
Certification of First-order proofs in classical and
intuitionistic logics 1

Zakaria Chihani

August 21, 2015

1This work has been funded by the ERC Advanced Grant ProofCert.

Abstract

The field of automated reasoning contains a plethora of methods and tools, each
with its own language and its community, often evolving separately. These tools
express their proofs, or some proof evidence, in different formats such as resolution
refutations, proof scripts, natural deductions, expansion trees, equational rewritings
and many others. The disparity in formats reduces communication and trust be-
tween the different communities. Related efforts were deployed to fill the gaps in
communication including libraries and languages bridging two or more tools.

This thesis proposes a novel approach at filling this gap for first-order classical
and intuitionistic logics. Rather than translating proofs written in various languages
to proofs written in one chosen language, this thesis introduces a framework for
describing the semantics of a wide range of proof evidence languages through a rela-
tional specification, called Foundational Proof Certification (FPC). The description
of the semantics of a language can then be appended to any proof evidence written
in that language, forming a proof certificate, which allows a small kernel checker
to verify them independently from the tools that created them. The use of seman-
tics description for one language rather than proof translation from one language to
another relieves one from the need to radically change the notion of proof.

Proof evidence, unlike complete proof, does not have to contain all details. Us-
ing proof reconstruction, a kernel checker can rebuild missing parts of the proof,
allowing for compression and gain in storage space. Other desired aspects such as
non-determinism, parallelism and flexibility in the description of a given proof evi-
dence language are offered by the FPC framework.

Building on well-established proof theoretical foundations, namely focused proof
systems, this thesis describes how proof certificates use a communication protocol to
guide a kernel during proof checking. This protocol prevents the kernel from accept-
ing false certificates, thereby ensuring soundness. Multiple examples, for classical
and intuitionistic logics, are also presented for some proof formats as well as decision
procedures.

This thesis is at the center of the multi-year ERC funded project ProofCert.

1

Le domaine du raisonnement automatique contient une multitude de mthodes
et outils, chacun rassemblant une communaut autour d’un mme langage et volu-
ant le plus souvent sparment, en utilisant d’autres langages. Ces outils expri-
ment des preuves ou des lments de preuves, dans des formats varis tels que les
rfutations par rsolution, les scripts de preuves, les dductions naturelles, les arbres
d’expansion, la rcriture quationnelle, et beaucoup d’autres. L’existence de tant de
moyens d’expression rduit la communication et la confiance entre les diffrentes com-
munauts et de rcents efforts ont t dploys pour pallier ce manque de communication
au moyen de bibliothques ou de traductions entre deux outils ou plus.

Cette thse propose une nouvelle approche pour combler ce manque de commu-
nication en ce qui concerne les logiques classique et intuitionniste du premier ordre.
Au lieu de traduire les formats d’expression des diffrentes communauts en un seul
langage choisi, cette thse introduit un cadre pour dcrire la smantique de ces diffrents
langages travers des spcifications relationnelles, appel Foundational Proof Certifica-
tion (FPC). La description de la smantique d’un certain langage peut alors tre accole
des lments de preuves crits dans ce langage formant des certificats de preuve et per-
mettant leur vrification au moyen d’un noyau unique, indpendamment des outils qui
les ont gnrs. L’utilisation de ces descriptions de smantique au lieu de traductions des
preuves d’un langage un autre permet de garder les notions originelles de preuve,
connue des communauts respectives.

Les lments de preuves, contrairement aux preuves compltes, peuvent omettre des
dtails. Le noyau de vrification tant capable de reconstruction de preuve, une grande
compression et un gain en espace de stockage sont ainsi possibles. D’autres aspects,
tels que le non-dterminisme, le paralllisme et une flexibilit dans la description de
langage sont aussi permis dans le cadre de FPC.

En prenant pour base des fondements bien tudis de la thorie des preuves, en parti-
culier les systmes de preuves focaliss, cette thse dcrit un protocole de communication
que les certificats de preuves utilisent pour guider le noyau pendant la vrification.
Ce protocole garantit la correction en s’assurant que le noyau n’accepte aucune for-
mule invalide propose par un certificat. De multiples descriptions de formats et des
procdures de dcision, en logiques classique et intuitionniste, sont prsentes en exemple.

Cette thse est au centre du projet ERC pluriannuel ProofCert.

2

Acknowledgement

I thank Gilles Dowek and Carsten Schuermann for kindly agreeing to serve as my
rapporteurs. I also thank the reviewers for their patience and very useful comments.
Dale Miller, Michael Filhol, Ali Assaf, Taus Brock-Nannestad, Rob Blanco, Kaustuv
Chaudhuri, Danko Ilik and Ulysse Gérard.

3

Contents

1 Introduction 7
1.1 Situating the thesis . 7
1.2 Scope of the thesis . 15

2 Preliminary notions on focusing 18
2.1 Sequent calculi: From Gentzen to Girard 18

2.1.1 Classical sequent calculus . 20
2.1.2 Intuitionistic sequent calculus 21

2.2 Focused sequent calculi . 22
2.2.1 The tenets of focusing . 23
2.2.2 Focused classical sequent calculus LKF 27
2.2.3 Intuitionistic sequent calculus LJF 29

3 Global architecture 32
3.1 Desired properties . 33

3.1.1 Poincaré Principle . 33
3.1.2 Modular integration . 33
3.1.3 Abstractions and typing . 34
3.1.4 Declarative and relational . 34
3.1.5 Proof reconstruction tools . 35
3.1.6 Parallelism . 35
3.1.7 Additional features . 35

3.2 Tailoring the framework . 36
3.3 Components of the framework . 36

3.3.1 The client’s side . 39
3.3.2 The kernel checker’s side . 39
3.3.3 The middle man: the semantics 40

3.4 The augmented sequent calculus LKF a 40

4

3.4.1 Experts . 42
3.4.2 Clerks . 44
3.4.3 The complete LKF a system 45

3.5 Augmenting the LJF system . 47

4 Foundational Proof Certification 50
4.1 Descriptive semantics . 50

4.1.1 Polarity assignment . 51
4.1.2 Region delimitation . 53
4.1.3 Indexing . 54
4.1.4 Clerks & Experts . 54

4.2 Programmable semantics . 55
4.2.1 Type signature . 56
4.2.2 Predicate definitions . 60

4.3 Default teams of agents . 61
4.3.1 The done team . 61
4.3.2 The oneOf team . 62
4.3.3 The witness case . 62
4.3.4 The tag case . 63

5 FPC for classical logic 64
5.1 The CNF decision procedure . 64

5.1.1 Preliminaries . 65
5.1.2 CNFdec in the FPC framework 65

5.2 Mating . 68
5.2.1 Mating’s p.r.i.c.e. 69

5.3 Resolution refutations . 72
5.3.1 Semantics of refutation sequences 74
5.3.2 Semantics of a binary resolution step 80
5.3.3 Interpreting a hyperresolution step 89

5.4 Expansion Trees . 96
5.4.1 Expansion trees in LK . 98
5.4.2 Sequentialization of expansion trees to LKF a 100
5.4.3 Indexing . 102
5.4.4 Region delimitation . 102
5.4.5 Clerks and experts . 103

5

6 FPC for intuitionistic logic 106
6.1 Mimic . 106

6.1.1 Initial in LJF a . 106
6.1.2 Negative/positive alternation 107
6.1.3 A p.r.i.c.e. for mimic . 110
6.1.4 Extending to first order . 112

6.2 λ-calculus . 113
6.2.1 p.r.i.c.e. for simply-typed η-long β-normal form λ-terms . . . 116
6.2.2 Simply-typed β-normal form λ-terms evidence 117
6.2.3 Dependently-typed β-normal form λ-terms evidence 119

7 Reasoning with equality 125
7.1 Introduction . 125
7.2 Formalizing equality reasoning . 126

7.2.1 Smallest common unit . 127
7.2.2 Proof evidence and system’s properties 128
7.2.3 A p.r.i.c.e. definition for one-step rewrite 129

7.3 Paramodulation . 130
7.3.1 Describing a paramodulation in LJF a 131
7.3.2 A p.r.i.c.e. for a paramodulation step 133

8 Satellite interests 135
8.1 Hosting kernels . 135

8.1.1 Introduction . 136
8.1.2 Mapping LKF sequents to LJF sequents 137
8.1.3 Mapping LKF a checking to LJF a checking 141

8.2 Transducing proof certificates . 143
8.2.1 Elaborating transducer . 144
8.2.2 Forgetful transducer . 146

8.3 Cooperating proof certificates . 149

9 Conclusion, related and future work 151
9.1 Future work . 152
9.2 Related work . 155

6

Chapter 1

Introduction

Study the past if you would define the future.

- Confucius

What is the lifespan of a mathematical proof? The rhetorical character of this
question is mostly caused by its lack of precision. If one asks users of a mechanized
prover A: “what is the lifespan of a mathematical proof output by prover A?”, their
answer may very well be “until next version of A”. If you ask users of a prover B
the very same question, they may say “we have no way of knowing, B cannot read
the output of A”.

This thesis proposes a way to overcome this limitation of computer proofs, bring-
ing them a few steps closer to the same immortality as that of a traditional math-
ematical proof. The first section of this introduction places the problematic of this
thesis in a historical context by following the evolution of the notion of mathematical
proofs and the birth of computer proofs. The second section determines the scope
and goals of the thesis.

1.1 Situating the thesis

The word “proof” comes from the Latin proba, giving the verb probare with two
meanings: to demonstrate, and to test or to examine. Today, both of these meanings
are still accepted, along with many others, but the criteria for what constitutes a
proof are different and depend on the context. A proof in a medical context is differ-
ent from a proof in other sciences. In a court of law, a proof is understood yet another
way: it is a demonstration “beyond reasonable doubt”. It is unfortunate that the

7

words proved and probable stem from the same etymology because, in mathematics,
demonstrate “beyond reasonable doubt” or “with a high probability” is not enough.

In all the above interpretations, a proof is an argument used to convince a third
party of the validity of a statement. However, adding the word “mathematical” to
the word “proof” places a higher burden on proof. To paraphrase Peter Andrews, a
mathematical proof establishes truth [Andrews, 2002]; it does not merely indicate it,
or strongly suggest it. A correct mathematical proof will survive the tides of time.

Several sciences, built on rigorous foundations with no room for doubt or accept-
able error, gave birth to less strict counterparts dubbed experimental. Escaping the
rigors of the original discipline, scientists in those experimental branches chose to
embrace a small margin of error in exchange for ever growing knowledge.

Some people assert that mathematics is experiencing a similar divergence [Zeil-
berger and Andrews, 1994]. Indeed, there are members of the mathematical com-
munity that understand a proof as what is beyond reasonable doubt, be it for prag-
matic reasons (see, for example Rabin [1976]) or because they are unable to do
otherwise [Barwise, 1989].

The trade-off between fast answers with a low margin of error and slow perfectly
sound answers must be considered in any real-world application. However, this thesis
is grounded in the rigorous mathematics and proposes a new approach at giving to
computer proofs the same immortality as the traditional ones. That immortality gave
mathematics its rightful place among sciences and crowned mathematical reasoning
above all others, because “proof – the traditional, Euclid-inspired, tightly knit chain
of logical reasoning leading inexorably to a precise conclusion – is immortal”, it is a
“bulletproof means of verifying and confirming an assertion” [Krantz, 2011], and so
should be a mechanized proof.

Evolution of Mathematics: a case for formal proofs

Celebrated by some, criticized by others, formal proofs never were, and will probably
never be, unanimously accepted among mathematicians. This thesis takes no part
in a century-old debate and adopts formal proofs as its starting point.

The basis of logical reasoning as inference, premise and conclusion was indepen-
dently laid in many places. Only the Greek logic, however, permeated the centuries
and came to dominate the western and Muslim worlds.

A graduate student today absorbs, in the span of a few years, logical notions that
took millennia to evolve into their current body. Aristotle’s syllogisms is consumed
in the first few hours. Only years later can the student reflect on those few hours,
on those first formalisms, and take them for what they were: the stuttering of yet

8

another child of philosophy, slowly maturing into science.
Aristotle’s edifice, including the logic heritage, stood for centuries and extended to

many areas of science. Its foundations were eventually shaken, in the 17th century,
when the geocentric model, that he defended throughout his life, was shown to
be erroneous. Francis Bacon vividly criticized Aristotle’s philosophy in his Great
Instauration saying :

“ After the sciences had been in several parts perhaps cultivated and
handled diligently, there has risen up some man [Aristotle] of bold dispo-
sition, and famous for methods and short ways which people like, who has
in appearance reduced them to an art, while he has in fact only spoiled
all that the others had done. And yet this is what posterity likes, because
it makes the work short and easy, and saves further inquiry, of which they
are weary and impatient.”

Several modern science areas were born from this revolution, but Logic as a
science only came to being in the 19th century. And, while George Boole’s Algebra of
Logic was a stepping stone, it didn’t denounce Aristotle’s logic but rather attempted
to formalize it and widen its applications. The real departure from Aristotle’s logic
was Gottlob Frege’s Begriffsschrift (Concept Script), which was the birth of modern
Logic. While the notions brought forth by Frege may seem mundane today, his work
was the kite tempting the lightning and the apple falling from the tree.

Prominent figures of Logic followed, built on top of his work, discovered cracks
in its foundations and repaired them, most famously Whitehead and Russell, that
recognize their “chief debt” to Frege “in all questions of logical analysis” in the
introduction of their monumental Principia Mathematica. It would be a lost cause
to attempt a full description of the intricate phylogenetics of Logic, and to give
credit everywhere credit is due. This brief historical overview is given only to spark
interest and curiosity, to take a step back and wonder how, in the many centuries that
separate Aristotle and Frege, no one thought of concepts as mundane as function-
argument analysis, or as natural as unambiguous quantification, concepts that today
seem so straightforward to an undergraduate student that their origin is not even
stated. From that step back, we can imagine what would be the next simple idea,
lurking in the shadows of the unknown, ready to bring about a new revolution.

Expansion of Mathematics: a case for mechanized proofs

At the dawn of mathematical reasoning, a proof had the “democratic virtue” that
anyone could follow it. In Meno’s dialogue, Aristotle was able to bring a boy with

9

no prior knowledge of mathematics to understand a mathematical argument. How-
ever, modern days have seen the complexity of certain mathematical proofs increase
beyond the understanding of a single student.

Barendregt and Wiedijk [2005] put in correspondence known theorems with how
their verification was carried out. Ranging from the proof of the irrationality of√

2, verifiable by students, to Fermat’s Last Theorem for which one has to be a
specialist, to Kepler’s Conjecture where the computer was needed. To answer the
growing complexity of proofs, mechanized proofs are becoming an indispensable tool,
both for academics and for industry. By expanding the realm of what is tractable,
“the computer has already started doing to mathematics what the telescope and
microscope did to astronomy and biology” [Zeilberger and Andrews, 1994].

But this evolution is also controversial. One of the most violent disagreements
concerning mechanized proofs followed the paper by De Millo et al. [1979]. This
paper was intended as a criticism of formal verification of programs, but also offered
arguments against the general use of computers in mathematics. To their insis-
tence on the “need for the mathematical consensus” when deciding the validity of a
theorem, Leslie Lamport famously replied “I dont believe that the correctness of a
theorem is to be decided by a general election”, in a letter to the editor [Ashenhurst,
1979] that was mistakenly interpreted as a rebuttal to De Millo et al. [1979].

This sharp disagreement, covered and analyzed numerous times in literature (see
[Asperti, 2012] for a survey or the book [MacKenzie, 2001]), is still poignant today.
Some mathematicians, however, are bridging the great divide, some by learning how
to employ computers to mechanize their proofs, most notably Thomas Hales and
his team, and some by tentatively speaking up in favor of using computers in the
mathematical field. In a blog post, Fields Medalist Timothy Gowers commented on
the solution to the Erdos discrepancy problem using SAT solvers [Konev and Lisitsa,
2014] saying that he was “relaxed about huge computer proofs”. Vladimir Voevodsky
is another Fields Medalist on the side of computer assisted proofs, although he rejects
complete automation of theorem proving. In a remarkable and recent paper, Martin
[2015] describes a panel discussion at the 2014 ceremonies for the Breakthrough Prize
where the winners discussed the usage of computer in proofs. These leading figures
in today’s mathematical world did not reject the use of computers in their work,
quite the opposite. They perceived the computer as a natural ally in the pursuit of
mathematical accomplishment.

In light of this change in position from leading mathematicians, one can hope
that the great divide is closing and that the computer can finally be allowed to push
mathematics towards the next generation of proofs.

10

Between art and necessity: a case for machine-generated proofs

Asperti [2012] discusses “the essence and purpose of proofs” in terms of what he
adequately calls “message” and “certificate”, closely related to the two meanings of
the Latin root of “proof” given in the beginning of this introduction. His paper, is
a call to “prevent the divorce between these two epistemological functions”, and it
is shared by the majority of mathematicians, including some of those that embrace
computer-aided proofs. In other words, a difference is made between a computer
assisting a mathematician in finding a proof and a computer actually finding a proof
(via exhaustive search, heuristics or other techniques). Many critics focus on the
lack of artistry in computer proofs, arguing that the beauty and simplicity of a proof
are central. Defenders of computer assistants dispute the lack of beauty or artistry
of a mechanized proof.

Advocating for automated theorem provers, at the 2015 Proof eXchange for Theo-
rem Proving workshop’s panel discussion on the subject of proof certificates, members
of the panel expressed personal experiences where, after looking closely at a compli-
cated resolution proof, they were able to find its key steps and transform it into a
beautiful proof. A machine generated proof, they argued, can also be beautiful.

But is it outside the realm of possibilities that a machine-generated proof may be
irrevocably inartistic? And if that proof plays a role in ensuring, say, that planes do
not collide or that space rockets do not explode, would that necessity for it not be
enough to make it interesting? Was the beauty of a proof at a discussion on proof
certificates not a conflation of the “message” and “certificate” aspects of a proof?

To someone concerned with the art of advancing mathematical knowledge, a cor-
rect but unsurprising and inelegant proof of a predictable conjecture may be less
valuable, in some ways, than an incorrect proof. If an incorrect proof brings new
valid insights, widens understanding of the community and prompts the study of
intermediary theorems that are reusable in other proofs, it can be considered valu-
able. Here, the “message” side of the proof is essential. To someone concerned with
stability of auto-pilots on planes or safety of nuclear facilities, artistry is secondary,
i.e.,the “certificate” side of the proof is essential.

It is an important aim to prevent the “divorce” of the two aspects of proof [As-
perti, 2012], but preserving that marriage should not hinder the study of one aspect
over the other. As Harvey Friedman points out: “just because a proof is explanatory
doesn’t mean it’s certain, just because it is certain doesn’t mean it’s explanatory.
They are two separate dimensions”[Mackenzie, 2005]

The work presented here does not discriminate on the basis of beauty, simplicity
or any aspect of the “message” in a proof. The only states of interest a proof can be
in are “checked” or “unchecked”. The scope is, thus, restricted to machine-generated,

11

machine-checkable proofs. Whether a human can learn from the proof, or even read
it, plays close to no role.

Henceforth, the terms “prover” and “tool” denote any computational logic sys-
tem, automatic or interactive.

