent

F;�F �! A is F ^ �F � A which is a tautology. For each inference �gure in which no

sequent has an empty succedent we may, similarly, verify that the associated formula of

the lower sequent is a theorem if the associated formula(s) of the upper sequent(s) is. For

example take the �gure:

�; F �! � �; G �! �

_�IA

�; F _G �! �

The associated formulas of the upper sequents are ^� ^ F � _� and ^� ^ G � _�,

respectively. If these are theorems, we obtain easily that � `

T

� F � _� and � `

T

�G � _�.

26

2.6: Discussion

But then from the tautologous proposition [F � _�] � [[G � _�] � [F _ G � _�]], we

obtain � `

T

� F _G � [_�]. Finally by Theorem 2.3.1 it is evident that ^�^ [F _G] � _�

is a theorem of T

�

. The other cases yield to a similar argument.

2.5.2 Lemma. A w�

o

is a theorem of T

�

only if there is a proof �gure for a sequent

equivalent to it.

Proof. For this it is enough to show that the property

�! S has an LKH� proof �gure

is an abstract derivability property of �nite sets, S, of w�s

o

*. But this is easily veri-

�ed. ADP1-3, 5, 7 and 10 are immediate from the inference �gure schemata. Consider,

for instance, ADP10. From a proof �gure for �! S

1

;�P; P C;S

2

we obtain one for

�! S

1

;�P;S

2

by adjoining below the end sequent of the proof �gure for the �rst sequent

the inference �gures ��IS and Contraction.

For ADP6, 8, and 9, we use Lemma 2.4.3. For instance, consider ADP9. If the

sequent �! S

1

;�P y;S

2

has a proof �gure, we see that P y �! S

1

;S

2

has one too.

Further, y does not occur free in the other w�s of the second sequent if such is the case for

the �rst sequent. But then, by a use of the inference �gures ��IA and ��IS we obtain a

proof �gure for the sequent �! S

1

;��P;S

2

.

Finally, one half of ADP4 follows directly. The other half follows from Lemma 2.4.3.

2.5.3 Corollary. Let � be nonempty sequence of w�s

o

. Then there is a proof �gure for

� �! � if and only if � `

T

� _�.

Section 6: Discussion

There has been a certain amount of interest in automating the construction of proofs in a

higher-order logic such as T

�

, based on the observation [38] that it is \higher-order logic,

and not �rst-order logic, which is the natural technical framework for the `mechanization of

mathematics'." Investigations in this regard have revealed that a higher-order logic of this

sort possesses several proof-theoretic properties akin to a �rst-order logic that are necessary

for its automation. For instance, [26] shows that there is a generalisation to Herbrand's

Theorem | the basis for automating �rst-order logics | that holds for the logical system

T . Higher-order resolution [1] and uni�cation [22] have also been developed, and based on

these principles several theorem-provers (see [21], [4], and the other references in [4]) for

higher-order logics have been built. These systems have been able to generate proofs for

some theorems of mathematics that appear to be beyond the realm of existing �rst-order

* When we treat a �nite set of w�s as a sequence, we mean actually an arbitrary listing

of the members of the set.

27

2.6: Discussion

theorem-provers; [4], for instance, describes a system that is able to produce a proof for

Cantor's Theorem for sets.

Although much success has been encountered in extending theorem-proving tech-

niques for �rst-order logics to a higher-order logic, there is one problem that makes it

di�cult to describe a system that is complete and at the same time \tractable" for a

higher-order logic. This problem is raised by the fact that predicate variables may occur

extensionally in formulas in such a logic. The traditional method for constructing a proof

of a formula in a logic that involves quanti�cation may, in a general sense, be thought to

consist of substituting expressions for existentially quanti�ed variables and then verifying

that the resulting formula is a tautology. The nature of a �rst-order logic is such that

the propositional structure remains invariant under substitutions. As a result, the search

for a proof can be based on the propositional structure of the formula, and the role of

the substitution (or, more appropriately, uni�cation) process may be reduced to that of a

constraint on the search*. However, the situation is di�erent in a logic where predicate

variables can occur extensionally. As we observed in Example 2.2.6, applying a substitution

to a formula which contains such variables may very well change the propositional struc-

ture of the formula. In such cases, the construction of a proof often involves �nding the

\right" way in which to change the propositional structure. Although some work has been

done that gives an indication of useful techniques in this task (e.g. in [7]), no good method

that is also complete has yet been described for determining these kinds of substitutions.

The existing theorem-provers for a higher-order logic either sacri�ce completeness or are

fairly intractable for this reason; the one in [4], for instance, does not perform a search for

such substitutions, and the theorem-prover of [21] performs an exhaustive and undirected

search.

While the issue of describing general methods for �nding substitutions for predicate

variables in a higher-order logic is an important one, we shall consider this problem for

only a restricted class of w�s

o

of T

�

in this thesis. For this class, we shall observe that a

complete proof procedure can be described that �nds substitutions for predicate variables

almost entirely through the process of uni�cation. Part of the motivation for studying this

class of w�s is due to the fact that it provides us with a basis for generalising the paradigm

of logic programming in the manner we desire: It enables us to introduce predicate and

function variables into (�rst-order) de�nite clauses, and to describe a richer domain of

terms from which these variables may take values. We now turn to a description of this

class of w�s and to a study of its properties.

* The appropriateness of this description of the process comes out most clearly if one

considers, for example, the method for �nding proofs that is described in [3].

28

Chapter 3

A Class of Higher-Order Formulas

Our objective in this chapter is to provide a basis for higher-order notions within the

context of logic programming. In this enterprise, we use T

�

to describe a generalisation of

the programming paradigm of �rst-order logic. In the �rst section of this chapter we identify

w�s of T

�

that we call higher-order de�nite sentences and goal formulas. These formulas

are intended to provide higher-order analogues to the �rst-order notions of program and

query, and we describe the manner in which they generalise these notions. In Section

3.2 we study the nature of LKH� proof �gures for sequents whose antecedents consist of

de�nite sentences and whose consequents contain only goal formulas. We show here the

existence of a normal form for proof �gures for such sequents. From this analysis, we distill

a simpli�ed sequent calculus that we use in studying the properties of de�nite sentences.

In Section 3.3 we return to a consideration of the computational paradigm described in

the �rst section of this chapter. The work here is devoted to showing that our de�nite

sentences possess properties that make this a satisfactory paradigm; brie
y, the notion of

a proof in T

�

does indeed provide a clear sense for an \answer" to a (higher-order) query,

in a manner quite similar to the case with �rst-order de�nite clauses. The discussion in

this section also provides an insight into the structure of a search for such answers. A

satisfactory description of such a search, however, requires an elucidation of the problem

of uni�cation of w�s in T

�

and in Section 3.4 we digress brie
y to consider this problem.

We then describe the notion of a P-derivation that is intended to be a syntactic object

encoding the proof of a query from a program P. An interpreter for a logic programming

language that is based on our notions of higher-order de�nite sentences and goal formulas

may, in the abstract, be described as a mechanism that actually constructs P-derivations.

We take up the description of such a language and the practical considerations in the design

of an interpreter for this language in the next chapter.

Section 1: Higher-Order De�nite Sentences

In this section we identify the w�s

o

of T

�

that we call higher-order de�nite sentences and

goal formulas. Intrinsic to the de�nition of these w�s, is the notion of a positive formula.

These formulas are so named because they are exactly those w�s of T

�

in which the negation

symbol does not appear.

3.1.1. De�nition. PF , the class of positive formulas, is the smallest collection of w�s

of T

�

that satis�es the following properties:

(i) Each variable and each constant except � is in PF , and

(ii) If F , G and H are in PF then so are �x:F and [GH].

29

3.1: Higher-Order De�nite Sentences

Implicit in our de�nition is the fact that each positive formula has a type associated

with it. Furthermore, we expect in (ii) that if the type of H is � then the type of G is

�! �.

3.1.2. De�nition. H

+

, the Positive Herbrand Universe, is the collection of all �-normal

formulas in PF . The Herbrand Base, HB, is the collection of all closed w�s in H

+

.

H

+

is evidently a \canonical" representation of PF . As will become apparent, HB

in our context plays the same role as the Herbrand Universe does in the context of other

discussions of logic programming: it is the domain of terms that is used in describing the

results of computations.

3.1.3. De�nition. A goal formula is a formula of type o in H

+

. A positive atom is an

atomic goal formula. A rigid positive atom is a positive atom that has a parameter as its

head.

A positive atom is thus either > or a formula of the form [AF

1

: : : F

n

] where A is a

parameter or a variable of type �

1

! : : :! �

n

! o and, for each 1 � i � n, F

i

is a positive

�-normal formula of type �

i

; it is a rigid positive atom just in case A is also a parameter. It

is easily veri�ed that goal formulas have the following inductive characterisation: a positive

atom is a goal formula, A _ B and A ^ B are goal formulas if A and B are, and �P is a

goal formula if P 2 H

+

has type � ! o and � has type (� ! o) ! o; in the last case we

observe that �norm(P C) is a goal formula for any C 2 H

+

of type �.

We now use the notions of a goal formula and a rigid positive atom to de�ne the

notion of a higher-order de�nite sentence.

3.1.4. De�nition. Let G be an arbitrary goal formula and A be any rigid positive atom.

Let �x be an arbitrary listing of all the variables free in either G or A. Then the formula

8�x:G � A is a (higher-order) de�nite sentence.

The de�nite sentences de�ned above are a generalisation of the �rst-order de�nite

clauses. It is of some interest, at this point, to observe the nature of the generalisation.

Our de�nite sentences are formulas of the form

8x

1

: : : : 8x

n

:G � A

where G is a goal formula, A is a rigid positive atom and the variables that are free in either

G or A are included in the list x

1

; : : : ; x

n

. First-order de�nite clauses are contained in our

de�nite sentences under an implicit encoding. The encoding essentially assigns types to the

�rst-order terms and predicates. Speci�cally, let i be a particular sort. Then the encoding

assigns the type i to variables and constants, the type i ! � � � ! i ! i, with n+ 1 occur-

rences of i, to each n-ary function symbol, and the type i! � � � ! i! o, with n occurrences

of i, to each n-ary predicate symbol. Looked at di�erently, our de�nite sentences contain

30

3.1: Higher-Order De�nite Sentences

within them a many-sorted version of �rst-order de�nite clauses. Indeed they contain, in

this sense, a larger class of �rst-order formulas than the (�rst-order) de�nite clauses since

a goal formula, i.e. the formula on the left of the � symbol in our de�nite sentences, may

contain nested disjunctions and existential quanti�cations. This generalisation is inconse-

quential in the �rst-order case since we are primarily interested in the logical properties of

sets of de�nite clauses and a �rst-order formula of the above sort can be rendered into a set

of �rst-order de�nite clauses that is logically equivalent to it. In the higher-order context it

is more natural to retain the embedded disjunctions and existential quanti�cations because

the substitutions that need to be considered in the course of constructing proofs have the

potential for reintroducing them. Our de�nite sentences do embody a genuine generalisa-

tion to �rst-order de�nite clauses, though, since they may contain complex terms that are

constructed by the use of abstractions and applications. Furthermore, these sentences may

also include quanti�cations over variables that correspond to functions and predicates.

In the rest of this chapter we shall examine the properties of de�nite sentences and

closed goal formulas that make them a suitable basis for describing a notion of computation.

To preview the main results of this chapter let us introduce the following de�nition.

3.1.5. De�nition. A substitution ' is a positive substitution if its range is contained

in H

+

. It is a closed positive substitution if its range is contained in HB.

Now let P be a �nite collection of de�nite sentences, and let G be a goal formula all

of whose free variables are contained in the listing x

1

; : : : ; x

n

. We shall see, then, that

P `

T

� 9x

1

: : : : 9x

n

:G just in case there is a closed positive substitution ' for x

1

; : : : ; x

n

such

that P `

T

� '(G). This observation shall also facilitate the description of a simple proof

procedure that may be used to extract substitutions such as '. One of the consequences

of these observations is that our de�nite sentences and goal formulas provide the basis for

a generalisation to the programming paradigm of �rst-order logic: In the abstract, a set of

de�nite sentences may be thought of as a description of relations that hold between w�s in

the Herbrand Base; concreteness to the nature of this description is provided through the

notion of a proof in T

�

. In this context, a goal formula constitutes a request to evaluate

some of these relations.

It might be useful, at this point, to consider a few examples that illustrate the \higher-

order" nature of our de�nite sentences and shed some light on the nature of the program-

ming paradigm discussed above.

3.1.6. Example. Let nil and cons be parameters of type list int and int! (list int)!

(list int) respectively, and let mapfun be a parameter of type (int ! int) ! (list int) !

(list int)! o. Then, the following list of de�nite sentences constitute a \program."

8f.[> � [mapfun f nil nil]] ,

8f.8x.8l1.8l2.[[mapfun f l1 l2] �

31

3.1: Higher-Order De�nite Sentences

[mapfun f [cons x l1] [cons [f x] l2]]].

If F, L1, and L2 are w�s in HB of types int! int, list int and list int, respectively, then we

see that mapfun F L1 L2 is provable in T

�

from the above de�nite sentences only if L2 is

the \list" that results from the application of F to each element of the list L1. Thus, these

sentences may intuitively be thought of as specifying the tuples hF,L1,L2i that satisfy this

property.

Let g be a parameter of type int! int! int. Then the following goal formula is a

\query"

9l.[mapfun �x.[g x 1] [cons 1 [cons 2 nil]] l].

An \answer" to this query is the substitution fhl,[cons [g 1 1] [cons [g 1 2] nil]]ig.

Another example of a query is

9f.[mapfun f

[cons 1 [cons 2 nil]]

[cons [g 1 1] [cons [g 1 2] nil]]].

An answer to this query requires \computing" the substitution fhf,�x.[g x 1]ig.

3.1.7. Example. Let primrel be a parameter of type (i ! i ! o) ! o. Then consider

the following de�nite sentences where rel, wife, mother, jane, and mary are parameters

of appropriate types.

> � [primrel mother],

> � [primrel wife],

8r.[[primrel r] � [rel r]],

8r.8s.[[primrel r ^ primrel s] �

[rel �x.�y.9z.[[r x z] ^ [s z y]]]],

> � [mother jane mary],

> � [wife john jane].

If we assume that i is the type of individuals, then the �rst two sentences identify \prim-

itive" relations between individuals, and the next two sentences specify other relations

that are a result of \joining" primitive relations. The last two sentences specify particular

relations that hold between (the individuals denoted by) jane, mary and john. The query

9r.[[rel r] ^ [r john mary]]

asks for a relation (in the sense of rel) between john and mary. An answer to this query is

the substitution fhr,�x.�y.9z.[[wife x z] ^ [mother z y]]ig; intuitively, that mary

is related to john by being his mother-in-law.

The second example illustrates the use of a predicate variable in a query. We note

that when the substitution considered for this variable is applied to the matrix of the query,

32

3.2: A Simpli�ed Sequent System for De�nite Sentences

it produces a formula that has new logical connectives in it. However, since the range of

the substitution is contained in HB, the resulting formula is still a goal formula. Moreover,

this is the only substitution for r which, when applied to [rel r] ^ [r john mary],

produces a w� that is provable from the given set of de�nite sentences. Consider, however,

the query

9r.[r john mary].

Now there are several substitutions for r whose range is not in HB which may be applied

to r john mary to yield a w� that is provable from the de�nite sentences in Example 3.1.7;

for instance, each substitution of the form

fhr,�x:�y:[�[P xy] _ [P xy]]ig,

where P is any predicate of two arguments, serves this purpose. However, we shall see

in the next section that each of these substitutions can be \transformed" into a simpler

substitution whose range is in HB and which also serves the purpose; for instance, each

of the substitutions considered above can be transformed into the ones fhr,�x:�y:[> _

[P xy]]ig.

Section 2: A Simpli�ed Sequent System for De�nite Sentences

Our objective in this section is to show the result alluded to at the end of the last

section, namely that it is su�cient to consider only positive substitutions in constructing a

proof for a goal formula from a set of de�nite sentences. Our demonstration of this fact is

based on an analysis of LKH� proof �gures for sequents containing only these formulas. In

conjunction with this fact we shall also see the existence of a \normal form" for proof �gures

for such sequents, in that we need to consider proof �gures in which only certain restricted

kinds of LKH� inference �gures appear. From this observation we shall extract a simpler

sequent calculus that is complete for such sequents, and that is especially convenient for

the study of the properties of de�nite sentences that we undertake in the remainder of this

chapter.

Before we begin our analysis of LKH� proof �gures for sequents containing de�nite

sentences and goal formulas, we note that we shall �nd it necessary to deal with an unab-

breviated representation of de�nite sentences. This representation may be made clear as

follows.

3.2.1. De�nition. The class of (higher-order) de�nite clauses* is the subcollection of

w�s

o

that is speci�ed inductively by the following rules

* The quali�cation \higher-order" is intended to distinguish the formulas introduced by

the above de�nition from the �rst-order formulas of the same name. In the remainder

of our discussions we omit this quali�cation if, by so doing, no confusion should arise.

33

3.2: A Simpli�ed Sequent System for De�nite Sentences

(i) �G_A is a de�nite clause if G is a goal formula and A is a rigid positive atom, and

(ii) ���x:�D is a de�nite clause if D is a de�nite clause; here � has type (�! o)! o

if x has type �.

It is apparent, then, that a de�nite sentence is a closed de�nite clause.

LKH� Proof Figures for De�nite Sentences. We are interested in considering

proof �gures for sequents in which the antecedent is a sequence of de�nite sentences and

the succedent is a sequence of closed goal formulas. Let us identify the following inference

�gure schemata

�

1

; �([�x:P]C);�

2

�! �

all� IA

+

�

1

;���x:�P;�

2

�! �

� �! �

1

; �(P C);�

2

��IS

+

� �! �

1

;�P;�

2

in which we expect only w�s from HB to be substituted for C. These are evidently subcases

of the schemata all� IA and ��IS, respectively. The main result of this section establishes

that if any LKH� proof �gure exists for a sequent of the kind we are interested in, then

there is a proof �gure for the same sequent in which all occurrences of the inference �gures

all� IA and ��IS are also occurrences of the �gures all� IA

+

and ��IS

+

respectively.

This observation has the consequence that several inference �gure schemata may be removed

from the calculus LKH� while preserving the \completeness" of the calculus for the kinds

of sequents that we are interested in.

Our proof of the result outlined above is obtained by e�ecting a transformation on the

LKH� proof �gures of the form described in Lemma 2.4.4. The main idea underlying this

transformation is as follows. Let us assume that a given proof �gure contains an inference

�gure obtained from the schema ��IS or all� IA by substituting a w� for C in which the

constant � appears. Then, we shall see that no essential role is played by the symbol � in

the proof �gure that cannot also be played by the w� �z:>. Consequently, we may replace

each occurrence of this symbol in the w� substituted for C by �z:>, thereby obtaining a

positive formula. This is the purpose of the function pos of De�nition 3.2.4. We de�ne this

process of replacement precisely below, and show that it \produces" an alternative proof

�gure for the same end sequent.

In describing the transformation and in showing its correctness, we �nd it useful to

identify the following class of w�s

o

that contains the class of de�nite clauses.

34

3.2: A Simpli�ed Sequent System for De�nite Sentences

3.2.2. De�nition. A w�

o

is an implicational formula just in case it has one of the

following forms

(i) �F _A where F and A are �-normal formulas and in addition A is a rigid atom.

(ii) ���x:�F where F is itself an implicational formula.

3.2.3 Lemma. Let F be an implicational formula and let D be a de�nite clause. Further,

if x is a variable

�

, let C be a w�

�

and C

0

be a positive formula of type �. Then

(i) �(F) is an implicational formula and �(D) is a de�nite clause.

(ii) �norm([�x:F]C) is an implicational formula and �norm([�x:D]C

0

) is a de�nite

clause.

Proof. (i) Implicational formulas and de�nite clauses are, by virtue of their de�nitions,

�-normal formulas. Hence �(F) � F and �(D) � D. The claim then follows from the fact

that an �-conversion preserves the structure of a w�.

(ii) Let A be a w�, y be a variable

�

and B be a w�

�

. The following are then easily seen

to be true: If A is a rigid atom then so are S

y

B

A and �norm(A). If A and B are positive

formulas, then so are S

y

B

A and �norm(A).

We observe, now, that there must be a de�nite clause D

0

such that D � D

0

, the bound

variables of D

0

are distinct from x and C is free for x inD

0

. To show that �norm([�x:D]C

0

)

is a de�nite clause, it is, then, su�cient to show that �norm(S

x

C

0

D

0

) is. But this follows

by an induction on the structure of D

0

: If D

0

is �G _ A then �norm(S

x

C

0

D

0

) is of the

form �G

1

_ A

1

where G

1

is �norm(S

x

C

0

G) and A

1

is �norm(S

x

C

0

A). By our previous

observations, G

1

is a goal formula and A

1

is a rigid positive atom, and so �G

1

_ A

1

is

a de�nite clause. If D

0

is ���y:�D

1

then �norm(S

x

C

0

D

0

) � ���y:�D

2

where D

2

is

�norm(S

x

C

0

D

1

). The claim in this case is now evident from the hypothesis.

An identical argument shows that �norm([�x:F]C) is an implicational formula.

We de�ne a function below whose purpose is to map w�s onto positive formulas.

3.2.4. De�nition. Let z 2 Var

o

be a designated variable. The function pos on w�s is

then de�ned by recursion as follows:

(i) F is a constant or a variable. If F is � then pos(F) = �z:>, otherwise pos(F) = F .

(ii) F is �x:F

1

. Then pos(F) = �x:pos(F

1

).

(iii) F is [F

1

F

2

]. Then pos(F) = [pos(F

1

) pos(F

2

)].

It is easily veri�ed that pos maps each w� onto a positive formula of the same type.

The following lemma states additional properties of pos that we shall �nd useful.

35

3.2: A Simpli�ed Sequent System for De�nite Sentences

3.2.5 Lemma. Let F be a w�, let x be a variable

�

and let B be a w�

�

. Then

(i) F(F) = F(pos(F)).

(ii) If B is free for x in F , then B is free for x in pos(F).

(iii) pos(S

x

B

F) = S

x

pos(B)

pos(F).

Proof. We verify these claims by an induction on the structure of F :

(a) F is a constant or a variable. Consider �rst the case when F is not �. In this case

pos(F) = F and (i) and (ii) are obvious. For (iii) we have two subcases. If F is x then

S

x

pos(B)

F = pos(B) = pos(S

x

B

F).

Otherwise F is not x. But then

S

x

pos(B)

F = F = S

x

B

F .

Using the fact that pos(F) = F , it follows easily in either of these subcases that

pos(S

x

B

F) = S

x

pos(B)

F = S

x

pos(B)

pos(F).

To complete the argument we need to consider the case when F is �. In this case

pos(F) = �z:> and so

F(F) = F(pos(F)) = ;.

Now (i) follows immediately, and (ii) and (iii) follow by observing further that x is free

neither in F nor in pos(F).

(b)F is �y:G. Now pos(F) = �y:pos(G). But by the hypothesis F(G) = F(pos(G)) and

so (i) follows. Similarly (ii) is also clear. For (iii), if x = y then

pos(S

x

B

F) = pos(F) = S

x

pos(B)

pos(F).

Otherwise x 6= y. In this case

pos(S

x

B

F) = �y:pos(S

x

B

G) by de�nitions

= �y:S

x

pos(B)

pos(G) by the hypothesis

= S

y

pos(B)

�y:G by de�nitions.

(c) F is [GH]. Now pos(F) = [pos(G) pos(H)] and (i) and (ii) follow by the hypothesis.

Using de�nitions, we see that

pos(S

x

B

F) = [pos(S

x

B

G) pos(S

x

B

H)],

and also that

S

x

pos(B)

pos(F) = [S

x

pos(B)

pos(G)S

x

pos(B)

pos(H)].

(iii) now follows from the hypothesis.

We now use pos to determine a mapping from w�s to H

+

. We need this mapping in

order to describe the transformation of proof �gures in Theorem 3.2.14.

3.2.6. De�nition. Let F be a w�. Then pc(F) = �(pos(F)); the w� pc(F) is the positive

correspondent of F .

36

3.2: A Simpli�ed Sequent System for De�nite Sentences

It is clear that F(pc(F)) � F(F). Hence, if F is a closed w�, then pc(F) 2 HB. The

following property of pc is also obvious.

3.2.7 Lemma. Let F be a �-normal formula of type o.

(i) If F is an atom, then pc(F) is a positive atom.

(ii) If F is �F

1

, then pc(F) = >.

(iii) If F is G �H where � is either _ or ^, then pc(F) = pc(G) � pc(H).

(iv) If F is �P , then pc(F) = � pc(P)

Our purpose now is to show that pc and � commute as operations on w�s.

3.2.8 Lemma. For any w� F , pc(�(F)) = �(pc(F)).

Proof. Let us say that F

0

results directly from F by an application of a rule of �-

conversion if the subformula of F which is replaced by virtue of one of these rules is F

itself. The following observations that follow readily from Lemma 3.2.5 show that if F

0

results directly from F in such a manner, then pos(F

0

) also results directly from pos(F) in

a similar manner.

(a) If F is �x:G and F

0

is �y:S

x

y

G then pos(F) is �x:pos(G) and pos(F

0

) is �y:S

x

y

pos(G).

Further if y is free for x in G then y is free for x in pos(G).

(b) If F is [�x:G]H and F

0

is S

x

H

G then pos(F) is [[�x:pos(G)] pos(H)] and pos(F

0

) is

S

x

pos(H)

pos(G). Further if H is free for x in G then pos(H) is free for x in pos(G).