Dramatic consequences of small margins: a case for documented proofs

What is the lifespan of a machine-generated mathematical proof? This question is no
longer rhetorical but its current answer is unsatisfactory. Indeed, mechanized proofs
are often heavily dependent on the tool that produces them. What is then the value
of proofs, generated with one tool, that hold no meaning in another? And that is far
from being the worse scenario, as some tools are unable to replay a proof generated
by a former version of themselves. Others do not even give a document justifying
that they found a proof (let alone an independently checkable one), perhaps because
it is too time consuming or because it would take too much space. Consider that
there is no doubt that Fermat was a genius, but brilliant as he was, to what extent
can one have faith in the claim “I have a truly marvelous demonstration of this
proposition which this margin is too narrow to contain”? What is the value of such
a claim compared to the value of the actual proof of that claim, 358 years later, even
if producing that proof was both time consuming and took a lot of space?

A mathematical proof is, first and foremost, a proof in the original sense: a
demonstration, destined to be probed, tested, examined and this thesis only considers
provers that output such proofs.

Collaboration: a case for communicating systems

Mechanized provers have helped mathematicians cross the t’s and dot the i’s at a scale
previously unattainable. Furthermore, a social process took place when large teams
of mathematicians from different continents worked together on proofs of the same
theorem. Such interactions, unprecedented in the history of mathematics, weakens
the argument of lack of social process often used by those opposed to computer
mathematics. One can simply subscribe to one of the many prover-related mailing-
list to witness a thriving collaboration. However, with this great advancement came
the fragmentation of the community, relative to a prover.

People often use a particular prover “simply because it was the dominant system
at their particular location”, as MacKenzie [2001, p.314] suggests. But even if the
choice of a prover over another depends on an accident of academic birth, such a
specialization can be a richness, provided the communication is restored.

12

One approach to do so is to translate outputs from one system to the other. An-
other approach is to translate all outputs to one language, an Esperanto for proofs,
and check them in an independent checker. Efforts following this approach are de-
scribed in the related works section.

A comparatively radical approach to bringing the community together is to have
one language, one framework, one tool for all. QED [Mathematicians, 1994] is such
a bold endeavor with the advantage of being close to the traditional mathematical
language, thus preserving the idea of beauty of the proofs and the ability to learn
from them. Unfortunately, it has also the inconvenience of not having materialized.
Wiedijk [2007] offers an enlightening dissection of the (current) failure of QED, in
which he states that he does not “believe that the QED system will consist of many
different systems living peacefully together. One of the systems – hopefully the best
one – will kill the others. That is how evolution works”, provocatively calling the
effort to improve communication between different systems a “lost energy”.

It is fair to note that natural selection, in the sense of the theory of evolution, is
more complex than that. The fittest rarely survives by killing other members of his
species, or of any species. The ill-adapted members fail to evolve and simply halt.
But even if it were the case in evolution, does the metaphor provide enough incentive
to make QED the bottleneck of the provers’ population? One is allowed to hope that
all those interested in computer proofs will gladly abandon their preferred prover
and converge around one single tool, but that hope seems rather Utopian. One can
compare that claim to the following: “there will come a time when a programming
language will kill all other languages, and all the programmers will use that one
single language”. Whether or not this will be the case remains to be seen. But even
if it were the case, is that a desirable thing, when one thinks of the many technology
transfers that occurred from one language to others precisely because that language
was different from the others.

The diversification of proof systems resulted in numerous tools with different areas
of expertise, sometimes very distant from one another, and the colonization of more
and more mathematical terrain. And that “speciation” is arguably important: for
example, the techniques used for algebraic topology proofs and for cache coherence
protocols are different. Seeing QED as a genetic bottleneck that would sacrifice all the
systems on the altar of conformity may result in the desertion of areas of mathematics
(for lack of an adapted tool) or worse, the non discovery of currently unknown worlds.
A rich ecosystem of evolving provers, bringing fresh ideas and preserving diversity,
may be a better path to a higher level of mathematical knowledge.

From that point of view, striving to improve communication between systems is
energy well spent.

13

Universality: a case for machine-checked proofs

Many automated and interactive theorem provers have achieved considerable levels
of trust and gathered around them communities of regular users and developers. But
what is the social process whereby a proof is examined and reviewed? Because of the
size of the proofs, the reviewing akin to that of the traditional mathematical world is
unpractical. That did not prevent the mechanized proving community from seeking
its own ways of ensuring a level of trust in the correctness of the “certificate” side of
mechanized proofs.

MacKenzie [2001, p.313] asks “What is necessary to support the claim that a
mechanized prover has performed a formal proof? Ought it to produce a full, formal
proof object which can be submitted to an independent proof-checking program?
Ought one seek to verify formally that a theorem-proving program has itself been
implemented correctly?”.

To trust the tool he or she uses, a researcher can be content with the way it was
built or with the countless times it has been used. But to restore the social process
where proofs are communicated outside the community of one prover, checking should
be independent from that prover. Paraphrasing Socrates on his death bed, urging
his friends to think only of the truth and not of himself, one can make the following
request to his peers: “I would ask you to be thinking of the proof, and not of the
prover”.

As said above, there are already a number of investigations in bridging the gap
between the provers through translations of the proofs. This thesis explores another
path towards the same goal. Instead of translating the proofs from a source language
to a target language, this thesis focuses on describing the semantics of the source
language so that any proof written in that language can be checked without being
translated.

By lifting the need for trust from the prover to the proof object, people can feel
unshackled by the proof of correctness of their tools and implement bold ideas. In the
words of Voevodsky [Martin, 2015], this can give rise to a “flowering of collaboration
as it enables trust between participants, who can rely on the machine to check each
other’s work, and hence enables participants to take more risks”.

Independent checking allows a liberty similar to Polymath’s1 third guideline: “it’s
OK” for a mechanized prover to be “tentative, incomplete, or even incorrect”.

1http://polymathprojects.org/

14

1.2 Scope of the thesis

This thesis sits in the broader ERC Advanced Grant ProofCert2 project [Miller,
2011], and is centered around first-order classical and intuitionistic logics.

As recommended in a recent paper by Plaisted [2015], investigations into first-
order logic may uncover “significant advances yet to be made. In addition, one can
expect that methods that are good for first-order logic will also help to design higher
order logic provers.”

The aim of this thesis is to establish a framework, called Foundational Proof
Certification, or FPC, where the semantics of a multitude of proof languages or
formats can be described. This is not the first time a unified framework is sought
in the computer community, there are encouraging precedents. For example, finite
state machines are used for lexical analysis. Formal grammars, originally introduced
to describe natural language structures, are extensively used for formal language.
One can also consider HTML as a useful standard to uniformly describe text such
that any compatible browser can display it on screen. Perhaps the most resemblant
effort is structural operational semantics [Plotkin, 1981], or SOS. The Foundational
Proof Certification framework can define the semantics of many proof languages and
checking is done according to the semantics. Similarly, SOS can define the semantics
of many programming languages and compilation is done according to that semantics.

The thesis is centered around the same desiderata as the ProofCert project:

1. Simplicity: Barendregt and Wiedijk [2005] define a desirable characteristic of
mathematical assistant (that can be generalized to all provers) in the following exact
quote: “A Mathematical Assistant satisfying the possibility of independent checking
by a small program is said to satisfy the de Bruijn criterion”. However, the term
“de Bruijn criterion” was used somewhat loosely to also describe systems that rely
on an integrated (therefore not independent) kernel checker.

Additionally, they stipulate: a “small program” is one that “can be inspected in
the usual way by a mathematician or logician”, a requirement that very few small
kernels of provers satisfy. Indeed, because no clear quantitative measure is given,
kernels ranging from less than a thousand lines of code to tens of thousands of lines
claim to satisfy the de Bruijn criterion. Others use the term “simple” instead of
“small”.

One can provide a less vague and more realistic definition by considering the size
of the checker not in terms of its lines of code but in terms of the knowledge base
that is required to reimplement it.

2team.inria.fr/parsifal/proofcert

15

Trust in such a checker will not only come from reading the code written by
others but also from the ease in which one can reimplement one’s own version of the
checker.

2. Broadness: The checker should be able to accommodate a wide range of proof
formats, or proof languages. One of the obstacles to communication is the cost, in
time and energy, of learning to use new tools and/or establishing a translation of
proofs between tools. This thesis tries to bypass this obstacle by focusing on describ-
ing the semantics of the languages instead of translating the proofs. Modularity in
the definitions by employing relational specifications help reuse semantics descrip-
tions when needed. The goal is to demand as little work as possible from the prover’s
side while minimizing the complexity of the semantics description.

3. Structure: The checked proof objects should certify proofs in the sense of
structural proof theory, i.e.,proofs in which restricting to analytic proofs (e.g., cut-
free sequent proofs or normal natural deductions) preserves completeness. More
details can be found in the following references on structural proof theory: [Gentzen,
1935, Prawitz, 1965, Troelstra and Schwichtenberg, 2000, Negri and von Plato, 2001].
The proof objects themselves, however, need not be a formal proof.

4. Trade-offs: One must acknowledge that proofs can be huge objects. This thesis
addresses this obstacle by considering “proof evidence” instead of “proof”. Proof
evidence is any proof object indicating, with varying amount of details, that a proof
has been found. To make this possible, the checker is granted proof reconstruction
capabilities. Searching for missing parts in the proof may take time, however, and a
trade-off appears between storage space and checking time. Of course, such a search
should be known (by the designer of the proof certificate) to be a simple and bounded
process.

For example, while a proof contains all instantiations of quantifiers, proof evidence
can omit the instantiating terms. Using logic variables and relying on unification, the
specific values of these terms can eventually be determined. Of course, the checker
and the prover may not arrive at the same terms, but the checker only accepts valid
instantiations, i.e.,ones that complete a correct proof. Similarly computation traces
can be left out of the proof object.

In what follows, chapter 2 describes the bedrock of decades of research into logic
and proof theory on which this thesis is built. Chapter 3 details the global archi-
tecture of the Foundational Proof Certification framework. Chapter 4 focuses on
the process of semantics description. Chapter 5 and 6 present some case studies

16

respectively in classical and intuitionistic logics. Chapter 7 investigates term-level
rewriting in reasoning with equality. Chapter 8 discusses some further characteristics
of the Foundational Proof Certification framework. Finally, chapter 9 concludes.

17

Chapter 2

Preliminary notions on focusing

You can’t depend on your eyes when your imagination is out of focus.

- Mark Twain, A Yankee at the Court of King Arthur

This chapter introduces the foundations on which the rest of this thesis is based.
It starts with the classical and intuitionistic sequent calculi of Gentzen then presents
their focused counterparts.

2.1 Sequent calculi: From Gentzen to Girard

When Gentzen embarked in a quest to find a “formalization of logical deduction”,
it was with the “specific task to find a proof of the consistency of logical deduction
in arithmetic”1. That formalism of logical deduction was called Natural Deduction
(ND). It differs from prior systems, like Hilbert-Frege systems, in the number of
axioms as opposed to inference rules. In ND, there are a multitude of inference rules
and close to no axioms, whereas in Hilbert-Frege systems, emphasis is put on axioms.
The rules of ND are syntax directed, they deal with the top level connective of a
formula, either eliminating it or introducing it (reading the rules top-down).

Definition 2.1.1. Function symbols have fixed arity and a first-order term is built
from function symbols and variables. The letters x, y, z are used for the variables
and f, g, h . . . for the functions. If a function symbol has arity 0 then it may also be
called a constant and be written as a, b, c A first-order logic formula is inductively
defined as follows. If B and C are formulas2, then so are:

1Gentzen’s words in a letter to his old teacher Hellmuth Kneser.
2This plural is preferred to formulae when not describing a mathematical formulae

18

� The atomic formula obtained by the application of an n-ary (n ≥ 0) predicate
to a list of n first-order terms

� ¬B, denoting negation

� B ∧ C, denoting conjunction

� t denoting truth (which is the unit of conjunction)

� B ∨ C, denoting disjunction

� f denoting falsehood (which is the unit of disjunction)

� B ⊃ C, denoting implication

� ∀x.B, denoting universal quantification

� ∃x.B, denoting existential quantification

with the decreasing order of precedence being ¬,∧,∨,⊃, and the quantifiers binding
until the end of the formula or the enclosing parentheses. For instance, the formula

∀x.A ∨B ∧ C ⊃ D ∨ ∃y.E ∨ F

is taken to be the fully parenthesized formula

∀x.((A ∨ (B ∧ C)) ⊃ (D ∨ (∃y.(E ∨ F))))

•

Definition 2.1.2. A sequent is a conditional assertion written A1, · · · , An ` B1, · · · , Bm,
where Bi and Aj are formulas and n and m non-negative integers. Formulas on the
left-hand side of turnstile (`) are taken conjunctively and those on the right-hand
side are taken disjunctively. The sequent above “has exactly the same informal mean-
ing” [Gentzen, 1935] as the formula

A1 ∧ · · · ∧ An ⊃ B1 ∨ · · · ∨Bm

A sequent is said to be one-sided when it has no formulas on the left. •

The difference between natural deduction and sequent calculus is that the for-
mer contains elimination rules and introduction rules, whereas the latter contains
introduction rules on the left or on the right hand-side of a turnstile (`).

19

Definition 2.1.3. A sequent calculus is a system where sequents are derived from
other sequents using a set of inference rules. A rule of inference is usually read
bottom-up, i.e.,is said to be applied to the conclusion sequent (and, sometimes, ap-
plied to a formula in the conclusion sequent) to yield the premise sequents. The rules
of a sequent calculus system can be divided in two groups. The first group contains
the so called introduction rules, each introducing the top level connective of a for-
mula, on the right-hand side or the left-hand side of the turnstile. The second group
contains so called structural and identity rules. These rules do not introduce any
connective but can move or copy a formula to restructure the shape of a sequent. For
all rules of both these groups, the formula in the conclusion sequent on which the rule
is applied is called the principal formula. •

Definition 2.1.4. A system is said to be sound if it only proves true statements,
with respect to a given logic. It is said to be complete if it proves all true statements
of a given logic. •

2.1.1 Classical sequent calculus

This section introduces the one-sided version of the classical sequent calculus LK.
Restricting the LK system as originally presented by Gentzen to one-sided sequents
is possible because of the left/right symmetry in the introduction rules.

For example, the left rule of the conjunction:

Γ, Bi ` ∆

Γ, B1 ∧B2 ` ∆

and the right rule of the disjunction:

Γ ` Bi,∆

Γ ` B1 ∨B2,∆

can be seen as mirror of each other. Thanks to this symmetry, the number of rules
of the classical sequent calculus can be reduced by half and yield what is known as
a one-sided sequent calculus, shown in figure 2.1. The sequents are of the form ` Γ
where Γ is a multiset of formulas, and where an eigenvariable is defined as follows:

Definition 2.1.5. An eigenvariable is a constant symbol that satisfies the freshness
condition, i.e.,it does not appear anywhere in the lower sequents of the rules that
introduce it. •

20

Introduction rules

` Γ, A ` Γ, B

` Γ, A ∧B ∧ ` Γ, t
t

` Γ, [y/x]B

` Γ,∀x.B ∀
` Γ, [s/x]B

` Γ,∃x.B ∃
` Γ, Ai

` Γ, A1 ∨ A2
∨

Structural and identity rules

` Γ,¬A,A I
` Γ, F ` Γ,¬F

` Γ
Cut

` Γ, F, F

` Γ, F
Contraction

Figure 2.1: The classical one-sided sequent calculus LK, where s is a first-order term
and y is an eigenvariable (not free in the conclusion).

Definition 2.1.6. A formula with no implication ⊃ is in negation normal form if
all negations have atomic scope. •

Any formula can be put in its classically equivalent negation normal form follow-
ing these (classically valid) formula transformations:

1. the material implication interpretation allows replacing all implications B ⊃ C
by the equivalent ¬B ∨ C

2. the double-negation elimination replaces all formulas of the form ¬¬B with B

3. the extended de Morgan Laws replace all formulas ¬(B∧C) with ¬B∨¬C, all
formulas ¬(B∨C) with ¬B∧¬C, all formulas ¬∃x.B with ∀x.¬B, all formulas
¬∀x.B with ∃x.¬B, all ¬t with f and all ¬f with t

These transformations push the negations downwards until negations have only
atomic scope. Henceforth, the negation symbol in ¬B stands for the negation normal
form of the negation of B.

Theorem 2.1.1. The LK system (one or two sided) is sound and complete with
respect to classical logic.

2.1.2 Intuitionistic sequent calculus

The difference between intuitionistic logic and classical logic causes one of the deepest
cleavages of the community. It started with what is known as the Foundational Crisis

21

Right introduction rules

Γ, A ` B
Γ ` A ⊃ B

⊃r Γ ` A Γ ` B
Γ ` A ∧B ∧r

Γ ` t
tr

Γ ` [y/x]B

Γ ` ∀x.B ∀r
Γ ` [s/x]B

Γ ` ∃x.B ∃r
Γ ` Ai

Γ ` A1 ∨ A2
∨r

Left introduction rules

Γ ` A Γ, B ` R
Γ, A ⊃ B ` R ⊃l

Γ, Ai ` R
Γ, A1 ∧ A2 ` R

∧l Γ ` R
Γ, t ` R tl

Γ, [s/x]B ` R
Γ,∀x.B ` R ∀l

Γ, [y/x]B ` R
Γ,∃x.B ` R ∃l

Γ, A ` R Γ, B ` R
Γ, A ∨B ` R ∨l

Γ, f ` R fl

Structural and identity rules

Γ, A ` A Ir
Γ ` F Γ, F ` R

Γ ` R Cut
Γ, F, F ` R

Γ, F ` R Contraction

Figure 2.2: The intuitionistic sequent calculus LJ, where s is a first-order term and
y is an eigenvariable.

in mathematics and, while carried out by many mathematicians, no other duel is
remembered as much as the one between Hilbert and Brouwer. This project takes
no sides in this debate but rather aims at flexibly accommodating both intuitionistic
and classical proof evidence.

Amazingly, simply restricting the right-hand side of the turnstile to contain at
most one formula is enough to have an intuitionistic sequent calculus. The resulting
rules are given in figure 2.2. The LJ sequent is of the form Γ ` B where Γ is a
multiset of formulas and B is a formula.

Theorem 2.1.2. The LJ system is sound and complete with respect to intuitionistic
logic.

2.2 Focused sequent calculi

When Gentzen described his sequent calculi, he evidently did not have machine gen-
erated proofs in mind. While sound and complete, there is a hint of chaos and a
certain ambiguity in the LK and LJ systems that make them ill-suited for proof

22

` ∆, A,¬A init
` ∆, B, C

` ∆, B ∨ C ∨
` ∆, B ` ∆, C

` ∆, B ∧ C ∧

Figure 2.3: One-sided propositional classical sequent calculus

automation. In order to use sequent calculus as the basis of automated deduction,
much more structure within proofs needs to be established. Uniform Proofs [Miller
et al., 1991] are one of many systems of computational logic that restrict sequent
calculus in soundness and completeness preserving ways. A Uniform Proof is orga-
nized as an alternation of two phases, that the authors call goal-directed search and
backchaining. Andreoli, in [Andreoli, 1992], applied this same organization to linear
logic and discovered focusing. Later on, LKF and LJF appeared in [Liang and Miller,
2009] as the focused versions of LK and LJ systems, of which many others focused
classical and intuitionistic systems are special cases.

While some may consider them to be too low-level to be of serious utility in proof
automation, the use of sequent calculi in mechanized proofs is not new. Several
efforts are known, from the precursor work of [Wang, 1960] to the recent and widely
known method of analytic tableaux [Fitting, 1990].

2.2.1 The tenets of focusing

This section introduces focusing notions that are more general than the LK and LJ
sequent calculi.

Invertibility and contraction

Consider the contraction-free, one-sided sequent calculus for propositional classical
logic on formulas in negation normal form, consisting of the three rules in figure
2.3 where A is atomic. It should be noted that the ∨ rule is different from that
in figure 2.1, but both rules are accepted in classical sequent calculus through the
admissibility of the contraction rule.

The lack of contraction impedes neither soundness nor completeness. If a classical
propositional formula in negation normal form is provable then a proof exists in the
above system. Moreover, because there is no contraction, a syntax directed proof-
search procedure with the rules of this system necessarily terminates, which is a good
step towards automation.

The reason why contraction is superfluous appears with a closer look at the
introduction rules. In definition 2.1.2, the sequence of formulas on the right-hand side

23

of a turnstile was said to be equivalent to a disjunction of those formulas. Therefore,
the ∨ rule only “lifts” the disjunction to the (essentially same) meta-disjunction.
Similarly, the ∧ rule has two premises, both of which have to be provable. They can
thus be seen as being linked with a meta-conjunction.

These rules, where the conclusion and the premise are equiprovable, are called
invertible. Because no information is lost, going from conclusion to premise, one can
always permute any of the two rules over any of the others. The following derivations,
for example, are equivalent:

` B,C,D,∆ ` B,C, F,∆
` B,C,D ∧ F,∆ ∧

` B ∨ C,D ∧ F,∆ ∨

` B,C,D,∆
` B ∨ C,D,∆ ∨

` B,C, F,∆
` B ∨ C,F,∆ ∨

` B ∨ C,D ∧ F,∆ ∧

Remark 2.2.1. Consider the process of taking a sequent ` Γ and eagerly applying
the conjunction and disjunction rules whenever, forming a sequence of rules S and
obtaining as premises the sequents ` Γ1 · · · ` Γn. A crucial side-effect of invertibility
is that, for that sequent ` Γ, any permutation of the sequence S will always yield
the same multiset of premises ` Γ1 · · · ` Γn as output. One can then see the process
of applying these invertible rules as a deterministic function.

There is no loss in completeness or soundness, then, in choosing an arbitrary
order (left-most, for example) in which to apply these rules.

If one wants to extend the previous sequent calculus from propositional to first
order, one can add the following rules.

` ∆, [y/x]B

` ∆,∀x.B ∀
` ∆, [t/x]B

` ∆,∃x.B ∃
` ∆, B,B

` ∆, B
contr

The ∀ rule is also invertible, thus if only this rule is added, contraction would
still be superfluous. However, contraction is needed when adding the ∃ connective
and associated rule; the Drinker’s paradox (∃x.¬P (x) ∨ ∀y.P (y)), classically valid,
cannot be proved without contraction. Furthermore, the ∃ rule is the only rule that
is not invertible, so one can restrict contraction to be only on ∃, i.e.,require that B
be an existential. More generally, contraction can be restricted to those formulas the
introduction rule of which is not invertible.

Focusing

With this distinction between invertible and non-invertible rules, one can take a
further step towards making sequent calculus suitable for proof automation by or-
ganizing the proofs into two phases: in one phase, all invertible rules are applied

24

consecutively (reading rules bottom-up, i.e.,as being applied to the conclusion to
yield the premises) until no more invertible rules can be applied.

In the other phase, contraction and non-invertible rules are applied. In focused
proof systems this phase is structured as follows. One starts by deciding on a single
formula on which to place the focus. When under focus, a formula is the principal
formula of a non-invertible rule, and the resulting subformulas are, themselves, the
principal formulas of the following non-invertible rules. The focus is maintained until
an initial or a unit rule is applied to end the derivation or until the formula under
focus appears with a top-level connective whose rule is invertible. In the latter case,
the focus is released and an invertible phase begins again.

Polarity

Polarities are simple annotations given to connectives to indicate, at the syntactic
level, in which phase they are introduced. If a connective is of negative polarity, its
right-introduction rule is invertible and its left-introduction rule (if any) is focused. If
a connective is of positive polarity, its left-introduction rule (if any) is invertible and
its right-introduction rule is focused. A connective is said to belong in an invertible
phase if it is the positive top level connective of a formula that appears on the left-
hand side of the turnstile or if it is the negative top level connective of a formula
that appears on the right-hand side of the turnstile. A connective is said to belong
in a focused phase if it is the positive top level connective of a formula that appears
on the right of the turnstile or if it is the negative top level connective of a formula
that appears on the left-hand side of the turnstile. Contraction can be restricted to
those formulas that belong in a focused phase.

The conjunction and disjunction and their units, t and f , are said to be ambiguous
because they come in two versions, both a negative and a positive one, resulting in
the following connectives: ∨+,∧−,∨−,∧+ and their units, respectively f+, t−, f−, t+.

The implication ⊃ and universal ∀ are unambiguously negative while the ∃ is
unambiguously positive. The atomic formulas are also given a negative or positive
polarity.

A formula is positive (resp. negative) if its top level connective is positive (resp.
negative), it is strictly positive (resp. strictly negative) if all its connectives and
atoms are positive (resp. negative).

While the provability of a formula is not compromised by the polarities given
to its connectives and atoms, the structure of the proofs of that formula can differ
greatly from one polarity assignment to another. Polarities also make it possible
to replace negative statements such as “apply invertible rules until no more can be

25

applied” by positive statements such as “apply invertible rules until all remaining
formulas are positive”.

Delays

The focusing behavior adopted for this work is somewhat aggressive because the
focused phases and the invertible phases are maximal, i.e.,every connective belonging
and appearing in a phase is introduced.

However, in some cases one might want more control over the focusing by breaking
a focused phase prematurely or by postponing the introduction of a connective. For
this, we have unary connectives called positive and negative delays, ∂−(·) and ∂+(·).
The idea is that ∂−(B) is always negative and ∂+(B) is always positive no matter
what the polarity of B is. These delay operators are easily defined using polarized
logical connectives: we can take the official definitions to be ∂−(B) = ∀x.B and
∂+(B) = ∃x.B (provided that x is not free in B). Alternatively, they can be defined
to be the unary versions of the binary ∧− and ∧+ connectives, respectively.

Structural and identity rules

Similar to the original sequent calculi, there are structural rules.
There are three structural rules in a focused system:

� Store: When the sequent is in an invertible phase, all formulas that are en-
countered are stored if they do not belong in an invertible phase.

� Decide: At the end of an invertible phase (when no connective can be intro-
duced), a previously stored formula is chosen if it belongs in a focused phase.
It becomes the formula under focus.

� Release: When the sequent is in a focused phase and the formula under focus
does not belong in a focused phase, this phase ends with a release and the
sequent reverts to an invertible phase.

Definition 2.2.1. A bipole is a cut-free derivation consisting of a focused phase
(starting with a decide rule) followed by an invertible phase. •

A related notion is the following:

Definition 2.2.2. A decide depth is the number of decide rules of a given branch of
a proof derivation. The maximal decide depth of the depths of all the branches in a
proof tree is the decide depth of that tree. •

26

The decide depth is often taken as a measure of the size of proofs that is less
fine-grained than the traditional number of rules. A bounded decide depth implies
a terminating (cut-free) proof search.

Identity rules

This last group of rules in a focused system contains the cut and initial rules. The
initial rules can finish a proof and they are applied on an atom of the adequate
polarity at the end of a focused phase (i.e.,there is no initial rule in an invertible
phase). While multiple cut rules are possible (see [Liang and Miller, 2009]), the cut
rule used in this thesis only appears at the end of an invertible phase.

2.2.2 Focused classical sequent calculus LKF

Sequents of LKF come in two kinds, unfocused, or up-arrow sequents: ` Θ⇑Γ where
Θ is a multiset and Γ is a list, on which the invertible rules are applied from left to
right, and focused, or down-arrow sequents: ` Θ ⇓ P where Θ is a multiset and P
is a formula. The left-hand side of the up or down arrow is called storage while the
right-hand side of the up or down arrow is called workbench. It is an invariant that
Θ only contains positive formulas or negative atoms. The LKF system recognizes all
connectives given above except for the implication ⊃, that is, LKF formulas follow
this grammar:

B,C ::= B ∧− C | B ∧+ C | B ∨+ C | B ∨− C | ∀x.B | ∃x.B
| A | ¬A | t+ | t− | f+ | f−

A ::= atm+ | atm−

where atm is an atomic formula. The superscripts +,− on the atoms are omitted
when clear from context.

The negation normal form of a polarized formula is very similar to that of an
unpolarized formula. The two differences are:

� the de Morgan dual flips the polarity, e.g., ¬(B ∨+ C) gives (¬B) ∧− (¬C)

� the smallest formula is not a literal (atom or negation of an atom) but a
polarized atom, i.e.,the negation symbols does not appear even at the atomic
level

� when written in the context of LKF, the negation ¬B stands for the negation
normal form of the negation of B.

27

Remark 2.2.2. In LKF, atoms have positive and negative polarities and there is
no negation connective in LKF. For this reason, the term atoms is preferred when
talking about LKF’s basic (without connectives) formulas whereas the term literals is
preferred when talking about the unpolarized classical formulas. But because atoms
are also literals, the latter is sometimes used to designate LKF’s basic formulas.
Henceforth, the terms “literal” and “atoms” will only be differentiated when unclear
from the context.

Remark 2.2.3. There is no correlation between a negative atom and a negated atom.
The former is an atom of a negative polarity in a focused system, the latter is an
atom in a non-focused system with the negation symbol in front of it. In particular,
when choosing a polarity, an atom can be mapped to either polarity say p, then each
non-negated occurrence of it will yield an atom polarized with p while each negated
occurrence will yield an atom with the opposite polarity. These two polarized atoms
are said to be complementary. Writing ¬a for a polarized atom a indicates its
complement, not its negation (the negation symbol in front of it).

Example 2.2.1. To illustrate the difference in structure of proof resulting from a
polarity assignment, consider the focused proof of the formula ¬p ∨+ (C ∨+ p) where
C is a formula with a large number of conjunctions and disjunctions:

` ¬p ∨+ (C ∨+ p),¬p ⇓ p
` ¬p ∨+ (C ∨+ p),¬p ⇓ C ∨+ p

` ¬p ∨+ (C ∨+ p),¬p ⇓ ¬p ∨+ (C ∨+ p)

` ¬p ∨+ (C ∨+ p),¬p ⇑ ·
` ¬p ∨+ (C ∨+ p) ⇑ ¬p
` ¬p ∨+ (C ∨+ p) ⇓ ¬p

` ¬p ∨+ (C ∨+ p) ⇓ ¬p ∨+ (C ∨+ p)

` ¬p ∨+ (C ∨+ p) ⇑ ·
` · ⇑ ¬p ∨+ (C ∨+ p)

The proof of the provably equivalent formula ¬p∨− (C ∨− p) will be exponentially
bigger (albeit smaller in decide depth). Indeed, every conjunction rule will essentially
copy the surrounding sequent in each of its premises, and it only stops once the
formula is decomposed into atoms. These atoms are then stored and in each of the
(potentially many) premises, the pair 〈p,¬p〉 will be present and can end the proof
after a decide rule and an initial rule. �
Theorem 2.2.1. The focusing system LKF is sound and complete w.r.t.the original
system LK. More formally, let B be an unpolarized first-order formula in negation

28

Invertible introduction rules

` Θ ⇑ t−,Γ
` Θ ⇑ A,Γ ` Θ ⇑B,Γ
` Θ ⇑ A ∧− B,Γ

` Θ ⇑ Γ

` Θ ⇑ f−,Γ
` Θ ⇑ A,B,Γ
` Θ ⇑ A ∨− B,Γ

` Θ ⇑ [y/x]B,Γ

` Θ ⇑ ∀x.B,Γ

Focused introduction rules

` Θ ⇓ t+
` Θ ⇓B1 ` Θ ⇓B2

` Θ ⇓B1 ∧+ B2

` Θ ⇓Bi

` Θ ⇓B1 ∨+ B2
i ∈ {1, 2} ` Θ ⇓ [s/x]B

` Θ ⇓ ∃x.B

Identity rules

` ¬Pa,Θ ⇓ Pa
init

` Θ ⇑B ` Θ ⇑ ¬B
` Θ ⇑ · cut

Structural rules

` Θ, C ⇑ Γ

` Θ ⇑ C,Γ store
` Θ ⇑N
` Θ ⇓N release

` P,Θ ⇓ P
` P,Θ ⇑ · decide

Here, P is a positive formula; N a negative formula; Pa a positive literal; C a positive
formula or negative literal; s is a first-order term; y is an eigenvariable.

Figure 2.4: LKF: a focused proof system for classical logic

normal form without implications. Let B̂ be a polarized formula that results from (i)
choosing either a negative or a positive version for each occurrence of the ambigu-
ous connectives (ii) picking some global polarization of atomic formulas, and (iii)
inserting any number of delays anywhere into the formulas. Then, ` B ⇐⇒` · ⇑ B̂.

One can see in figure 2.5 that polarity is simply a notation and that, by removing
the up and down arrows and the polarity superscripts, one finds the usual one-sided
LK rules.

2.2.3 Intuitionistic sequent calculus LJF

Sequents in LJF, presented in figure 2.6, come in three kinds, one unfocused and two
focused sequents. The unfocused sequent: Γ ⇑ Θ ` ∆1 ⇑∆2 where the union of ∆1

and ∆2 contains exactly one element, Γ is a multiset and Θ is a list. The invertible
rules are applied on Θ from left to right, and on ∆1 only if Θ is empty. ∆ stands

29

Rules from one-sided LKF

` Θ ⇑ A,Γ ` Θ ⇑B,Γ
` Θ ⇑ A ∧− B,Γ

` Θ ⇑ [y/x]B,Γ

` Θ ⇑ ∀x.B,Γ
` Θ ⇑N
` Θ ⇓N release

` P,Θ ⇓ P
` P,Θ ⇑ · decide

Rules from one-sided LK

` ΘA,Γ ` ΘB,Γ

` ΘA ∧B,Γ
` Θ[y/x]B,Γ

` Θ∀x.B,Γ
` Θ, N

` Θ, N
null

` P,ΘP
` P,Θ· contraction

Figure 2.5: Focused and unfocused rules

for ∆1 ⇑ ∆2. The sequent has four zones, the middle zones (left-hand side of the
up-arrow on the right-hand side of the turnstile and the right-hand side of the up or
down arrow on the left-hand side of the turnstile) are called (left and right) storage
while the other two zones are called (left and right) workbenches.

The focused sequents are the left-focused sequent Γ ⇓ N ` R and the right-
focused sequent Γ ` P ⇓. In both these sequents, R and Γ are also called storage
while P and N are in the workbench.

It is an invariant that Γ only contains negative formulas or positive atoms. The
LJF system recognizes all connectives given above except for the negative disjunction,
∨−, and its unit f−.

Theorem 2.2.2. The focusing system LJF is sound and complete w.r.t.the original
system LJ. More formally, let C be an unpolarized first-order formula. Let Ĉ be a
polarized formula that results from (i) choosing either a negative or a positive version
for each occurrence of the conjunction and its unit t and giving the positive polarity
to the disjunction, (ii) picking some polarization globally for atomic formulas, and
(iii) inserting any number of delays anywhere into the formulas. Then, · ` C ⇐⇒
· ⇑ · ` Ĉ ⇑ ·

Remark 2.2.4. By removing all notation from focused systems (up and down arrows,
polarities) one obtains the usual sequent calculi of Gentzen (albeit in verbose ver-
sions). In particular the contraction corresponds to decide rules (only left-decide rule
for LJF).

30

Invertible Rules

Γ ⇑ A ` B ⇑
Γ ⇑ ` A ⊃ B ⇑ ⊃r

Γ ⇑ ` A ⇑ Γ ⇑ ` B ⇑
Γ ⇑ ` A ∧− B ⇑ ∧−r Γ ⇑ ` t− ⇑ t−r

Γ ⇑ ` [y/x]B ⇑
Γ ⇑ ` ∀x.B ⇑ ∀r

Γ ⇑ [y/x]B,Θ ` ∆

Γ ⇑ ∃x.B,Θ ` ∆
∃l Γ ⇑ f+,Θ ` ∆

f+
l

Γ ⇑ A,B,Θ ` ∆

Γ ⇑ A ∧+ B,Θ ` ∆
∧+
l

Γ ⇑Θ ` ∆

Γ ⇑ t+,Θ ` ∆
t+l

Γ ⇑ A,Θ ` ∆ Γ ⇑B,Θ ` ∆

Γ ⇑ A ∨B,Θ ` ∆
∨l

Focused Rules

Γ ` A ⇓ Γ ⇓ B ` D
Γ ⇓ A ⊃ B ` D ⊃l

Γ ` Ai ⇓
Γ ` A1 ∨ A2 ⇓

∨r
Γ ⇓ Ai ` D

Γ ⇓ A1 ∧− A2 ` D
∧−l

Γ ⇓ [s/x]B ` D
Γ ⇓ ∀x.B ` D ∀l

Γ ` A ⇓ Γ ` B ⇓
Γ ` A ∧+ B ⇓ ∧+

r Γ ` t+ ⇓ t
+
r

Γ ` [s/x]B ⇓
Γ ` ∃x.B ⇓ ∃r

Identity rules

Na atomic
Γ ⇓ Na ` Na

Il
Pa atomic

Γ, Pa ` Pa ⇓
Ir

Γ ⇑ ` F ⇑ Γ ⇑ F ` ⇑D
Γ ⇑ ` ⇑D C

Structural rules

Γ, N ⇓ N ` D
Γ, N ⇑ ` ⇑D Dl

Γ ` P ⇓
Γ ⇑ ` ⇑ P Dr

Γ ⇑ P ` ⇑D
Γ ⇓ P ` D Rl

Γ ⇑ ` N ⇑
Γ ` N ⇓ Rr

C,Γ ⇑Θ ` ∆

Γ ⇑ C,Θ ` ∆
Sl

Γ ⇑ ` ⇑D
Γ ⇑ ` D ⇑ Sr

Here, P is positive; N is negative; C is a negative formula or positive atom; and D
a positive formula or negative atom; Other formulas are arbitrary; s is a first-order
term; y is an eigenvariable.

Figure 2.6: The intuitionistic sequent calculus LJF.

31

Chapter 3

Global architecture

A common mistake that people make when trying to design something
completely foolproof is to underestimate the ingenuity of complete fools.

- Douglas Adams, Mostly Harmless

The first chapter introduced the habitat and aims of this thesis. The second
chapter presented sequent calculi and notions of focusing which are the theoretical
foundations necessary for the understanding of this research effort.