(c) If F is of type �! � then pos(F) is also of type �! �. If F

0

is �y:[F y] then pos(F

0

)

is �y:[pos(F) y]. Further y 2 F(F) if y 2 F(pos(F)).

An induction on the structure of F now shows that if F

0

results from F by an appli-

cation of a rule of �-conversion, then pos(F

0

) results from pos(F) by a similar rule: If F

is a constant or a variable this is immediate, since F

0

must result directly from F . Now

suppose F is of the form �y:G and F

0

does not result directly from F . Then F

0

is of the

form �y:G

0

where G

0

is obtained from G by a rule of �-conversion. By the hypothesis,

therefore, pos(G

0

) results from pos(G) by a rule of �-conversion. Now pos(F) = �y:pos(G)

and pos(F

0

) = �y:pos(G

0

), and hence pos(F

0

) must also result from pos(F) by a rule of

�-conversion. A similar argument is used for the case when F is [F

1

F

2

].

From the above arguments it is evident that pos(�(F)) results from pos(F) by the

application of the rules of �-conversion. Hence,

�(pos(F)) = �(pos(�(F))).

Noting further that �(pos(F)) = �(�(pos(F))), the lemma follows.

The lemma has the following corollary that we need for the proof of the main theorem

of this section.

37

3.2: A Simpli�ed Sequent System for De�nite Sentences

3.2.9 Corollary. If P and C are w�s of appropriate types, then

pc(�([P C])) = �([pc(P) pc(C)]).

Proof. The claim is evident from the following equalities:

pc(�([P C])) = �(pc([P C])) by Lemma 3.2.8

= �([pos(P) pos(C)]) using de�nitions

= �([�(pos(P)) �(pos(C))]) by properties of �-conversion

= �([pc(P) pc(C)]) using de�nitions.

We now de�ne a function on implicational formulas whose purpose is to transform

these formulas into de�nite clauses.

3.2.10. De�nition. The function pos

I

on implicational formulas is de�ned as follows

(i) If F is �F

1

_A then pos

I

(F) = �pos(F

1

) _ pos(A).

(ii) If F is ���x:�F

1

then pos

I

(F) = ���x:�pos

I

(F

1

)

Further, if F is an implicational formula then pc

I

(F) = �(pos

I

(F)).

It is clear that if F is a de�nite clause then pos

I

(F) = F . The following lemma states

additional properties of pc

I

that we need in the proof of Theorem 3.2.14.

3.2.11 Lemma. Let F be an implicational formula, let x be a variable

�

, and let C be

a w�

�

. Then

(i) pc

I

(F) is a de�nite clause.

(ii) pc

I

(�([�x:F]C)) = �([�x:pc

I

(F)] pc(C)).

Proof. (i) follows from an induction on the structure of F : If F is �F

1

_A then pc

I

(F) =

��(pos(F

1

))_�(pos(A)) and the w� on the right-hand side is apparently a de�nite clause.

If F is ���x:�F

1

then pc

I

(F) � ���x:��(pos

I

(F

1

)) and the claim now follows from the

hypothesis.

(ii) We �rst note that by Lemma 3.2.3 �norm([�x:F]C) is an implicational formula if F is

one. Hence pos

I

is de�ned on this w� and, consequently, the left-hand side of the equality

is de�ned.

We now claim that pos

I

(�norm([�x:F]C)) �-conv [�x:pos

I

(F)] pos(C). Given the

claim, it is clear that �(pos

I

(�([�x:F]C))) = �([�x:pos

I

(F)] pos(C). The lemma now follows

from the observation that �([�x:A]B) = �([�x:�(A)] �(B)).

It is easily seen that for any implicational formula F

1

, if F

1

� F

2

then pos

I

(F

1

) �

pos

I

(F

2

). Thus, in showing the claim, we may assume that the bound variables of F are

distinct from x and from the free variables of C. We then use an induction on the structure

of F :

38

3.2: A Simpli�ed Sequent System for De�nite Sentences

(a) F is of the form �F

1

_A. In this case

�norm([�x:F]C) � ��norm(S

x

C

F

1

) _ �norm(S

x

C

A).

We have seen (in the proof of Lemma 3.2.8) that if A �-conv B then pos(A) �-conv pos(B).

Using the de�nition of pos

I

and Lemma 3.2.5 it follows therefore that �S

x

pos(C)

pos(F

1

) _

S

x

pos(C)

pos(A) results from pos

I

(��norm(S

x

C

F

1

)_�norm(S

x

C

A)) by �-conversions. From

this it is evident that the claim holds in this case.

(b)F is of the form ���y:�F

0

. But then it is clear that

�norm([�x:F]C) � ���y:��norm([�x:F

0

]C)

and, therefore, that

pos

I

(�norm([�x:F]C)) � pos

I

(���y:��norm([�x:F

0

]C)).

Now from the hypothesis of the induction we know that [�x:pos

I

(F

0

)]pos(C) results

from pos

I

(�norm([�x:F

0

]C)) by a sequence of �-conversions. Using the de�nition of

pos

I

pos

I

(�norm([�x:F]C)) �-conv ���y:�[�x:pos

I

(F

0

)] pos(C)

Finally, the claim is evident from the observations that x 6= y and F(C) = F(pos(C).

3.2.12. De�nition. We extend pc

I

to the class of all w�s

o

. Speci�cally, let F be a w�

o

.

Then

pc

O

(F) =

�

pc

I

(F); if F is an implicational formula;

pc(F); otherwise.

The main purpose of the mappings de�ned above is to enable us, in the proof of

Theorem 3.2.14, to replace sequents by what might be thought of as their positive correlates.

This transformation on sequents is now de�ned.

3.2.13. De�nition. The mapping pc

S

on sequents is de�ned as follows: pc

S

(� �! �)

is the sequent that results by replacing each w�

o

F in � by pc

O

(F) and each w�

o

G in �

by pc(G).

3.2.14 Theorem. Let � be a sequence of w�s

o

that are either de�nite sentences or

closed positive atoms. Let � be a sequence of closed goal formulas. Further, let each F

in � or � be in principal normal form. Then the sequent � �! � has an LKH� proof

�gure only if it has an LKH� proof �gure in which

(i) the only inference �gures that appear are Contraction, _�IS, ^�IS, ��IS, imply� IA

and all� IA, and

(ii) each occurrence of the �gure all� IA or ��IS is also an occurrence of the �gure

all� IA

+

or ��IS

+

respectively.

39

3.2: A Simpli�ed Sequent System for De�nite Sentences

Proof. Let us assume that � �! � has an LKH� proof �gure. By Lemma 2.4.4 we

see that it has a proof �gure in which (i) the principal formula for a _�IA inference �gure

is not of the form �F _ G, (ii) the principal formula for a ��IA inference �gure is not

of the form ���x:�P , and (iii) the inference �gure � does not appear. We may further

assume that it has a proof �gure of the above kind in which each occurrence of the �gures

all� IA and ��IS are obtained from the respective schemata by substituting a closed w�

for C; if a variable

�

y appears free in the w� substituted for C, then we replace each free

occurrence of y in it and in the sequents in the proof �gure by a parameter

�

that does not

already appear in the proof �gure; it is easy to see that the result is still a proof �gure of

the same kind, and that its end sequent is still � �! �.

Let T be a proof �gure for � �! � that satis�es these properties. We show below

that T can be transformed into a proof �gure satisfying the requirements of the theorem.

We �rst consider all those paths in T that contain no sequent which is also the upper

sequent of a ��IS inference �gure. We call any sequent that appears on such a path an

essential sequent of T. We claim that every w� in the antecedent of an essential sequent is

either a rigid atom or an implicational formula. From this it also follows that each essential

sequent, except the root sequent, is the upper sequent of one of the �gures Contraction,

_�IS, ^�IS, ��IS, imply� IA or all� IA.

The claim is shown by an induction on the distance of the essential sequent from the

root sequent. If this distance is 0, the claim is obviously true. Let us then assume that the

claim is true if the distance is d, and verify it for distance d + 1. By the assumption, we

need to consider only those inference �gures in which there is a w� in the antecedent of

an upper sequent that is not in the antecedent of the lower sequent; i.e. the �gures _�IA,

^�IA, ��IS, imply� IA, and all� IA. Since we are considering only essential sequents,

the �gure is clearly not ��IS. By the hypothesis, the �gure is not _�IA or ^�IA either.

If the �gure in question is imply� IA, i.e.

�

1

;�

2

�! �

1

; F;�

2

�

1

; G;�

2

�! �

1

;�

2

�

1

;�F _G;�

2

�! �

1

;�

2

we see that the principal formula must be an implicational formula. But then, G is a rigid

atom and so the claim holds. If the �gure in question is all� IA, i.e.

�

1

; �([�x:P]C);�

2

�! �

�

1

;���x:�P;�

2

�! �

we see once again that the principal formula is an implicational formula, and the claim now

follows from Lemma 3.2.3.

Now let e(T) be the structure that results from removing all those sequents that

40

3.2: A Simpli�ed Sequent System for De�nite Sentences

are not essential sequents from T, and let pe(T) be the result of replacing each sequent

� �! � in e(T) by pc

S

(� �! �). We claim that pe(T) is a proof �gure for the same

sequent that T is. Since the end sequent of T has only positive formulas F that are in

principal normal form, and since each implicational formula in the antecedent is a de�nite

clause, it is clear that if pe(T) is a proof �gure, then it is a proof �gure for the same

sequent as T is. To see that pe(T) is a proof �gure we �rst note that e(T) is obviously

a \tree-like" arrangement of sequents and hence pe(T) is too. Further, the leaf sequents

of e(T) are of the form �

1

; A;�

2

�! �

1

; A;�

2

where A is a rigid atom or of the form

� �! �

1

;�F;�

2

. By Lemma 3.2.7, therefore, the leaf sequents of pe(T) are evidently

initial sequents. Thus, it only remains to be veri�ed that each pair of upper sequents and

lower sequent in pe(T) are actually instances of the inference �gure schemata.

To show this, we consider each of the possible cases in e(T) and check the correspond-

ing pairs in pe(T). The case for Contraction is evident. The cases for _�IS and ^�IS follow

directly from Lemma 3.2.7. The case for imply� IA follows from that observation that the

principal formula is an implicational formula of the form �F _ A and for such a formula

pc

I

(�F _A) = �pc(F) _ pc(A). If the inference �gure in e(T) is ��IS, i.e. of the form

� �! �

1

; �(P C);�

2

� �! �

1

;�P;�

2

then the claim follows from Lemma 3.2.7 and Corollary 3.2.9; pc(�P) = � pc(P) and

pc(�(P C)) = �(pc(P) pc(C)). Note, moreover, that since C is a closed w�, pc(C) 2 HB

and so the corresponding �gure in pe(T) is actually an instance of ��IS

+

. Finally, if the

inference �gure in e(T) is all� IA, i.e. of the form

�

1

; �([�x:P]C);�

2

�! �

�

1

;���x:�P;�

2

�! �

the claim follows from the Lemma 3.2.11: Obviously ���x:�P is an implicational formula

and so pc

I

(�([�x:P]C)) = �([�x:pc

I

(F)] pc(C)). Moreover, since C is a closed w�, pc(C) 2

HB and, hence, the corresponding �gure in pe(T) is actually an instance of all� IA

+

.

Thus, pe(T) is a proof �gure for the same end sequent. Further, as is evident from

the above argument, it is a proof �gure of the kind claimed in the theorem.

3.2.15. Example. We illustrate the transformation described in the above theorem by

considering a simple example. Let P , A, and Q be parameters of suitable types. Consider

then the following arrangement of sequents that constitute a proof �gure for the sequent

���x:�[�x _ [P A]] �! [P A]:

41

3.2: A Simpli�ed Sequent System for De�nite Sentences

Q �! [P A]; Q

��IS

�! [P A];�Q;Q

_�IS

�! [P A];�Q _Q [P A] �! [P A]

imply� IA

�[�Q _Q] _ [P A] �! [P A]

all� IA

���x:�[�x _ [P A]] �! [P A]

Using the methods described in the above theorem, this proof �gure can be transformed

into the proof �gure shown below, that has the same end sequent.

�! [P A];>; Q

_�IS

�! [P A];> _Q [P A] �! [P A]

imply� IA

�[> _Q] _ [P A] �! [P A]

all� IA

���x:�[�x _ [P A]] �! [P A]

Notice that the w� �Q_Q that is used to \instantiate" x in the �rst proof �gure is replaced

in the second proof �gure by > _Q.

The Sequent Calculus LKHD. The content of Theorem 3.2.14 may be expressed by

the description of a simpli�ed sequent calculus for de�nite sentences. This calculus, which

we call LKHD, is the following. Its initial sequents are obtained from the schemata

�

1

; F;�

2

�! �

1

; F

0

;�

2

� �! �

1

;>;�

2

by replacing F and F

0

by atoms A and A

0

such that A � A

0

; the �s and �s are to be

replaced as usual by �nite sequences of w�s

o

. The inference �gures of LKHD are those

obtained from the schemata in Figure 3.2.1 by a substitution of the kind described in

Section 2.4 with the only exception that C is now to be replaced by a w� from HB.

The discussions in this section are summarised in the following theorem.

3.2.16 Theorem. Let � be a �nite sequence of w�s

o

that are either de�nite sentences

or closed positive atoms, and let � be a �nite sequence of closed goal formulas. Then

� `

T

� _� if and only if � �! � has an LKHD proof �gure.

Proof. (�) Let us assume �rst that each w� F in � and � is such that �(F) = F . By

Corollary 2.5.3 and Theorem 3.2.14 it follows that � �! � has an LKHD proof �gure.

Now let �

0

and �

0

be the result of replacing each w� A in � and � respectively by a w� A

0

such that A � A

0

. One the one hand, it is clear that �

0

`

T

� _�

0

only if � `

T

� _�. On the

other hand, an easy induction on the height of the proof �gure shows that � �! � has

a proof �gure only if �

0

�! �

0

has a proof �gure. Since de�nite clauses, positive atoms

42

3.3: Properties of De�nite Sentences

Contraction in the antecedent

�

1

; F; F;�

2

�! �

�

1

; F;�

2

�! �

Contraction in the succedent

� �! �

1

; F; F;�

2

� �! �

1

; F;�

2

�

1

;�

2

�! �

1

; F;�

2

�

1

; G;�

2

�! �

1

;�

2

� �IA

�

1

; F � G;�

2

�! �

1

;�

2

� �! �

1

; F;G;�

2

^�IS

� �! �

1

; ; F ^G;�

2

� �! �

1

; F;G;�

2

_�IS

� �! �

1

; F _G;�

2

�

1

; �([�x:P]C);�

2

�! �

8�IA

�

1

;8x:P;�

2

�! �

� �! �

1

; �(P C);�

2

��IS

� �! �

1

;�P;�

2

Figure 3.2.1: The LKHD Inference Figure Schemata

and goal formulas are �-normal formulas, we may remove the initial restriction placed on

the form of � and �.

(�) From an LKHD proof �gure we obtain an LKH� proof �gure by perhaps adding

above the initial sequents � inference �gures. The claim now follows from Corollary 2.5.3.

Section 3: Properties of De�nite Sentences

As mentioned already, our de�nite sentences are intended to provide the basis for a

generalisation to the programming paradigm of �rst-order logic. In a manner analogous

to the �rst-order case, we wish to view a �nite collection of our de�nite sentences as a

program. In the context of such a program, we desire to construe a goal formula as playing

43

3.3: Properties of De�nite Sentences

the role of a query. The idea of demonstrating that there is a proof in T

�

for a query from

a program is then intended to provide us with the notion of a computation.

While the nature of such a generalisation to the computational paradigm of �rst-order

logic is clear, it remains to be shown that it does provide us with a satisfactory basis for

programming. Our objective in this section is to demonstrate that our de�nite sentences,

despite the generalisations they provide to �rst-order de�nite clauses, retain the properties

of their �rst-order counterparts that are essential to their construal as programs. In the

�rst part of this section we observe some of the characteristics of proofs of goal formulas

from a set of de�nite sentences. A study of these properties enables us to give substance

to an abstract view of our de�nite sentences as speci�cations and, consequently, to give

credence to the view of goal formulas as queries. It also lays the basis for the description

of a mechanism for evaluating the results of queries that we take up in the next section.

Before embarking upon these discussions, however, we introduce certain notational

conventions that turn out to be convenient. We shall use the symbol P uniformly to denote

an arbitrary, but �nite, set of de�nite sentences. In a similar fashion, we reserve the symbol

G, perhaps with subscripts and superscripts, to denote a goal formula; given that the type

of a goal formula is o, we hope a subscript, when used, will not be confused for a type

symbol. Finally, we shall need the notation that is introduced by the following de�nition.

3.3.1. De�nition. Let D be the de�nite sentence 8�x:G � A. Then jDj denotes the set

of all w�s that can be obtained from G � A by substituting closed positive formulas for

the variables in �x, i.e.

jDj = f'(G � A) j ' is a closed positive substitution for �xg.

This notation is extended to sets of de�nite sentences:

jPj =

S

fjDj j D 2 Pg.

We note that, given this de�nition, jDj is a collection of de�nite sentences, and so

also is jPj.

Proofs from De�nite Sentences. Our objective now is to analyse some of the

properties of proofs of goal formulas from de�nite sentences. The main tool that we shall

use in this enterprise is the sequent calculus LKHD. Consequently, we use the term \proof

�gure" to mean \LKHD proof �gure," except when explicitly quali�ed. With regard to

these proof �gures we observe the following property that we need in the remaining proofs

in this section.

3.3.2 Lemma. If the sequent �

1

;�

2

�! �

1

;�

2

has a proof �gure of height h, then

any sequent of the form �

0

1

;�

1

;�

0

3

;�

2

;�

0

2

�! �

0

1

;�

1

;�

0

3

;�

2

;�

0

2

also has a proof �gure

of height h.

Proof. By an induction on the height of the proof �gure.

44

3.3: Properties of De�nite Sentences

The main aim of the discussions below is to show that there is a proof for a goal

formula from a �nite set of de�nite sentences if and only if there is also a sequence of goal

formulas of a sort to be made precise presently. The property of de�nite sentences that

is critical in showing this fact may be paraphrased in the following statement: There is a

proof in T

�

of a disjunctive goal formula from a �nite set of de�nite sentences only if there

is also a proof for one of the disjuncts from the same set. The proof of this property is

contained in the following lemma.

3.3.3 Lemma. Let � be a sequence of w�s

o

that are either de�nite sentences or closed

positive atoms. � �! G

1

; : : : ; G

n

has a proof �gure of height h only if there is an i,

1 � i � n such that the � �! G

i

has a proof �gure of height � h. Conversely if the

second sequent has an proof �gure of height h then the �rst sequent also has one of height

h.

Proof. (�) We use an induction on the height h of the purported proof �gure for the

�rst sequent to show this part of the claim. If h is 1 then there is a G

i

that is either >

or G

i

� A for some atom A that appears in �. From this, the conclusion is obvious for

this case. If the proof �gure is of height h+1, we consider by cases the inference �gure for

which the end sequent may be the lower sequent. In the cases when the inference �gure is

Contraction, ��IS, and 8�IA the claim follows easily from the hypothesis. If the �gure is

an ^�IS, i.e. of the form

� �! G

1

; : : : ; G

j�1

; G

j

1

; : : : ; G

n

� �! G

1

; : : : ; G

j�1

; G

j

2

; : : : ; G

n

� �! G

1

; : : : ; G

j�1

; G

j

1

^G

j

2

; : : : ; G

n

then, from the hypothesis, we see that there must be a proof �gure of height � h for

the sequent � �! G

i

for some i 6= j or there must be proof �gures of height � h for the

sequents � �! G

j

1

and � �! G

j

2

. In the �rst case the claim is obviously true and, in the

latter case, we use the two proof �gures together with an ^�IS inference �gure to construct

a proof �gure of height � h+1 for the sequent � �! G

j

1

^G

j

2

. A similar argument su�ces

for the case where the inference �gure is an _�IS. If the inference is an � �IA, i.e. of the

form

�

1

;�

2

�! G

1

; : : : ; G

k�1

; G;G

k

; : : : ; G

n

�

1

; A;�

2

�! G

1

; : : : ; G

n

�

1

; G � A;�

2

�! G

1

; : : : ; G

n

then, from the hypothesis, it is clear there is a j such that either �

1

;�

2

�! G

j

has a

proof �gure of height � h or the sequents �

1

; A;�

2

�! G

j

and �

1

;�

2

�! G both have

proof �gures of height � h. In the �rst case the claim is evident from Lemma 3.3.2. In

the second case, from Lemma 3.3.2 we see that �

1

;�

2

�! G

j

; G has a proof �gure of

height � h. We now use this proof �gure together with the one for �

1

; A;�

2

�! G

j

45

3.3: Properties of De�nite Sentences

and an � �IA inference �gure to obtain a proof �gure of height � h + 1 for the sequent

�

1

; G � A;�

2

�! G

j

.

(�) This follows directly from Lemma 3.3.2.

In the discussions that follow we need the notions of a derivation sequence for a goal

formula from a set of de�nite sentences and from a set of closed positive atoms, respectively.

These are special cases of the following de�nition.

3.3.4. De�nition. Let � be a set of w�s

o

that are either closed positive atoms or de�nite

sentences, and let G be a closed goal formula. Then a derivation sequence for G relative to

� is a �nite sequence of closed goal formulas G

1

; : : : ; G

n

such that G is G

n

, and for each i,

1 � i � n,

(i) If G

i

is a closed positive atom, then

(a) G

i

is >, or

(b) for some G

0

2 � it is the case that G

i

� G

0

, or

(c) there is a de�nite clause D 2 � such that G

0

� A 2 jDj, G

i

� A and for some

j < i, G

j

is G

0

.

(ii) If G

i

is G

i

1

_G

i

2

then for some j < i G

j

is either G

i

1

or G

i

2

.

(iii) If G

i

is G

i

1

^G

i

2

then for some j; k < i G

j

is G

i

1

and G

j

is G

i

2

.

(iv) If G

i

is �P then there is a C 2 HB and a j < i such that �norm(P C) is G

j

.

3.3.5 Lemma. Let � be a �nite set of w�s

o

that are either closed positive atoms or

de�nite sentences, and let G be a closed goal formula. Then there is a proof �gure for

� �! G if and only if there is a derivation sequence for G relative to �*.

Proof. (�) We show, by an induction on the height of the proof �gure for the given

sequent, that there must be a derivation sequence for G relative to �. The claim is evident

if the height is 1, since, then, either G is > or there is an atom A in � such that G � A.

Let the proof �gure, therefore, be of height h+1 and we consider, once again by cases, the

inference �gures of which the end sequent may be the lower sequent. The case when this

�gure is Contraction in the antecedent is evident from the hypothesis and the de�nition of

a derivation sequence. For the case when the �gure is Contraction in the succedent we use

Lemma 3.3.3 and the hypothesis. If the �gure is an _�IS, then evidently G is G

1

_G

2

and

the inference �gure under consideration is of the form

� �! G

1

; G

2

� �! G

1

_G

2

* We adopt once again a harmless confusion between �nite sets and sequences.

46

3.3: Properties of De�nite Sentences

From Lemma 3.3.3 it follows that there is a proof �gure of height � h for either � �! G

1

or � �! G

2

. By the hypothesis there is a derivation sequence for either G

1

or G

2

relative

to �. But then, we add G at the end of such a sequence to get one for G. A similar

argument su�ces for ��IS and ^�IS; in the latter case we shall have to �rst append two

derivation sequences. If the �gure is an � �IA then it is of one of the forms

�

1

;�

2

�! G

1

; G �

1

; A;�

2

�! G

�

1

; G

1

� A;�

2

�! G

�

1

;�

2

�! G;G

1

�

1

; A;�

2

�! G

�

1

; G

1

� A;�

2

�! G

where � is �

1

; G

1

� A;�

2

. We note �rst that a derivation sequence relative to �

1

;�

2

is

also a derivation sequence relative to �. Using Lemma 3.3.3 and the hypothesis we see,

therefore, that either there is a derivation sequence forG relative to � or there is a derivation

sequence for G

1

relative to � and a derivation sequence for G relative to �

1

; A;�

2

. In the

�rst case the claim is evident and, in the latter case, we obtain a derivation sequence for

G relative to � by appending the �rst derivation sequence to the second. Finally, consider

the case when the inference �gure is an 8�IA, i.e. of the form

�

1

; �([�x:D]C);�

2

�! G

�

1

;8x:D;�

2

�! G

where � is �

1

;8x:D;�

2

. From the hypothesis, there is a derivation sequence for G relative

to �

1

; �([�x:D]C);�

2

. Now it is evident that if any G

0

� A 2 j�([�x:D]C)j then G

0

� A 2

j8x:Dj. From this it follows that the given derivation sequence for G is also one relative to

�.

(�) We assume the claim for derivation sequences of length < l and we show it for the

case when the length is l. Let G be the last w� in such a sequence. If G is either > or

G � A for some atom A in �, then � �! G is evidently an initial sequent of LKHD. If

G is �P then, by our de�nition, there is a C 2 HB such that there is a derivation sequence

of length < l for �(P C). By the hypothesis there is a proof �gure for � �! �(P C).

But by adjoining a ��IS inference �gure below the end sequent of this proof �gure, we

obtain one for � �! �P . The cases when G is G

1

^G

2

and G

1

_G

2

are similar; in the

latter case we need additionally Lemma 3.3.2. Finally, we have the case when, for some

D 2 �, G

0

� A 2 jDj, G � A and G

0

appears earlier in the sequence. By the hypothesis,

� �! G

0

has a proof �gure. From this proof �gure we obtain one for � �! G by using

the following arrangement of inference �gures: We assume here that � is �

1

;8�x:D;�

2

and

that G

0

� A 2 j8�x:Dj.