This chapter explains how these foundations answer the objectives and desiderata
set in the introduction. Section 3.1 explains desired characteristics of the framework
and the advantages of this approach. Section 3.2 discusses how the properties given
to the framework may be adjusted to fit the needs of specific checking tasks. Sec-
tion 3.3 informally describes the three components around which the Foundational
Proof Certification framework is articulated and, in particular, details the workload
associated with (and the knowledge base needed for) each component. Finally, sec-
tion 3.4 and 3.5 introduce the kernels used in this thesis, similar to the one presented
by Chihani et al. [2013a]. These kernels are versions of the previously seen LKF and
LJF systems that are modified to allow guidance of the kernel in a completely sound
fashion.

These last sections explain how the kernel can be guided to the intended proof of
a proposed theorem, not how this guidance is actually defined. The definition of the
guidance is related to the language semantics description and is the subject of next
chapter. In other words, the focus is put here on how some signals can influence the
kernel, or what is the protocol with which it communicates with the proof certificate,
not what constitutes those signals.

32

3.1 Desired properties

In the introduction, several desiderata were presented to structure this thesis and
impose boundaries and guiding principles. This section proposes ways of fulfilling
the desiderata.

3.1.1 Poincaré Principle

The first desired property is the ability to separate computation from deduction,
answering the 3rd desideratum. This desideratum is somewhat more general than
the so-called Poincaré Principle, coined in [Barendregt, 1997]. Barendregt’s notion
of the Poincaré principle follows the remark, made by Henri Poincaré in his book
Science and Hypothesis, that an argument showing 2 + 2 = 4 is not a proof but a
verification that can be carried out by a mechanical algorithm. The traces of these
computations can be left out of a proof to reduce its size.

The notion of computation, however, is not limited to mathematic calculation.
As noted in remark 2.2.1, an invertible phase of a focused system will always give the
same (set of premises as) output when presented with the same (unfocused sequent
as) input. This operation is therefore no less determined than an argument for
2 + 2 = 4. This determinacy allows leaving out more information from the proof
evidence and is one of the perks of focusing. Building the kernel on top of a focused
logic is then a desired property and, while this framework is presented through
LKF and LJF, the same ideas apply by using other focused sequent calculi such as
LKU [Liang and Miller, 2011], µMALLF [Baelde, 2012] and others [Laurent, 2002,
Simmons, 2014].

3.1.2 Modular integration

In addition to the proof compression obtained by a focusing setting, one can further
reduce the amount of information in the proof evidence if parts of the proof can be
reconstructed using a decision procedure (G4ip[Dyckhoff, 1992] for example). Then
the reduction in size can also benefit from modularly calling such previously defined
procedures on those parts. Another desired property is thus support for modular
integration.

The use of this property can be broadened to combining multiple proof evidence
semantics definitions to check proof evidence that involves more than one proof lan-
guage (e.g., integrating semantics for equational reasoning with that of dependently
typed λ-calculus to check λΠ-modulo proofs).

33

However, support for such integration possibilities must provide security guaran-
tees.

3.1.3 Abstractions and typing

Ensuring security properties is paramount if one wants to seal the checker from
outside tampering and have stronger confidence in the correctness of the implemen-
tations. Types, in particular abstract data types, as well as the ability to hide parts of
modules when integrated are often used for such a goal in mind. The LCF approach
achieves high levels of trust by relying on clever usage of types: theorems have a
particular abstract data type thm, and the language is comprised of axioms of that
same type, along with functions, denoting inference rules, to build thm objects from
thm objects. One is assured, then, that if a theorem (of type thm) has been proven, it
is either the result of an axiom or of sound repeated applications of inference rules to
previously derived formulas. The Foundational Proof Certification framework offers
the same guarantees.

Furthermore, by means of a careful separation, an erroneous (or even malicious)
proof certificate will never cause the checking mechanism to validate a falsehood.

3.1.4 Declarative and relational

The framework relies on a relational setting. In [Wiedijk, 2007], the author provoca-
tively states that the focus in formal mathematics should be on declarative systems
(e.g., Isabelle/HOL and Mizar) over procedural systems (e.g., Coq), arguing both
that this is the recognizable, traditional way of doing mathematics and that a declar-
ative setting is more robust to changes in foundations.

The Foundational Proof Certification is concerned with machine-generated and
machine-checked documents to be communicated between machines. In this environ-
ment, a human has little role and therefore being “recognizable and traditional” is
not a concern when it comes to proof evidence. However, when describing the seman-
tics of a language using the Foundational Proof Certification framework, readability
and concision are valuable attributes that promote trust.

The latter argument of robustness also applies, especially in making the frame-
work benefit from modularity and flexibly accommodate a wide range of proof evi-
dence languages, which is the second desideratum.

While the declarative paradigm includes both relational and functional settings,
a relational setting is preferred because a function is a special case of a relation. This
generality is sought also to satisfy the second desideratum.

34

3.1.5 Proof reconstruction tools

Another flexibility that this project aims at is the possibility of proof reconstruction.
Unification and backtracking search play a vital role in this setting. Indeed, non-
determinism, far from being a liability, is a useful resource. The order in which
unification can be done depends on the scope of the checker, it can range from no
unification to first-order unification to higher-order pattern unification.

A trade-off appears between search time, reduced by greater details, and storage
space, reduced by fewer details.

3.1.6 Parallelism

With the same goal of generality in mind, and because sequentiality is a special
case of parallelism, the FPC framework supports parallelism. If part of the proof
certificate instructs that some portions of the proof are obtained independently, the
framework should check this parallelism. This is achieved, for example, through the
use of multi-cuts and multi-focus.

This thesis, limited to first-order classical and intuitionistic logics, does not inves-
tigate these possibilities further. However, previous efforts showed how parallelism
in a focused setting can be used to obtain canonicity of sequent proofs [Chaudhuri
et al., 2008] as well as an isomorphism for expansion proofs [Chaudhuri et al., 2014].
Future parts of the ProofCert project include treatment of modal logics, to which
these ideas also apply.

3.1.7 Additional features

Together with the above properties, other features of arguably less importance can
be useful.

� λ-tree syntax is a logically supported mechanism particularly useful when
checking proofs involving bindings (substitutions, α-conversions), be it at the
term level or at the formula level. This can be of great use when dealing
with quantifier-related challenges (eigenvariable generation, quantifier instan-
tiation). Deeper understanding of the utility of the λ-tree syntax can be found
in [Miller, 2000].

� The possibility for hypothetical reasoning (i.e.,the presence of implications in
the body of clauses) can greatly facilitate certain aspects of this framework.
The relational setting offered by, say, Horn clauses [Horn, 1951], which doesn’t

35

allow hypothetical reasoning, is weaker than hereditary Rasiowa-Harrop For-
mulas [Troelstra and Schwichtenberg, 2000].

3.2 Tailoring the framework

Any implementation of this framework should preferably satisfy these desired proper-
ties. However, the generality of the framework can be tailored to specific needs. For
example, if one is only interested in propositional logic there is no need to implement
higher-order unification. Similarly, if the proof evidence contains the full details of a
proof, there might be reduced need for backtracking search. If the proof evidence is
given in full (including all instantiations of all quantifiers), then the checker may well
be seen as a functional deterministic system instead of a relational non-deterministic
system. In fact, section 8.2 shows how one can use this framework to fill in all the
missing details of a proof, allowing the resulting proof certificate to be checked on a
functional implementation of the framework.

It should be noted that these requirements have strong foundations in logic and
have been sufficiently studied and well understood, to the point that one can simply
take an off-the-shelf unification algorithm, for example, and implement it in one’s
language of preference. One can also use failure and success continuations (which
are arguably simple to use for a seasoned functional programmer) to implement
backtracking in a functional programming language.

By minimizing the amount of theoretical knowledge needed to implement the
presented framework, the hope is to have multiple coexisting tools, validating or
contradicting each other, all the while augmenting trust and familiarity with Founda-
tional Proof Certification. If one is not convinced of an implementation, a reasonable
amount of time should be sufficient to reimplement one’s own version of this work.
The ultimate goal is that prover implementers will one day see as many benefits in
presenting output with precise semantics as programming languages designers see in
presenting the semantics of their language in a standard setting such as SOS [Plotkin,
1981].

3.3 Components of the framework

The global architecture is summarized in figure 3.1. The starting point of the proof
checking process is a prover outputting a document. This document is called proof
evidence and is written in the language chosen by the designer of the prover. This
language is called the proof evidence language or the proof evidence format (if unam-

36

Figure 3.1: Architecture of the framework

37

biguous from the context, it will be called simply language or format). The kernel
checker has no a priori knowledge of it and, therefore, some process is obviously
necessary to establish a link between the two.

Instead of translating the proof evidence from its original language to one under-
stood by the kernel checker, the Foundational Proof Certification framework gives
a way to describe the language, or to define its semantics, by means of a relational
specification. Once the semantics of the proof evidence format has been defined,
the kernel can then perform the proof evidence, much like an interpreter does for a
program.

Joining the semantics of a proof evidence language with a piece of proof evidence
expressed in that language yields a proof certificate.

Remark 3.3.1. The proof evidence, the proof evidence format (or simply: format),
the proof evidence format semantics definition (or simply: semantics) and the proof
certificate (or simply: certificate) are then four related but distinct notions.

Like any other research effort, the present framework can mature and grow if
multiple actors work together towards the same goal of increased communication
and improved trust. “Standards can emerge as the consequence of consensus, the
imposition of authority, or a combination of both”[Russell, 2014]. The starting belief
of this work is that the theorem proving community is ready, if not for a consensus,
at least for a serious discussion and for the elaboration of different and competing
ideas to address the lack of communication.

The main obstacle to this discussion is an unwillingness to compromise. Proposing
a standard that is based on one logic, on one system, or on one notion of proof reduces
the space for discussion. On the other extreme, starting from scratch and hoping
that the community will find its way towards a natural and all-satisfying standard
is Utopian. This project proposes a middle ground by establishing a few guidelines
and goals (section 3.1) that constitute an inclusive philosophy and present many
opportunities for cooperations, improvements and original ideas.

Another obstacle to the discussion is the unavailability of researchers. Members
of the theorem proving community are involved in their own research questions and
have little time to participate. And finally, they might not all have (nor have time
to learn) the right formal background to understand what is to be done.

This section offers a possible, mildly optimistic division of labor and of required
knowledge base between the actors involved in this discussion.

38

3.3.1 The client’s side

The client’s workload is the lightest. The client has created a theorem prover and
shares the views of de Bruijn in that her theorem prover does output some object
that indicate some parts of the proving process. This object is what is meant by
proof evidence.

The client has a specific notion of what the proof evidence should be and would
like not to be required to change it too much, typically by having to embed it in
another language. She is open to discussion and may agree to small changes (e.g.,
pretty printing) if she can be convinced that these changes will not take too much
of her time and if they do not change the overall aspect of a proof.

For example, a paramodulation-based prover may use clever heuristics or in-
termediate steps, part of which may be mentioned in the proof evidence. When
participating in the Foundational Proof Certification, the client may agree to go so
far as to write the proof evidence as paramodulation steps as seen in the original
paramodulation paper by Robinson [Robinson and Wos, 1983]. It is an arguably
reasonable request for a paramodulation-based prover to output a paramodulation
proof. One of the goals of Foundational Proof Certification is to accommodate var-
ious formats without requesting radical changes in the user’s notion of proof, e.g.,
translating a paramodulation proof into, say, a natural deduction derivation.

Finally, the client is not required to know anything about any other logic area
than her own, but will gladly answer any questions relative to that area.

3.3.2 The kernel checker’s side

The Foundational Proof Certification framework is deeply rooted in the theoretical
concept of focusing. Designing a kernel checker consists in adding a communication
protocol to a focused system (which implies knowledge of that system) in a soundness-
preserving way.

Designing the kernel and implementing it are two separate tasks and may be car-
ried out by two actors with separate knowledge bases. The former needs knowledge
of focusing, the latter needs experience with implementing an inference based system
(not necessarily a focused sequent calculus).

The simpler the framework, the easier it is to implement. This can encourage
more researchers to code their own version of the framework.

39

3.3.3 The middle man: the semantics

The link between a proof evidence language L and the kernel checker is made
through the semantics definition of that language. This semantics is written in terms
of relational specifications without particular abilities in a programming language.
Establishing this semantics requires general knowledge of both the language L and
the focusing paradigm. In particular, the semantics should be a stand-alone object
interpreted by many different and compatible kernels as long as they are based on
the relevant logic. Therefore, knowledge of the exact focusing system the kernel is
based on should not be required. For example, a proof certificate for linear logic
can be checked both by a kernel based on the MALLF focused system or on the
MALLF fragment of the hybrid LKU focused system. A proof certificate for clas-
sical logics should be checkable by kernels based on LKF, on LJF through some
double-negation-like translation, or on the LKF fragment of the LKU system.

Similarly to that of the kernel checker, the definer and implementer of the se-
mantics need not be the same person. However, links between the implementation
of the semantics and the implementation of the kernel are necessary. In particular,
the interface between the proof certificate and the kernel must be known to both.

3.4 The augmented sequent calculus LKF a

The notions presented here are relative to the last stage of the Foundational Proof
Certification process: the actual checking of a proof certificate. It is this proof
certificate that supplies the kernel with guiding points so as to perform a correct
proof. Because a focused system alternates between invertible phases and focused
phases, information guiding the checker is only needed in certain locations. This
flow of information must follow a soundness-preserving protocol which is the object
of this section.

Definition 3.4.1.

1. A case is a collection of data structures that can be supplied with portions of
the proof evidence. Similar to variables in a program, a case can be defined in
a number of ways.

2. An agent is a predicate with a certain number of arguments, some of which are
cases.

3. An index is a label. It can also be defined in a number of ways and is not
restricted to being an integer.

40

4. An indexed formula is a pair 〈I, F 〉 of formula F and index I

5. An indexed multiset is a multiset of indexed formulas.

6. An augmented sequent is the pair of a sequent and a case where the storage is
an indexed multiset. (e.g., if Θ is an indexed multiset, the (unfocused) sequent
Ξ1 ` Θ ⇑ Γ and the (focused) sequent Ξ2 ` Θ ⇓ P are augmented).

7. An augmented inference rule is an inference rule with an agent as an extra
premise. In addition, all sequents appearing in the conclusion and premises
are augmented. The agent predicate has at least as many case arguments as
the number of sequents in the inference rule (conclusion and premises). These
arguments will be the cases associated with these sequents. For example, an
inference rule

premise1 premise2

conclusion

is augmented to yield

Ξ1 premise1 Ξ2 premise2 agent(Ξ0,Ξ1,Ξ2, · · ·)
Ξ0 conclusion

In addition to the case arguments, there can be different numbers of guidance
arguments, depending on the agent. Intuitively, the agent examines the “in-
put”1 case (here Ξ0), communicates information, if any, through the rest of its
arguments and returns “output” cases (here Ξ1 and Ξ2).

•

Remark 3.4.1. For space saving, when giving an example derivation, augmented
inference rules are sometimes written

Ξ1 premise1 Ξ2 premise2

Ξ0 conclusion
agent(Ξ0,Ξ1,Ξ2, · · ·)

Also for space saving, indexed formulas in the storage, 〈I, F 〉, are sometimes written
FI .

1Since predicates are relations, there is no intrinsic input/output distinction. In Logic Program-
ming, however, there is a notion of such data flow.

41

3.4.1 Experts

During the focused phase the checker requests guiding information. These pieces of
information are handed in by agents called experts. These agents are in charge of
exploring and investigating the portion of the proof evidence inside the input case in
search for guiding information. The name of an expert is the name of its rule with
a subscript “e”. The most important experts are given in this section.

Disjunction expert

The positive disjunction rule picks one of the disjuncts and discards the other. The
agent of this rule is called the positive disjunction expert, or simply ∨+

e . It can pass
a choice in its guidance argument, the augmented ∨+ rule can then be guided to
choose the right or the left disjunct.

Ξ1 ` Θ ⇓Bi ∨+
e (Ξ0,Ξ1, i)

Ξ0 ` Θ ⇓B1 ∨+ B2
i = 1, 2

In the presence of backtracking search, this information can be left out of the proof
certificate.

Existential expert

The ∃ rule instantiates an existential formula with a first-order term s as a witness.
This term can be supplied by the existential expert, called ∃e, through the following
augmentation of the ∃ rule.

Ξ1 ` Θ ⇓ [s/x]B ∃e(Ξ0,Ξ1, s)

Ξ0 ` Θ ⇓ ∃x.B

In the presence of a unification mechanism, this guiding information can be left
incomplete in various levels of detail:

� the witness s is plainly given to the kernel. In this case it is chosen as a witness
and the proof checking will fail if the witness is inadequate

� the proof certificate holds a set of witnesses ω eligible for instantiating this
particular existential. The agent succeeds with all of them and, in the presence
of backtracking, the kernel checker is given members ω until it reaches one that
completes the proof or until all of them fail

42

� the agent might have no information at all, in which case it succeeds with an
unconstrained logic variable. In the presence of unification, this variable is
given a satisfactory instantiation, if any exists.

Cut expert

While cut elimination is usually essential for the soundness and completeness of any
proof system, the proof checker has little benefit from eliminating the cuts. On
the contrary, since many proofs rely on previously proved lemmas, the cut rule is a
valuable tool for proof checking. The cut rule is augmented with a cut expert noted
Ce:

Ξ1 ` Θ ⇑B Ξ2 ` Θ ⇑ ¬B Ce(Ξ0,Ξ1,Ξ2, B)

Ξ0 ` Θ ⇑ ·

Decide expert

The decide rule is augmented with a decide expert, noted De, yielding the following
rule:

Ξ1 ` 〈l,P 〉,Θ ⇓ P De(Ξ0,Ξ1, l)

Ξ0 ` 〈l,P 〉,Θ ⇑ ·
decide

Because, in a focused system, contraction is the only source of non-termination
in (cut-free) proof search, no proof certificate should let the decide rule be applied
unrestrained. The guiding information (the index l) can come in different flavors,
some of which are given here:

� the proof certificate can give the exact index of the formula on which to decide

� the proof certificate can have a set of indexes on which to decide. As for
the existential, backtracking allows trying each of them until one succeeds in
finishing the proof

� the kernel receives no guidance, that is the index is an unconstrained logic
variable. Then the decide rule can be applied on any formula in the context.

Initial expert

One has to distinguish between checking a proof certificate and checking the prov-
ability of a theorem. For the latter, finding one proof is enough. The concern of this

43

project, however, is checking the proof certificate. An analogy can be made with a
school exercise: if a student gives a bad solution to a solvable problem, he should
not be rewarded. Similarly, a proof certificate that leads to an incorrect proof should
not be accepted, even if a proof actually exists.

Thus the initial rule is also augmented with the initial expert, noted Ie:

〈l,¬Pa〉 ∈ Θ Ie(Ξ0, l)

Ξ0 ` Θ ⇓ Pa
init

If a proof certificate gives an index (here l) for the negative atom (here ¬Pa) that
should be paired with the positive atom under focus (here Pa), this information must
be used. It is not sufficient that the initial rule succeeds, it must succeed with the
given index.

The information given by Ie through the index can vary in the same level of
details as the information given by the decide expert De.