47

3.3: Properties of De�nite Sentences

�

1

;8x:D;�

2

�! G

0

�

1

; A;�

2

�! G

� �IA

�

1

; G

0

� A;8x:D;�

2

�! G

sequence of 8�IA

�

1

;8x:D;8x:D;�

2

�! G

Contraction

�

1

;8x:D;�

2

�! G

As a consequence of this lemma we see that, in order to determine whether there

is a proof for a goal formula from a set of de�nite sentences, we may search the space of

derivation sequences. In describing such a search, we shall need the following measure of

\complexity" of a goal formula; this measure is to be used in De�nition 3.4.20.

3.3.6. De�nition. Let G be a closed goal formula. Let k be the length of the shortest

derivation sequence for G relative to P; if no such sequence exists, we assume that k = !.

Then

�

P

(G) =

�

2

k

; if k < !;

!; otherwise.

Our proof of the completeness of P-derivations in the next section depends strongly

on the properties of this measure observed in the following lemma. The proof of this lemma

is obtained easily from Lemma 3.3.5.

3.3.7 Lemma. Let G be a closed goal formula such that P `

T

�G. Then �

P

(G) > 0 and

�

P

(G) < !. Further,

(i) If G is an atom other than > then there is a G

0

� G 2 jPj such that �

P

(G

0

) < �

P

(G).

(ii) If G is G

1

_G

2

then �

P

(G

i

) < �

P

(G) for i = 1 or i = 2.

(iii) If G is G

1

^G

2

then �

P

(G

1

) + �

P

(G

2

) < �

P

(G).

(iv) If G is �P then there is a closed positive formula C such that �

P

(�norm(P C)) <

�

P

(�P).

De�nite Sentences as Programs. Another apparent consequence of Lemma 3.3.5 is

the following theorem.

3.3.8 Theorem. Let G be a closed goal formula. Then the following are true.

(i) If G is G

1

^G

2

then P `

T

�G if and only if P `

T

�G

1

and P `

T

�G

2

.

(ii) If G is G

1

_G

2

then P `

T

�G if and only if P `

T

�G

1

or P `

T

�G

2

.

(iii) If G is �P then P `

T

�G if and only if there is a C 2 HB such that

P `

T

� �norm(P C).

(iv) If G is an atom then P `

T

�G if and only if there is a formula G

1

� G 2 jPj such that

P `

T

�G

1

.

48

3.3: Properties of De�nite Sentences

Let G be a goal formula that has the variables x

1

; : : : ; x

n

free in it. As a consequence

of clause (iii) of the above theorem we see that P `

T

� 9x

1

: : : : 9x

n

:G only if there is a

closed positive substitution ' for x

1

; : : : ; x

n

such that P `

T

� 'G. Thus, we see that de�nite

sentences possess the property necessary to make our notion of the result of a computation

a well-de�ned one. The theorem also shows that de�nite sentences, together with the notion

of a proof in T

�

, provide a paradigm of programming that is based on a non-deterministic

search. In this context, the propositional connectives ^ and _ provide for the speci�cation

of and and non-deterministic or branches in a search. The quanti�er � corresponds to

an in�nite or branch where each branch is parameterised by a closed w� in HB. De�nite

sentences provide the basis for the de�nition of procedures: A de�nite sentence 8�x:G

0

� A

may be thought of as describing how a \goal", the name of which is the head of A, may

be solved. Notice that the head of A must be a parameter and, therefore, such a construal

makes good sense. Given an atomic \goal" G that \uni�es" with A, this procedure may be

invoked and would lead to an attempt to solve G

0

. A precise description of this procedural

nature of de�nite sentences and, consequently, of the nature of the search paradigm, requires

an explication of the notion of uni�cation, and we undertake this task in the next section.

The discussions leading up to Lemma 3.3.5 also enable us to give substance to the

view of a set of de�nite sentences as a speci�cation of relationships between the terms in

HB. The idea is to associate | in a manner that is in some ways similar to that used for

the �rst-order case in, e.g. [5] and [41] | a set of closed positive atoms with each collection

of de�nite sentences. For this purpose, we de�ne an interpretation to be any set of closed

positive atoms; we use the symbol I as a syntactic variable for interpretations. We then use

the notion of a derivation sequence to provide a weak notion of satisfaction corresponding

to interpretations and goal formulas.

3.3.9. De�nition. An interpretation I satis�es a closed goal formula G just in case

there is a derivation sequence for G relative to I. We denote this relation of satisfaction by

the symbol j=j=.

Assuming the ordering on interpretations that is determined by �, it is evident from

this de�nition that j=j= is a relation that is monotone on its �rst element; if I

1

� I

2

and

I

1

j=j= G then I

2

j=j= G. Indeed, it is a relation that is continuous on this element:

3.3.10 Lemma. Let hI

n

i

n<!

be a sequence of interpretations such that I

n

� I

n+1

. Then

S

n<!

I

n

j=j= G only if, for some n < !, I

n

j=j= G.

Proof. Since a derivation sequence is �nite, the compactness of our notion of satisfaction

is clear: I j=j= G if and only if there is a �nite subset I

0

of I such that I

0

j=j= G. From this

the lemma follows easily.

We use j=j= to associate a mapping with each collection P of de�nite sentences.

49

3.3: Properties of De�nite Sentences

3.3.11. De�nition. The mapping T

P

from interpretations to interpretations is de�ned

as follows.

T

P

(I) = fA j G � A 2 jPj and I j=j= Gg

From the monotonicity of j=j= it follows that T

P

is a monotone operator. Indeed, from

Lemma 3.3.10, it also follows that T

P

is continuous; i.e. if hI

n

i

n<!

is an increasing sequence

of interpretations, then it is clear that

T

P

(

S

n<!

I

n

) =

S

n<!

T

P

(I

n

).

From this fact it follows that T

P

has a least �xed point, under the ordering �, that may

be obtained by iterating the e�ect of T

P

on ;. To be precise, let us de�ne by recursion on

the �nite ordinals the sequence hI

n

P

i

n<!

by I

n

P

= T

P

(

S

fI

k

P

j k < ng), and let I

!

P

=

S

n<!

I

n

P

.

Then

3.3.12 Lemma. I

!

P

is the least solution to the equation T

P

(I) = I.

Proof. Notice that I

0

P

= T

P

(;). Since T

P

is monotone, it now follows that I

n

P

�

T

P

(I

n

P

) = I

n+1

P

for each �nite ordinal n. From this observation, we see that (i) hI

n

P

i

n<!

is

an increasing sequence of interpretations, and (ii)

S

n<!

I

n

P

=

S

n<!

T

P

(I

n

P

). But now since T

P

is continuous, it is clear that

T

P

(I

!

P

) =

S

n<!

T

P

(I

n

P

) = I

!

P

;

in other words, that I

!

P

is a solution to the equation.

Now let I

0

be any other solution. Using the monotonicity of T

P

, an induction on the

�nite ordinals shows that, for n < !, I

n

P

� I

0

; this is evidently true for n = 0 since ; � I

0

and T

P

(I

0

) = I

0

; since I

n+1

P

= T

P

(I

n

P

), it follows from the hypothesis that I

n+1

P

� I

0

. But

then

S

n<!

I

n

P

� I

0

and so I

!

P

must be the unique least solution.

3.3.13. Example. (i) Let P be the set of de�nite sentences in Example 3.1.6. Then I

!

P

is evidently the set of all closed atoms of the form [mapfun F L1 L2], where L2 is the

\integer list" that results from applying F to each element of the integer list L1.

(ii) Let P be the set of de�nite sentences in Example 3.1.7. Then I

!

P

is the following set of

atoms

f [mother jane mary], [wife john jane],

[primrel mother], [primrel wife],

[rel mother], [rel wife],

[rel �x.�y.9z.[[mother x z] ^ [wife z y]]],

[rel �x.�y.9z.[[wife x z] ^ [mother z y]]],

[rel �x.�y.9z.[[wife x z] ^ [wife z y]]],

[rel �x.�y.9z.[[mother x z] ^ [mother z y]]] g.

50

3.3: Properties of De�nite Sentences

Given a set of de�nite sentences P it is this least �xed point of T

P

, i.e. I

!

P

, that we

think of as the set of atoms speci�ed by P. The computation that is involved in answering

a query G may be viewed as that of determining whether there is a closed substitution

instance of G that is satis�ed by the set. The consistency of this view with our earlier

discussions is the content of the following theorem:

3.3.14 Theorem. Let G be a closed goal formula and let P be a �nite set of de�nite

sentences. Then P `

T

�G if and only if I

!

P

j=j= G.

Proof. We have seen that hI

n

P

i

n<!

is an increasing sequence of interpretations. Using

Theorem 3.2.16 and Lemma 3.3.5 on the one hand and Lemma 3.3.10 on the other, it

follows that it is enough to show there is a derivation sequence for G relative to P if and

only for some n < ! I

n

P

j=j= G. We do this below.

(�) By an induction on the length of the derivation sequence. If G is > then clearly

I

0

P

j=j= G. If G is G

1

_ G

2

, G

1

^ G

2

, or �P then the claim follows from the hypothesis

and the de�nition of j=j=. Finally let G

1

� G 2 jPj be such that G

1

appears earlier in the

derivation sequence. By the hypothesis there is an n < ! such that I

n

P

j=j= G

1

. From the

de�nition of T

P

therefore I

n+1

P

j=j= G.

(�) First assume the claim true if I

n

P

j=j= G. Now we show the claim by an induction on the

length of the sequence by virtue of which I

n+1

P

j=j= G. If G is > then the claim is obviously

true. If G is an atom other than > then there is a G

1

� G 2 jPj such that I

n

P

j=j= G

1

. By

our �rst hypothesis there is a derivation sequence for G

1

relative to P. By adding G at the

end of this sequence we obtain one for G. In the cases when G is G

1

_G

2

, G

1

^G

2

, or �P

the claim follows in a similar manner from our second hypothesis.

Before concluding this section, it is to be noted that the de�nition of satisfaction in

�rst-order contexts is provided in a compositional manner and, in this respect, our notion

may appear to be somewhat unsatisfactory. Considerable care must be exercised, however,

in providing such a de�nition in the context of higher-order languages. Take, for example,

an attempt to de�ne the relation of satisfaction between interpretations and goal formulas

in the following manner:

(i) I j=j= >,

(ii) I j=j= G if G is an atom and G 2 I,

(iii) I j=j= G

1

_G

2

if I j=j= G

1

or I j=j= G

2

,

(iv) I j=j= G

1

^G

2

if I j=j= G

1

and I j=j= G

2

, and

(v) I j=j= �G if there is a closed formula C 2 H

+

such that I j=j= �norm(GC).

However, this attempt does not yield a well-de�ned notion: Let I = ;. If G = �x:[xA],

and C = �y:[��x:[x y]] we see that �norm(GC) = �G. But then, an attempt to answer

the question whether I j=j= �G apparently brings us back to the same question.

51

3.4: Searching for Proofs from De�nite Sentences

There is potential for providing a better de�nition of satisfaction than the one used

here, and the work on general models in [19] provides an indication in this direction. A

thorough examination of this issue, however, is beyond the scope of this thesis.

Section 4: Searching for Proofs from De�nite Sentences

Our objective now is to describe a mechanism that determines whether there is a

proof in T

�

for the existential closure of a goal formula from a set of de�nite sentences.

Such a mechanism may already be described as one that enumerates all the derivation

sequences relative to the given set of de�nite sentences. We would, however, like to describe

a procedure that conducts a search for an appropriate derivation sequence that is directed

in a sense by the given goal formula. We have already seen that Theorem 3.3.8 provides

us with some insight into the structure of such a search. A more complete description of

the nature of the search, however, requires us to consider the task of unifying two w�s.

This problem has been studied by several researchers, and in most extensive detail by [22].

In the �rst part of this section, we describe this problem and detail some of the aspects

of its solution in [22] that are pertinent to the remaining discussion in the section. In the

second part of this section, we use this understanding of the uni�cation problem, and our

discussions in the previous section, to introduce the notion of a P-derivation. P-derivations

may be looked upon as a generalisation to the higher-order context of the notion of SLD-

derivations that were introduced in [5], and are prevalent in most discussions of �rst-order

de�nite clauses. At one level, they are intended as syntactic objects that demonstrate the

existence of a proof for a goal formula and our discussions show their correctness from

this perspective. At another level, they are intended to provide a basis for an actual

proof procedure | a symbol manipulating procedure that searches for P-derivations would

constitute an interpreter for a programming paradigm that is based on our de�nite sentences

| and we explore some of their properties that are pertinent to the description of such a

procedure.

The Higher-Order Uni�cation Problem. Let us call a pair of w�s of the same type

a disagreement pair. A disagreement set is then a �nite set, fhF

i

;H

i

i j 1 � i � ng, of

disagreement pairs, and a uni�er for the set is a substitution � such that, for 1 � i � n,

�(F

i

) = �(H

i

). The higher-order uni�cation problem is then the following. Given a

disagreement set, we desire to determine whether it has uni�ers, and to explicitly provide

a uni�er if it does have one.

The problem described above is a generalisation of the well-known uni�cation problem

for �rst-order terms. The higher-order uni�cation problem has been studied by several

researchers and, as a result of their endeavours, it is known that this problem has properties

that are, in a certain sense, divergent from those of the problem in the �rst-order case. It

has been shown, for instance, that the question of whether a uni�er exists for an arbitrary

52

3.4: Searching for Proofs from De�nite Sentences

disagreement set is an undecidable question [16, 25, 20], whereas the corresponding question

for �rst-order terms is a decidable one. As another example, it has been shown [18] that the

notion of a most general uni�er that has been described in the context of �rst-order terms

does not generalise to the higher-order case; i.e. there are (higher-order) disagreement sets

that have more than one uni�er none of which may be obtained from yet another uni�er by

composition with a substitution. Despite these characteristics of the problem, it has been

shown that a systematic search can be made for uni�ers for a given disagreement set, and

it is this aspect that concerns us at the moment.

Huet, in [22], describes a procedure for determining the existence of uni�ers for a

given disagreement set and shows that, whenever uni�ers exist, the procedure can be used

to provide some of the uni�ers for the set. The basis for this procedure is the fact that there

are disagreement sets of a certain kind for which at least one uni�er may easily be provided,

and, similarly, there are disagreement sets of another kind for which it is easily manifest that

no uni�ers can exist. Given an arbitrary disagreement set, the procedure then attempts

to reduce it to a disagreement set of one of the above kinds. The reduction proceeds

by an iterative use of two kinds of simplifying functions, called SIMPL and MATCH, on

disagreement sets. Since our notion of a P-derivation uses these functions in an intrinsic

way, we devote some e�ort to describing them below. The reader who is already familiar

with the contents of [22] may, at this stage, wish to proceed to the latter half of this section.

In describing the functions SIMPL and MATCH, and in demonstrating the properties

of these functions that are important in our context, we shall �nd a particular representation

of w�s most convenient. This representation is introduced by the following de�nition.

3.4.1. De�nition. A �-normal formula

~

F = �x

1

: : : : �x

n

:[H A

1

: : : A

m

] is said to be a

uni�cation normal formula if the type of H is of the form �

1

! � � � ! �

m

! �

0

| where,

of course, �

0

is an atomic type | and, for 1 � i � m, A

i

is also a uni�cation normal

formula. If F is a w� such that F �-conv

~

F , then

~

F is said to be a uni�cation normal form

of F .

We note that every w� has a uni�cation normal form; such a form may be obtained

by �rst converting the w� to a �-normal formula, and then performing a sequence of �-

expansions. It may also be observed that such normal forms are unique upto a renaming

of bound variables*. If F is a w�, then we shall use the notation

~

F to denote a uni�cation

normal form of F | it may be observed that the ambiguity inherent in this notation is

inconsequential in the discussions below. Notice that if � is a substitution, then �(F) =

�(

~

F). One of the reasons for representing w�s in uni�cation normal form is that we can

* A proof of the fact that if F

1

and F

2

are uni�cation normal formulas and F

1

�-conv F

2

then F

1

� F

2

may be obtained from the uniqueness of �-normal forms by an induction

on the measure on uni�cation normal formulas that is provided in De�nition 3.4.5.

53

3.4: Searching for Proofs from De�nite Sentences

analyse the e�ects of substitutions easily and, consequently, make decisions about uni�ers.

Recalling the de�nitions in Section 2.2, we see that a uni�cation normal formula of the

form �x

1

: : : : �x

n

:[H A

1

: : : A

r

] is rigid if H is a constant or is an element of fx

1

; : : : ; x

n

g

and that it is
exible if it is not rigid. We observe now the following lemma that is the

basis of the �rst phase of simpli�cation in the search for uni�ers for a given disagreement

set. In this lemma, and in the rest of this section, we use the notation U(D) to denote the

set of uni�ers for a disagreement set D.

3.4.2 Lemma. Let

F

1

= �x

1

: : : : �x

n

:[H

1

A

1

: : : A

r

], and

F

2

= �x

1

: : : : �x

n

:[H

2

B

1

: : : B

s

]

be two rigid uni�cation normal formulas of the same type. Then � 2 U(fhF

1

; F

2

ig) if and

only if

(i) H

1

= H

2

, and

(ii) � 2 U(fh�x

1

: : : : �x

n

:A

i

; �x

1

: : : : �x

n

:B

i

i j 1 � i � rg)*.

Proof. We shall show the lemma assuming that, for 1 � i � n, x

i

=2 F(�). If this is not

the case, then we obtain, by a sequence of �-conversions, from F

1

and F

2

the uni�cation

normal formulas

^

F

1

= �y

1

: : : : �y

n

:[

^

H

1

^

A

1

: : :

^

A

r

], and

^

F

2

= �y

1

: : : : �y

n

:[

^

H

2

^

B

1

: : :

^

B

s

]

for which the assumption is true with respect to the y

i

s. But now

(a)

^

H

1

=

^

H

2

if and only if H

1

= H

2

,

(b) �x

1

: : : : �x

n

:A

i

� �y

1

: : : : �y

n

:

^

A

i

, and

(c) �x

1

: : : : �x

n

:B

i

� �y

1

: : : : �y

n

:

^

B

i

.

From these facts it follows that if the lemma is true with respect to

^

F

1

and

^

F

2

, then

it must also be true with respect to F

1

and F

2

.

Now, given our assumption about the x

i

s and the facts that H

1

and H

2

are either

constants or one of the variables x

1

; : : : ; x

n

, we see that

�(F

1

) � �norm(�x

1

: : : : �x

n

:[H

1

�(A

1

) : : : �(A

r

)]) (1)

�(F

2

) � �norm(�x

1

: : : : �x

n

:[H

2

�(B

1

) : : : �(B

s

)]) (2)

From this observation the lemma follows easily:

(�) Let H

1

= H

2

, and consequently r = s. From (ii) and our assumption about the x

i

s it

follows easily that �(A

i

) = �(B

i

) for 1 � i � r. But then from (1) and (2) it is clear that

�(F

1

) = �(F

2

).

(�) From (1) and (2) it is clear that

* If H

1

= H

2

it must be the case that r = s.

54

3.4: Searching for Proofs from De�nite Sentences

�(F

1

) � �x

1

: : : : �x

n�j

:[H

1

�(A

1

) : : : �(A

r�j

)],

�(F

2

) � �x

1

: : : : �x

n�k

:[H

2

�(B

1

) : : : �(B

s�k

)],

where, for r�k < i � r, �(A

i

) = x

i

and, for k�s < i � s, �(B

i

) = x

i

. Since �(F

1

) = �(F

2

)

then it is apparent that H

1

= H

2

. From this it also follows that r = s, that j = k, and

�nally, for 1 � i � r, �(A

i

) = �(B

i

). But from our assumption about the x

i

s, we see that

(ii) must also be true.

Let us say that F is rigid (
exible) just in case

~

F is rigid (
exible), and let us refer to

the arguments of

~

F as the arguments of F . If F

1

and F

2

are two w�s of the same type, it is

evident that uni�cation normal forms of F

1

and F

2

must have binders of the same length.

Furthermore, we may, by a sequence of �-conversions, arrange their binders to be identical.

If F

1

and F

2

are both rigid, then Lemma 3.4.2 provides us a means for either determining

that F

1

and F

2

have no uni�ers or for reducing the problem of �nding uni�ers for F

1

and

F

2

to that of �nding uni�ers for the arguments of these w�s. This, in fact, is the nature

of the simpli�cation e�ected on a given uni�cation problem by the function SIMPL.

3.4.3. De�nition. The function SIMPL on sets of disagreement pairs is de�ned as

follows:

(1) If D = ; then SIMPL(D) = ;.

(2) If D = fhF

1

; F

2

ig, and

(a) if F

1

is a
exible w� then SIMPL(D) = D; otherwise

(b) if F

2

is a
exible w� then SIMPL(D) = fhF

2

; F

1

ig;

(c) otherwise F

1

and F

2

are both rigid w�s. Let ��x:[C

1

A

1

: : : A

r

] and

��x:[C

2

B

1

: : : B

s

] be uni�cation normal forms for F

1

and F

2

.

If C

1

6= C

2

then SIMPL(D) = F;

otherwise SIMPL(D) = SIMPL(fh��x:A

i

; ��x:B

i

i j 1 � i � rg).

(3) Otherwise D has at least two members. Let D = fhF

i

; G

i

i j 1 � i � ng.

(a) If SIMPL(fhF

i

; G

i

ig) = F for some i then SIMPL(D) = F;

(b) Otherwise SIMPL(D) =

n

S

i=1

SIMPL(fhF

i

; G

i

ig).

3.4.4. Example. Let D be the disagreement set

f h[mapfun f1 nil nil],

[mapfun f2

[cons 1 [cons 2 nil]]

[cons [g 1 1] [cons [g 1 2] nil]]]i g.

where f1 and f2 are variables of type int! int, and the other symbols are as in Example

55

3.4: Searching for Proofs from De�nite Sentences

3.1.6. Then SIMPL(D) = F. On the other hand, if D is the set

f h[mapfun f1 [cons x l1] [cons [f1 x] l2]];

[mapfun f2

[cons 1 [cons 2 nil]]

[cons [g 1 1] [cons [g 1 2] nil]]]i g,

where x, l1, and l2 are variables, then SIMPL(D) is the disagreement set

f hf1;f2i ; hx;1i ; h[f1 x];[g 1 1]i ;

hl1;[cons 2 nil]i ; hl2;[cons [g 1 2] nil]i g.

It is clear from the de�nition of SIMPL that it transforms a given disagreement set

into either the marker F or a disagreement set consisting solely of \
exible-
exible" or

\
exible-rigid" w�s. By an abuse of terminology, we shall regard F as a disagreement set

that has no uni�ers. The intention, then, is that SIMPL transforms the given set into

a simpli�ed set that has the same uni�ers. In order to show that SIMPL is true to this

intention, we need the following measure on w�s.

3.4.5. De�nition. Let F = ��x:[H A

1

: : : A

m

] be a formula in uni�cation normal form.

Then we de�ne the following measure on F :

�(F) = m+

m

P

i=1

�(A

i

).

We extend this measure to an arbitrary w�: Let

~

F be a uni�cation normal form of a w�

F . Then �(F) = �(

~

F)*.

That SIMPL is a transformation that achieves its intended purpose in a �nite number

of steps is the content of the following lemma.

3.4.6 Lemma. SIMPL is a total computable function on sets of disagreement pairs.

Further, if D is a set of disagreement pairs then � 2 U(D) if and only if SIMPL(D) 6= F

and � 2 U(SIMPL(D)).

Proof. We de�ne a measure on sets of disagreement pairs in the following fashion. If

D = fhF

i

; G

i

i j 1 � i � ng, then

 (D) = n+

n

P

i=1

�(F

i

).

Using Lemma 3.4.2, an inductive argument based on the measure of a set veri�es the lemma.

The �rst phase in the process of �nding uni�ers for a given disagreement set D thus

consists of evaluating SIMPL(D). If the result of this is F, we see that D has no uni�ers.

* It is easily veri�ed that if F

1

and F

2

are uni�cation normal formulas and F

1

� F

2

then

�(F

1

) = �(F

2

). That � is well-de�ned on arbitrary w�s is then a consequence of the

uniqueness of uni�cation normal forms upto �-conversions.

56

3.4: Searching for Proofs from De�nite Sentences

On the other hand, if the result is a set that is either empty or has only
exible-
exible

pairs, at least one uni�er can be provided easily for the set as we shall see in the proof of

Theorem 3.4.18; for obvious reasons, therefore, we refer to such a set as a solved set. If the

set has at least one
exible-rigid pair, then the function MATCH is used to progress the

search for a uni�er further.

3.4.7. De�nition. Let V be a set of variables, let F

1

be a
exible w�, let F

2

be a rigid

w� of the same type as F

1

, and let ��x:[f A

1

: : : A

r

], and ��x:[C B

1

: : : B

s

] be uni�cation

normal forms of F

1

and F

2

. Further, let the type of f be �

1

! � � � ! �

r

! �, and, for

1 � i � r, let w

i

be a variable

�

i

.

(i) if C is a variable (i.e. C appears in �x), then IMIT(F

1

; F

2

;V) = ;;

otherwise, letting h

i

=2 V [fw

1

; : : : ; w

r

g be variables of suitable types for 1 � i � s,

IMIT(F

1

; F

2

;V) = ffhf; �w

1

: : : : �w

r

:[C [h

1

w

1

: : : w

r

] : : : [h

s

w

1

: : : w

r

]]igg.

(ii) for 1 � i � r,

if �

i

is not of the form �

1

! : : :! �

t

! � then PROJ

i

(F

1

; F

2

;V) = ;;

otherwise, letting h

i

=2 V [fw

1

; : : : ; w

r

g be variables of suitable types for 1 � i � t,

PROJ

i

(F

1

; F

2

;V) = ffhf; �w

1

: : : : �w

r

:[w

i

[h

1

w

1

: : : w

r

] : : : [h

t

w

1

: : : w

r

]]igg.

(iii) MATCH(F

1

; F

2

;V) = IMIT(F

1

; F

2

;V) [

S

1�i�r

PROJ

i

(F

1

; F

2

;V)

3.4.8. Example. Let F

1

be the w� [f1 x], and F

2

be the w� [g 1 1], where f1, x,

and g are as in Example 3.4.4, and let w be a variable of type int. Further, let h1, h2 be

two di�erent variables of type int! int that are also distinct from f1. Then

(i) IMIT(F

1

; F

2

; ff1;xg) = ffhf1; �w.[g [h1 w] [h2 w]]igg,

(ii) PROJ

1

(F

1

; F

2

; ff1;xg) = ffhf1; �w.wigg, and

(iii) MATCH((F

1

; F

2

; ff1;xg) = ffhf1; �w.[g [h1 w] [h2 w]]ig; fhf1; �w.wigg.

The intuitive picture behind MATCH is that it suggests ways in which the
exible

w� may be made to resemble the rigid one. One way in which this may be achieved is by

making its head \imitate" that of the rigid w�. Indeed, in the context of �rst-order terms

this is the only way in which the two terms may be made the same. If our w�s are higher-

order ones, however, the end may also be achieved by \projecting" one of the arguments

of the
exible w� out as the head and then getting the resulting term to resemble the rigid

one. It is this aspect of higher-order terms that causes the search for a uni�er to be a

branching search.

The purpose of MATCH, thus, is to suggest a set of substitutions that may form

\initial segments" of uni�ers and, in this process, bring the search for a uni�er closer to

resolution. In order to show that MATCH achieves this purpose, we introduce �rst the

following measure on substitutions:

57

3.4: Searching for Proofs from De�nite Sentences

3.4.9. De�nition. Let ' = fhf

i

; T

i

i j 1 � i � ng be a substitution. Then we de�ne a

measure on ' as follows

�(') = n+

n

P

i=1

�(T

i

).

The following lemma now demonstrates the correctness of MATCH.

3.4.10 Lemma. Let V be a set of variables, let F

1

be a
exible w� and let F

2

be a

rigid w� of the same type as F

1

. If there is a substitution � 2 U(fhF

1

; F

2

ig) then there is

a substitution ' 2 MATCH(F

1

; F

2

;V) and a corresponding substitution �

0

such that

(i) � =

V

�

0

� ', and

(ii) �(�

0

) < �(�).

Proof. We sketch a proof based on [22]. Let � 2 U(fhF

1

; F

2

ig), and let

�x

1

: : : : �x

n

:[f A

1

: : : A

r

], and

�x

1

: : : : �x

n

:[C B

1

: : : B

s

]

be uni�cation normal forms for F

1

and F

2

chosen such that, for 1 � i � n, x

i

=2 F(�).

Since C 2 fx

1

; : : : ; x

n

g or is C a parameter, we see that there is a j, with 0 � j � min(n; s),

such that

�(F

2

) � �x

1

: : : : �x

n�j

:[C �(B

1

) : : : �(B

s�j

)].

Now there must be a pair hf; T i 2 � with T of the form

�z

1

: : : : �z

r�k

:[HD

1

: : : D

t

]

(with, of course, 0 � k � r) where either H 2 fz

1

; : : : ; z

r�k

g or H = C; if neither of these

conditions is true we see that there is an i � n such that

�(F

1

) � �x

1

: : : : �x

i

:[H

0

: : :],

where H

0

, being either f or H, is distinct from C and consequently �(F

1

) 6= �(F

2

).

Let us assume H =2 fz

1

; : : : ; z

r�k

g. Then H = C, and, given our choice of x

i

s, C

must be a parameter. But then IMIT(F

1

; F

2

;V) contains a substitution and we let this be

'. By our de�nition,

' = fhf; �w

1

: : : : �w

r

:[C [h

1

w

1

: : : w

r

] : : : [h

s

w

1

: : : w

r

]]ig,

where for 1 � i � s, h

i

=2 V [fw

1

; : : : ; w

r

g. Now for a suitable choice of variables

z

r�k+1

; : : : ; z

r

, we see that T has

�z

1

: : : : �z

r

:[C

~

D

1

: : :

~

D

t

~z

r�k+1

: : : ~z

r

]

as a uni�cation normal form; we note also that in this case t+ k = s. Letting

� = fhh

i

; �z

1

: : : : �z

r

:D

i

i j 1 � i � tg [

fhh

t+i

; �z

1

: : : : �z

r

:z

r�k+i

i j 1 � i � kg,

58

3.4: Searching for Proofs from De�nite Sentences

we de�ne �

0

= ((� " V) � fhf; T ig) [�. It is easily veri�ed that �

0

is a substitution such

that � =

V

�

0

� ' and �(�

0

) = �(� " V)� 1 < �(�).

If H = z

i

for 1 � i � r � k, we use PROJ

i

(F

1

; F

2

;V) in a similar fashion to exhibit

a ' and a �

0

that satis�es (i) and (ii).

As a �nal comment, we note that the lemma may, in a certain sense, be strengthened.

Let hf; T

1

i; hf; T

2

i 2 MATCH(F

1

; F

2

;V) be two distinct substitutions. An examination of

the de�nition of MATCH assures us that there can be no substitutions � and �

0

such that

�(T

1

) = �

0

(T

2

). Thus, in the case that f 2 V we see that corresponding to each � there is

exactly one ' for which the lemma is true.

A uni�cation procedure may now be described based on an iterative use of SIMPL

and MATCH. A procedure that searches for a P-derivation, a notion that we describe next,

may actually be looked upon as a generalisation of this uni�cation procedure.

P-Derivations. With the above understanding of the uni�cation problem, we are now

in a position to introduce the notion of a P-derivation and to study some of the properties

of this notion. Let the symbols G, D, � and V, perhaps with subscripts, denote sets of

w�s

o

, disagreement sets, substitutions and sets of variables, respectively. We then de�ne

the relation of being \P-derived from" between tuples of the form hG;D; �;Vi that is basic

to the de�nition of a P-derivation in the following manner.

3.4.11. De�nition. Let P be a set of de�nite sentences. We say a tuple hG

2

;D

2

; �

2

;V

2

i

is P-derived from the tuple hG

1

;D

1

; �

1

;V

1

i if D

1

6= F and, in addition, one of the following

situations holds:

(1) (Goal reduction step) �

2

= ;, D

2

= D

1

, and there is a goal formula G 2 G

1

such that

(a) G is > and G

2

= G

1

� fGg and V

2

= V

1

, or

(b) G is G

1

^G

2

and G

2

= (G

1

� fGg) [fG

1

; G

2

g and V

2

= V

1

, or

(c) G is G

1

_G

2

and, for i = 1 or i = 2, G

2

= (G

1

� fGg) [fG

i

g and V

2

= V

1

, or

(d) G is �P and for some variable y =2 V

1

it is the case that V

2

= V

1

[fyg and

G

2

= (G

1

� fGg) [f�norm(P y)g.

(2) (Backchaining step) Let G 2 G

1

be a rigid positive atom, and let D 2 P be such

that D � 8x

1

: : : : :8x

n

:G

0

� A for some sequence of variables x

1

; : : : ; x

n

for which

no x

i

2 V

1

. Then �

2

= ;, V

2

= V

1

[fx

1

; : : : ; x

n

g, G

2

= (G

1

� fGg) [fG

0

g, and

D

2

= SIMPL(D

1

[fhG;Aig).

(3) (Uni�cation step) D

1

is not a solved set and for some
exible-rigid pair hF

1

; F

2

i 2 D

1

,

either MATCH(F

1

; F

2

;V

1

) = ; and D

2

= F, or there is a � 2 MATCH(F

1

; F

2

;V

1

)

and it is the case that �

2

= �, G

2

= �(G

1

), D

2

= SIMPL(�(D

1

)), and, if � = fhx; T ig,

V

2

= V

1

[F(T).

59

3.4: Searching for Proofs from De�nite Sentences

Let us call a �nite set of goal formulas a goal set, and a disagreement set that is F or

consists solely of pairs of positive w�s a positive disagreement set. If G

1

is a goal set and D

1

is a positive disagreement set then it is clear, from an inspection of the above de�nition, the

de�nitions 3.4.3 and 3.4.7, and the fact that a positive formula remains a positive formula

under a positive substitution, that G

2

is a goal set and D

2

a positive disagreement set for

any tuple hG

2

;D

2

; �

2

;V

2

i that is P-derived from hG

1

;D

1

; �

1

;V

1

i.

3.4.12. De�nition. Let G be a goal set. Then we say that a sequence hG

i

;D

i

; �

i

;V

i

i

1�i�n

is a P-derivation sequence for G just in case G

1

= G, V

1

= F(G

1

), D

1

= ;, �

1

= ;, and, for

1 � i < n, hG

i+1

;D

i+1

; �

i+1

;V

i+1

i is P-derived from hG

i

;D

i

; �

i

;V

i

i.

From our earlier observations, and an easy induction on the length of the sequence,

it is clear that in a P-derivation sequence for a goal set G each G

i

is a goal set and each D

i

is a positive disagreement set. We make implicit use of this observation in our discussions

below. In particular, we intend unquali�ed uses of the symbols G and D to be read as

syntactic variables for goal sets and positive disagreement sets respectively.

A P-derivation sequence hG

i

;D

i

; �

i

;V

i

i

1�i�n

terminates, i.e. is not contained in a

longer sequence, if

(a) G

n

is either empty or is a goal set consisting solely of
exible atoms and D

n

is either

empty or consists solely of
exible-
exible pairs, or

(b) D

n

= F.

In the former case we say that it is a successfully terminated sequence.

3.4.13. De�nition. A P-derivation sequence, hG

i

;D

i

; �

i

;V

i

i

1�i�n

, for G that is a

successfully terminated sequence is called a P-derivation of G and �

n

� � � � � �

1

is called its

answer substitution. If G = fGg then we also say that the sequence is a P-derivation of G.

3.4.14. Example. Let P be the set of de�nite sentences in Example 3.1.6. Further, let

f1 be a variable of type int! int and let G be the goal formula

[mapfun f1

[cons 1 [cons 2 nil]]

[cons [g 1 1] [cons [g 1 2] nil]]].

Then the tuple hG

1

;D

1

; ;;V

1

i is P-derived from hfGg; ;; ;; ff1gi by a backchaining step, if

V

1

= ff1; f2; l1; l2; xg,

G

1

= f[mapfun f2 l1 l2]g, and

D

1

= f hf1;f2i ; hx;1i ; h[f1 x];[g 1 1]i ,

hl1;[cons 2 nil]i ; hl2;[cons [g 1 2] nil]i g;

of course, f2, l1, l2, and x are variables here. Similarly, if

V

2

= V

1

[fh1,h2g,

60

3.4: Searching for Proofs from De�nite Sentences

G

2

= f[mapfun f2 l1 l2]g,

�

2

= f hf1,�w.[g [h1 w] [h2 w]]i g, and

D

2

= f hl1,[cons 2 nil]i ; hl2,[cons [g 1 2] nil]i , hx,1i ,

h[h1 x],1i ; h[h2 x],1i ; hf2,�w.[g [h1 w] [h2 w]]i g,

then the tuple hG

2

;D

2

; �

2

;V

2

i is P-derived from hG

1

;D

1

; ;;V

1

i by a uni�cation step by

picking the
exible-rigid pair h[f1 x],[g 1 1]i from D

1

and using the substitution provided

by MATCH in Example 3.4.8. If we picked the substitution provided by PROJ

1

instead,

we would obtain the tuple hG

2

;F; fhf1; �w.wig;V

1

i.

There are several P-derivations of G, and all of them have the same answer substitu-

tion: fhf1; �w.[g w 1]ig.

3.4.15. Example. Let P be a set of de�nite sentences that contains the de�nite sentence

8x:[[xA] � [P A]], where P and A are parameters of type int ! o and int, respectively.

Then, the following (sequence of) tuples constitute a P-derivation of [P A]:

hf[P A]g; ;; ;; ;i, hf[xA]g; ;; ;; fxgi.

Notice that this is a successfully terminated sequence, even though the �nal goal set contains

a
exible atom. We shall see, in Theorem 3.4.18, that a goal set that contains only
exible

atoms can be \solved" rather easily. In this particular case, for instance, the �nal goal set

can be solved by applying the substitution fhx; �y:>ig to it.

As mentioned at the beginning of this section, a P-derivation of G is intended to be

a syntactic object that demonstrates that a proof in T

�

exists for G from P. Our next

endeavour, culminating in the Theorems 3.4.18 and 3.4.22, is to show that this notion is

true to our intention. In the process, we shall see that a P-derivation of G encodes enough

information to make it possible to extract the result of a computation. We shall also observe

some properties of P-derivations that are of interest from the perspective of constructing

a procedure that searches for such a derivation of a goal formula.

3.4.16. De�nition. Let F be a w�. Then a ground instance of F is a closed w� F

0

such that, for some substitution ', F

0

= '(F). F

0

is a positive ground instance of F if in

addition F

0

is a positive w�.

It is apparent that F

0

is a ground instance F if and only if there is a closed substitution

' for the free variables of F such that F

0

= '(F); if F

0

is a positive ground instance, then

there must be such a ' that is also a positive substitution.

3.4.17 Lemma. Let hG

2

;D

2

; �

2

;V

2

i be P-derived from hG

1

;D

1

; �

1

;V

1

i, and let D

2

6= F.

Further let � 2 U(D

2

) be a positive substitution such that for each positive ground instance

G

0

of a w� in �(G

2

) it is the case that P `

T

�G

0

. Then

(i) � � �

2

2 U(D

1

), and

61

3.4: Searching for Proofs from De�nite Sentences

(ii) P `

T

�G for each G that is a positive ground instance of a w� in �(G

1

).

Proof. The lemma is proved by considering the cases in De�nition 3.4.12.

A goal reduction or a backchaining step. In these cases �

2

= ; and so � � �

2

= �. Further,

in a goal reduction step D

2

= D

1

, and in a backchaining step D

1

� D

2

. From these

observations, (i) is evidently true. What remains to be shown, then, is that if G 2 G

1

and

� is a closed positive substitution for the free variables of �(G) then P `

T

� � � �(G). In

the cases when G is also an element of G

2

, this follows directly from the assumption of the

lemma. Consequently, we only need to consider the case when G =2 G

2

. If G is >, then the

claim is apparent from the fact that `

T

�>. If G is G

1

_G

2

, from the fact that

� � �(G) = � � �(G

1

) _ � � �(G

2

),

it follows that � � �(G

1

) and � � �(G

2

) are closed goal formulas and are, therefore, positive

ground instances of �(G

1

) and �(G

2

). Since either �(G

1

) or �(G

2

) is an element of �(G

2

),

the claim follows from the assumptions and Theorem 3.3.8. A similar argument may be

provided for the case when G is G

1

^G

2

.

For the remaining cases, we need a substitution that is parameterised by a sequence

of variables. Let c

�

be an arbitrary parameter of type �. If �y is a sequence of variables,

then we de�ne �

�y

as follows:

�

�y

= fhx

�

; c

�

i j y

i

is an element of �y and x

�

2 F(� � �(y

i

))g.

It is apparent that �

�y

� � � �(F) is a closed positive formula for any positive formula F all

of whose free variables are in the sequence �y.

Let us now consider the case when G is �P . Since � � �(G) = � � � �(P), it follows

that � � �(P) is a closed positive formula. From De�nition 3.4.12, we see that there is a

variable y such that �(�norm(P y)) 2 �(G

2

). Now

�

y

� � � �(�norm(P y))

is evidently a positive ground instance and so, by our assumption,

P `

T

� �

y

� � � �(�norm(P y)).

But letting P

0

= � � �(P) and c = �

y

� � � �(y), we see that this w� is also a �-normal form

of P

0

c. Hence by Theorem 3.3.8 it follows that P `

T

��P

0

, i.e. P `

T

� � � �(G).

The only other case is that corresponding to a backchaining step. From De�nition

3.4.12 and Lemma 3.4.6 we see that there is a D 2 P such that

D � 8�x:G

0

� A, G

0

2 G

2

, and �(G) = �(A).

Now let G

00

= �

�x

� � � �(G

0

). Since all the free variables of G

0

are in the sequence �x, G

00

is

apparently a positive ground instance of �(G

0

), and so, by our assumption, P `

T

�G

00

. Since

'(G

0

� A) = '(G

0

) � '(A)

for any substitution ', and since � � �(G) is a closed positive formula, it follows easily that

G

00

� � � �(G) 2 jPj.

62

3.4: Searching for Proofs from De�nite Sentences

But then, Theorem 3.3.8 assures us of the truth of the claim.

A uni�cation step. We note �rst that D

2

6= F. Hence, in either of these cases, it follows

from Lemma 3.4.6 that if � 2 U(D

2

) then � 2 U(�

2

(D

1

)). But then, it is easy to see that

� ��

2

2 U(D

1

). Since G

2

= �

2

(G

1

) it is evident that every ground instance of a goal formula

in � � �

2

(G

1

) is also a ground instance of a goal formula in �(G

2

). From this the second

part of the lemma is obvious.

3.4.18 Theorem. (Soundness of P-derivations) Let hG

i

;D

i

; �

i

;V

i

i

1�i�n

be a P-derivation

of G, and let � be its answer substitution. Then there is a positive substitution such that

(i) � 2 U(D

n

), and

(ii) P `

T

�G

0

for every ground instance G

0

of a goal formula in �(G

n

).

Further, for every positive substitution � that satis�es (i) and (ii), it is the case that

P `

T

�G

0

for every ground instance G

0

of � � �(G).

Proof. The second part of the theorem follows easily from Lemma 3.4.17 and a backward

induction on i, the index of each tuple in the given P-derivation sequence. For the �rst

part we �rst exhibit a substitution | that is a simple modi�cation of the one in Lemma

3.5 in [22] | and then show that it satis�es the requirements.

Let h

�

2 Var

�

be a chosen variable for each atomic type �. Then for each type � we

de�ne the w�

^

E

�

in the following fashion:

(a) If � is o, then

^

E

�

= >.

(b) If � is an atomic type other than o, then

^

E

�

= h

�

.

(c) If � is the function type �

1

! � � � ! �

k

! � where � is an atomic type, then

^

E

�

= �x

1

�

1

: : : : �x

k

�

k

:

^

E

�

,

where, for 1 � i � k, x

i

�

i

is a variable such that x

i

�

i

6= h

�

i

*.

Now let
 = fhy

�

;

^

E

�

i j y

�

2 Var

�

g. Finally, letting V = F(G

n

) [F(D

n

), we de�ne

� =
 " V.

We note that if there are any goal formulas in G

n

, then they are all of the form

[P C

1

: : : C

n

] where P is a variable whose type is of the form �

1

! � � � ! �

n

! o. From

this it is apparent that if G 2 G

n

then any ground instance of �(G) is identical to >. Thus,

it is clear that � satis�es (ii). If D

n

is empty then � 2 U(D

n

). Otherwise, let hF

1

; F

2

i 2 D

n

.

Since F

1

and F

2

are two
exible w�s, it may be seen that �(F

1

) and �(F

2

) are of the

formy

* The particular choice of x

i

�

i

is unimportant so long as the constraint that x

i

�

i

6= h

�

i

is

met. However, in order to make the w�

^

E

�

described above unique, it is necessary to

�x the choice of x

i

�

i

. We implicitly assume this quali�cation in the de�nition.

y The subscripts on the ys are not intended to be read as types.

63

3.4: Searching for Proofs from De�nite Sentences

�y

1

1

: : : : �y

m

1

1

:

^

E

�

1

, and

�y

1

2

: : : : �y

m

2

2

:

^

E

�

2

,

where �

i

is a primitive type and

^

E

�

i

=2 fy

1

i

; : : : ; y

m

i

i

g for i = 1; 2. Since F

1

and F

2

have

the same types and substitution is a type preserving mapping, it is clear that �

1

= �

2

,

m

1

= m

2

and y

i

1

and y

i

2

are variables of the same type. But then evidently �(F

1

) = �(F

2

).

We now desire to show a converse of the above theorem. For this purpose, we shall

need the following observation that follows immediately from an inspection of De�nition

3.4.12.

3.4.19 Lemma. Let hG

2

;D

2

; �

2

;V

2

i be P-derived from hG

1

;D

1

; �

1

;V

1

i and let D 6= F.

Then V

1

� V

2

and if F(G

1

) [F(D

1

) � V

1

, then F(G

2

) [F(D

2

) � V

2

.

We also need a measure of complexity corresponding to a goal set and a uni�er. In

de�ning such a measure, we use those introduced in De�nitions 3.3.6 and 3.4.9.

3.4.20. De�nition.

(i) Let G be a set of closed goal formulas. Then �

P

(G) =

P

G2G

�

P

(G).

(ii) Let G be a set of goal formulas and let � be a positive substitution such that each w�

in �(G) is closed. Then �

P

(G; �) = h�

P

(�(G)); �(�)i.

(iii) Let � be the lexicographic ordering on the collection of pairs of natural numbers; i.e.

hm

1

; n

1

i � hm

2

; n

2

i if either m

1

< m

2

or m

1

= m

2

and n

1

< n

2

.

If G is a �nite set of closed goal formulas such that P `

T

�G for each G 2 G, then it is

easily seen that �

P

(G) < !. We make implicit use of this fact in the proof of the following

Lemma.

3.4.21 Lemma. Let hG

1

;D

1

; �

1

;V

1

i be a tuple that is not a terminated P-derivation

sequence and for which F(G

1

)[F(D

1

) � V

1

. If there is a positive substitution �

1

2 U(D

1

)

such that �

1

(G

1

) is a closed goal formula and P `

T

� �

1

(G

1

) for each G

1

2 G

1

, then there is

a tuple hG

2

;D

2

; �

2

;V

2

i that may be P-derived from hG

1

;D

1

; �

1

;V

1

i and there is a positive

substitution �

2

2 U(D

2

) such that

(i) �

1

=

V

1

�

2

� �

2

,

(ii) for each G

2

2 G

2

, �

2

(G

2

) is a closed goal formula such that P `

T

� �

2

(G

2

), and

(iii) �

P

(G

2

; �

2

) � �

P

(G

1

; �

1

).

Furthermore, when several tuples may be P-derived from hG

1

;D

1

; �

1

;V

1

i, then there exist

a tuple and a corresponding positive substitution �

2

that satisfy the conditions (i), (ii),

and (iii) regardless of the choice that is exercised in deciding (1) the of the kind of step,

(2) the goal formula in a goal reduction or backchaining step, and (3) the
exible-rigid pair

in a uni�cation step.

64

3.4: Searching for Proofs from De�nite Sentences

Proof. Since hG

1

;D

1

; �

1

;V

1

i is not a terminated P-derivation sequence, it is clear that

there must be a tuple hG

2

;D

2

; �

2

;V

2

i that may be P-derived from it. We consider by cases

the steps by which such a tuple may result and show that, in each of these cases, there is a

tuple and a substitution that satis�es the requirements of the lemma. From our argument

it will be evident that such a tuple exists regardless of the choices mentioned in the lemma.

Goal reduction step. If the second tuple is to be obtained by one of these cases, it must be

that D

2

= D

1

and �

2

= ;.

If one of the subcases 1(a) { 1(c) is applicable, then let �

2

= �

1

. It is obvious that

�

2

2 U(D

2

), and, since �

1

= �

2

��, that �

1

=

V

1

�

2

��. Now let V

2

= V

1

and, by considering

each of the subcases 1(a) { 1(c), we demonstrate a value for G

2

that satis�es the remaining

requirements of the lemma.

(a) If > 2 G

1

, then let G

2

= G

1

� f>g. The tuple hG

2

;D

2

; �

2

;V

2

i that is described by

these various assignments is obviously P-derived from the given tuple. From the

assumptions of the lemma, it also follows that this tuple and �

2

satisfy (ii). That

�

P

(G

2

; �

2

) � �

P

(G

1

; �

1

)

follows from the fact that �

P

(G) > 0 for any closed goal formula G.

(b) Let G

1

_G

2

2 G

1

. Since

�

1

(G

1

_G

2

) = �

1

(G

1

) _ �

1

(G

2

),

it follows that �

1

(G

1

) and �

1

(G

2

) are closed goal formulas. From Lemma 3.3.7 we

see that, for i = 1 or i = 2,

�

P

(�

1

(G

i

)) < �

P

(�

1

(G

1

_G

2

))

and so also P `

T

� �

1

(G

i

). Without loss of generality, we may assume that this is true

for i = 1. Thus, if we let

G

2

= (G

1

� fG

1

_G

2

g) [fG

1

g,

we see that we have a tuple that is P-derived from the given one and that together

with �

2

satis�es (ii) and (iii).

(c) Let G

1

^G

2

2 G

1

. In this case we let

G

2

= (G

1

� fG

1

^G

2

g) [fG

1

; G

2

g.

By an argument similar to that in (b) we may see that we have then de�ned a tuple

that together with �

2

satis�es the remaining requirements of the lemma.