3.4.2 Clerks

During the invertible phase, no guidance is asked (there are no choice points) but the
information can flow in the opposite direction, i.e.,from the proof-performing kernel
to the proof certificate. These opposite-flowing pieces of information are recorded by
agents called clerks and saved in the case if need be. These agents are in charge of
bookkeeping steps taken by the kernel checker.

Store clerk

The store rule is augmented with the store clerk, noted Sc:

Ξ1 ` Θ, 〈l,C〉 ⇑ Γ Sc(Ξ0,Ξ1, l)

Ξ0 ` Θ ⇑ C,Γ store

The store clerk is responsible for filing and indexing the formulas entering the context.
To do so, it supplies the kernel with an index l.

Universal clerk

Perhaps the best example of the inverse flow of information is the universal clerk,
augmenting the ∀-rule as follows:

([y/x]Ξ1) ` Θ ⇑ [y/x]B,Γ ∀c(Ξ0,Ξ1)

Ξ0 ` Θ ⇑ ∀x.B,Γ
Notice that the output case and the kernel use the same eigenvariable y.

44

3.4.3 The complete LKF a system

Once these clerks and experts are added as premises to most rules, one obtains the
proof system presented in figure 3.2. Notice that by removing all augmentation (in
blue), one obtains the LKF system. Thus soundness is immediate, because a proof
obtained in LKF a is a proof in LKF. More formally:

Definition 3.4.2. The erasure function ‖·‖ is defined on sequents and formulas as
follows.

‖B ◦± C‖ = ‖B‖ ◦ ‖C‖ ‖�x.B‖ = �x.‖B‖ ‖N±‖ = N

where ◦ ∈ {∨,∧}, ± ∈ {+,−}, � ∈ {∀,∃}, N ∈ {f, t, a} and a is an atom.

‖Ξ ` 〈l1,B1〉, ...〈ln,Bn〉 ⇑ C1, ...Cm‖ = ` ‖B1‖, ...‖Bn‖ ⇑ ‖C1‖, ...‖Cm‖

‖Ξ ` 〈l1,B1〉, ...〈ln,Bn〉 ⇓ C‖ = ` ‖B1‖, ...‖Bn‖ ⇓ ‖C‖

•

Theorem 3.4.1 (Erasure). The LKF a system is sound with respect to the LK sys-
tem.

Proof. Let π be the proof derivation of the augmented sequent Ξ ` Γ ⇑∆. Let ‖π‖
be the proof obtained by applying the erasing function to all the sequents in the
derivation π. Then ‖π‖ is an LKF proof.

It follows that LKF a is sound with respect to LKF, and by the soundness of
LKF, it is also sound with respect to LK.

The office analogy

Naming the agents clerks and experts (as opposed to simply agents) emphasizes the
separation between their respective roles. But the difference between these roles is
more than philosophical. Clerks are the instruments of the invertible phase. The
phase is sometimes called asynchronous because it does not communicate with the
outside world, thus clerks do not guide the kernel. However, the clerks can record
(hence their name) what happens in that phase as well as perform computations and
bookkeep their results in the case object.

The experts, on the other hand, are the instruments of guidance, they directly
influence the behavior of the kernel by offering non jeopardizing directions.

45

Certain agents may seem confusing, in particular, the store agent is a clerk, not
an expert, notwithstanding it does provide an index which can be seen as supplying
the kernel with information. However, the index holds no meaning to the kernel,
it only holds meaning to other agents (namely the decide experts), as opposed to
the existential expert which actually supplies the kernel with the witness. Another
way to view this is: by removing all augmentations, the indexes disappear but the
witnesses are still part of the proof.

The following analogy might convey the spirit of clerks and experts. Imagine an
accounting office that is given a collection of financial documents and tasked, by its
client, to check if these documents are in accordance with a certain tax code. The tax
office staff is divided into two groups. The first group of workers, called experts, are
given the responsibility of looking into the mound and extracting information: they
must decide into which series of transactions to dig and they need to know when
to release their findings for later consideration and eventual storage. The second
group of workers, called clerks, are responsible for taking information released by
the experts and performing various computations on them, including their indexing
and storing. The justification of this division of effort between clerks and experts
comes from the structure of focused sequent proof systems: experts operate during
the focused phase of proof construction while clerks operate during the invertible
phase.

To get an intuitive understanding of the dynamics of this communication, one
can imagine a room with a desk on which documents are laid, representing a case
(as in a piece of work). This case is the active case, other cases may be piled on
shelves. At each call to a clerk or expert, the requested agent enters the room and
approaches the desk. He is not able to communicate with any other agent directly,
but he is free to modify the information on the desk for subsequent agents to read.
These modifications include adding new information, removing obsolete information,
clearing the desk from the former case and taking a different case from a shelf, thus
making it the active case.

If an expert is asked a certain guidance by the kernel, he may communicate only to
the kernel and only through restricted signals (such as a direction for a disjunction
or an index for a decision). If an agent is called into the room and finds a case
unknown to him, he declares failure, provoking the failure of the kernel’s current
investigation. This does not mean failure of the overall checking, however, as the
kernel may backtrack to prior choice points and start a new investigation.

46

3.5 Augmenting the LJF system

The LJF a system (figure 3.3) is an augmented version of LJF in the same way LKF a

is an augmented version of LKF. As said before, similar augmentations are possible
for other focused sequent calculi.

47

Invertible phase’s rules

Ξ1 ` Θ ⇑ Γ f−
c (Ξ0,Ξ1)

Ξ0 ` Θ ⇑ f−,Γ
Ξ1 ` Θ ⇑ A,Γ Ξ2 ` Θ ⇑B,Γ ∧−

c (Ξ0,Ξ1,Ξ2)

Ξ0 ` Θ ⇑ A ∧− B,Γ
Ξ1 ` Θ ⇑ A,B,Γ ∨−

c (Ξ0,Ξ1)

Ξ0 ` Θ ⇑ A ∨− B,Γ Ξ0 ` Θ ⇑ t−,Γ
(Ξ1y) ` Θ ⇑ [y/x]B,Γ ∀c(Ξ0,Ξ1)

Ξ0 ` Θ ⇑ ∀x.B,Γ †

Focused phase’s rules

t+e (Ξ0)

Ξ0 ` Θ ⇓ t+
Ξ1 ` Θ ⇓B1 Ξ2 ` Θ ⇓B2 ∧+

e (Ξ0,Ξ1,Ξ2)

Ξ0 ` Θ ⇓B1 ∧+ B2

Ξ1 ` Θ ⇓Bi ∨+
e (Ξ0,Ξ1, i)

Ξ0 ` Θ ⇓B1 ∨+ B2

Ξ1 ` Θ ⇓ [t/x]B ∃e(Ξ0,Ξ1, t)

Ξ0 ` Θ ⇓ ∃x.B

Identity rules

Ξ1 ` Θ ⇑ F Ξ2 ` Θ ⇑ ¬F Ce(Ξ0,Ξ1,Ξ2, F)

Ξ0 ` Θ ⇑ · cut
〈l,¬Pa〉 ∈ Θ Ie(Ξ0, l)

Ξ0 ` Θ ⇓ Pa
init

Structural rules

Ξ1 ` Θ ⇑N Re(Ξ0,Ξ1)

Ξ0 ` Θ ⇓N release
Ξ1 ` Θ ⇓ P 〈l,P 〉 ∈ Θ De(Ξ0,Ξ1, l)

Ξ0 ` Θ ⇑ · decide

Ξ1 ` Θ, 〈l,C〉 ⇑ Γ Sc(Ξ0,Ξ1, l)

Ξ0 ` Θ ⇑ C,Γ store

Here, P is a positive formula; N a negative formula; Pa a positive atom; Na a negative
atom; C a positive formula or negative atom; Other formulas have arbitrary polarity;
s is a first-order term; y is an eigenvariable.

Figure 3.2: The augmented LKF proof system LKF a.

48

Invertible phase’s rules

Ξ1 : Γ ⇑ A ` B ⇑ ⊃c (Ξ0,Ξ1)

Ξ0 : Γ ⇑ ` A ⊃ B ⇑ ⊃r
(Ξ1y) : Γ ⇑ ` [y/x]B ⇑ ∀c(Ξ0,Ξ1)

Ξ0 : Γ ⇑ ` ∀x.B ⇑ ∀r

Ξ1 : Γ ⇑ ` A ⇑ Ξ1 : Γ ⇑ ` B ⇑ ∧−c (Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ⇑ ` A ∧− B ⇑ ∧−r
∧−c (Ξ0)

Ξ0 : Γ ⇑ ` t− ⇑ t−r

Ξ1 : Γ ⇑ A,B,Θ ` ∆ ∧+
c (Ξ0,Ξ1)

Ξ0 : Γ ⇑ A ∧+ B,Θ ` ∆
∧+
l

Ξ1 : Γ ⇑Θ ` ∆ ∧+
c (Ξ0,Ξ1)

Ξ0 : Γ ⇑ t+,Θ ` ∆
t+l

Ξ1 : Γ ⇑ A,Θ ` ∆ Ξ2 : Γ ⇑B,Θ ` ∆ ∨c(Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ⇑ A ∨B,Θ ` ∆
∨l

f+
c (Ξ0)

Ξ0 : Γ ⇑ f+,Θ ` ∆
f+
l

(Ξ1y) : Γ ⇑ [y/x]B,Θ ` ∆ ∃c(Ξ0,Ξ1)

Ξ0 : Γ ⇑ ∃x.B,Θ ` ∆
∃l

Focused phase’s rules

Ξ1 : Γ ` A ⇓ Ξ2 : Γ ⇓ B ` D ⊃e (Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ⇓ A ⊃ B ` D ⊃l

Ξ1 : Γ ` Ai ⇓ ∨e(Ξ0,Ξ1, i)

Ξ0 : Γ ` A1 ∨ A2 ⇓
∨r

Ξ1 : Γ ⇓ Ai ` D ∧−e (Ξ0,Ξ1, i)

Ξ0 : Γ ⇓ A1 ∧− A2 ` D
∧−l

Ξ1 : Γ ` A ⇓ Ξ2 : Γ ` B ⇓ ∧+
e (Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ` A ∧+ B ⇓ ∧+
r

t+e (Ξ0)

Ξ0 : Γ ` t+ ⇓ t
+
r

Ξ1 : Γ ` [t/x]B ⇓ ∃e(Ξ0,Ξ1, t)

Ξ0 : Γ ` ∃x.B ⇓ ∃r
Ξ1 : Γ ⇓ [t/x]B ` D ∀e(Ξ0,Ξ1, t)

Ξ0 : Γ ⇓ ∀x.B ` D ∀l

Identity & structural rules

Na atomic Ile(Ξ0)

Ξ0 : Γ ⇓ Na ` Na
Il

Pa atomic (l,Pa) ∈ Γ Ire(Ξ0, l)

Ξ0 : Γ ` Pa ⇓
Ir

Ξ1 : Γ ⇑ ` F ⇑ Ξ2 : Γ ⇑ F ` ⇑R Ce(Ξ0,Ξ1,Ξ2, F)

Ξ0 : Γ ⇑ ` ⇑R Cut

〈l,N〉 ∈ Γ Ξ1 : Γ ⇓ N ` R Dl
e(Ξ0,Ξ1, l)

Ξ0 : Γ ⇑ ` ⇑R Dl

Ξ1 : Γ ` P ⇓ Dr
e(Ξ0,Ξ1)

Ξ0 : Γ ⇑ ` ⇑ P Dr

Ξ1 : Γ ⇑ P ` ⇑R Rl
e(Ξ0,Ξ1)

Ξ0 : Γ ⇓ P ` R Rl

Ξ1 : Γ ⇑ ` N ⇑ Rr
e(Ξ0,Ξ1)

Ξ0 : Γ ` N ⇓ Rr

Ξ1 : 〈l,C〉,Γ ⇑Θ ` ∆ Slc(Ξ0, C,Ξ1, l)

Ξ0 : Γ ⇑ C,Θ ` ∆
Sl

Ξ1 : Γ ⇑ ` ⇑D Src(Ξ0, D,Ξ1)

Ξ0 : Γ ⇑ ` D ⇑ Sr

Here, P is a positive formula; N a negative formula; Pa a positive atom; Na a negative
atom; D a positive formula or negative atom; C a negative formula or positive atom;
Other formulas have arbitrary polarity; s is a first-order term; y is an eigenvariable.

Figure 3.3: The augmented intuitionistic sequent calculus LJF a.

49

Chapter 4

Foundational Proof Certification

The previous chapter outlined the general architecture of the kernel checker consist-
ing of augmenting focused systems with an interface shared with proof certificates.
After seeing the kernel component of the Foundational Proof Certification frame-
work, this chapter describes the middle-man’s workload: establishing a semantics for
a given language. This is done through adjustment of five parameters: a polarity
assignment of the formulas, a region delimitation of the reconstructed proof along
with constructors for case objects, an indexing mechanism for the stored formulas,
and the definitions of the clerks and experts.

The adjustment of these five axes, abbreviated as p.r.i.c.e., is described infor-
mally in the first section. Some guidelines and intuition are given for the adjustment
of each of these five parameters.

Then section 4.2 describes most of these parameters in a more formal fashion,
introducing types, signature and syntax for the definition of predicates.

Finally, the last section gives several examples of p.r.i.c.e. fragments consisting
of cases and agents able to complete a small task. These p.r.i.c.e. fragments are
referenced in later chapters and can be modularly used, alongside other p.r.i.c.e., in
the definition of semantics.

4.1 Descriptive semantics

The last stage of the Foundational Proof Certification process, the actual checking,
was the focus of the previous chapter. This chapter takes a step back and deals with
the middle stage: establishing the semantics of the proof evidence language.

This stage can be described as a jigsaw puzzle with three pieces:

� a formula T that a prover Ω claims to be a theorem;

50

� a piece of proof evidence ΦΩ, written in language LΩ, which is given by the
prover Ω to justify its claim that T is a theorem;

� a kernel checker able to reconstruct a proof of formula T when provided with
a guideline written in ΦΩ.

The semantics of LΩ is what holds these three elements together. The middle-
man solves the puzzle by describing LΩ in a well-defined, flexible and relational
setting such that a kernel can interpret any proof evidence written in that language.

There are several ways to win this game because the semantics of a language and
a p.r.i.c.e. definition are not the same thing. The former is an abstract notion while
the latter is the concrete relational specification of the former. Indeed, there can be
many descriptions of the same proof evidence language, just as there can be more
than one algorithm to solve a given problem. And just as one can judge the algorithm
both objectively (what is its complexity?) and subjectively (is it “elegant”?), one
can also judge the description of semantics.

Guidelines are given in what follows to help establishing the semantics but a
considerable amount of the judgment in value of a semantics definition is ultimately
a matter of taste.

These five axes of p.r.i.c.e. should be thought of as a whole. They are comparable
to components of a program: it often happens that a piece of code is repeated, then
a new procedure is created and the repeated pieces of code are replaced by calls to
that procedure. Similarly, a variable can become needed while writing the code, it is
then declared and initialized, usually at the start of the program. This is why, albeit
introduced below in a certain order, adjusting the five axes is done in a non-linear
fashion.

4.1.1 Polarity assignment

In general, theorem provers do not use a polarized formula syntax1. The first step
in checking the proofs is thus a choice of polarization of the different connectives.
Polarity assignment of a formula F is made through the definition of the function
JF K±. This function will be encoded as a relation.

As mentioned in section 2.2, polarities are nothing more than annotations indi-
cating, for a given connective, during which phase it can be introduced. But how
are these polarities chosen? What makes one polarity better than the other for a
particular connective? There is no clear-cut rule on how to assign polarities. This

1 Some do: Maetning, Psyche, Tac...

51

step of the definition of semantics is determined on a case-by-case basis. A clear vi-
sualization of the shape of reconstructed proofs is the starting point of the semantics
definition and the most important part of this definition is the polarity assignment.
Indeed, the clerks being the instruments of the invertible phase and the experts being
instruments of the focused phase, assigning one polarity or the other to a connec-
tive already determines which agent would be in charge of it. The following points
provide guidance and intuition. No p.r.i.c.e. can be defined without taking the fol-
lowing questions into consideration, along and in concordance with the other four
axes of the semantics definition. However, it is not uncommon that the same answer
to one of these questions leads to different choices of polarity, depending on the other
parameters.

Determinacy: What part of the proof reconstruction process is deterministic and
what part is open to guidance? As mentioned in section 2, an invertible phase can be
seen as a deterministic computation while a focused phase can be taken as deduction.
If this distinction is clear at the level of the prover, the polarity assignment can reflect
this separation.

Are both disjuncts or conjuncts needed? The positive disjunction (on the
right) and the negative conjunction (on the left) have introduction rules that discard
one of the subformulas of the principal formula. Thus the polarity can be used for
such management.

Availability of information: Will the proof evidence hold information regarding
this connective? Because the kernel gets information only through experts, the po-
larity of connectives should be chosen accordingly. A connective’s agent is strongly
linked to its polarity, i.e.,if its introduction rule is focused its agent is an expert; if
its introduction rule is invertible its agent is a clerk.

Contraction: Will multiple copies of this formula be needed? The focusing disci-
pline explained in section 2.2.1 makes it so that the polarity of a formula determines
its contractibility. Only positive formulas can be contracted on the right (in a clas-
sical sequent calculus) and only negative formulas can be contracted on the left (in
an intuitionistic sequent calculus).

Side of appearance: In case of a two-sided sequent, will this (sub)formula appear
on the left hand-side or on the right hand-side of a sequent? The contractibility and

52

invertibility of a formula of a given polarity are symmetric, e.g., a positive formula
belongs to the focused phase (thus is contractible) if it is on the right but belongs to
the invertible phase if it is on the left.

Atoms’ polarity: The polarity of atoms can sometimes distinguish between very
different systems. For example, different polarity of atoms in the LJF system are
the essential difference between the LJQ [Dyckhoff and Lengrand, 2006] and LJT
[Herbelin, 1995b] systems.

Taming the focusing: The focusing discipline of LKF and LJF can be too rigid to
flexibly implement the ideas of the middle-man (the section 5.4 on Expansion Trees
shows such a situation). In those cases, delays can be inserted in front of subformulas
to force the kernel to postpone introduction of these subformula to one phase or the
other, allowing the middle-man to bend the focusing behavior at will.

The bigger picture: The polarity of a connective can also be chosen relative to
the surrounding formula. When the overall structure of the reconstructed proof is
visualized, it is stratified in focused and invertible phases. For example, if a formula
containing, say, a conjunction is desired to appear in a given phase, that conjunction
must be given the appropriate polarity. In particular, if the formula ∀x.B ∧ ∀y.A
should be introduced in one phase, then the conjunction must have the same polarity
as the ∀ quantifier (i.e.,a negative one) to avoid an unwanted phase break. Similarly,
if the formula ∃x.B ∧∃y.C should be introduced in one phase, the conjunction must
take a positive polarity.

4.1.2 Region delimitation

Because the agents are additional premises separate from the rest of the proof deriva-
tion to preserve soundness (see the Erasure theorem 3.4.1), they are also isolated
from one another. Their sole means of communication is the added case (described
in definition 3.4.1) defined by the middle-man.

These cases being the means of communication of the agents, they have to be
defined at the same time as those agents. Similar to the polarity assignment, defining
the case is only possible when the overall structure of the reconstructed proof is
visualized. This structure can sometimes be separated in regions corresponding to
different processes in, or different steps of, the proof checking.