The only remaining subcase to consider is 1(d). If this subcase is applicable, then

there is w�

o

such that �P 2 G

1

. In this event, let

G

2

= (G

1

� f�Pg) [f�norm(P y)g

for some y =2 V

1

and let V

2

= V

1

[fyg. If we let P

0

= �

1

(P), it follows, from our assumptions

and the fact that

65

3.4: Searching for Proofs from De�nite Sentences

�

1

(�P) = �P

0

,

that P

0

is a closed positive formula and that P `

T

� �P

0

. Lemma 3.3.7 now assures us of

the existence of a closed positive formula C such that

�

P

(�norm(P

0

C)) < �

P

(�P

0

).

Letting

�

2

= �

1

� fhy;Cig,

we see that the requirements of the lemma are met: Since y =2 V

1

and F(D

1

) � V

1

, it is

clear that �

2

2 U(D

2

) and that �

1

=

V

1

�

2

. Since F(G

1

) � V

1

, it is also apparent that (ii)

is true for each G 2 G

2

that is also in G

1

. For the only other G 2 G

2

, i.e. �norm(P y), we

see that �

2

(G) is a �-normal form of [P

0

C] and so (ii) is obviously true. Finally, (iii) is

true since our choice of C is such that

�

P

(�norm(P

0

C)) < �

P

(�

1

(�P)).

Backchaining step. If such a step is applicable, there is a rigid positive atom G 2 G

1

. Let

G

a

= �

1

(G). By our assumptions, G

a

is a closed rigid positive atom and P `

T

�G

a

. From

Lemma 3.3.7 it follows that there is a w� G

00

� G

a

2 jPj such that

�

P

(G

00

) < �

P

(G

a

)

and, therefore, also such that P `

T

�G

00

. From this it is easily seen that there is a D 2 P

such that

D � 8x

1

: : : : 8x

n

:G

0

� A,

where x

1

; : : : ; x

n

are chosen ensuring that x

i

=2 V

1

, and that there is a closed positive

substitution ' for fx

1

; : : : ; x

n

g such that G

a

= '(A) and G

00

= '(G

0

). Now if we let

�

2

= ;,

V

2

= V

1

[fx

1

; : : : ; x

n

g,

G

2

= (G

1

� fGg) [fG

0

g, and

D

2

= SIMPL(D

1

[(fhG;Aig),

we obtain a tuple hG

2

;D

2

; �

2

;V

2

i that is P-derived from hG

1

;D

1

; �

1

;V

1

i. Letting �

2

= �

1

�',

we see that this tuple and �

2

also meet the requirements of the lemma: By our choice of

x

i

s and the fact that

F(G

1

) [F(D

1

) � V

1

,

it follows that

�

1

=

V

1

�

2

,

�

2

2 U(D

1

), and

�

2

(G

1

) = �

1

(G

1

)

for every G

1

2 G

1

. We also see that

�

2

(A) = '(A), and

�

2

(G

0

) = '(G

0

) = G

00

.

66

3.4: Searching for Proofs from De�nite Sentences

Using Lemma 3.4.6, it is now clear that �

2

is a uni�er for D

2

. Similarly, it is also clear that

�

2

(G

2

) is a closed goal formula such that P `

T

� �

2

(G

2

) for every G

2

2 G

2

. Finally, since

�

P

(G

00

) < �

P

(G

a

) and �

2

(G) = G

a

, we see that

�

P

(G

2

; �

2

) � �

P

(G

1

; �

1

).

Uni�cation step. If this case is applicable, then there is evidently a
exible-rigid pair in D

1

.

Let hF

1

; F

2

i be an arbitrary such pair. By Lemma 3.4.10 there is a (positive) substitution

' 2MATCH(F

1

; F

2

;V

1

)

and another (positive) substitution � such that

�

1

=

V

1

� � ' and �(�) < �(�

1

).

But now by letting

�

2

= ',

G

2

= '(G

1

), and

D

2

= SIMPL('(D

1

)),

and by choosing V

2

appropriately, we see that there is a tuple hG

2

;D

2

; �

2

;V

2

i that may be

P-derived from hG

1

;D

1

; �

1

;V

1

i. Letting �

2

= � we see easily that the other requirements

of the lemma are also satis�ed: Since F(D

1

) � V

1

it is clear that

�

1

(D

1

) = �

2

� �

2

(D

1

).

Since �

1

2 U(D

1

), it follows that

�

2

� �

2

2 U(D

1

)

and, using Lemma 3.4.6, that �

2

2 U(D

2

). Since F(G

1

) � V

1

, it is apparent that

�

1

(G

1

) = �

2

(G

2

).

That every G

2

2 �

2

(G

2

) is a closed goal formula such that P `

T

�G

2

now follows trivially

from the assumptions. Finally

�

P

(G

2

; �

2

) � �

P

(G

1

; �

1

)

since �

P

(�

2

(G

2

)) = �

P

(�

1

(G

1

)) and �(�

2

) < �(�

1

).

3.4.22 Theorem. (Completeness of P-derivations) Let ' be a closed positive substitution

for the free variables of G such that P `

T

� '(G). Then there is a P-derivation of G with an

answer substitution � such that ' �

F(G)

�.

Proof. From Lemmas 3.4.21 and 3.4.19 and the assumption of the theorem, it is ev-

ident that there is a P-derivation sequence hG

i

;D

i

; �

i

;V

i

i

1�i

for fGg and a sequence of

substitutions �

i

such that

(i) �

1

= ',

(ii) �

i+1

satis�es the equation �

i

=

V

i

�

i+1

� �

i+1

,

(iii) �

i

2 U(D

i

), and

67

3.4: Searching for Proofs from De�nite Sentences

(iv) �

P

(G

i+1

; �

i+1

) � �

P

(G

i

; �

i

).

From (iv) and the de�nition of � it is clear that the sequence must terminate. From (iii)

and Lemmas 3.4.6 and 3.4.10 it is evident, then, that it must be a successfully terminated

sequence, i.e. a P-derivation of G. Using (i), (ii) and Lemma 3.4.19, an induction on the

length n of the sequence then reveals that ' �

V

1

�

n

�� � ���

1

. But F(G) = V

1

and �

n

�� � ���

1

is the answer substitution for the sequence.

P-derivations, thus, provide us the basis for describing the proof procedure that we

desired at the outset. Given a goal formula G, such a procedure starts with the tuple

hfGg; ;; ;;F(G)i and constructs a P-derivation sequence. If the procedure performs an

exhaustive search, and if there is a proof of G from P, the procedure will always succeed

in constructing a P-derivation of G from which a result may be extracted. A breadth-�rst

search may be inappropriate if the procedure is intended as an interpreter for a program-

ming language based on our de�nite sentences. By virtue of Lemma 3.4.21, we see that

there are certain cases in which the procedure may limit its choices without adverse e�ects.

The following choices are, however, critical:

(i) Choice of de�nite sentence in a backchaining step, and

(ii) Choice of substitution in a uni�cation step.

When it encounters such choices, the procedure may, with an accompanying loss of com-

pleteness, perform a depth-�rst search with backtracking. The particular manner in which

to exercise these choices is very much an empirical question and might be settled, if at all,

by experimentation.

68

Chapter 4

The Logic Programming Language �Prolog

Our focus in the preceding parts of this thesis have largely been on analysing the logical

basis of a logic programming language that incorporates higher-order notions. We now

turn to the practical concerns regarding a language that is based on this analysis. In

this chapter we consider an experimental programming system called �Prolog that, in its

current conception, is based largely on the logic of de�nite sentences studied in the preceding

chapter. It is to be noted, however, that �Prolog is a system that is yet evolving; it is,

in this respect, best thought of as a vehicle for experimenting with the usefulness, in the

logic programming context, of notions that have been found valuable in other paradigms

of programming. To provide one example, it is intended that an ability to structure logic

programs be provided in this system based on the extension to the logic of de�nite clauses

described in [28]. Our concerns in this chapter, however, are oriented primarily towards

exposing the higher-order features of �Prolog and towards discussing the issues relevant

to the implementation of a logic programming language that incorporates such features.

These concerns are adequately served by restricting our view of the system to the way it

is currently conceived, and it is this stance that we adopt in this chapter.

In the �rst section of this chapter we describe the syntax of �Prolog. The language

of �Prolog may, in a certain sense, be looked upon as a typed, higher-order version of that

of Prolog. The main di�erence in the syntax of the two languages is that types must be

associated with every �Prolog expression, and we introduce the notion of a type declaration

through which such an association is achieved. Our experience has revealed that the notion

of types provided by the underlying logic is unfortunately too restrictive in practice. We

have tried to deal with this issue by introducing the notion of a type variable into the

system. We discuss, in this section, some of the simpli�cations that this provides in the

presentation of programs and also some of the complications that this might lead to in

interpreting programs.

The next two sections focus on the higher-order features of �Prolog. In Section 4.2

we outline the nature of predicate and function variables in this system. This discussion

also serves to illustrate the value of predicate variables in a logic programming context.

The truly novel features of �Prolog | and hence also the features whose usefulness is

less tangible | are the provision of function variables and the use of �-terms as data

structures. In Section 4.3 we illustrate the advantages these features o�er in describing

operations on objects that are intrinsically higher-order in nature. The speci�c tasks that

we consider here involve operations on two kinds of objects: formulas and programs. It

is our contention here that the data structures of �Prolog permit us to represent, and

to describe manipulations on, these kinds of objects in a logically perspicuous manner.

The understanding of higher-order terms that is manifest in �Prolog through �-conversion

69

4.1: The Language of �Prolog

and higher-order uni�cation then allows such descriptions to serve as means for actually

performing the necessary manipulations.

In the last section of this chapter, we turn to the issues involved in implementing an

interpreter for �Prolog. In this section we describe an experimental interpreter that we

have designed for this system. This interpreter is akin to the standard ones for Prolog with

the di�erence that our use of higher-order uni�cation requires certain additional choices

to be made. We describe the nature of these choices and also relate certain features that

we have found useful to incorporate into the interpreter based on our experiences with

an implementation. The provision of type variables also introduces certain complications

(discussed in Section 4.1) in designing an interpreter and we discuss some techniques that

we have adopted for dealing with these in an implementation. It is to be noted that all the

examples of �Prolog programs in this thesis have been tested with the interpreter described

in Section 4.4.

Section 1: The Language of �Prolog

As we have noted already, �Prolog is a logic programming language that is based on the logic

of higher-order de�nite sentences. Given the similarities observed in Section 3.1 between

the logics underlying the two systems, we have found it convenient to adopt several features

of the syntax of Prolog [11] in �Prolog. These features include the following.

(i) Tokens that correspond to constants and variables in �Prolog are identi�ed in much

the same way as in Prolog, i.e. they are sequences of alphanumeric characters or

sequences of `sign' characters. Since it is necessary to distinguish between those tokens

in w�s that correspond to variables and those that are to be construed as constants,

we use the convention, again borrowed from Prolog, that those tokens which begin

with capital letters stand for variables, and all other tokens represent constants*.

(ii) We have reserved the symbols ,, ;, and :- to represent the logical constants ^, _ and

� respectively. The last of these constants may appear only as the top-level logical

connective in a de�nite sentence. In keeping with the procedural nature of de�nite

sentences, we have chosen to write the formulas that contain this constant backwards,

i.e. the formula G � A is written in �Prolog as the procedure A :- G. In the special

case when G is the constant >, this last �Prolog expression may be abbreviated to

A.

(iii) In rendering de�nite sentences into �Prolog expressions, the outermost universal quan-

* Our current implementation includes one \built-in" sort other than the sort o that

corresponds to propositions, and this is the sort int corresponding to the integers. Thus

�Prolog does make an additional distinction between tokens corresponding to constants

in that a token consisting solely of numeric characters is recognised as a constant of

type int.

70

4.1: The Language of �Prolog

ti�cations are omitted. In keeping with this convention, variables that occur free in

expressions representing de�nite sentences are understood to be implicitly universally

quanti�ed and the scope of this quanti�cation is taken to be the entire expression.

There are, however, a few di�erences between the syntax of �Prolog and Prolog that

are necessitated by the richer nature of the underlying logic. The higher-order language

includes the constant > and the existential quanti�er �, and we have reserved the constant

symbols true and sigma* in �Prolog to represent these. Similarly, there is a need to

represent the operation of abstraction, and we have reserved the in�x symbol \ for this

purpose: thus the w� �X:F is rendered into �Prolog as X\F . We have also found it

convenient to import the curried notation of the logical language into �Prolog and to

use the meta-linguistic conventions, discussed in Chapter 2, for omitting brackets. When

brackets are necessary to change the application order in expressions in �Prolog, these are

represented by parentheses. The following set of `procedure' declarations that de�ne the

append relation between three lists illustrate the use of this notation and also serve to

expose the similarities between the syntax of Prolog and �Prolog:

append nil L L.

append (cons X L1) L2 (cons X L3) :- append L1 L2 L3.

It is to be noted, however, that the above declarations do not completely specify a

�Prolog program, since our logical language requires that a type be associated with every

constant and variable symbol. In order to achieve this objective, we have introduced what

we call type declarations. These are declarations that have the format

type <list-of-tokens> <type>.

The e�ect of such a declaration is to identify <type> as the type of each of the constant

or variable symbols in <list-of-tokens>. Using declarations of this kind, a complete

speci�cation of �Prolog procedures to append lists would then be the followingy; we observe

here that the function type constructor is represented in �Prolog by the symbol ->.

type X int.

type nil,L,L1,L2,L3 (list int).

type cons int -> (list int) -> (list int).

type append (list int) -> (list int) -> (list int) -> o.

append nil L L.

* Anticipating our discussions later in this section, the type expression associated with

the �Prolog constant sigma is (A -> o) -> o.

y It is often useful to be able to restrict the scope of type and procedure declarations,

and �Prolog provides such a facility through a preliminary notion of a module. We do

not discuss this matter here, however, since our purpose in this chapter is adequately

served by viewing a program as containing only one set of declarations.

71

4.1: The Language of �Prolog

append (cons X L1) L2 (cons X L3) :- append L1 L2 L3.

�Prolog programs may also contain operator declarations, that serve the purpose of

overriding the default pre�x application precedence in a manner exactly analogous to that

in Prolog. An example of such a declaration is

infix 225 xfy &.

This declaration corresponds to the declaration op(225,xfy,&) in Prolog [11]; it de�nes

the constant & as an in�x operator that is right associative and has priority 225.

Type Variables and Type Inference. An examination of the program that appears

above reveals to us that the declarations provided therein serve to de�ne only the \data

structure" for lists of integers. Thus, if we identify the constants bob, sue, etc. as being of

type person, it is clear that we need to use an analogous set of declarations to provide the

notion of a list of these kinds of objects.

Such a course is clearly unsatisfactory from a programming point of view since it

leads to a proliferation of declarations, and to a complete separation between notions that

at some level have a common
avour. An immediate solution to the above problem is to

collapse the type distinctions between terms that have a atomic type. Thus we may agree

by convention that the only type other than o is i, and then deem that both bob and 3 are

of type i; in a sense this is the course adopted in Prolog. This does not turn out to be a

very happy solution to the given problem, since it may be desirable to maintain distinctions

between terms of di�erent atomic types. Consider, for instance, the procedure declarations

sum_of_list nil 0.

sum_of_list (cons X L) N :- sum_of_list L N1, add X N1 N.

where add is de�ned to be a predicate that performs addition on integers. We do wish

to be able to say that these declarations de�ne the predicate sum_of_list that is of type

(list int) -> int -> o, and that they cannot be used to solve the query

sum_of_list (cons 1 (cons bob nil)) N,

even before such an attempt is made.

Even if we were to accept the suggested solution to the above problem, we notice that

it is certainly not a solution if what we desire are representations for lists of terms of each

function type. The distinction between the types i -> i and i, for instance, is intrinsic to

the language on which �Prolog is based.

The solution that we have adopted to the problem is to permit a use of the same

syntactic device that was employed in our discussions about the logical system, namely

to allow variables to occur in types. An illustration of this approach is provided by the

following revised version of the program de�ning lists; we note that the tokens that begin

72

4.1: The Language of �Prolog

with capital letters in the types in the type declarations here are to be construed as variables.

type X A.

type nil,L,L1,L2,L3 (list A).

type cons A -> (list A) -> (list A).

type append (list A) -> (list A) -> (list A) -> o.

append nil L L.

append (cons X L1) L2 (cons X L3) :- append L1 L2 L3.

A type declaration in which variables occur in the type is to be understood in the

following fashion: It represents an in�nite number of declarations each of which is obtained

by substituting, in a uniform manner, closed types for the variables that occur in the type.

For instance, the type declaration

type cons A -> (list A) -> (list A).

represents, amongst others, the type declarations

type cons int -> (list int) -> (list int).

type cons (int -> int) -> (list (int -> int)) -> (list (int -> int)).

By virtue of the above provision, we see that variables may occur in the types corre-

sponding to the constants and variables that appear in a \procedure declaration." Such a

\procedure declaration" is, again, to be thought of as a schema that represents an in�nite

set of procedure declarations in which no type variables appear. Each member of this set is

obtained by substituting closed types for the type variables that occur in the schema. Such

a substitution is, of course, constrained by the fact that the resulting instance must be a

representation of a de�nite sentence that is well-formed. We assume, in addition, that the

free variables having the same name in a formula are identical | in particular, they have

identical types. Thus given the procedure declaration schema (although strictly necessary,

we shall often drop this last quali�cation if no confusion arises as a result)

append (cons X L1) L2 (cons X L3) :- append L1 L2 L3.

where the types associated with the �rst and second occurrences of X are A and B respectively

and the type associated with the �rst occurrence of cons is C -> (list C) -> (list C),

the same types must replace A, B and C in all the permissible instances of this schema.

It is tempting to conclude that our use of type variables actually provides for an

enriched class of procedure declarations in which an (implicit) universal quanti�cation is

provided over type variables that occur in each such declaration. Such a view, however, is

misleading. Given the logical analysis in Chapter 3, it is clear that a procedure declaration

in which type variables appear is only correctly interpreted as a schema: It represents a

class of de�nite sentences each of which is obtained by instantiating every type variable

73

4.1: The Language of �Prolog

by a closed type, and it is only one of these de�nite sentences that may be used in the

construction of a proof for a goal formula. The implication of this is that the invocation

of a procedure declaration must also be accompanied by the determination of the type

instance to be used. It is often possible to delay the choice of the particular type instance

at run-time until such a time that it can be uniquely determined, but there are situations

where the use of type variables causes problems. We shall comment on these aspects in

Section 4.4.

The introduction of type variables enables us to remove much of the burden of pro-

viding type declarations from the user. The needed type declarations may often be inferred

by using the methods described by [29] in the context of ML [17]. The idea is that the re-

quirement that type instances of a procedure declaration be well-formed places constraints

on the types that may be associated with the constants and variables that appear in it.

Additional constraints are provided by our assumption that the type associated with each

occurrence of a constant, whose type is not explicitly declared, within a program must be

the same. These constraints may actually be formulated as a system of equations involving

�rst-order terms. A most general solution to this system of equations may be obtained by

using the notion of (�rst-order) uni�cation [37] and we use this solution to provide a set of

implicit type declarations. Using such a scheme, we note that from the type declaration

type cons A -> (list A) -> (list A).

all the other type declarations in the program de�ning lists may be inferred. Even this

declaration is not necessary, since without it the type declaration

type cons A -> B -> B.

would be inferred. Providing it, however, enables unintended uses of the procedure decla-

rations in the program to be excluded.

While the syntax of types and the methods of inferring the types associated with terms

in �Prolog bears a resemblance to that used in the context of functional programming

languages (speci�cally ML), it is important to point out that there is a di�erence with

regard to the role that they play in the overall system. The primary purpose of typing in

ML is to provide a partial assurance of the correctness of a program and is in a certain sense

orthogonal to the evaluation mechanism: As [29] argues, a program that can be well-typed

is semantically sound. Looked at operationally this means that, for example, \an integer is

never added to a truth value or applied to an argument, and consequently need not carry

its type around for run-time checking." In contrast, in our context, types are an integral

part of the underlying language. While they do play a role in the early detection of failed

computations*, as illustrated in the sum_of_list example, they also play an important

* A polymorphic type system for Prolog is described in [32] and it is argued that \well-

typed programs do not go wrong." The semantic basis for the notion of \wrong" in the

74

4.2: The Nature of Function and Predicate Variables

role in the evaluation mechanism, speci�cally in higher-order uni�cation. Consequently,

they do not constitute a component that is dispensible at \run-time."

Section 2: The Nature of Function and Predicate Variables

From the discussions earlier in this thesis, it is clear that one of the main di�erences

between Prolog and �Prolog is in the higher-order features that the latter provides. One

of the sources of this di�erence is that the logic of higher-order de�nite sentences permits a

quanti�cation over function variables. It is possible, as a consequence, to write procedures

in �Prolog that take functions as arguments. An illustration of this facility is provided by

the following set of procedure declarations that de�ne the operation of mapping a function

over a list:

mapfun F (cons X L1) (cons (F X) L2) :- mapfun F L1 L2.

mapfun F nil nil.

The predicate mapfun that is de�ned by these declarations may be used with its �rst and

second arguments instantiated. When used in this manner it will produce the list that

results from applying the �rst argument to each element of the second argument. To take

a concrete example, the query

mapfun X\(g a X) (cons a (cons b nil)) L,

would produce, as an answer, the substitution (cons (g a a) (cons (g a b) nil)) for L.

Answering this query would require an interpreter for �Prolog to form the terms ((X\(g a

X)) a) and ((X\(g a X)) b) and then reduce these terms using the rules of �-conversion.

The logical considerations underlying �Prolog actually permit functions to be treated

as �rst-class, logic programming variables. The implication of this observation is that the

values of function variables may in fact be computed through uni�cation. An illustration of

this particular role of function variables is provided in the context of the above declarations

by the query

(mapfun F

(cons a (cons b nil))

(cons (g a a) (cons (g a b) nil)).

There is precisely one answer for this query, namely the substitution X\(g a X) for F, and

an interpreter for �Prolog would �nd this answer. A point to note here is that the search for

such \higher-order" substitutions may involve making choices between substitutions, and

this adds an extra degree of non-determinism to the programming paradigm. To appreciate

context of logic programming is, however, somewhat unclear. It seems more appropriate,

following [30], to think of types in the logic programming context as providing an early

indication of computations that will not succeed.

75

4.2: The Nature of Function and Predicate Variables

the need for a non-deterministic search, consider an interpreter for �Prolog that functions

in a manner similar to the standard depth-�rst (uni�cation-�rst) interpreters for Prolog.

In attempting to answer the above query, such an interpreter would �rst need to consider

the task of unifying (F a) and (g a a). There are four terms that may be substituted for

F that satisfy this requirement, and these are listed below:

X\(g X X), X\(g a X), X\(g X a), X\(g a a).

If the interpreter picked any of these other than the second, this choice would lead to

a failure when an attempt is made at a later stage to unify (F b) and (g a b). The

interpreter would at this stage have to backtrack over its earlier choice of substitution.

The above discussions illustrate that �Prolog does embody a genuine understanding

of the notion of a function. It is important to note, however, that the understanding of

this notion that is embodied in �Prolog is fairly limited, since the class of functions that is

representable using typed �-terms is actually a very simple class. To appreciate the sense

in which this understanding is limited, let us consider the following query in the context of

the declarations de�ning the predicate mapfun.

mapfun F (cons a (cons b nil)) (cons c (cons d nil)).

There are several functions that in a sense `satisfy' this query, namely each function that

maps a to c and b to d. However, none of these functions is representable using our

�-terms and, consequently, any interpreter for �Prolog would fail in answering this query.

Conversely, it is not possible to use mapfun to produce the list (cons c (cons d nil)) from

the list (cons a (cons b nil)). In a more constructive sense, it is precisely this limitation

in the representational ability of our �-terms that makes the determination of function

values through uni�cation a reasonable computational operation. Furthermore, while it is

clear that what the use of these terms provides us with is largely a notion of substitution

through �-conversion and a mechanism for \pattern-matching" through uni�cation, these

operations are more powerful than the corresponding operations available through the use

of �rst-order terms. There are several situations where this enhanced power is useful, and

we shall see some instances of these situations in the next section.

In the example above we have considered a function variable that is not also a predi-

cate variable. Although there is not much di�erence between predicates and other functions

from a purely logical point of view, variables of the former sort may play quite a di�erent

role in a logic programming language from non-predicate variables. The reason for this is

that predicate variables may appear both inside the terms of a goal as well as the head of a

goal, i.e. they may appear intensionally and extensionally. When they appear intensionally,

their values are determined through uni�cation just like those of any other kind of variable.

When they appear extensionally, they possess the facet that they might be \executed."

To illustrate this dual nature predicate variables, let us consider the following set of

76

4.2: The Nature of Function and Predicate Variables

procedure declarations that de�ne the operation of mapping a predicate over a list.

mappred P nil nil.

mappred P (cons X L1) (cons Y L2) :- P X Y, mappred P L1 L2.

In the second declaration above, we note that the predicate variable P appears both inten-

sionally and extensionally. If this procedure is invoked with its �rst argument instantiated,

then the extensional occurrence of P would actually lead to the evaluation of the term

instantiating this argument. To make this picture more concrete, let us assume that we are

given the following additional set of declarations that de�ne the ages of various individuals,

age bob 23.

age sue 24.

age ned 23.

and now consider the following query:

mappred (X\Y\(age X Y))

(cons ned (cons bob (cons sue nil))

L.

This query essentially asks for the ages of the individuals ned, bob and sue. Evaluating

this query would lead to an instantiation of the predicate argument, P, of mappred with

the term (X\Y\(age X Y)). Using this instantiation and an appropriate instantiation for

X, a new goal would be formed out of the term (P X Y) and this goal would then be

evaluated to determine a value for Y. Thus the goals (age ned Y), (age bob Y), and

(age sue Y) would each be evaluated, and the values found for Y as a result would go

to form the substitution (cons 23 (cons 23 (cons 24 nil))) for L. It is clear that

the mapping operation de�ned by mappred is thus much stronger than that provided by

mapfun above, since the evaluation of the goal (P X Y) may require arbitrary computations

to be performed and is not restricted only to �-conversions. Indeed, the reader familiar

with a language like Lisp would recognise the similarities between the use of a predicate

variable in this example and the use of apply and lambda terms in Lisp. The value of

predicate variables in writing procedures that \abstract over" other procedures should also

be fairly clear from this example. It is, in fact, a recognition of this value that has lead to

the introduction of extra-logical predicates like call and univ into Prolog. The advantage

of �Prolog in this respect is that it provides this feature in a more general and theoretically

well-understood fashion.

In the example considered above, the �-term that was considered as an instantia-

tion for the predicate variable contained no logical connectives or quanti�ers. Our logical

analysis does permit these terms to contain the operations of conjunction, disjunction and

existential quanti�cation, and the use of these operations might have value in certain situ-

ations. To consider a particular example of the use of this feature, let us assume that we

77

4.2: The Nature of Function and Predicate Variables

are given the following set of procedure declarations

sublist P (cons X L) (cons X K) :- P X, sublist P L K.

sublist P (cons X L) K :- sublist P L K.

sublist P nil nil.

that de�ne the relation sublist between a predicate and two lists. This relation may be

understood in the following fashion: if P, L and K are closed terms, then (sublist P L

K) holds if K is a sublist of L all of whose members satisfy the property expressed by the

predicate P. Let us suppose now that we wish to de�ne a predicate have_age which is such

that (have_age L K) is provable if K is a sublist of the individuals in L whose ages are

de�ned. This predicate may be de�ned by the following declaration that uses sublist:

have_age L K :- sublist Z\(sigma X\(age Z X)) L K.

The point to note in this de�nition is the use of a predicate term that contains an explicit

quanti�er to instantiate the predicate argument of sublist; this is the term (Z\(sigma

X\(age Z X))) that corresponds to �z 9x age(z; x) in our logical language and that

describes the set of individuals that have an age. Omitting the quanti�er from this term,

as in the de�nition of same_age below,

same_age L K :- sublist Z\(age Z A) L K.

de�nes a predicate with a di�erent property: (same_age L K) is true only when all the

objects in K also have the same age.

The uses of predicate variables in the cases considered above were such that when-

ever a variable of this sort appeared as the head of a goal, it could always be completely

instantiated before the goal had to be invoked. There are cases, however, when the value

for the variable head of a goal cannot be fully determined before the goal is to be invoked,

and this value, in fact, needs to be computed through an evaluation. The search for such

values, however, is fairly unconstrained and there is, consequently, a question as to what

value should be returned. To appreciate the unconstrained nature of this search, consider

the query

P bob 23.

One answer to this query, in the context of the declarations that appear earlier in this

section, is of course the substitution (X\Y\(age X Y)) for P. There are, however, many

other substitutions that also serve this purpose. For instance, if G is any closed query that

can be satis�ed given our procedure declarations, then any substitution of the form X\Y\G

for P may logically be construed as an answer. Clearly there are far too many answers

to this query, and the query is, in this sense, an ill-posed one. In deciding what kind of

an answer to provide in such cases, we have help from our discussions in Chapter 3. By

virtue of our analysis there, we have seen that there is one trivial substitution that always

78

4.3: �-terms as Data Structures

works in such cases. This substitution, in the example above, is the one that replaces P

with X\Y\true. While this substitution is not very informative, it has the virtue of at least

being correct. Furthermore, it is perhaps a better strategy to provide only such a trivial

substitution as an answer rather than to embark on an unconstrained search to an ill-posed

query. The experimental interpreter that we describe in Section 4.4 is one that adopts this

strategy.

It is important to note that picking such a substitution does not necessarily trivialise

the kinds of values that can be found for predicate variables. If a predicate variable occurs

intensionally as well as extensionally in a goal, then this kind of a trivial substitution may

not be a solution. To see this, consider the following set of declarations that are a rendition

into the syntax of �Prolog of the de�nite sentences in Example 3.1.7.

primrel mother.

primrel wife.

rel R :- primrel R.

rel X\Y\ (sigma Z\(R X Z , S Z Y)) :- primrel R , primrel S.

mother jane mary.

wife john jane.

In the context of these sentences, the query

rel R, R john mary,

is satis�able only if the substitution X\Y\(sigma Z\(wife X Z, mother Z Y)) is made for

R. Notice that answering this query actually requires �nding a substitution for a predicate

variable | the query asks for a relation, in the sense of rel, between john and mary. The

choice of such relations is, however, well constrained by rel and therefore the query does

beget a meaningful answer.

Section 3: �-terms as Data Structures

The preceding section examined the nature of predicate and function variables in �Prolog.

It is hoped that the value of predicate variables in a logic programming language is also

clear from this discussion. The truly novel and, in our opinion, the most valuable aspect

of �Prolog is its use of �-terms as data structures. There are several kinds of objects

whose representation in a manner closely corresponding to their meaning requires the use

of a higher-order term language. Examples of objects of this kind are provided by logical

formulas and programs. The ability to reason about such objects is also important in several

situations, e.g. in constructing proof systems or program transformation systems. The task

of constructing such reasoning systems is, we believe, greatly facilitated by the use of a

programming paradigm that provides natural ways to represent these kinds of objects, and

also provides mechanisms for manipulating such representations. The logic programming

79

4.3: �-terms as Data Structures

paradigm possesses two characteristics that makes it particularly suitable in this respect:

The manner in which it supports the notion of search, and the ability that it provides to

examine the intension | or, the manner of description | of objects through uni�cation.

The use of logic programming in implementing formula or program manipulating systems

has, however, been limited, primarily because languages in this paradigm have traditionally

been based on �rst-order logic. By combining a richer representation language, namely, that

of typed �-terms with the basic computational machinery of logic programming we believe

that �Prolog overcomes this di�culty and, by doing so, opens the way for several new

applications for the paradigm of logic programming.

While a complete justi�cation of the above observations is beyond the scope of this

thesis, we provide, in this section, some preliminary indications of the usefulness of the

enriched term structures of �Prolog, and of the potential promise of a language like �Prolog

in general. We do so by demonstrating how logical formulas and programs may be naturally

represented by �-terms, and by showing how such representations simplify the task of

performing certain manipulations on them.

Representing and Manipulating Logical Expressions. The term structures of

�Prolog contain at least one enrichment over �rst-order terms in that they incorporate the

notion of �-abstraction. This operation is useful whenever there is a desire to represent

objects that involve the concept of a variable being bound over the scope of a sub-expression.

A situation of this sort arises, for instance, when there is a need to represent �rst-order

formulas as objects that are to be manipulated by programs. This aspect is brought out

clearly if we consider the task of representing the formula 8x9y(P (x; y) � Q(y; x)) as

a term in a logic programming language. Fragments of this formula may be encoded

into �rst-order terms, but there is a genuine problem with representing the quanti�cation.

We need to represent the variable being quanti�ed as a genuine variable, since logical

operations (such as quanti�er instantiation) may involve substituting for the variable. A

correct representation, however, requires that we distinguish occurrences of the variable

within the scope of the quanti�er from occurrences outside of it.

The mechanism of �-abstraction provides the tool needed to make such distinctions.

To illustrate this, let us consider how the formula above may be encoded using the terms of

�Prolog. For this purpose we �rst reserve the sort b for the types of terms that represent

�rst-order formulas. Further, we assume that the constants &, or and =>, which we shall

use to represent the the logical connectives ^, _ and �, are de�ned to be in�x operators of

type b -> b -> b. Finally, we assume that the constants all and some are de�ned to be

of type (i -> b) -> b; these two constants have the type of \generalised" quanti�ers and

may be used together with abstraction to represent universal and existential quanti�cation

respectively. Assuming these declarations, the formula above may be represented by the

�-term (all X\(some Y\(p X Y => q Y X))).

80

4.3: �-terms as Data Structures

Encoding Rules of Inference in �-Prolog Programs. The ability to represent for-

mulas in a manner that captures all the important logical aspects is of interest because it

provides a new domain of application for logic programming languages, namely as a vehicle

for implementing proof systems based on natural deduction. Consider, for instance, the

following rule of inference in a sequent calculus:

� �! F1 � �! F2

� �! F1 ^ F2

This rule embodies a notion of search that is relevant to the construction of proofs. To be

precise, it suggests that one way to construct a proof for the sequent � �! F1 ^ F2 is to

construct proofs for the sequents � �! F1 and � �! F2. Logic programming languages

provide us with a mechanism for computation that captures exactly this notion of search.

Thus, assuming our representation for formulas and that the antecedent of a sequent is

represented as lists of formulas, the above rule may be described by the following �Prolog

procedure

prove Gamma (F1 & F2) :- prove Gamma F1, prove Gamma F2.

Such a procedure may actually be used to search for proofs. Attempting to use it reveals

at least one use for higher-order uni�cation; the second-order term (F1 & F2) would have

to be matched with the term that instantiates it in an invocation.

While it may be argued that much of the same advantages may already be derived

from �rst-order term encodings of formulas, a consideration of quanti�er rules alters this

picture. Take, for example, the following rule in a sequent style calculus

P (t);� �! F

8xP (x);� �! F

where t is some term. An implementation of this rule requires the instantiation of a

quanti�er. Given our representation of quanti�cation, this operation may be described

rather directly as an application. The intended e�ect is then achieved by virtue of the rules

of �-conversion. Using this idea, the quanti�er rule above may now be easily described:

prove (cons (all X\(P X)) Gamma) F :- prove (cons (P T) Gamma) F.

Notice that T is a logic variable in this procedure. In the course of constructing a proof,

this T may be instantiated by an arbitrary term.

To provide a more complete illustration of the usefulness of a language such as �Prolog

in the context under discussion, let us consider the task of writing an interpreter for the

logic programming language that is described in [28] and [14]. This language extends

the conventional �rst-order logic programming language by permitting implications in goal

formulas. To be precise, the de�nite clauses and goal formulas in this language are described

81

4.3: �-terms as Data Structures

by mutual recursion in the following manner; we assume here that A, D, andG are syntactic

variables for (�rst-order) atomic formulas, de�nite clauses and goal formulas respectively.

D ::= A j G � A j 8xD, and

G ::= A j G

1

_G

2

j G

1

^G

2

j D � G j 9xG.

A program in this language is a �nite set of closed de�nite clauses, and a query is a closed

goal formula. The relation of being \derived from" between a query G and a program P,

denoted by P `

O

G, is formalised in [28] in a natural deduction framework by the following

proof rules:

(i) P `

O

9xG if there is a closed term t such that P `

O

G[x=t].

(ii) P `

O

G

1

^G

2

if P `

O

G

1

and P `

O

G

2

.

(iii) P `

O

G

1

_G

2

if P `

O

G

1

or P `

O

G

2

.

(iv) P `

O

D � G if P [fDg `

O

G.

(v) P `

O

A if A is atomic and is an instance of a formula in P.

(vi) P `

O

A if A is atomic and there is an instance G � A of a formula in P such that

P `

O

G.

These proof rules translate rather directly into procedures in �Prolog. Indeed, the

following list of declarations de�ne the predicate interpreter such that the goal (inter-

preter Clauses Goal) is derivable just in case Clauses is a list of terms that represents

the formulas in a program P, Goal is a term that represents a query G, and P `

O

G.

interpreter Cl (some G) :- interpreter Cl (G T).

interpreter Cl (G1 & G2) :- interpreter Cl G1 , interpreter Cl G2.

interpreter Cl (G1 or G2) :- interpreter Cl G1 ; interpreter Cl G2.

interpreter Cl (D => G) :- interpreter (cons D Cl) G.

interpreter Cl A :- member Clause Cl, instantiate Clause A.

interpreter Cl A :- member Clause Cl, instantiate Clause (G => A),

interpreter Cl G.

instantiate (all P) C :- instantiate (P T) C.

instantiate C C.

member X (cons X Rest).

member X (cons Y Rest) :- member X Rest.

An interesting aspect of the declarations above is the manner in which the predicate

instantiate is used repeatedly to perform universal instantiations and thus produce a

new copy of the body of a clause. It is important to notice that writing an interpreter

for the language under consideration really requires an explicit mechanism for variable

binding since it is necessary to determine the scope of a quanti�er. There is, for instance,

82

4.3: �-terms as Data Structures

a distinction to be made between the two goals 9x(8y p(x; y) � q) and (8x8y p(x; y) � q)

since only the latter may be derived from the program fp(a; c) ^ p(b; c) � qg. First-order

terms, of course, do not provide a facility for representing variable binding. It is therefore

di�cult to see how an interpreter that is equivalent to the one above can be written in Prolog

even with the \extra-logical" predicate clause [11] that captures some of the behaviour

of the predicate instantiate above. In general a logic programming language that is

based on higher-order terms, such as �Prolog, does appear to be the right implementation

mechanism for problems of the kind considered here.

Translating between English and Logical Forms. To provide another illustration of

the usefulness of �-terms, in particular of the idea of substitution provided by �-conversion

in their context, we consider the task of translating English sentences to logical forms. In the

example that we present here, we assume a familiarity with the formalism of de�nite clause

grammars (DCGs) as presented in [33]. We also assume an extension of this formalism to

�Prolog; the only real di�erence is that in �Prolog each English word must have a type,

and we assume that the type token is reserved for this purpose.

The problem that we wish to consider is best explicated by an example. We wish to

render the English sentence

\Every man loves a woman"

to the logical form

8x(man(x) � 9y(woman(y) ^ loves(x; y))

which, in our context, is represented by the �-term*

all X\ ((manp X) => (some Y\((womanp Y) & (lovesp X Y)))).

At �rst sight this seems a formidable problem since the accepted syntactic structures

for the given English sentence bear no similarity to the syntactic structure of the logical

expression. However Montague, in his work on the semantics of English (e.g. in [31]), has

shown how such a logical form may be obtained in a simple and elegant manner. The idea

is to associate terms of the typed �-calculus with words in English, and to look upon the

�nal expression as a result of composing these in accordance with the syntactic structure

of the English sentence and then applying the rules of �-conversion. The following DCG

in �Prolog that speci�es the relation between a small subset of English sentences and their

* In representing the above logical form, we have used the �Prolog constants manp, wom-

anp and lovesp, rather than man, woman and loves, to encode the predicates man,

woman, and loves, respectively. The reason for this is we need the latter constants for

representing the English words \man", \woman", and \loves", and they shall, therefore,

have a type that makes them inappropriate for representing predicates as well.

83

4.3: �-terms as Data Structures

logical forms borrows from Montague's ideas*.

sentence (P1 P2) --> np P1, vp P2.

noun-phrase (P1 P2) --> determiner P1, nom P2.

noun-phrase P --> proper-noun P.

nom P --> com-noun P.

nom X\((P1 X) & (P2 X)) --> noun P1, rel-clause P2.

verb-phrase X\(P2 (P1 X)) --> trans-verb P1, noun-phrase P2.

verb-phrase P --> intrans-verb P.

rel-clause P --> [that], vp P.

determiner P1\P2\(all X\(P1 X => P2 X)) --> [every].

determiner P1\P2\(some X\((P1 X) & (P2 X))) --> [a].

com-noun manp --> [man].

com-noun womanp --> [woman].

proper-noun (P\(P j)) --> [john].

trans-verb lovesp --> [loves].

intrans-verb livesp --> [lives].

In this DCG we note that the type of the (�rst) argument of com-noun (i.e. the types of

manp and womanp) is i -> b, of proper-noun is ((i -> b) -> b), of trans-verb is i ->

i -> b and of intrans-verb is i -> b; the other types should be clear from the context.

Using this DCG to parse a sentence illustrates the usefulness of the notion of sub-

stitution provided by �-conversion in the context of the data structures of �Prolog. The

point is perhaps best brought out by contrasting the DCG above with a �rst-order version

of it that was presented in [33] and that is reproduced below.

sentence(P) --> noun-phrase(X,P1,P),verb-phrase(X,P1).

noun-phrase(X,P1,P) -->

determiner(X,P2,P1,P) , noun(X,P3) , rel-clause(X,P3,P2).

noun-phrase(X,P,P) --> prop-noun(X).

verb-phrase(X,P) --> trans-verb(X,Y,P1) , noun-phrase(Y,P1,P).

verb-phrase(X,P) --> intrans-verb(X,P).

rel-clause(X,P1,(P1 & P2)) --> [that] , verb-phrase(X,P2).

rel-clause(_,P,P) --> [].

determiner(X,P1,P2,all(X,(P1 => P2))) --> [every].

determiner(X,P1,P2,exists(X,(P1 & P2))) --> [a].

noun(X,man(X)) --> [man].

noun(X,woman(X)) --> [woman].

proper-noun(john) --> [john].

trans-verb(X,Y,loves(X,Y)) --> [loves].

intrans-verb(X,lives(X)) --> [lives].

* An example, similar in spirit to the one we present here, also appears in [45].

84

4.3: �-terms as Data Structures

It is a fairly uncontroversial observation that the higher-order version of the DCG

is far more perspicuous than the �rst-order version. The reason for this is also obvious.

There is a need for an operation of substitution corresponding to �-conversion in order to

provide a solution to this problem. However, this operation is required at a conceptual

level that is di�erent from that of the logic of the grammar rules. This distinction is

provided rather naturally in �Prolog by the use of two distinct computational mechanisms

to handle to process of substitution and the process of parsing. In contrast, the �rst-order

language necessitates the presentation of the rules of �-conversion that are pertinent to the

solution of the problem within the logic of the grammar rules. Thus the arguments of the

DCG `predicates' sometimes perform the task of abstraction, sometimes of application and

sometimes of constructing a logical form, and it is not clear which task is being performed

in each instance!

The availability of higher-order terms, and the use of these in the DCG in �Prolog

o�ers another bene�t that should be noted in this context. In the course of parsing a

sentence, the arguments of the DCG predicates are instantiated by terms that have a

logical signi�cance, and that are, in fact, intended to correspond closely to the meaning of

the subpart of the sentence that has been parsed. We have seen earlier in this section that

it is possible to encode relationships between the denotations of such terms by a use of

the logic of de�nite sentences. It thus appears that a language such as �Prolog provides a

framework for integrating some of the syntactic and semantic processes that are necessary

for understanding sentences in a natural language into one computational process. While

we do not pursue this aspect in this thesis, some indications of the suitability of �Prolog

in this respect are contained in [27].

One �nal point to note is that the DCG presented above may also be used to solve

the inverse problem, namely that of obtaining a sentence given a logical form, and this

illustrates a genuine use of higher-order uni�cation. Consider the task of obtaining a

sentence from the logical form that is represented by the expression

all X\ ((manp X) => (some Y\((womanp Y) & (lovesp X Y)))).

This task involves unifying the term above with the expression (P1 P2). One of the uni�ers

for these two expressions is

f h P1, P\(all X\((manp X) => (P X)))i,

h P2, X\(some Y\((womanp Y) & (lovesp X Y))i g.

Once this uni�er is found, the task then breaks into that of obtaining a noun phrase from

the the expression

P\(all X\((manp X) => (P X)))

and a verb phrase from

X\(some Y\((womanp Y) & (lovesp X Y)).

85

4.3: �-terms as Data Structures

The use of higher-order uni�cation thus seems to provide a top-down decomposition in the

search for a solution. This view turns out to be a little simplistic however, since uni�cation

permits more structural decompositions than are warranted in this context. Thus, another

uni�er for the pair considered above is

f h P1, Z\(all Z)i;

h P2, X\((manp X) => (some Y\((womanp Y) & (lovesp X Y))))ig

which does not correspond to a meaningful decomposition in the context of the rest of

the rules. It is possible to prevent such decompositions by anticipating the rest of the

grammar rules. Alternatively, decompositions may be eschewed altogether; a logical form

may be constructed bottom-up and compared with the given one. The �rst alternative

detracts from the clarity and the speci�cational nature of the solution. The latter involves

an exhaustive search over the space of all sentences. The DCG considered here, together

with higher-order uni�cation, seems to provide a balance between clarity and e�ciency.

Representing and Manipulating Programs. We are now interested in a represen-

tation of programs that facilitates the task of analysing their structures and in performing

transformations between them based on such an analysis. The data structures of �Prolog

are particularly apt in this respect, since, being based on a �-calculus, they provide us

with the tools required to make the functional structure of programs explicit. There is,

however, an apparent problem since the simply typed �-terms that are the data structures

of �Prolog do not embody notions such as recursion and do not provide a concept of data

types that is rich enough for representing genuine programs. The de�ciency with regard to

data types can be overcome by describing suitable encodings for these into �-terms; such

is the approach adopted, for instance, in the Church numeral representation of integers.

There is, however, an alternative solution that is more direct and that is adequate for our

concerns in this section. This approach involves the use of �Prolog constants to represent

notions like recursion and data types. The equational properties of the notions represented

by such constants are, of course, not understood in a primitive sense within �Prolog. This

is no obstacle, though, since those properties that require to be understood in manipu-

lating representations of programs containing such constants may be encoded in �Prolog

procedures.

The ideas mentioned above may be illustrated by considering the task of representing

simple functional programs. For simplicity of exposition, we assume that the programs that

we consider perform computations over two primitive domains, these being the domains of

integers and of truth values. We shall need types for �Prolog terms that represent objects

in these two di�erent domains, and we reserve the types bool and int for this purpose.

As noted already, our programs might involve operations on objects in these domains, and

in representing these in �Prolog we shall use appropriately typed constants that bear the

same \names" as the operations they represent. The following type declarations in �Prolog

86

4.3: �-terms as Data Structures

provide an illustration of a set of such constants that we shall use in the representation of

the sample programs we consider below; we assume also that an additional set of operator

declarations de�ne =, <, +, and - as in�x �Prolog operators.

type not bool -> bool.

type = int -> int -> bool.

type < int -> int -> bool.

type + int -> int -> int.

type - int -> int -> int.

In order to represent recursive programs, we need two other constants. These are the ones

that shall represent the conditional and the �xed-point operators, and are de�ned by the

following declarations.

type cond bool -> A -> A -> A.

type fixpt (A -> A) -> A.

These constants have a polymorphic type, but could be specialised for the purpose of the

examples in this section. Thus, the only version of cond that we shall need is the one that

has the type

bool -> int -> int -> int.

Armed with this vocabulary of constants, we may now represent simple functional

programs in the term structures of �Prolog. To illustrate this, let us consider the following

program, in a syntax that bears some similarities to that of ML [17], that adds two integers:

sum(n,m) = if n = 0

then m

else sum(n - 1,m + 1)

This program may be represented by the �Prolog term

(fixpt Sum \ N \ M \ (cond (N = 0)

M

(Sum (N - 1) (M + 1))))

Performing Transformations between Programs. The term representation of the

program shown above has certain advantages given that �Prolog understands the equational

nature of typed �-terms. The computational characteristics of the program sum is, for

instance, impervious to the particular choice of name for the function or its arguments.

This aspect is captured precisely by the notion of �-conversion in the context of the term

representation of the program. Given a particular name for each argument, however, there

is a strong correspondence between this name and each of its occurrences within the body

of the program. This notion, of course, has a precise counterpart in the operation of binding

as it is understood in the context of �-terms. Finally, the �-term representation clearly

87

4.3: �-terms as Data Structures

captures the functional nature of the program in question. This aspect is of particular

interest, since several manipulations that we might wish to perform on programs, such as

those involved in e�ecting transformations between them, may be easily described based

on their functional structure. In this regard �Prolog o�ers another advantage, namely the

ability to examine the functional structure of terms through higher-order uni�cation. This

ability makes it possible to implement directly the transformations that may be described

through �Prolog procedures.

We illustrate the above observations by considering the task of describing, and thus

implementing, a particular kind of transformation between programs. The transforma-

tion that we consider involves removing tail recursion, in programs of two arguments in

our simple functional programming language, in favour of iteration. The nature of the

transformation intended may best be illustrated by an example of its application. Let us

consider the program sum that was presented above. An execution of this program may in-

volve a recursive call to itself. However, such a recursive call, if it occurs, would be the last

expression that needs to be evaluated. Consequently, the recursion in this program may

be replaced by a computationally less expensive iteration. The following program in an

Algol-like syntax would, for instance, return the sum in result if done were initialised to

false and loc1 and loc2 were initialised to the numbers whose sum needs to be computed.

while not(done) do

begin if (loc1 = 0)

then begin done := true ;

result := loc2

end

else begin loc1 := loc1 - 1 ;

loc2 := loc2 + 1

end

end

Given our term representation of functional programs, the tail-recursiveness of at least

some of these programs can easily be recognised. The following term, for instance, would

unify only with a term that represents a tail-recursive program

(fixpt Fun\X\Y\ (cond (C X Y) (H X Y) (Fun (F1 X Y) (F2 Y))))

The idea here is that the argument of fixpt in this term imposes a constraint on the

functional structure on any term that it uni�es with. The latter term must be such that

the only occurrence of the function variable Fun being abstracted must be in the `second

arm' of cond and, that too, as the principal functor of that arm. It is clear that terms

having such a structure can only correspond to tail-recursive programs.