For each of these regions, a case will be assigned, containing all information
relevant to that region and a team of clerks and experts will be defined on that

53

region and will work on that case. These regions sometimes correspond to phases
but they need not do so.

Practical examples will be given in following chapters. Here again, defining the
cases for a proof evidence language semantics is comparable to defining the data
structures for a given program: there can be many ways of arriving at a solution and
these solutions are evaluated according to the same objective and subjective criteria.

4.1.3 Indexing

There is a duality between the store clerk that generates an index to store a formula
and the decide expert that choses an index of a formula on which to engage the
focused phase. An index can be:

� unique for each formula: this offers the possibility of having the indexing be a
function;

� shared between some formulas: in this case an index denotes a set of formulas.
If a decide expert gives the kernel that index, the kernel can engage a focused
phase on any of the associated formulas while being able to backtrack if a
particular choice leads to a failure;

� the same for all formulas: in this case, an indexed context is equivalent to a non
indexed context. This relieves the decide expert of all responsibility regarding
the choice of contracted formula.

An index can be generated by the store clerk based on earlier information or it can
be present in the proof evidence from the beginning. In any case, the middle-man
defines the indexes.

Remark 4.1.1. The above may seem repetitive to the levels of detail in guidance
information given to the decide expert in section 3.4.1. However, there is a subtle
difference: the above is a discussion on how indexes are defined while section 3.4.1
discusses how experts are defined.

4.1.4 Clerks & Experts

The agents, seen at length in the presentation of augmented systems (section 3.4)
are central to the semantics definition. They are defined on the cases and, for some
of them, on indexes, and their workload is partly determined by polarity assignment,
e.g., if a connective is given a negative polarity and appears on the right, it is handled

54

by a clerk. An agent relates not only to the rest of the components of the p.r.i.c.e.
but also to other agents. Clerks and experts are the only link between the kernel
and proof certificates.

When an agent appears as the extra premise of an augmented inference rule that
is part of a certain delimited region R of a proof, it is said to inhabit that region,
in other words, it has at least one definition with a case ΞR associated with R as its
first argument. The set of agent definitions inhabiting a region is called the team of
that region. An agent definition is said to be näıve if its output case is the same
as its input case, and if it gives no guiding information. For example, an existential
expert defined as ∃e(Ξ,Ξ, V) where V is a non-constrained logic variable is näıve.

Remark 4.1.2. The decide expert is generally not näıve because of the danger of
non-termination. It can be, however, be näıve, if no release can be done after the
decide rule augmented with that expert. This happens, in particular, when the only
formulas in the context are strictly positive, implying that any decide rule will be
followed by a unique focused phase with no release rule, thus no bipole.

If, in a proof, a region R1 follows a region R2, then the active case must be
changed. This is done through an agent inhabiting R1 that outputs a case relative to
R2 so that the following team of agents continue the investigation on their respective
region.

4.2 Programmable semantics

All previous mentions of semantics description focused on relational specifications
without considering their operational interpretation. However, from a pragmatic
standpoint, one has to be aware of the underlying computational behavior necessary
to implement the proof checking process [Chihani et al., 2013b]. Logic programming
is a relational approach to programming, where computation is carried through a
search process, following strict strategies that the programmer is made aware of so
as to predict the behavior of the interpretation engine on his or her specification.

Aside from this section, this thesis voluntarily omits discussing such aspects for
the following reasons. First, describing this framework in a chosen programming
language puts the reader in a state of mind where all parts of that programming
language are considered. In particular, non-logical artifacts such as the Prolog cut
(or bang, noted “!”) and input/output operations from a file may be understood
as acceptable machinery for the Foundational Proof Certification framework. This
is far from the original intention of the work described in this thesis. Indeed, the
goal is to achieve the existence of proof certificates independently from any tech-

55

nology. To do so, semantics descriptions should only be expressed in logic so as to
be self-contained. Any implementer of this framework can define experts to simply
use a readLine command to appeal to the user, establishing an interactive proof
checking tool, but such possibilities are not considered in this thesis. Similarly, any
serious implementation of this framework should provide means to access libraries of
theorems, such that a proof certificate can use a URL to access previously certified
theorems, but again, this is not the main subject of the thesis.

A second reason for omitting the discussion of programming paradigm is that
any description of a framework benefits from being as general and as far from imple-
mentation questions as possible. Consider, for example, that functions are special
kinds of relations where some of the arguments are uniquely determined by others.
If semantics is written so as to remove any non-determinacy or, in programming
language terminology, backtrack points, then it is possible to define every part of the
framework presented in this thesis using a functional programming language. Thus
keeping the discussion in as general a setting as possible offers a global view of the
Foundational Proof Certification framework. For example, consider the example of
the relation between a list L and its length N . The description of this relation is sim-
ply written lengthLN . This relation is assumed satisfied with the empty list and the
integer 0, with all singleton lists and the number 1 and with all lists of N elements
and the integer N . Stating this relation is distinguished from its possible implemen-
tations, some of which are shown in figure 4.1, because such implementations depend
on the choice of programming paradigm and language.

Nonetheless, the unconcealed aim of this project is, ultimately, implementations
of the framework. For this reason, the following sections go into as much detail as
possible without assuming any implementation choices beyond the desired properties
seen in section 3.1.

4.2.1 Type signature

The Foundational Proof Certification framework uses a typed syntax, i.e., each pred-
icate is declared with its own type. The type of terms is ι, the type of propositions is
o while the constructor of arrow types is noted→. The agents, which are the bridges
between the kernel and the proof certificate, have global types known to these two
components. The types are declared using the keyword type, taking as first element
the name of a predicate and as second its type. Taking the augmented classical
focused sequent calculus, for instance, the type of the existential expert is:

type ∃e case→ case→ ι→ o

56

let length list =

let rec aux n = function

| [] -> n

| _::t -> aux (n+1) t

in aux 0 list;;

val length : ’a list -> int = <fun >

(a) Implementation in Ocaml

int length(struct node *head){

int num = 0;

while (head != NULL) {

num += 1;

head = head- >next;

}

return num;

}

(b) Implementation in C

type length list A -> int -> o.

length nil 0.

length [_|T] I :-

length T I’,

I is I’ + 1.

(c) Implementation in λProlog

Figure 4.1: Different implementations of length.

57

type ∧−
c case→ case→ case→ o

type ∨−
c case→ case→ o

type ∧+

e case→ case→ case→ o

type ∨+

e case→ case→ δ → o

type ∃e case→ case→ ι→ o

type ∀c case→ (ι→ case)→ o

type t+e case→ o

type f−
c case→ case→ o

type Sc case→ fm→ case→ ξ → o

type De case→ case→ ξ → o

type Re case→ case→ o

type Ie case→ ξ → o

type Ce case→ case→ case→ fm→ o

Figure 4.2: LKF a Agents’ type declarations

where case is the type of cases. The type of the store clerk Sc is:

type Sc case→ fm→ case→ ξ → o

where ξ is the type of indexes and fm is the type of (object-level) focused formulas
(which is different from the type o). The type of the universal clerk ∀c is:

type ∀c case→ (ι→ case)→ o

where the second argument is of a higher-order type. The type of the disjunction
expert ∨+

e is:
type ∨+

e case→ case→ δ → o

where δ is the type of directions with only two inhabitants: left and right. The
complete list of type declarations for agents is given in figure 4.2 for the LKF a system
and in figure 4.3 for the LJF a system.

These type declarations are part of a signature, denoted by Σ. Additionally, the
signature contains type declarations for constructors of objects of type case and of

58

type ⊃c case→ case→ o

type ⊃e case→ case→ case→ o

type ∨c case→ case→ case→ o

type ∨e case→ case→ δ → o

type ∧+

c case→ case→ o

type ∧+

e case→ case→ case→ o

type ∧−
c case→ case→ case→ o

type ∧−
e case→ case→ δ → o

type ∃c case→ (ι→ case)→ o

type ∃e case→ case→ ι→ o

type ∀c case→ (ι→ case)→ o

type ∀e case→ case→ ι→ o

type tc case→ case→ o

type te case→ o

type fc case→ o

type Ile case→ o

type Rl
e case→ case→ o

type Dl
e case→ case→ ξ → o

type Slc case→ fm→ case→ ξ → o

type Ire case→ ξ → o

type Rr
e case→ case→ o

type Dr
e case→ case→ o

type Src case→ fm→ case→ o

Figure 4.3: LJF a Agents’ type declarations

59

type ξ as well as type declarations for any extra predicates needed by the middle-
man. For example, if the proof evidence contains identifiers of formulas in the form
of integers, one can declare an index constructor idx of type:

type idx N→ ξ

where N denotes the type of integers. If the proof evidence contains a list of indexes
which it is useful to keep track of (to restrict the number of contractions on them,
for example), one can define a case constructor track of type:

type track list ξ → case

where list A is the type of lists of elements of type A.
In what follows, the signature is omitted and type checking of all objects (terms,

formulas, cases, etc) is assumed.

4.2.2 Predicate definitions

In addition to type declarations in the signature, predicate agents (and any extra
predicates the middle-man deems necessary) are given a relational specification in
the form of Horn clauses, noted R. These type of formulas are also called H-formulas
and follow the grammar:

G ::= A | G,G H ::= A | A :- G | ∀x.H

where the comma denotes conjunction, A :- G is a reversed notation for the impli-
cation formula G ⊃ A of which A is called the head and G is called the body, A is an
atomic formula of type o and both the comma and the reversed implication :-

are of type o → o → o. In this thesis, universal quantification of H-formulas over
variables is left implicit when they start with a capital letter.

In addition, some constructors of terms are assumed to be defined, in particular
the (polymorphic) constructor for lists of elements of type τ :

type (infix) :: τ → list τ → list τ.

where the infix keyword indicates the fixity of the :: operator, and the constructor
for the empty list:

type nil list τ.

The syntax with square brackets, common in many programming languages is adopted:
[] for nil , [e1, · · · , en] for the list of elements e1, · · · , en and [e1, · · · , en|L] for the list
with elements e1, · · · , en followed by the elements of list L.

60

The underscore symbol is used to denote a variable that is implicitly universally
quantified over the entire formula but is not used anywhere else. The occurrences of
the underscore symbol, or wildcard, all denote distinct variables.

As an example of predicate definition, the following disjunction expert ∨+
e is

defined on the case constructor:

type path list δ → case.

This case contains a sequence of right and left steps (of type δ) that the expert
communicates to the kernel in order:

∨+

e (path [D|∆], path ∆, D).

Omitting the definition of an agent A on a given case Ξ nullifies it on Ξ. This
has the consequence of also nullifying the rules augmented with A when the con-
clusion is a sequent augmented with Ξ. For example, if a relational specification
does not mention the cut expert Ce, the kernel will only build cut-free derivations.
Furthermore, the LKF and LJF systems are mostly syntax directed, i.e., a sequent
can be the conclusion of only one inference rule, with the exception of the sequents
` Θ ⇑ · for LKF and Γ ⇑ ` ⇑R for LJF. These sequents are conclusions of both the
decide and the cut rules. In the augmented systems, this ambiguity can be solved
by defining only one of the experts (Ce and De for LKF a, Ce, Dl

e or Dr
e for LJF a).

4.3 Default teams of agents

In chapters 5 and 6, several examples of semantics definitions are given for classical
and intuitionistic first-order logics. Parts of these semantics definitions use the same
modularly defined p.r.i.c.e. fragments. These fragments, and more, are given here
for LKF a. The definition for LJF a is similar.

One can read the following predefined teams of agents or postpone their reading
until they are referenced in one of the upcoming chapters so that they are placed in
a relevant context.

4.3.1 The done team

The done case constructor is relative to the last regions in a proof derivation, the
ones ending with either an initial, t+, or t− rule. In other words, no decide or cut
agents inhabit these final regions and all definitions of other agents are näıve. They
can be seen in figure 4.4.

61

∧−
c (done, done, done) ∨−

c (done, done) ∧+

e (done, done, done)

∨+

e (done, done, C) ∃e(done, done,W) ∀c(done, λx.done)

t+e (done) f−
c (done, done) Sc(done, F, done, I)

Re(done, done) Ie(done, I)

Figure 4.4: The definitions of the done team of agents.

A similar team is defined on case:

type initWith list ξ → case.

The difference is that the final region of the proof is focused and ends with an initial
rule using one of the indexes contained in the argument of initWith. This means
that, unlike the team in figure 4.4, definitions of all clerks and the t+e are omitted
and the Ie definition is no longer näıve, as it succeeds only on the given indexes:

Ie(initWith ∆, I) :- I ∈ ∆.

4.3.2 The oneOf team

The case:
type oneOf list ξ → case→ case.

is relative to a region where the decomposition occurring in an invertible phase is
not recorded. At the end of this invertible phase, a decision is made on one of the
indexes in the first argument of the oneOf case, then the active case is changed to
the one that is the second argument of oneOf, which is a continuation case. When
called in a store rule, the store clerk defined on oneOf Ξ calls its homologue defined
on the continuation case Ξ. The resulting team is shown in figure 4.5.

4.3.3 The witness case

This case constructor, defined as:

type witness list ι→ case→ case.

is relative to a small region inhabited only by the existential expert ∃e that succeeds
on one of the terms contained in the first argument of witness, then changes the

62

∧−
c (oneOf ∆ Ξ, oneOf ∆ Ξ, oneOf ∆ Ξ) ∨−

c (oneOf ∆ Ξ, oneOf ∆ Ξ)

∀c(oneOf ∆ Ξ, λx.oneOf ∆ Ξ) f−
c (oneOf ∆ Ξ, oneOf ∆ Ξ)

Sc(oneOf ∆ Ξ, F, oneOf ∆ Ξ′, I) :- Sc(Ξ, F,Ξ
′, I)

De(oneOf ∆ Ξ,Ξ, I) :- I ∈ ∆

Figure 4.5: The definitions of the oneOf team of agents.

active case to the second argument of witness.

∃e(witness Υ Ξ,Ξ, T) :- T ∈ Υ.

4.3.4 The tag case

This case constructor is defined as:

type tag ξ → case→ case.

and all agents (except the decide expert) are näıvely defined on it except the store
clerk Sc. The latter gives the index in its first argument to the kernel (regardless of
the formula) then gives the continuation case in its second argument as output.

Sc(tagIΞ, , I,Ξ).

63

Chapter 5

FPC for classical logic

For the things we have to learn before we can do them, we learn by
doing them.

- Aristotle The Nicomachean Ethics

Following the guidelines of chapter 4 and within the framework seen in chapter
3, this chapter gives actual case studies of semantics definitions for classical proof
formats, starting with a simple decision procedure in section 5.1, intended as a gentle
introduction.

This chapter also contains the most detailed semantics definition of the thesis
in section 5.3. The adjustment of the components of the p.r.i.c.e. is discussed in
length, including all possible polarity assignment choices. This is done with the
objective of detailing the notions that were only informally introduced in section 4.1.
The following semantics definitions, however, are treated in a more straightforward
manner.

5.1 The CNF decision procedure

Although the Foundational Proof Certification framework is centered around check-
ing proof certificates, by joining some proof evidence expressed in a language with
the semantics definition of that language, it can also be used to specify decision pro-
cedures, which can be seen as degenerate proof certificates since no proof evidence
is given. This section illustrates such a specification with the belief that it eases
understanding of the following (and more complicated) semantics definitions.

64

5.1.1 Preliminaries

Definition 5.1.1. A literal is an atomic formula or the negation of an atomic for-
mula. A clause is a disjunction of literals. A propositional formula with no implica-
tion (⊃) is in conjunctive normal form if it is a conjunction of clauses. •

Any formula F can be put in its classically equivalent conjunctive normal form
cnf(F) following these classically valid formula transformations:

1. compute the negation normal form of F

2. distribute all disjunctions over factored conjunctions

A ∨ (B ∧ C)→ (A ∨B) ∧ (A ∨ C)

A formula in conjunctive normal form is a tautology if there is a complementary
pair of literals (i.e.,a and ¬a for some atomic formula a) in every clause. Thus one
can define the following CNFdec decision procedure for propositional classical logic:

Definition 5.1.2. The decision procedure CNFdec consists of two steps:

1. compute the conjunctive normal form of the given formula

2. if each resulting clause contains a pair of complementary literals, the formula
is a tautology.

•

5.1.2 CNFdec in the FPC framework

The difference between using the Foundational Proof Certification framework for
defining semantics and using it for specifying a decision procedure is that, for the
latter, there is neither proof evidence to check nor language to describe. This sim-
plifies the definition of p.r.i.c.e. and constitutes an ideal introduction to this new
approach to proof certification.

One first has to interpret the CNFdec decision procedure on a formula F through
an LKF derivation of the sequent ` · ⇑ JF K±, then define a p.r.i.c.e. so as to guide
the kernel to such a derivation. Fortunately, the invertible phase of LKF can be seen
as a conjunctive normal form computation where each clause contains either literals
or positive formulas.

65

To make this computation clear, recall the invertible conjunction rule:

` Θ ⇑ A,Γ ` Θ ⇑B,Γ
` Θ ⇑ A ∧− B,Γ

Because the comma is the sequent-level disjunction, reading this rule bottom-up
moves from attempting to prove the sequent ` Θ ⇑ A ∧− B,Γ , which has the same
validity as the formula (A ∧− B) ∨− ((

∨−Θ) ∨− (
∨− Γ)), to attempting to prove the

(meta) conjunction of the sequents ` Θ⇑A,Γ and ` Θ⇑B,Γ, respectively having the
same validity as the formulas A∨− ((

∨−Θ)∨− (
∨− Γ)) and B∨− ((

∨−Θ)∨− (
∨− Γ)).

Thus the conjunction rule can be seen as distributing the sequent-level disjunction
over the formula-level conjunction.

Hence, to compute the conjunctive normal form of a propositional formula F ,
the negative phase should stop at no positive formula except the atoms. Thus the
negative versions of both binary connectives is chosen, while atoms can have arbitrary
polarity.

Definition 5.1.3. The multiset of literals of a formula F is denoted Λ(F) and defined
as:

Λ(?) = {?} Λ(A ◦B) = Λ(A) ∪ Λ(B) Λ(�x.B) = Λ(B)

Where ◦ stands for the polarized and unpolarized binary connectives, ? stands for
unpolarized literals and polarized atoms, and � stands for quantifiers. •

If cnf(F) =
∧n
i=1Ci then the sequent ` ·⇑F starts an invertible phase that yields

n premises of the form ` Λ(Ci) ⇑ · where i = 1..n.