Before we can describe any transformations from the representations of our functional

programs into iterative programs, we clearly need to describe term representations for

88

4.3: �-terms as Data Structures

iterative constructs. There are several di�erent representations that might be chosen for

this purpose, and the one we use here is, perhaps, the simplest. We shall represent iterative

programs by (�rst-order) terms that re
ect their \parse" structure*. This representation

is made precise as follows. There are essentially two categories of constructs that need to

be represented, and these correspond to commands and evaluable expressions respectively.

Constructs of the latter category shall be represented by �Prolog terms of the types int

and bool described before, whereas for terms representing constructs of the former kind

we reserve the type cmd. There is another notion that is of importance in the context of

iterative programs, and this is that of locations in a store. We shall use �Prolog constants to

represent each of these locations and we reserve the type reg for these constants. In forming

evaluable expressions, use might be made of operations on data types, and we assume that

these operations are represented in much the same way as in the case of functional programs.

There is one additional operation that needs to be represented, though, and this is the one

that \coerces" a location in the store into its contents. We use the constant find of type

reg -> Val to represent this operation; notice that this constant is polymorphic to capture

the fact that the contents of a location may either be a boolean or an integer. Finally there

are operations that are used in forming commands and we assume that these operations are

represented by making use of �Prolog constants of appropriate types; for the discussions

in this section, we shall use the constants := of type reg -> Val -> cmd, & of type cmd

-> cmd -> cmd, if of type bool -> cmd -> cmd -> cmd, and while of type bool -> cmd

-> cmd, in representing the assignment command, the sequencing of commands, and the

conditional and the iteration commands respectively. The various aspects of the scheme

just discussed may now be illustrated by considering the representation for the iterative

program above. Assuming that result, done, loc1 and loc2 are each de�ned as constants

of type reg, this program may be represented by the �Prolog term shown below; we assume

* There is a certain asymmetry in this choice that should be mentioned. The term

representations chosen for functional programs could be thought of as translations of

these programs into an intermediate language on the way to explicating their meanings;

by associating a denotation with each of the constants used in these representations

and by using the antecedently understood meaning of �-terms, we obtain a denotation

for the program that a term represents. A representation that has much the same

role for programs with iterative constructs could have been adopted, e.g. based on

the discussions in [40]. The virtue of such a representation is that the correctness

of transformations such as the one that we present below could then be established

solely by noting the correspondences between the denotations of �-terms. Although

such a course is to be followed in a serious use of �Prolog in implementing program

transformations that can be justi�ed to be correct, we have eschewed this approach

here. This is because the description of this kind of a representation is fairly involved

and is appropriate only if accompanied by arguments pertaining to correctness; our

primary intent in this section is to demonstrate the potential usefulness of the data

structures of �Prolog, and of higher-order uni�cation in their context, in describing,

and thus implementing, program transformations and we do not wish to dwell on issues

of correctness here.

89

4.3: �-terms as Data Structures

here that := and & are de�ned to be in�x operators and that & has higher precedence than

:=.

(while (not (find done))

(if ((find loc1) = 0)

(done := true & result := (find loc2))

(loc1 := ((find loc1) - 1) &

loc2 := ((find loc2) + 1))))

Returning to the issue of e�ecting a transformation from the representation of the

recursive version of sum into the representation of the iterative version, we see now that

this may be described via a process of \template" matching. Assume that a given term

uni�es with the \template" for tail-recursive programs that was shown above. Using the

substitutions for the variables C, H, F1, and F2 that make such a uni�cation possible, this

term may then be transformed into an alternative one by utilising the template

(while (not (find done))

(if (C (find loc1) (find loc2))

(done := true &

result := (H (find loc1) (find loc2)))

(loc1 := (F1 (find loc1) (find loc2)) &

loc2 := (F2 (find loc2)))))

As a particular instance, consider the term representation for the recursive version of sum.

Unifying this with the �rst template yields the substitution

f hC , X\Y\(X = 0)i , hH , X\Y\Yi,

hF1 , X\Y\(X - 1)i , hF2 , Y\(Y - 1)i g

Applying this substitution to the second template would then yield the term structure

corresponding to the iterative version.

The recognition of tail recursion outlined above, and the corresponding conversion

to an iterative version, illustrates a novel use of higher-order uni�cation. This kind of use

of higher-order uni�cation has been recognised previously by Huet and Lang [23], and has

been used there to formalise some of the approaches to program transformations studied

by Burstall and Darlington [12]. The applicability of the notion of template matching that

is the basis of this approach is, however, limited since only restricted kinds of patterns

can be recognised by using it. Consider, for instance, the following term that represents a

program that computes the greatest common denominator of two numbers:

(fixpt Gcd\X\Y\ (cond (1 = X) 1

(cond (X = Y) X

(cond (X < Y) (Gcd Y X)

(Gcd (X - Y) Y)))))

90

4.3: �-terms as Data Structures

The program represented by this term is obviously tail-recursive. It is clear, though, that

this term does not unify with the pattern that was used to recognise the tail-recursiveness

of sum. What is worse is that there is no term all of whose instances are representations of

tail-recursive programs and which also has the above term and the term representation of

sum as instances.

There is, nevertheless, a recursive speci�cation of a class of terms that can be used to

recognise the tail-recursiveness of both the programs above. Consider a term of the form

(fixpt Prog). In the trivial case this term represents a tail recursive program if Prog

is of the form F\X\Y\(H X Y) or of the form F\X\Y\(F (H X Y) (G X Y)) | i.e. it

corresponds to a recursive program in which there are either no recursive calls or there is

only a recursive call with modi�ed arguments. However, the term also represents a tail

recursive program if Prog has the functional structure F\X\Y\(cond (C X Y) (H1 F X

Y) (H2 F X Y)) where (fixpt H1) and (fixpt H2) themselves represent tail-recursive

programs.

It should now be clear how procedures in a logic programming language may be

combined together with �-terms to provide a concise speci�cation of the class of terms

described above. Such a speci�cation could then be used to recognise the fact that both

sum and the program for computing greatest common denominators that is represented by

the term shown above are tail-recursive. What is interesting is that the same description

also provides us with a means for specifying a transformation into an iterative version of

the program. The idea here is as follows. The term (fixpt Prog) transforms into the term

(while (not (find done)) Body)

where Body is obtained by a transformation of Prog; the intuitive picture is that an iteration

(in which done is used to
ag the end of the iteration) replaces recursion and the \code"

to be iterated over is obtained from the form of the functional program. Now the form of

Body can easily be guessed from the cases corresponding to the form of Prog. The case

where Prog is of the form F\X\Y\ (H X Y) corresponds to the \bottoming out" of the

recursion and, hence, to iterative code for terminating the iteration. The case when Prog

is of the form F\X\Y\ (F (H X Y) (G X Y)) corresponds to resetting of variables within

an iteration. Finally, the case when Prog has the form of a conditional yields a conditional

in iteration.

Putting these observations together with a recognition of some \special" cases in which

the iterative code may be simpli�ed, we obtain the following set of �Prolog procedures that

specify a richer class of tail-recursion transformations than can actually be speci�ed by the

mere use of templates.

91

4.4: An Experimental Interpreter for �Prolog

trans_tail (fixpt Prog)

(while (not (find done)) G) :-

trans_body Prog G.

trans_body (F\X\Y\ (H X Y))

(result := (H (find loc1) (find loc2)) &

done := true).

trans_body (F\X\Y\ (F (G X Y) Y))

(loc1 := (G (find loc1) (find loc2))).

trans_body (F\X\Y\ (F (G X Y) (H Y)))

(loc1 := (G (find loc1) (find loc2)) &

loc2 := (H (find loc2))).

trans_body (F\X\Y\ (F (G X Y) (H X Y)))

(temp := (find loc1) &

loc1 := (G (find temp) (find loc2)) &

loc2 := (H (find temp) (find loc2))).

trans_body (F\X\Y\ (cond (C X Y) (H1 F X Y) (H2 F X Y)))

(if (C (find loc1) (find loc2)) G1 G2) :-

trans_body H1 G1, trans_body H2 G2.

The predicate trans_tail de�ned by the procedures above describes the transformation of

a class of tail-recursive programs, that includes both sum and the program for computing

greatest common denominators, into their respective iterative versions. The clarity and the

conceptual elegance of this description is perhaps best appreciated by the reader who goes

through the exercise of providing equivalent descriptions in a language that is not equipped

with an understanding of the binding operation provided by �-abstraction. Another point

to note is that these procedures also provide an implementation of the transformation

that they describe. In attempting to perform this transformation on speci�c programs, a

�Prolog interpreter would make a non-trivial use of higher-order uni�cation| in particular,

of second-order matching* | as the reader may verify.

Section 4: An Experimental Interpreter for �Prolog

The discussions in Section 3.4 have examined the logical basis for an interpreter for �Prolog.

From these discussions, it is clear that such an interpreter may be described as a procedure

which, given a program P and a query G, attempts to construct a P-derivation of G.

Abstracting out those components of a tuple in a P-derivation that are relevant to the search

* The second-order matching problem is a restricted version of the higher-order uni�cation

problem that is described as follows. Given two terms F

1

and F

2

all of whose variables

have a type either of the form �

1

! � � � ! �

n

! � or of the form � where �

1

,: : :,�

n

,

and � are atomic types, we desire to �nd a substitution � such that �(F

1

) �-converts

to F

2

.

92

4.4: An Experimental Interpreter for �Prolog

for a P-derivation, we see that the search space for such a procedure may be characterised

by a set of states, each of which is represented by a pair consisting of a goal set and a

disagreement set. The initial state in the search corresponds to the pair hfGg; ;i. At

each stage in the search, the procedure is confronted with a state that it must attempt

to simplify. The process of simpli�cation involves trying either to �nd a solution to the

uni�cation problem posed by the disagreement set, or to reduce the goal set to an empty set

or a set of
exible atomic goals. Given a particular state, there are several ways in which a

speci�c step may be chosen in attempting to bring the search closer to a resolution. There

are, however, only a �nite number of such choices, and we have seen that a procedure that

tries, exhaustively, all the steps possible at each stage is bound to �nd a P-derivation of G

if one exists.

A theorem-proving procedure that is complete can thus be described for the logic of

de�nite sentences. In order to be complete, however, such a procedure must perform an

exhaustive search. An exhaustive search is clearly an inappropriate basis for a procedure

that is also to be an interpreter for a programming language, and trade-o�s need to be

made between completeness and practicality. In order to get an empirical understanding

of the nature of the trade-o�s involved, we have constructed an experimental interpreter

for �Prolog*. This interpreter has been implemented in C-Prolog [35], a dialect of Prolog,

and has been tested on the examples described in this thesis and on several other exam-

ples as well. In attempting to �nd a P-derivation, this interpreter performs a depth-�rst

search with backtracking that in some ways resembles the kind of search standard Prolog

interpreters perform. Indeed, our interpreter was constructed with the intention that it

should behave in a manner similar to the Prolog interpreter on the �rst-order subset of our

language. In dealing with the higher-order aspects, however, there are certain additional

choices to be made. We describe some of the features of our interpreter below, highlight-

ing, in the process, the additional choices and also some of the experiences we have gained,

chie
y in implementing higher-order uni�cation. There are certain problems, discussed

brie
y in Section 4.1, in constructing an interpreter for �Prolog that arise out of our use of

type variables, and we also describe below some techniques that we have used to deal with

this problem.

Unify-�rst. An interpreter for �Prolog may be thought of as a procedure that, given

a program P, and a goal G, starts with a P-derivation sequence for G and attempts to

* As is apparent from the discussions in this chapter, an implementation of �Prolog

involves more than the implementation of an interpreter. Our implementation e�ort

can, in fact, be factored into two parts: That of constructing a parser for understanding

�Prolog declarations and queries, for performing type inference, and so on, and that of

constructing an interpreter for answering queries. However, it is only questions relating

to an interpreter that hold our attention in this section, and we therefore discuss only

the latter aspect of our implementation here.

93

4.4: An Experimental Interpreter for �Prolog

extend this into a P-derivation of G. As we have observed, the choices in attempting to

extend a P-derivation sequence can be classi�ed into two broad categories, namely that

of trying to solve a uni�cation problem and that of trying to \solve" a goal set. We have

seen, in Lemma 3.4.21, that the particular manner in which this choice is exercised does

not a�ect the overall completeness of a proof procedure. Our interpreter chooses between

the two courses in the following fashion. If the uni�cation problem corresponds to a solved

disagreement set, then the interpreter attempts to solve a goal from the goal set. Otherwise,

the interpreter always elects to use a uni�cation step. There are two points that should be

noted with regard to this strategy. First, in always trying to solve an unsolved uni�cation

problem before looking at the goal set, our interpreter functions much like standard Prolog

interpreters which always solve the trivial, �rst-order uni�cation problems �rst. Second,

the attempt to solve a uni�cation problem always stops short of looking for uni�ers for

solved disagreement sets. The search for uni�ers for such sets can be rather expensive [22],

and we avoid this search by \carrying forward" the solved disagreement sets*. In fact,

our interpreter never attempts to �nd uni�ers for a solved disagreement set; if it has also

succeeded in solving the goal set, then it returns the answer substitution and the �nal solved

disagreement set. We describe below certain heuristic improvements that are incorporated

in our interpreter that, in some cases, have the e�ect of reducing such sets to empty sets.

In other cases, it is our belief that the user is not interested in particular uni�ers for the

�nal solved set.

Disjunctive Goals. When the interpreter attempts to solve a goal set, it does so by

picking the �rst goal in the sety. If the goal is not atomic and not disjunctive, then there is

only one way in which it may be simpli�ed; the interpreter performs this simpli�cation and

reinserts the result at the beginning of the set. If the goal set is of the form fG

1

_G

2

g[G,

then, for the sake of completeness, the interpreter should actually try to solve both fG

1

g[G

and fG

2

g [G in a breadth-�rst fashion. In such cases, however, our interpreter attempts

to solve fG

1

g [G �rst, and returns to fG

2

g [G only if its �rst attempt leads to a failure.

Flexible Atomic Goals. If the interpreter encounters a
exible atom in the goal set,

then it solves it in a \eager" fashion using the substitution discussed in Theorem 3.4.18.

Thus, if the goal is of the form [P C

1

: : : C

n

] where P is a variable of the type �

1

!

: : :! �

n

! o, then the interpreter removes this goal from the goal set and \simpli�es" the

resulting goal set and the associated disagreement set further by applying the substitution

fhP; �x

�

1

: : : : �x

�

n

:>ig to them. For the sake of completeness it is necessary that the

interpreter should delay solving such a goal if P appears free in the associated disagreement

* Note that the trivial substitution of Theorem 3.4.18 works only if the associated goal

set is either empty or consists solely of
exible atoms.

y We make a systematic confusion in this section between a set and its representation in

a computer as a list.

94

4.4: An Experimental Interpreter for �Prolog

set or in any of the other goals in the goal set. To illustrate the need for this, consider the

program in Example 3.1.7 a version of which appears in �Prolog syntax in Section 4.2. In

the context of this program, the query

R john mary , rel R

has an answer, namely

R = X\Y\ (sigma Z\ (mother mary Z , wife Z john)),

but our interpreter will fail to �nd it. Our reason for adopting this course is that we believe

reordering goals is an expensive operation, and that the need for this is eliminated if the

user is sensitive to some aspects of control. Thus, the reordered query

rel R , R john mary

will produce the expected answer.

Rigid Atomic Goals. There is �nally the case when the goal the interpreter encounters

is a rigid atom. In attempting to solve such a goal, the interpreter must use a backchaining

step. Now, in performing such a step, it is evidently enough to consider only procedures of

the form A or A :- G where the head of A is identical to the head of the goal being solved,

since all other cases will cause the disagreement set to be reduced to F by SIMPL. Our

interpreter considers only such procedures and, in fact, indexes procedures by the name of

the predicate they de�ne. For completeness, it is necessary to use each of these procedures

in a breadth-�rst fashion in attempting to solve the goal. Here again we have sacri�ced

completeness by using the scheme that is used by standard Prolog interpreters: We pick

the �rst appropriate procedure based on some predetermined ordering of the procedures in

the program, and return to attempt the next one only if the �rst choice leads to failure.

Determining Type Instantiations. As we noted in Section 4.1, our use of type variables

requires us to pick not only a procedure but also a particular type instance of it, in the last

case discussed above. The implication of this observation is that after choosing a particular

procedure we also need to instantiate all the type variables that appear in it before we use

it in an attempt to solve a rigid atomic goal. If a procedure does have type variables in it,

this turns out to be a problem since there are obviously an in�nite number of type instances

of it, many of which may later turn out to be inappropriate in particular cases due to type

considerations. The approach that we have adopted to deal with this proliferation of, often

unnecessary, cases is to permit type variables in the types of the goals in a goal set and of the

w�s in a disagreement set, thereby delaying the determination of type instances until it is

actually needed. The only occasions when type variables might need to be instantiated are

when use is made of SIMPL and MATCH. Of these functions, SIMPL can be modi�ed to

deal directly with type variables. In fact, the modi�cation to SIMPL, that is incorporated

into our interpreter, has the e�ect of determining the appropriate instantiations for type

95

4.4: An Experimental Interpreter for �Prolog

variables in several cases. We illustrate this by considering an example. Let us assume that

we have the goal

append

1

(cons 1 nil) (cons 2 nil) L,

where the type of append

1

is evidently (list int) -> (list int) -> (list int) -> o.

Further, let us assume that wish to use the procedure

append

2

(cons X L) L2 (cons X L3) :- append

2

L1 L2 L3,

from the program in Section 4.1 in an attempt to solve this goal; we note that append

2

in this procedure has type (list A) -> (list A) -> (list A) -> o we have used

superscripts on append only to distinguish between two occurrences of this constant that

have di�erent type expressions associated with them. This attempt to solve the goal will

lead to an application of SIMPL on the set

f h(append

2

(cons X L) L2 (cons X L3)),

(append

1

(cons 1 nil) (cons 2 nil) L)i g.

Since the types associated with the two w�s in the pair in this set must be identical if they

are to unify, it is clear that the type variable A must be instantiated to int. The e�ect of

such an instantiation may be obtained by performing �rst-order uni�cation on the types

associated with the w�s in a disagreement pair, and we have modi�ed SIMPL to do such

a uni�cation.

Types of course play a critical role in MATCH and, in determining substitutions here,

type expressions containing variables will, in general, need to be instantiated. However,

there are cases even here in which such an instantiation may be delayed in the hope that

SIMPL will be able to determine a unique instantiation. To see this, let us assume that the

exible w� provided to MATCH is ��x:[f A

1

: : : A

n

] and the rigid w� is ��x:[C B

1

: : : B

m

]*

and that the type expressions associated with f and C are �

1

1

! : : : ! �

1

n

! �

1

and

�

2

1

! : : :! �

2

m

! �

2

respectively. Now if �

1

, and consequently also �

2

, is not a variable,

then IMIT may still generate one substitution. To take a speci�c example, let the two

w�s provided to IMIT be [F X] and [cons 2 [cons 3nil]], where the type associated with the

variable F is A! (list int). In this case IMIT may return the substitution

fhF; �w:[cons [h

1

w] [h

2

w]]ig

where the types associated with w, h

1

and h

2

are W , W ! int and W ! (list int)

respectively.

In a similar manner we note that if, in addition to �

1

not being a variable, the target

types of �

1

i

are not variables for 1 � i � n, then PROJ

i

may produce only one substitution

without instantiating type variables.

* We assume here that SIMPL makes the type expressions associated with the two w�s

in each disagreement pair the same. It can be seen, then, that the w�s provided to

MATCH have \�-normal forms" in which their binders are identical.

96

4.4: An Experimental Interpreter for �Prolog

To deal with the other cases, however, MATCH would need to produce instantiations

for at least some of the type variables that occur in the w�s it is provided with. This is,

of course, a problem since MATCH would in e�ect have to produce an in�nite number

of substitutions. When encountered by such cases, our current interpreter gives up and

indicates a run-time error. It is clear that there is a need for a better solution for the

problem that led us to the introduction of type variables. Such a solution is, perhaps, to be

found by using a language that has a richer type structure; a detailed study of this aspect

is, however, beyond the scope of this thesis.

Choosing Substitutions. In attempting to solve (the uni�cation problem corresponding

to) a disagreement set, the interpreter picks the �rst
exible-rigid pair in the set and invokes

MATCH to generate a set of substitutions corresponding to this pair. It then chooses one of

these substitutions and uses it to progress the search further. Since MATCH produces more

than one substitution in general, the remaining substitutions are retained and constitute

alternative choices in case there is a need to backtrack due to a failure.

There are certain biases that may be incorporated in choosing from the substitutions

provided by MATCH, depending on the kinds of solutions that are desired �rst. To illustrate

this, let us consider the uni�cation problem posed by the following disagreement set

fh[F 2]; [cons 2 [cons 2nil]]ig

where F is a variable of type int! (list int). Now there are four uni�ers for this set and

these are listed below:

fhF; �x:[cons x [cons xnil]]ig,

fhF; �x:[cons 2 [cons xnil]]ig,

fhF; �x:[cons x [cons 2nil]]ig,

fhF; �x:[cons 2 [cons 2nil]]ig.

If the substitutions provided by PROJ

i

s are chosen �rst at each stage, then these

uni�ers will be produced in the order that they appear above, perhaps with the second and

third interchanged. On the other hand, choosing the substitution provided by IMIT �rst

results in these uni�ers being produced in the reverse order. Now, the above uni�cation

problem may arise in a programming context out of the following kind of desire: We wish

to unify the function variable F with the result of \abstracting" out all occurrences of

a particular constant, which is 2 in this case, from a given data structure, which is an

integer list here. If this is the desire, then it is clearly preferable to choose the substitutions

provided by the PROJs before those provided by IMIT.

In general, it is necessary to consider the aspect of providing a user of �Prolog with

a means for controlling the uni�cation process. The ability to provide such controls would,

we believe, depend on one's being able to describe the e�ect of steps within the uni�cation

algorithm on its global behaviour. While some understanding of this aspect has arisen out

97

4.4: An Experimental Interpreter for �Prolog

of an experimentation with various programs, this is at the present time too preliminary

to be reported here; we hope that a much clearer picture will emerge out of more extensive

experimentation. It is also to be noted that although our language provides for terms of all

types, it may be desirable, for the purpose of constructing an interpreter that is \e�cient",

to tailor it to deal only with certain special cases. For instance, much mileage may be

obtained out of using just �-conversion and second-order matching which is known to be

decidable [23]. Once again, this is an issue that needs to be settled on the basis of further

experimentation.

Improving the Uni�cation Process. Certain techniques are suggested in [22] that

sometimes help in the solution of the uni�cation problem, and we mention one of these

that is incorporated into our interpreter. Consider a disagreement pair of the form hx; F i

where x is a variable and F is a w� in which x does not appear free. It can easily be

shown that fhx; F ig is a most general uni�er of fhx; F ig. This observation can actually be

strengthened, since we have assumed the rule of �-conversion. Let us suppose that instead

of the pair hx; F i, we now have the pair hF

1

; F i where F

1

has as a �-normal form the w�

�y

1

: : : : �y

n

:[x y

p

1

: : : y

p

n

]

such that y

p

1

; : : : ; y

p

n

is a permutation of the sequence y

1

; : : : ; y

n

and, further, none of the

variables y

1

; : : : ; y

n

; and x occur free in F . It may once again be seen that the substitution

fhx; �y

p

1

: : : : �y

p

n

:[F y

1

: : : y

n

]ig

is a most general uni�er of fhF

1

; F ig. Thus, if a pair of this form appears in a disagreement

set, then the latter may be simpli�ed by �rst removing the pair from the set and then

applying the most general uni�er displayed above to the resulting set and to the associated

goal set. We have incorporated this heuristic into SIMPL and have found it useful in several

instances. For example, if a program P and a query G contain only �rst-order terms, then

the �nal solved set in any P-derivation of G is always reduced to an empty set without

calling MATCH if use is made of this heuristic.

In a similar vein, if the pair hF

1

; F i shown above is such that x appears free in F , there

are cases in which it is clear that no uni�ers can exist for a disagreement set that contains

this pair. One such case is when x and F are �rst-order terms. Indeed, a check for such

cases, known as the occurs check, is an integral part of �rst-order uni�cation algorithms.

However, a naive use of the occurs check is not appropriate in the higher-order context.

Consider, for instance, the disagreement pair hx; [f x]i, where f is a function variable of

type int! int. This pair has a uni�er, namely fhf; �y:yig, although x appears free in the

second term in the pair. There are, nevertheless, certain cases when nonuni�ability can be

detected even in the higher-order context. Huet [22] describes a method for detecting some

of these cases that can be incorporated into SIMPL. This method actually subsumes the

occurs check for the �rst-order case. Incorporating it into SIMPL together with the heuristic

98

4.4: An Experimental Interpreter for �Prolog

discussed earlier in this section, therefore, has the e�ect that the uni�cation problem for

�rst-order terms is solved entirely within SIMPL.

99

Chapter 5

Conclusion and Future Work

The motivation for this thesis was provided by the realisation that a logic programming

language incorporating an understanding of higher-order objects would be valuable. A

language embodying such an understanding could be described in two distinct ways. The

�rst approach would be to retain the �rst-order logic underlying traditional logic program-

ming languages and to add on higher-order features at the level of an implementation. The

second approach would be to abstract out those properties of the underlying �rst-order

logic that are essential to its computational interpretation and then describe a higher-order

logic that retained these features. The �rst approach has the advantage in that it allows

one to provide usable \higher-order" extensions in a relatively short period of time, but

we believe it is the latter approach that is more pro�table in the long run. This belief is

justi�ed partly by the observation that one of the main strengths of a logic programming

language lies in its clear theoretical basis, and partly by the observation that it is only in

the context of a genuine higher-order language that the full value of higher-order features

can be realised.