Example 5.1.1. Let a, b, c, d, e be atomic formulas, the following invertible phase
simulates the conjunctive normal form computation for the formula:

(a ∧ b) ∨ (c ∧ (d ∨ e)) (a ∨ c) ∧ (a ∨ d ∨ e) ∧ (b ∨ c) ∧ (b ∨ d ∨ e)

` a, c ⇑ · str

` a ⇑ c str

` a, d, e ⇑ ·
` a ⇑ d, e 2× str

` a ⇑ d ∨− e ∨
−

` a ⇑ c ∧− (d ∨− e) ∧−

` · ⇑ a, c ∧− (d ∨− e) str

` b, c ⇑ ·
` b ⇑ c str

` b, d, e ⇑ ·
` b ⇑ d, e 2× str

` b ⇑ d ∨− e ∨
−

` b ⇑ c ∧− (d ∨− e) ∧−

` · ⇑ b, c ∧− (d ∨− e) str

` · ⇑ a ∧− b, c ∧− (d ∨− e) ∧−

` · ⇑ (a ∧− b) ∨− (c ∧− (d ∨− e)) ∨
−

�

66

JB ◦ CK± = JBK± ◦- JCK± JaK± = a+ J¬aK± = a-

Where ◦ ∈ {∨,∧} and a is atomic.

Figure 5.1: negative polarity for the conjunctive normal form decision procedure.

Polarities

Because the invertible phase of LKF deals only with negatives, all connectives of the
propositional formula are negative, as seen in figure 5.1. The polarity of the atoms
is not important here, so the atoms are polarized positively (therefore their negated
occurrences are polarized negatively).

Regions

Describing the shape of the proof is straightforward: a single invertible phase behaves
as the first step of the procedure in definition 5.1.2. Because there are no non-atomic
positive formulas, this invertible phase will only store atoms. The decide rule starting
the following focused phase can be applied only on positive atoms.

The proof can be seen as having two regions, one for each of the steps of definition
5.1.2. The case of the first region is henceforth called cnf and the case of the second
region is called complement:

type cnf,complement case.

Indexes

There is no indexing information because there is no proof evidence. The same index
is given to all stored atoms:

type lit ξ.

Clerks & Experts

Before knowing what clerks and experts to define, one has to visualize the recon-
structed proof. Following the polarization in figure 5.1, a formula can only have
negative and positive atoms and negative disjunctions and conjunctions. Thus the
only rules that can appear in the derivation are the negative conjunction and dis-
junction rules, and the store, decide, and initial rules. This prompts the definition,
respectively, of ∧−

c ,∨−
c Sc, De and Ie . The decide expert De changes the active case

from cnf to complement because it is at the border of the two regions of the proof.

67

∧−
c (cnf, cnf, cnf) ∨−

c (cnf, cnf) Sc(cnf, F, cnf, lit)

De(cnf, complement, lit) Ie(complement, lit)

Figure 5.2: Clerks and Experts for the conjunctive normal form decision procedure.

The five agents are all näıve and are shown in figure 5.2.

Proposition 5.1.1. Through the above p.r.i.c.e., if the propositional formula F is
a tautology, there exists a proof in LKF a of the sequent cnf ` · ⇑ JF K±.

Proof. By the completeness of LKF, there exists a proof in LKF of the sequent
` ·⇑JF K±. To prove that there also exists a proof in LKF a using the above p.r.i.c.e.,
it is sufficient to show that whenever there is a correct cut-free proof in LKF, there
is also a correct proof in LKF a guided by the above p.r.i.c.e.. In particular, there
are no false negatives (i.e.,unwanted failures) of the LKF a system where the LKF
system would succeed.

The only reason for failure would be for an agent to be given an active case on
which it is not defined. The proof starts with the cnf case, on which the three clerks
are defined. At the end of the invertible phase, the decide expert De changes the
case to complement, on which the initial expert Ie is defined. Therefore, No agent
can fail.

As mentioned in section 4.1.3, giving the same index lit for all stored formulas
does not constraint the kernel (provided the decide and initial experts do communi-
cate lit to the kernel).This allows the kernel to decide freely from the same set of
atoms as one an unguided kernel would have decided from.

5.2 Mating

Matings were introduced by Peter Andrews and used for theorem proving [Andrews,
1981] as the heart of the TPS system. A similar approach was independently devel-
oped by Bibel and called the Connection Method [Bibel, 1987]. While these meth-
ods work on Classical First-Order Logic, the semantics described here concerns only
propositional logic. This example builds on the conjunctive normal form decision
procedure description to check a mating proof.

Definition 5.2.1. A path and the subformula at path, written |, are inductively
defined as:

68

� 4 is the empty path

� if ρ is a path, ≺ ρ and � ρ are paths

� F |4 = F

� F |ρ = A ◦B, iff F |≺ρ = A and F |�ρ = B. where ◦ is any binary connective.

A mating is a collection M of pairs of paths. It is correct proof evidence for the
formula F if every clause in the conjunctive normal form of F has a complementary
pair of literals 〈a,¬a〉 such that these literals appear at positions F |ρi and F |ρj and
such that 〈ρi, ρj〉 ∈M . •
Example 5.2.1. The mating {〈≺ 4,�≺� 4〉, 〈≺ 4,��� 4〉} is correct proof
evidence for the formula a ∨ ((b ∨ ¬a) ∧ (c ∨ ¬a)) because the conjunctive normal
form of this formula is (a∨ b∨¬a)∧ (a∨ c∨¬a) and each clause in this conjunctive
normal form contains a pair of complementary predicates appearing at positions in
the original formulas whose paths are paired in the mating. �

5.2.1 Mating’s p.r.i.c.e.

The same methodology applies to the definition of this p.r.i.c.e.. The polarity assign-
ment and the region delimitation are the same as for the CNFdec decision procedure’s
p.r.i.c.e.. The reconstructed proof of the formula in LKF starts in the same way:
an invertible phase on negative connectives yielding premises containing only stored
atoms. But unlike the previous p.r.i.c.e., the decide rule and the subsequent initial
rule are restricted. A Mating M is checked as proof evidence for a formula F if for
each premise ` Γ ⇑ · of the invertible phase starting with the sequent ` · ⇑ JF K±,
∃a+, a− ∈ Γ such that there exists an ordered pair 〈ρi, ρj〉 ∈ M with F |ρi = a and
F |ρj = ¬a.

To be able to check this, one has to make sure that the atoms are stored with the
paths to their position relative to the original formula. To do so, each time a formula
B is decomposed (at the ∧− and ∨− rules) into subformulas B1 and B2, the respective
clerks maintain the paths of B1 and B2 relative to the path of B itself. Thus the
region inhabited by these clerks will have a case path containing the correspondence
between the formulas in the sequent and their paths. The store clerk and the decide
and initial experts will use these paths as indexes by means of this type declaration:

type 4 ξ.

type ≺ ξ → ξ.

type � ξ → ξ.

69

and the path case has the following type declaration:

type path list ξ → case.

The end-sequent of the proof is:

path[4] ` · ⇑ F

Example 5.2.2. For atoms a, b, c; and aρ the indexed formula 〈ρ, a〉 (in accordance
with remark 3.4.1).

path[] ` a≺4, b≺�4 ⇑ ·
path[≺� 4] ` a≺4 ⇑ b

path[] ` a≺4, c��4 ⇑ ·
path[�� 4] ` a≺4 ⇑ c

path[� 4] ` a≺4 ⇑ b ∧− c
path[≺ 4,� 4] ` · ⇑ a, b ∧− c

path[4] ` · ⇑ a ∨− b ∧− c

�

The clerks are as follows:

∧−
c (path [ρ|R], path [≺ ρ|R], path [� ρ|R])

∨−
c (path [ρ|R], path [≺ ρ,� ρ|R])

Because the right-hand side of the uparrow is a list order, the store rule is always
applied to the left-most formula. The store clerk Sc can simply remove the head of
the list of paths to serve as index.

Sc(path [ρ|R], F, path R, ρ)

At the end of the invertible phase, the path case should be empty. The decide
expert then picks (that is to say, succeeds with) a pair from the mating, gives the
first element as index for the decide rule and places the second element inside the
initWith case.

De(path [], initWith [ρj], ρi) :- 〈ρi, ρj〉 ∈M

The initial expert given in section 4.3.1 finishes the proof.
The agents are summarized in figure 5.3

70

∧−
c (path [ρ|R], path [≺ ρ|R], path [� ρ|R])

∨−
c (path [ρ|R], path [≺ ρ,� ρ|R])

Sc(path [ρ|R], F, path R, ρ)

De(path [], initWith [ρj], ρi) :- 〈ρi, ρj〉 ∈M

Figure 5.3: Clerks and Experts for the Mating proof evidence description

Proposition 5.2.1. Given the clerks in figure 5.3, the following fact is invariant
throughout the invertible phase: the paths contained in the path case are in one-to-
one correspondence with the formulas in the workbench of the sequent and designate
their actual paths in the original formula.

Proof. The invariant is satisfied at the end-sequent: path[4] ` · ⇑ F .
By case analysis on the rules.

path [≺ ρ,� ρ|R] ` Θ ⇑B,C,Γ ∨−
c (path [ρ|R], path [≺ ρ,� ρ|R])

path [ρ|R] ` Θ ⇑B ∨− C,Γ

By induction, R is the list of paths of all formulas in the list Γ, ≺ ρ is the path of
B, � ρ is the path of C. Following definition 5.2.1, ρ is the path of the formula
B ∨− C, which preserves the invariant. The cases for the other rules follow in the
same way.

Corollary 5.2.1. All atoms are stored with their correct path.

Remark 5.2.1. The elements of the mating are defined as ordered pairs, the first
element is a path to a non negated atom and the second is a path to a negated atom.
If the pairs of the mating were unordered then the decide expert would require an
additional definition:

De(path [], initWith [ρj], ρi) :- 〈ρj, ρi〉 ∈M

Ordering the pairs therefore results in a precision gain. While the gain is negligible
for this particular case study, simple requirements such as ordering of proof evidence
can result in exponential gains in precision and, consequently, in checking time.

71

5.3 Resolution refutations

The notion of clause in definition 5.1.1 is generalized to the first-order level:

Definition 5.3.1. A clause is the universal closure of a disjunction of literals. An
empty clause is false. A ground clause contains only ground terms. i.e.,terms with
no variables. •

Resolution is a valid inference rule originally introduced in [Davis and Putnam,
1960] where it is called Rule for Eliminating Atomic Formulas. This rule states that
from two ground clauses containing complementary literals, called resolved clauses,
one can obtain a third clause, called the resolvent, which is the disjunction of the
resolved clauses without the complementary literals.

More formally, let C1 and C2 be two ground clauses and let a be an atomic
formula. Applying the resolution rule to C1 ∨ a and C2 ∨ ¬a yields the resolvent
clause C where C is the disjunction C1 ∨ C2 without repeated literals.

The resolution inference rule is written:

C1 ∨ a C2 ∨ ¬a
C (5.1)

This resolution rule operates only on ground clauses, a deficiency that Robinson
solved by generalizing the resolution rule and using his unification algorithm to obtain
what is called the Resolution Principle [Robinson, 1965b]. Today, resolution is at
the heart of many provers, among which Vampire and Carine1, and the unification
algorithm made the current notion of logic programming possible.

Henceforth, resolution will always refer to Robinson’s resolution.

Refutations: A finite set of clauses C is refuted if the conjunction of its clauses
implies falsehood, i.e.,if the following formula is a tautology.

(
∧
C∈C

C) ⊃ f (5.2)

Repeated application of resolution is used for deriving a refutation of an unsatisfiable
set of clauses.

Definition 5.3.2. A clause C is usable in a resolution step for the refutation of a
set of clauses C if C ∈ C or C is the result of a previous resolution step. A resolution
refutation is a sequence of resolution rule applications on usable formulas. If this
process reaches an empty clause then the set is refuted. •

1Respectively http://www.vprover.org/ and http://www.atpcarine.com/

72

Example 5.3.1. The following is a resolution refutations of the set

C = {a ∨ b,¬a,¬b}

The original clauses are separated from the resolvent (or intermediary) clauses by a
horizontal bar.

1. a ∨ b

2. ¬a

3. ¬b
———

4. a from 1 and 3

5. f from 4 and 2

In the beginning, only clauses with indices from 1 to 3 are usable. Clause 4 is derived
from applying a resolution rule to 1 and 3 and becomes usable by all subsequent
resolution rules. Here it is used with 2 to derive the empty clause, or f. �

Recall that the first step in defining the semantics of a language L using the
Foundational Proof Certification framework is to find an interpretation of the con-
structs of L in a focused sequent calculus (here LKF). Using this interpretation,
one then defines the semantics of L through a relational specification. This speci-
fication, or p.r.i.c.e., forms a proof certificate when added to some proof evidence
written in L . The proof certificate guides the kernel to a proof (in focused sequent
calculus) of the proposed theorem, whose validity is claimed by the proof evidence.
The existence of this proof, by the soundness of the focused sequent calculus, entails
validity of the proposed theorem T .

Modular separation

A resolution refutation can be seen as two processes, a sequence checker and a step
checker. The former asks the latter about the validity of each resolution step and,
depending on its answer, either fails or adds the resolvent clause to the set usable
clauses and continues until reaching the empty clause. The step checker verifies that
the resolved clauses are usable and that the resolvent clause logically follows from
them.

Notice that the sequence checker needs not have knowledge of what particular
checking the step checker does. It simply supplies it with clauses to resolve and

73

expects a resolvent clause. This separation allows to reuse the sequence checker with
more than just binary resolution. Indeed, resolution was refined and extended in
multiple ways, two of which (hyperresolution and paramodulation) are presented in
this thesis.

Hence the following sections are articulated around the separation of processes
sequence checker and step checker. First, the refutation sequence is given a precise
semantics definition (with no prior assumption on the organization of the resolved
clauses), then that definition is used with binary resolution (section 5.3.2) and hyper-
resolution (section 5.3.3) and, in a later chapter, with paramodulation (section 7.3).

5.3.1 Semantics of refutation sequences

This section follows a plan in the definition of a p.r.i.c.e. for a refutation sequence.
First, the theorem (refutation of a finite set of clauses) is embedded in an LKF
end-sequent. Then, the structure of LKF proofs of that sequent is defined following
the standard proof evidence format for resolution (definition 5.3.3). To do so, the
different choices of polarities are discussed in detail. Finally, case constructors and
agent definitions are given to guide the kernel into the discussed structure of LKF
proofs. This section focuses on the sequence checker process, without discussing the
step checker process.

Refuted clause sets as LKF sequents

The unsatisfiability of a finite set of clauses C is equivalent to the validity of the
tautologous implication 5.2 which, following the material conditional interpretation
of classical logic, is equivalent to:

(
∨
C∈C

¬C) ∨ f

which, in turn can be simplified to

(
∨
C∈C

¬C)

Proposition 5.3.1. The sequent ` · ⇑ J(
∨
C∈C ¬C)K± is provable if the set of clauses

C is refutable.

Proof. Because the implication 5.2 is tautologous, a proof exists in LK by the com-
pleteness and soundness of LK with respect to classical logic. The proposition follows
by the completeness and soundness of LKF with respect to LK.

74

Interpreting refutations in LKF

Definition 5.3.3. An indexed clause is a pair 〈i, Ci〉 of an index and a clause. A
refutation sequence consists of tuples 〈S, k, Ck〉 where S represents some organization
of indexes of resolved and usable clauses, simply called a step. The clause Ck is the
result of applying some variant of resolution to that step and receives index k. The
last element of the final tuple is f (empty clause).

A coclause ¬Ci is the negation of the clause Ci in negation normal form. •

The interpretation of the refutation of a set of clauses C starts with the sequent
seen in proposition 5.3.1:

` · ⇑ J(
∨
C∈C

¬C)K±

Thus interpreting a refutation revolves around coclauses as well as clauses. Because
the negation flips the polarity (a negative disjunction in the clauses entails positive
conjunctions in the coclauses and vice versa), the discussion on polarity assignment
considers both. To make a pertinent choice of polarity for the above disjunctions,
one can ask the questions in section 4.1.1 and assess each choice of polarity by how
it answers the needs of the verification process. One such assessment follows for the
outer disjunction of the coclauses; the polarity choices for the coclauses themselves
is seen later on. In what follows, C1 · · ·Cn ∈ C.

A positive disjunction will cause the formula to be stored immediately. Every
time a coclause ¬Ck is used in needed, the whole disjunction is contracted and a
focused phase is engaged on it.

` (
+∨
C∈C

J¬CK±) ⇓ (
+∨
C∈C

J¬CK±)

Assuming the disjunction is right-associative, to reach the coclause ¬Ck one needs to
apply the ∨+ rule k − 1 times and pick the right disjunct, then apply an additional
such application to pick the left disjunct. For instance, accessing the 2nd clause is
done through the following derivation:

....
` Γ ⇓ J¬CK±2

` Γ ⇓ J¬C2K± ∨+ (J¬C3K± ∨+ · · · ∨+ J¬CnK±) · · ·) ∨
+
l

` Γ ⇓ J¬C1K± ∨+ (J¬C2K± ∨+ (J¬C3K± ∨+ · · · ∨+ J¬CnK±) · · ·) ∨
+
r

75

This is arguably far from the original spirit of the indexes, traditionally used for
direct access. This direct access can be achieved by storing each individual coclause
with its index which leads to a negative polarity for the above disjunctions and a
positive polarity for the coclauses.

A negative disjunction will be decomposed immediately and replaced with a
comma:

` ⇑J¬C1K±, (J¬C1K± ∨− · · · ∨− J¬CnK±)

` ⇑J¬C1K± ∨− (J¬C1K± ∨− · · · ∨− J¬CnK±)

To use the index of each coclause for its storage, they need to be stored immedi-
ately which requires them to be of a positive polarity. This is achieved either:

� by using the positive version of the conjunction in the coclauses or

� by using the negative version of the conjunction and surrounding them with a
positive delay ∂+(·).

Remark 5.3.1. The polarity assignment for the conjunctions in the coclauses need
not be set immediately. Indeed, the sequence checker process never decomposes the
coclauses; only the step checker process, seen later, needs a precise polarity. For now
let B+ stand for some polarization of arbitrary formula B that makes it of a positive
polarity.

So far, the original coclauses are stored with their indexes, yielding the sequent:

` {〈i, (¬Ci)+〉|〈i, Ci〉 ∈ C} ⇑ ·

Remark 5.3.2. Henceforth, the shortened notation FI in the storage stands for the
stored and indexed formula 〈I ,F 〉.
Remark 5.3.3. The raison d’être of sequent calculus is proving conditional tautolo-
gies. Once the link has been made between the sequent ` · ⇑ (

∨−
C∈C ¬C) (the prov-

ability of which determines the refutation of the set of clauses C) and the sequent
` {¬C|C ∈ C} ⇑ · (equiprovable to the former sequent from which it follows us-
ing only invertible rules), the checker can directly start verifying the latter sequent.
Furthermore, in practice, resolution refutations are seldom given as a conjunction of
clauses but as a set of clauses. Thus constructing the disjunctions out of the set of
coclauses and then breaking the disjunctions to recover the set of coclauses can be
avoided altogether.

76

The above sequent marks the beginning of the checking of the refutation sequence.
To do so, an interpretation in LKF for a call to the process step checker remains
to be established. This interpretation must have, as conclusion, the above sequent
(containing all usable coclauses) and as premise a similar sequent with one extra
usable coclause: the resolvent coclause. In other words, for each tuple 〈S, k, Ck〉,
this interpretation should go from a sequent:

` ∆ ⇑ ·

where ∆ represents the current set of usable clauses of which S is a subset, to the
sequent:

` 〈k, (¬Ck)+〉,∆ ⇑ ·

after having received confirmation of the step checker for the validity of the 〈S, k, Ck〉.
This process can be simulated using the following partial derivation:

step checker

` ∆ ⇑ C−k

continue with sequence

` 〈k, (¬Ck)+〉,∆ ⇑ ·
` ∆ ⇑ (¬Ck)+

` ∆ ⇑ · cut
(5.3)

where one notes that the negation of the positive coclause (¬Ck)+ introduced by the
cut is the negative clause C−k .