The above observations have led us to seek an appropriate logical basis for the in-

troduction of a notion of higher-order objects within the paradigm of logic programming.

To achieve this goal, we have used a higher-order logic to describe a generalisation to the

de�nite clauses of �rst-order logic. We have studied the proof-theoretic properties of this

generalisation and shown that the generalisation can be used to specify computations in

much the same way as its �rst-order counterpart. We have also described a theorem-proving

procedure for this generalisation, a procedure which forms the basis for an interpreter that

executes speci�cations provided by using the generalisation. The results have enabled us

to describe a logic programming language called �Prolog. This language extends a lan-

guage like Prolog by permitting predicate and function variables. The truly novel feature

of �Prolog, however, is its use of typed �-terms as data structures. We believe that this

feature has several promising applications, and we have provided examples to bolster this

belief.

The work in this thesis has, thus, achieved a large part of its original objective,

namely that of describing, in a principled fashion, a logic programming language that

realises the full potential of higher-order features within this paradigm of programming.

There remain, however, a few questions that require further consideration. These questions

concern pragmatic issues relevant to the programming use of �Prolog, and we discuss them

as possibilities for future work.

Providing a Good Implementation. Our current implementation of �Prolog has been

motivated mainly by a desire to examine whether higher-order uni�cation can be used to

100

solve problems in practice as it can in theory, and to understand the nature of the tradeo�s

that have to be made in the practical realisation of the logic of de�nite sentences. Not

much heed has been paid, as a result, to the e�ciency of the implementation. Having

convinced ourselves of the feasibility of �Prolog, we now propose to consider, seriously, the

issue of e�ciency; indeed, the importance of this issue cannot be overemphasised, given

that the main key to the success of Prolog has been the description of abstract machines

that facilitate extremely e�cient implementations of the logic of �rst-order de�nite clauses

[42, 44]. One of the main challenges in implementing �Prolog is that of devising good

data structures for �-terms. Although representations for such terms have been considered

in the functional programming context, the nature of the representation in �Prolog will

have to be signi�cantly di�erent, since there is the additional requirement for examination

and manipulation of the internal structure of �-terms. This concern also arises in the

context of formula manipulating systems, and there is, consequently, value in examining

the representational techniques (e.g. those discussed in [9]) that have been developed in the

context of these systems. There are at least two other constraints that must be satis�ed

by a representation of �-terms for it to be suitable for �Prolog:

(i) The representation should be conservative in its use of space. This is an important

requirement, since �-conversion often leads to an explosion in the sizes of terms. We

believe that the techniques of structure-sharing, developed in the context of Prolog

and of theorem-proving systems for �rst-order logic [8], should turn out to be useful

in keeping the usage of space low despite the growth in the sizes of terms.

(ii) The representation should be such that it is possible to undo the e�ects of a �-

reduction easily. This requirement arises because the application of a substitution, an

operation that corresponds naturally to a �-reduction, may have to be reconsidered

in the course of backtracking. A similar problem arises in the context of Prolog. The

solution there, however, is much simpler than any that we might have to consider here.

This is because the application of a substitution has a very local e�ect in �rst-order

terms, whereas it may change the entire structure of a �-term.

It is to be noted that some of the problems mentioned above also arise in paradigms that

attempt to combine equational forms of programming with logic programming. This is to

be expected, since higher-order uni�cation is a special case of equational uni�cation. A

good solution to the implementation problems discussed above should, consequently, be of

more general interest.

Improving the Type System. Another question that needs to be considered more closely

concerns the aspect of types. The notion of types provided by the logic underlying �Prolog

is, as we have seen, a little too restrictive in the programming context. In an attempt to

redress this situation, we have introduced a
exibility into the typing system by permitting

the use of type variables. However, this solution is not ideal, since it has on occasions led to

101

unanticipated problems in the task of interpreting queries. A better solution would be one

that chooses between these two extremes, by providing the user of the system with a means

to control the
exibility in the interpretation of types. Such a solution may, perhaps, be

realised by the use of a language that permits an explicit quanti�cation over types. This

endeavour may require complete reconsideration of the logical basis of �Prolog, a task best

undertaken after a typing system that is satisfactory from the programming point of view

has been enunciated.

Controlling Uni�cation. As we have noted several times in this thesis, higher-order

uni�cation is a fairly complex operation. While the use of this operation is justi�ed by the

fact that it enables us to provide conceptually elegant solutions to di�cult problems, there

is, nevertheless, a need to exercise care in the way it is used. It is important, therefore, to

devise a method for imparting an understanding of this operation to a user of �Prolog who

is unacquainted with the uni�cation procedure. It is also necessary to provide such a user

with control primitives that might be used for a�ecting the uni�cation process. With regard

to the latter aspect, there are two sorts of control primitives that might be considered. The

�rst sort is one that would permit the user to bias the uni�cation process towards �nding

certain uni�ers before others; we have seen an example of where such a bias might be useful

in Section 4.4. The second sort is one that would permit the user to prevent certain kinds

of uni�ers from being found. To illustrate where such an ability might be useful, let us

consider the disagreement set

fh[F 2]; [cons 2 [cons 3nil]]ig.

This pair has a uni�er that corresponds to substituting a constant function for F , i.e. the

substitution

fhF; �x:[cons 2 [cons 3nil]]ig.

However, this uni�er may be undesirable in a programming context, especially if the user

wants to determine whether F can be uni�ed with the result of abstracting at least one

occurrence of 2 out of the given list*.

Clearly, much remains to be done in characterising the programming aspects of higher-

order uni�cation. A �rst step in this direction would be to gain an insight into the e�ect

of local choices within the uni�cation procedure on the global behaviour of the process.

Such insight should emerge through careful experimentation with several di�erent kinds

of programs. Along another vein, such experimentation should enable us to determine

whether the full power of higher-order uni�cation is really needed to gain the advantages

* Our current implementation provides the primitive predicates not and = that are similar

to those in Prolog. The user may, therefore, deal with this particular problem by using

the goal (not F = X\Y). However, a better way to deal with the situation would be to

incorporate the undesirability of constant functions into the uni�cation process, rather

than to use it as a criterion for screening out uni�ers after all the work in �nding them

has been done.

102

of higher-order terms. If the examples in this thesis are any indication in this direction,

it appears that there is much to be gained merely through the additions of �-conversion

and second-order matching. Assuming only restricted forms of higher-order uni�cation are

needed, it would be of interest to consider the in
uence this would have on characterising

the uni�cation process and also on describing an \e�cient" implementation for �Prolog.

Exploring the New Applications. The use of �-terms as data structures raises a host of

computational problems that are new in the logic programming context and studying these

problems is a worthwhile e�ort, since the use of �-terms also provides a source of richness to

the logic programming paradigm. We have illustrated how the use of these data structures

together with de�nite clause reasoning facilitates implementation tasks that involve ma-

nipulations on formulas as well as on programs. In this respect, �Prolog holds substantial

promise for being a vehicle of implementation in areas that are not well supported by ex-

isting computational formalisms. To consider one example, the language ML [17] has been

extensively used in implementing proof systems. The notion of search that is necessary

in this implementation task is, however, foreign to the functional programming paradigm

on which ML is based, necessitating the introduction of an exception handling mechanism

into the language. The use of this mechanism has one disadvantage in that it con
icts

with the typing notions the language provides, thereby detracting from the clarity of the

implementations. In contrast, the notion of search is fundamental to the programming

paradigm underlying �Prolog. Furthermore, �Prolog also provides the advantage that the

intensions of higher-order objects may be examined through uni�cation, and we have seen

the usefulness of this ability in implementing formula and program manipulating systems.

It is to be noted that the above arguments and the illustrations in this thesis are only

preliminary indications of the usefulness of �Prolog. One of the goals for the future is to

actually explore and exploit the potential of the language in these arenas.

103

Appendix A

Abstract Consistency Properties for T

�

The system T

�

di�ers from the system T of [1] principally in the choice of connectives,

in the use of existential quanti�cation as the primitive notion and in the inclusion of �-

conversion as a rule of inference. The de�nition of an abstract consistency property for T

�

is an adaptation of the corresponding notion for T that re
ects these di�erences.

A.1. De�nition. A property � of �nite sets of w�s

o

is an abstract consistency property

(relative to T

�

) if and only if the following properties hold for all �nite sets S of w�s

o

and

for all w�s F , G, and P of the appropriate types:

ACP1 If �(S), then �> =2 S.

ACP2 If �(S), then there is no atomic formula F such that F 2 S and �F 2 S.

ACP3 If �(S [fFg), then �(S [f�(F)g).

ACP4 If �(S [f��Fg), then �(S [fFg).

ACP5 If �(S [fF _Gg), then �(S [fFg) or �(S [fGg).

ACP6 If �(S [f�[F _G]g), then �(S [f�Fg) and �(S [f�Gg).

ACP7 If �(S [fF ^Gg), then �(S [fFg) and �(S [fGg).

ACP8 If �(S [f�[F ^G]g), then �(S [f�Fg) or �(S [f�Gg).

ACP9 If �(S [f�Pg) and y is a parameter (variable) that does not occur (occur free)

in any w� in S [fPg, then �(S [fP yg).

ACP10 If �(S [f��Pg), then �(S [f��P;�P cg) for any w� c of the appropriate

type.

The relationship between abstract consistency properties and abstract derivability

properties for T

�

that is the content of the following proposition is identical to the one for

T that is described in [26]. The proof of this proposition may also be obtained by arguments

similar to those in [26] (Lemma 2.2.4); we assume that � is an abstract derivability property

and, for any S, we show that ��(�S) satis�es the contrapositive form of each of the

abstract consistency conditions.

A.2 Proposition. Let � be an abstract derivability property and let � be the property

of w�s

o

, S, such that �(S) if and only if ��(�S). Then � is an abstract consistency

property.

Let us say that a �nite set S of w�s

o

is consistent if it is not the case that `

T

� (_�S).

Then the usefulness of abstract consistency properties is obtained from the following propo-

sition; our particular interest in this proposition is that, together with Proposition A.2, it

yields Theorem 2.3.3.

A.3 Proposition. If � is an abstract consistency property and S is a �nite set of w�s

o

104

such that �(S), then S is consistent.

This proposition is Theorem 3.5 in [1], with the di�erence that provability in T

is replaced by provability in T

�

. The proof of Theorem 3.5 in [1] may be outlined in

the following manner. First a notion of semivaluation is de�ned. This is essentially a

partial function from the set of w�s

o

to the truth values ft; fg that is true to the intended

interpretation of the logical constants. It is then shown that if � is an abstract consistency

property and if �(S) holds for a set S of w�s

o

, then there is a semivaluation V that

assigns t to each w� A in S. Now, each semivaluation may be used to construct a (non-

extensional) general model in which the theorems of T are satis�ed. As a consequence of

this construction, it turns out that if `

T

A holds, then for each semivaluation V it is the

case that V (A) = t. From these two observations, however, it follows that if �(S) holds

then S cannot be inconsistent.

A virtually identical argument may be adopted for showing Proposition A.3. The

only changes that are necessary are those that take into account the di�erent set of logical

constants in T

�

and the inclusion of �-conversion as a rule of inference. These changes

are outlined below. In order to avoid having to reproduce the lengthy technical arguments

presented therein, we assume that the reader is familiar with the contents of [1].

(i) To the de�nition of semivaluations, i.e. De�nition 3.2 in [1], we add the following

properties:

V (>) = t,

If V ([A ^B]) = t, then V (A) = t and V (B) = t, and

If V ([A ^B]) = f , then V (A) = f or V (B) = f .

We also replace the properties 3.2.1, 3.2.6 and 3.2.7 by

If V (A) is de�ned, then V (�(A)) = V (A),

If V (�P) = t, then for some w� C, V ([P C]) = t, and

If V (�P) = f , then for each w� C, V ([P C]) = f ,

respectively.

(ii) The de�nition of the domains of \models", i.e. the sets of V -complexes, needs to be

changed so as to ensure that the same value gets assigned to two w�s that �-convert

to each other. This is done by replacing � and �-w� by � and �-w�, respectively,

throughout De�nition 3.4.1. Furthermore, there may be more than one atomic type

other than o in T

�

, and this collection may also not include �. Consequently, 3.4.1.2

should be replaced by the following:

For each atomic type � other than o, D

�

= fhA

�

; �i j A

�

is a ��w�

�

g.

(iii) In extending an assignment of \values" to variables, to an assignment of values to

all w�s, we need, �rst of all, to account for the addition of the rule of �-conversion.

105

This is done by replacing � by � in de�nition 3.4.4. Furthermore, we need to de�ne

the second component of a V -complex that is assigned to each of the new logical

constants. This is done in the following manner:

V

2

'

(>) = t,

V

2

'

(^)(hB

o

; qi) = h[^B

o

]; hi, where h is the function onD

o

such that h(hE

o

; ri) =

h[^B

o

]E

o

; q ^ ri for any hE

o

; ri 2 D

o

, and

If the type of � is (� ! o) ! o, then V

2

'

(�)(hA; qi) = h�A; hi, where h = t if

q

2

(c) = t for some c 2 D

�

, and h = f otherwise.

The last of these clauses actually replaces 3.4.4.7.

With these changes in the de�nitions, the proofs of the versions of Theorems 3.3 and

3.4 in [1] that correspond to T

�

may be obtained by routine modi�cations to the arguments

in [1]. From these Theorems, Proposition A.3 follows easily.

106

Bibliography

[1] P. B. Andrews, \Resolution in Type Theory," Journal of Symbolic Logic 36, 1971, 414

{ 432.

[2] P. B. Andrews, \General Models and Extensionality," Journal of Symbolic Logic 37,

1972, 395 { 397.

[3] P. B. Andrews, \Theorem Proving via General Matings," JACM 28(2), 1981, 193 {

214.

[4] P. B. Andrews, D. A. Miller, E. L. Cohen and F. Pfenning, \Automating Higher-

Order Logic" in Automated Theorem Proving: After 25 Years, AMS Contemporary

Mathematics Series 29, 1984, 169 { 192.

[5] K. R. Apt and M. H. van Emden, \Contributions to the Theory of Logic Program-

ming," JACM 29(3), 1982, 841 { 862.

[6] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics, North Holland

Publishing Co., 1981.

[7] W. W. Bledsoe, \A Maximal Method for Set Variables in Automatic Theorem-

Proving," in Machine Intelligence 9, edited by J. E. Hayes, D. Michie, and L. I.

Mikulich, Halstead Press, 1979, 53 { 100.

[8] R. S. Boyer and J. S. Moore, \The Sharing of Structure in Theorem Proving Programs,"

in Machine Intelligence 7, edited by D. Michie and B. Meltzer, Halstead Press, 1972,

101 { 116.

[9] N. G. De Bruijn, \Lambda Calculus Notation with Nameless Dummies, a Tool for

Automatic Formula Manipulation, with Application to the Church-Rosser Theorem,"

Proceedings, Series A, 75, No 5 and Indag. Math., 34, No 5, 1972.

[10] A. Church, \A Formulation of the Simple Theory of Types," Journal of Symbolic Logic

5, 1940, 56 { 68.

[11] W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer Verlag, 1981.

[12] J. Darlington and R. Burstall, \A System which Automatically Improves Programs,"

Proceedings of the Third International Joint Conference on Arti�cial Intelligence, 1973,

479 { 484.

[13] S. Fortune, D. Leivant, and M. O'Donnell, \The Expressiveness of Simple and Second-

Order Type Structures," JACM 30(1), 1983, 151 { 185.

[14] D. M. Gabbay, and U. Reyle, \N-Prolog: An Extension to Prolog with Hypothetical

Implications. I," Journal of Logic Programming 1, 1984, 319 { 355.

[15] G. Gentzen, \Investigations into Logical Deduction," in The Collected Papers of Ger-

hard Gentzen, edited by M. E. Szabo, North-Holland Publishing Co., 1969, 68 { 131.

107

[16] W. D. Goldfarb, \The Undecidability of the Second-Order Uni�cation Problem," The-

oretical Computer Science 13, 1981, 225 { 230.

[17] M. J. Gordon, A. J. Milner, and C. P. Wadsworth, Edinburgh LCF, Springer Verlag,

1979.

[18] W. E. Gould, \A Matching Procedure for !-Order Logic," Scienti�c Report No. 4, A

F C R L (1976) 66 { 781, AD 646 560.

[19] L. Henkin, \Completeness in the Theory of Types," Journal of Symbolic Logic 15

(1950), 81 { 91.

[20] G. P. Huet, \The Undecidability of Uni�cation in Third Order Logic," Information

and Control 22(3), 1973, 257 { 267.

[21] G. P. Huet, \A Mechanization of Type Theory," Proceedings of the Third International

Joint Conference on Arti�cial Intelligence, 1973, 139 { 146.

[22] G. P. Huet, \A Uni�cation Algorithm for Typed �-Calculus," Theoretical Computer

Science 1, 1975, 27 { 57.

[23] G. P. Huet and B. Lang, \Proving and Applying Program Transformations Expressed

with Second-Order Patterns," Acta Informatica 11, (1978), 31 { 55.

[24] S. C. Kleene, Mathematical Logic, John Wiley & Sons, Inc., 1967.

[25] C. L. Lucchesi, \The Undecidability of the Uni�cation Problem for Third Order Lan-

guages," Report C S R R 2059, Dept. of Applied Analysis and Computer Science,

University of Waterloo, 1972.

[26] D. A. Miller, \Proofs in Higher-order Logic," Ph. D. Dissertation, Carnegie-Mellon

University, 1983.

[27] D. A. Miller and G. Nadathur, \Some Uses of Higher-Order Logic in Computational

Linguistics," Proceedings of the 24th Annual Meeting of the Association for Compu-

tational Linguistics, 1986, 247 { 255.

[28] D. A. Miller, \A Theory of Modules for Logic Programming," Proceedings of the

Symposium on Logic Programming, 1986, 106 { 115.

[29] R. Milner, \A Theory of Type Polymorphism in Programming," Journal of Computer

and System Sciences 17, 1978, 348 { 375.

[30] P. Mishra, \Towards a Theory of Types in Prolog," Proceedings of the 1984 Interna-

tional Symposium on Logic Programming, Atlantic City, February 1984, 289 { 299.

[31] R. Montague, \The Proper Treatment of Quanti�cation in Ordinary English," in For-

mal Philosophy: Selected Papers of Richard Montague, edited by R. Thomason, Yale

University Press, New Haven, 1974.

[32] A. Mycroft and R. A. O'Keefe, \A Polymorphic Type System for Prolog," Arti�cial

108

Intelligence 23(3), 1984, 295 { 307.

[33] F. C. N. Pereira and D. H. D. Warren, \De�nite Clause Grammars for Language

Analysis { A Survey of the Formalism and a Comparison with Augmented Transition

Networks," Arti�cial Intelligence 13, 1980.

[34] L. C. Paulson, \Natural Deduction as Higher-Order Resolution," The Journal of Logic

Programming 3(3), 1986, 237 { 258.

[35] F. Pereira, D. Warren, D. Bowen, L. Byrd, and L. Pereira, \C-Prolog User's Manual:

Version 1.5," February 1984.

[36] J. C. Reynolds, \Three Approaches to Type Structure," Proceedings of the Inter-

national Joint Conference on Theory and Practice of Software Development, March

1985.

[37] J. A. Robinson, \A Machine-Oriented Logic based on the Resolution Principle," JACM

12, 1965, 23 { 41.

[38] J. A. Robinson, \Mechanizing Higher-Order Logic," in Machine Intelligence 4, edited

by B. Meltzer and D. Michie, Halstead Press, 1969, 151 { 170.

[39] R. M. Smullyan, First-Order Logic, Springer-Verlag, New York, 1968.

[40] J. E. Stoy, Denotational Semantics: The Scott-Strachey Approach to Programming

Language Theory, The MIT Press, Cambridge, 1977.

[41] M. H. van Emden and R. A. Kowalski, \The Semantics of Predicate Logic as a Pro-

gramming Language," JACM 23(4), 1976, 733 { 742.

[42] D. H. D. Warren, \Implementing Prolog - Compiling Predicate Logic Programs," D.

A. I. Research Report Nos 39 and 40, Department of Arti�cial Intelligence, University

of Edinburgh, 1977.

[43] D. H. D. Warren, \Higher-order Extensions to PROLOG: Are They Needed?,"Machine

Intelligence 10, 1982, 441 { 454.

[44] D. H. D. Warren, \An Abstract Prolog Instruction Set," Technical Note 309, SRI

International, October 1983.

[45] D. S. Warren, \Using �-Calculus to Represent Meaning in Logic Grammars," Pro-

ceedings of the 21st Annual Meeting of the Association for Computational Linguistics,

1983, 51 { 56.

109

List of De�ned Terms

�rst-order goal formulas : page 3

�rst-order de�nite clauses : page 3

sorts, type constructors, types : page 8

atomic types, function types, argument types, target types : page 8

variables, logical constants, parameters, w�s or terms : page 8

�x:F , abstraction of F by x : page 9

[F

1

F

2

], application of F

1

to F

2

: page 9

occurs in, is a subformula of : page 9

free and bound variables, closed w�, F(F) :page 9

propositions, predicates, connectives :page 10

�x, 9�x:F , 8�x:F :page 10

S

x

G

F :page 11

G is free for x in F :page 11

�-conversion : page 11

�-reduction, �-expansion, �-conversion : page 11

�-reduction, �-expansion, �-conversion :page 11

�-conv, �-conv, � : De�nition 2.1, page 12

�-redex, �-redex :page 12

�-normal formula, �-normal formula :page 12

head, binder, and arguments of a �-normal formula : page 12

rigid and
exible �-normal formulas : page 12

�norm(F), �-normal form of F :page 13

�(F), principal normal form of F : page 13

atom :De�nition 2.5, page 14

substitution, applying a substitution to a w� : page 14

extensional occurrence of a predicate variable :page 15

� " V, the restriction of a substitution to a set of variables : page 15

�

1

� �

2

, the composition of two substitutions : page 16

�

1

=

V

�

2

, equality of substitutions relative to a set of variables : : : : : : : : : : : : : : : : : : : page 16

�

1

�

V

�

2

, �

1

is less general than �

2

relative to V : page 16

abstract derivability property :De�nition 2.2, page 18

sequent, antecedent and succedent of a sequent : page 19

inference �gure, lower sequent, upper sequent :page 19

initial sequent, end sequent :page 20

proof �gure : page 20

path in a proof �gure : page 20

height of a proof �gure : page 20

structural inference �gure : page 20

110

operational inference �gure :page 20

principal formula of an inference �gure : page 20

associated formula of a sequent :page 24

equivalence of LKH� and T

�

: page 24

PF , the class of positive formulas :De�nition 3.1, page 29

H

+

, the Positive Herbrand Universe : De�nition 3.2, page 30

HB, the Herbrand Base :De�nition 3.2, page 30

goal formula :De�nition 3.3, page 30

positive atom, rigid positive atom :De�nition 3.3, page 30

higher-order de�nite sentence :De�nition 3.4, page 30

positive substitution :De�nition 3.5, page 31

closed positive substitution : De�nition 3.5, page 31

higher-order de�nite clauses : De�nition 3.1, page 33

implicational formula :De�nition 3.2, page 34

pos, a mapping from w�s to positive formulas :De�nition 3.4, page 35

pc(F), the positive correspondent of F :De�nition 3.6, page 36

pos

I

, pc

I

, mappings on implicational formulas :De�nition 3.10, page 38

pc

O

, an extension of pc

I

to the class of w�s : De�nition 3.12, page 39

pc

S

, a mapping on sequents :De�nition 3.13, page 39

G, a query : page 44

P, a program : page 44

jDj, jPj : De�nition 3.1, page 44

derivation sequence for G relative to � :De�nition 3.4, page 46

�

P

(G), a measure on G relative to P : De�nition 3.6, page 48

I, an interpretation : page 49

I j=j= G, I satis�es G: :De�nition 3.9, page 49

T

P

, a mapping on interpretations :De�nition 3.11, page 49

disagreement pair, disagreement set : page 52

uni�er, higher-order uni�cation problem : page 52

uni�cation normal formula :De�nition 3.1, page 53

~

F , a uni�cation normal form of F : De�nition 3.1, page 53

SIMPL, a function on disagreement sets : De�nition 3.3, page 55

F, a disagreement set with no uni�ers :De�nition 3.4, page 56

�(F), a measure on w�s : De�nition 3.5, page 56

IMIT(F

1

; F

2

;V) :De�nition 3.7, page 57

PROJ

i

(F

1

; F

2

;V) : De�nition 3.7, page 57

MATCH(F

1

; F

2

;V) :De�nition 3.7, page 57

�(�), a measure on substitutions :De�nition 3.9, page 57

hG

2

;D

2

; �

2

;V

2

i is P-derived from hG

1

;D

1

; �

1

;V

1

i : : : : : : : : : : : : : : : : : De�nition 3.11, page 59

111

goal set : page 59

positive disagreement set : page 59

P-derivation sequence for G : De�nition 3.12, page 60

successfully terminated P-derivation sequence : page 60

P-derivation of G :De�nition 3.13, page 60

P-derivation of G : De�nition 3.13, page 60

ground instance of F :De�nition 3.16, page 61

positive ground instance of F :De�nition 3.16, page 61

�

P

(G), a measure on goal sets : De�nition 3.20, page 64

�

P

(G; �), � : De�nition 3.20, page 64

type declaration :page 71

operator declaration :page 72

second-order matching : page 92

abstract consistency property : De�nition A.1, page 104

112