Agents and cases for refutations

As mentioned in 4.1.2, a reconstructed proof in LKF can be viewed as split into
regions that correspond to different processes of the checking. In the case of a refu-
tation, these are the processes sequence checker and step checker. This section details
the region relative to the former, with its case constructors and agent definitions.

The case constructors depend on the information needed by the agents inhabiting
this region to complete their task. The reconstructed proof has the shape seen in
figure 5.4 where each πk is the proof verifying the step 〈Sk, k, Ck〉.

The two regions are visible as:

� the back-bone of cuts followed by a decision and a t+ rule, for the sequence
checker process and

� the derivations πi for the successive calls to the step checker process. These
derivation are, at most, of a decide depth equal to the number of resolved
clauses.

77

π1

` ∆0 ⇑ C1

π2

` ∆1 ⇑ C2

πr
` ∆r−1 ⇑ Cr

πr+1

` ∆r ⇑ f−

` ∆r, t
+ ⇓ t+ t+

` ∆r, t
+ ⇑ · decide

` ∆r ⇑ t+
` ∆r ⇑ ·

` ∆r−1 ⇑ ¬Cr
` ∆r−1 ⇑ ·

cut
....

` ∆1 ⇑ ¬C2

` ∆1 ⇑ ·
cut

` ∆0 ⇑ ¬C1
store

` ∆0 ⇑ ·
cut

Figure 5.4: The structure of a reconstructed resolution refutation proof. Here ∆0 is
is the set of original coclauses, Ci is the ith resolvent clause and ∆i = ∆i−1 ∪ {¬Ci}

The derivation of example 5.3.1 is shown in figure 5.5 and one can follow the
behavior of the agents, step-by-step, as they are defined below. They are introduced
in the order in which they appear in the derivation (bottom-up) and summarized in
figure 5.6.

The main inhabitants of the first region are the cut expert Ce and the store clerk
Sc. The former needs access to the sequence Q of resolution steps 〈Sk, k, Ck〉; the
latter needs the index k to store the resolvent coclause Ck. The case constructor is
given the following type declaration:

type rlist list (stuple ∗ N ∗ fm)→ case.

where stuple is the type of the step (some organization of the resolved clauses whose
details this region need not know), N is the type of integer and fm is the type of the
polarized formulas.

Remark 5.3.4. In the example derivations, a light notation is sometimes used to save
space. For example, step L instead of step brL.

The augmented end-sequent has the following form:

rlist Q ` ∆ ⇑ ·

where ∆ is the set of stored original indexed coclauses. The cut expert is defined on
this case constructor in this way:

Ce(rlist [〈Sk, K, CK〉|Q], step S, rlisti K Q, CK).

78

π
Ξ2 ` Γ ⇑ a+

π′

Ξ8 ` Γ ⇑ f−

Ξ11 ` Γ, 〈idx 4, a−〉, 〈idx 5, t+〉 ⇓ t+ t+e (Ξ11)

Ξ10 ` Γ, 〈idx 4, a−〉, 〈idx 5, t+〉 ⇑ · De(Ξ10,Ξ11, idx 5)

Ξ9 ` Γ, 〈idx 4, a−〉 ⇑ t+ Sc(Ξ9, ,Ξ10, idx 5)

Ξ4 ` Γ, 〈idx 4, a−〉 ⇑ · Ce(Ξ4,Ξ8,Ξ9, f
−)

Ξ3 ` Γ ⇑ a− Sc(Ξ3, ,Ξ4, idx 4)

Ξ1 ` Γ ⇑ · Ce(Ξ1,Ξ2,Ξ3, a
+)

Γ = {〈idx 1, a−∧+ b−〉, 〈idx 2, a+〉, 〈idx 3, b+〉} Ξ2 = step [1, 3]

Ξ1 = rlist [〈[1, 3], 4, a+〉, 〈[2, 4], 5, f−〉] Ξ4 = rlist [〈[2, 4], 5, f−〉]
Ξ3 = rlisti 4 [〈[2, 4], 5, f−〉] Ξ5 = endWith 4

Ξ8 = step [2, 4] Ξ9 = rlisti 5 []

Ξ10 = decOn (idx 5) Ξ11 = done

Figure 5.5: The rlist region of the derivation for example 5.3.1

The first argument (the input case) is the rlist case containing the sequence of
steps from which Ce removes the head and does three things:

� it communicates the cut formula, here CK , to the kernel

� it creates, for the left premise, a step case with the resolved clauses Sk, and

� it gives to the right branch the case rlisti, containing the rest of the sequence
of tuples as well as the index K, used immediately after by the store clerk Sc

to index the coclause ¬CK .

For now, attention is focused on the right premise of the cut rule, as it is part of the
same region (the left premise is part of the region related to the step checker process
whose p.r.i.c.e. is seen later). Once a cut rule is applied on the resolvent clause at
the head of Q, the head is removed from Q. The tail of Q is preserved in an auxiliary
case, rlisti, along with the index of the most recent resolvent clause. The store
clerk Sc uses this index to store the coclause. The auxiliary case constructor has a
similar type to that of rlist:

type rlisti N→ list (stuple ∗ N ∗ fm)→ case.

while the step case constructor has type:

type step stuple→ case.

79

Remark 5.3.5. One can also use a single case rlist and define the agents accordingly.
However, they are left separate to stress the difference between the notions of region
and case, a difference comparable to the one between a process and the variables
used in that process.

Separating the two cases has the additional advantage of readability, which one
should always keep in mind when writing a p.r.i.c.e.. Just as it is possible but
not always practical to create a single global data structure in a program where all
information is stored, it is possible to define a single case and place all information
in it.

The store clerk is defined on rlisti:

Sc(rlisti K R, , rlist R, idx K).

It reverts the active case to rlist and uses the integer given in the tuple to generate
an index through the constructor idx:

type idx N→ ξ.

The proof continues until the sequence of steps is emptied. The last step is given
by a tuple 〈Sl, L, f−〉; thus the last cut rule is

` ∆ ⇑ f− ` ∆ ⇑ t+
` ∆ ⇑ ·

The right premise is augmented with a case rlisti K []. The proof of this last
sequent is obtained by storing the formula t+ then immediately deciding on it and
finishing the proof with a t+ rule. Thus the store clerk has another definition for this
final situation:

Sc(rlisti K [], , oneOf [idx K] done, idx K)

The agents defined in sections 4.3.1 and 4.3.2, in particular the decide and true
experts, finish the proof.

This concludes the p.r.i.c.e. relative to the process sequence checker.

5.3.2 Semantics of a binary resolution step

Following the same process as the one described in the previous section, the resolution
rule is first interpreted using an LKF sequent, then the structure of LKF proofs of
that sequent is visualized, finally a p.r.i.c.e. is defined to guide the kernel towards
finding such proofs.

80

Ce(rlist [〈Sk, K, Ck〉|R], step Sk, rlisti K R,Ck)

Sc(rlisti K R, , rlist R, idx K)

Sc(rlisti K [], , oneOf [idx K] done, idx K)

Figure 5.6: Clerks and Experts working on the rlist case

Binary resolution steps as LKF sequents

A resolution inference rule
Ci Cj
Ck

with a conflict atom a ∈ Λ(Ci) and ¬a ∈ Λ(Cj) (for Λ(·) shown in definition 5.1.3)
can also be seen as the tautologous implication

Ci ∧ Cj ⊃ Ck

which, by the material implication interpretation, is classically equivalent to the
formula :

¬Ci ∨ ¬Cj ∨ Ck

Proposition 5.3.2. If the resolution inference rule is applicable on clauses Ci and
Cj to produce the resolvent clause Ck, then the following sequent is provable:

` · ⇑ J¬Ci ∨ ¬Cj ∨ CkK±

Proof. The arguments for the proof of proposition 5.3.1 apply.

One has to link the sequent that is the left premise of the cut rule in the partial
derivation 5.3:

` ∆ ⇑ C−k (5.4)

to the sequent from proposition 5.3.2

` · ⇑ J¬Ci ∨ ¬Cj ∨ CkK±

By giving a negative polarity to the two disjunctions in ¬Ci ∨ ¬Cj ∨ Ck and to Ck,
and a positive polarity to ¬Ci and ¬Cj, the above sequent becomes:

` · ⇑ (¬Ci)+ ∨− (¬Cj)+ ∨− C−k

81

which, by application of only invertible rules, produce the following partial derivation:

` (¬Cj)+, (¬Ci)+ ⇑ C−k
` (¬Ci)+ ⇑ (¬Cj)+, C−k

S

` (¬Ci)+ ⇑ (¬Cj)+ ∨− C−k
∨−

` · ⇑ (¬Ci)+, (¬Cj)+ ∨− C−k
S

` · ⇑ (¬Ci)+ ∨− (¬Cj)+ ∨− C−k
∨−

Thus the sequent:

` (¬Ci)+, (¬Cj)+ ⇑ C−k (5.5)

is provable if resolution step 〈[i, j], k, Ck〉 is valid. Furthermore, If 〈[i, j], k, Ck〉 is
a valid resolution step, then (¬Ci)+, (¬Cj)+ ∈ ∆ (where ∆ is the set of usable
coclauses). The only rules that interact with the storage are the decide rule, when
a formula is contracted out of storage, and the initial rule, when a negative atom in
the storage is mated with the positive atom under focus.

Proposition 5.3.3. If proofs of the sequent 5.4 never interact with the set of co-
clauses ∆\{(¬Ci)+, (¬Cj)+}, then the sequent 5.4 is equiprovable to the sequent 5.5.

Proof. By induction on the given derivations.

Remark 5.3.6. To prevent the proof of sequent 5.4 to use formulas in ∆\{(¬Ci)+, (¬Cj)+},
it is sufficient to define the decide De and initial Ie experts to never give indexes of
formulas in ∆ \ {(¬Ci)+, (¬Cj)+}.

Interpreting binary resolution steps in LKF

The choice of polarity postponed in remark 5.3.1 will now be discussed. So far,
the coclauses were made positive so that the original coclauses are stored with their
indexes. Because negation flips polarity, the choice of a positive polarity for the
coclauses entails a negative polarity for the clauses. In the cut rule 5.3, simulating
a resolution step application, the (negative) resolvent clause Ck appears on the left
premise while its (positive) coclause ¬Ck appears on the right premise:

` ∆ ⇑ C−k ` ∆ ⇑ (¬Ck)+

` ∆ ⇑ · cut

As mentioned when discussing polarity assignment of the coclauses, a formula is
made positive (resp. negative) either by using a positive (resp. negative) delay

82

or by giving a positive (resp. negative) polarity to its top connective. Through
the negation, if the coclauses are made positive by a positive delay then the clauses
would symmetrically be made negative by a negative delay. If the coclauses are made
positive by using the positive version of the conjunction then the clauses would be
made negative by the negative version of the disjunction.

Because the left premise starts in the invertible phase, a negative delay will be
immediately removed:

` ∆ ⇑ Ck
` ∆ ⇑ ∂−(Ck)

Therefore, the rest of the phase depends on the polarity of the disjunction.

A positive disjunction will cause the immediate next rule to be the storage of the
clause Ck. Furthermore, the proof will decide (contract) on the clause Ck each time
one of its literals is needed, and the ensuing focused phase will potentially contain as
many ∨+ rules as there are disjunctions in the clause. Without direction information,
of which there is none, the ∨+ rules greatly increase the search space. This is the
first objection to the positive polarity assignment for disjunctions in clauses.

Moreover, because there is only one conflict literal per binary resolution step, the
remaining literals in the coclauses must each be mated with a literal in resolvent
clause. This means that a positive polarity for the disjunctions in Ck would require
the proof of the above sequent to contract ‖Λ(Ci)‖+‖Λ(Cj)‖ times on the clause Ck,
where Ci and Cj are the resolved clauses. The final argument against the positive
polarity is that all of the literals in Ck are used in the proof, so there is no advantage
in having a disjunction rule that discards one of the disjuncts.

A negative polarity to the disjunctions in the clauses results an invertible phase
where all disjunctions in Ck are replaced by commas and the atoms Λ(C) stored,
resulting in the sequent

` {A|A ∈ Λ(Ck)},∆ ⇑ ·

The polarity of atoms is of little consequence for a binary resolution step, they
are hence given a global arbitrary polarity. The polarity assignment is summarized
in figure 5.7

Now that the polarity is completely specified, formulas will not be written with
a superscript informing of they polarity.

83

JB ∨ CK± = JBK± ∨− JCK± JB ∧ CK± = JBK± ∧+ JCK±

JfK± = f− JtK± = t+ JatmK± = atm+ J¬atmK± = atm-

Figure 5.7: Polarity assignment for the resolution refutation p.r.i.c.e..

Agents and cases for binary resolution steps

A binary resolution stuple constructor is defined on an ordered pair as:

type br list ξ → stuple.

where the argument in the list contains two indexes, the first is the index of the
clause containing the non-negated conflict literal while the second is the index of the
clause containing the complementary negated literal.

Recall that the case of this region is step:

type step stuple→ case.

In particular, the augmented end-sequent of the left premise of the cut is:

step(br[i, j]) ` ∆ ⇑ Ck

Concerning the indexing, the only stored formulas in these subderivations are
atomic: they are given an indiscriminate index lit. It is important to give a different
index than for the coclauses, following remark 5.3.6.

The gents are defined below in order of appearance and can be followed on the
rest of the derivation for example 5.3.1 shown in figure 5.9.

The derivation of this sequent will be a sequence of ∨− rules augmented with the
näıve definition of the ∨−

c :
∨−
c (stepR, stepR)

The store clerk gives the index lit to each store rule:

Sc(stepR, , stepR, lit)

regardless of what the atom is (hence the wildcard). At the end of the invertible
phase, the sequent is

` {〈lit, A〉|A ∈ Λ(Ck)},Γ ⇑ ·

84

To define the rest of the agents, one has to think of the order in which the resolvent
clauses are given. For a resolution step on clauses a∨B and ¬a∨B′, the clauses are
polarized to become a+∨− JBK± and a−∨− JB′K±, then negated to yield the coclauses
a−∧+ ¬JBK± and a+∧+ ¬JB′K±. Let ∆ be the multiset {〈lit, A〉|A ∈ Λ(Ck)} ∪ Γ, a
decide on the second coclause produces the following partial derivation:

` ∆ ⇓ a+ ` ∆ ⇓ ¬JB′K±

` ∆ ⇓ a+∧+ ¬JB′K± ∧+

The left premise of this rule is a sequent focused on the positive occurrence of the
conflict atom which, by definition, does not appear in the resolvent clause. This
atom has no complementary in ∆ and this derivation cannot be completed. Thus
the decide rule has to be applied first on the coclause containing the negative atom
(i.e.,a−∧+ ¬JBK±) producing the following derivation:

π
` a−,∆ ⇑ ·
` ∆ ⇑ a− S

` ∆ ⇓ a− R
π′

` ∆ ⇓ ¬JB′K±

` ∆ ⇓ a−∧+ ¬JBK± ∧+

The remaining atoms of the coclauses do appear in the resolvent clause and the
derivation π′ can be completed. Indeed in a resolution step, all the sequents focused
on a positive member of Λ(B)∪Λ(B′) would end in success because there is exactly
one conflict literal (here a) in each resolved clause of a resolution step, thus each
atom q ∈ Λ(B) ∪ Λ(B′) has a complementary atom ¬q ∈ Λ(Ck). The derivation
π continues with a decide rule on the second coclause, a+∧+ ¬JB′K±, and is able to
continue because, at this point, the complementary of the conflict atom a+ is stored.

The decide expert has many definitions. The first one is straightforward: decide
on the first coclause in the order given in the step case.

De(step(br[I|R]), step(brR), idx I)

After a decision on a coclause ¬CI ∈ Γ producing the partial derivation:

` Θ ⇓ ¬CI
` Θ ⇑ ·

then follows a number of ∧+ rules, resulting in ‖Λ(¬CI)‖ sequent focused on atoms
of the form

` Θ ⇓ A′ (5.6)

85

where A′ ∈ Λ(¬CI). If the original clauses contain no duplicated literals and the
resolvent clauses are factored to also prevent duplicated literals, then only one of the
above sequents (5.6) is focused on a conflict atom. If this focused phase follows on
the decide on the first coclause, then this atom is negative. In that case, only this
premise needs the index of the second coclause to finish the proof. The ∧+

e can give
this information to one of the premises of a ∧+ rule and a step with an empty list to
the other premise. This prevents unnecessary decide rules (and subsequent focused
phases) on the other coclause.

∧+

e (step(br[I]), step(br[]), step(br[I]))

∧+

e (step(br[I]), step(br[I]), step(br[]))

If the above sequents (5.6) follow from a decide on the second coclause, then the
focus is on the positive conflict atom whose complement is already stored and the
step case is empty.

∧+

e (step(br[]), step(br[]), step(br[]))

Each premise of this focused phase will end either with an initial on a positive atom
or with a release on a negative atom. The initial expert Ie gives the index lit to
the kernel.

Ie(step(br[]), lit)

The release expert Re is näıve:

Re(stepR, stepR)

When the list of remaining coclauses is empty, one can decide only on a literal, which
brings about an additional definition for the decide expert De:

De(step(br[]), step(br[]), lit)

Remark 5.3.7. When the first coclause is atomic, the kernel cannot decide on it
because it is necessary a negative atom. Indeed, the first resolved coclause must
at least have the conflict atom, and the ordering of the coclauses list requires the
conflict atom of the first coclause to be the negative occurrence (e.g., resolving a−

and a+∧+ B).

Some additional agent definitions are needed to handle the special situation of
remark 5.3.7 and of the final resolution step. Indeed, the latter is verified with a cut
rule whose left premise is of the following form:

` Γ ⇑ f−

86

∨−
c (stepR, stepR) Sc(stepR, , stepR, lit)

De(step(br[I|R]), stepR, idx I) f−
c (stepR, stepR)

De(step(br[]), step(br[]), lit) De(step(br[I, J]), step(br[I]), idx J)

∧+

e (step(br[I]), step(br[]), step(br[I])) Re(stepR, stepR)

∧+

e (step(br[I]), step(br[I]), step(br[])) Ie(step(br[I]), idx I)

∧+

e (step(br[]), step(br[]), step(br[])) Ie(step(br[]), lit)

Figure 5.8: Clerks and Experts working on the step case

Therefore, the false clerk f−
c must be defined.

f−
c (stepR, stepR)

When the the first coclause is atomic, one has to decide directly on the second
coclause.

De(step(br[I, J]), step(br[I]), idx J)

The following ∧+ rules use the definitions of ∧+
e given above. The initial expert is

also defined, on a step case with a non-empty list, to succeed only with the index
contained in that list:

Ie(step(br[I]), idx I)

To summarize, all the team of agents is shown in figure 5.8.

Remark 5.3.8. This definition of agents relies heavily on the fact that the resolved
clauses in the tuples are ordered. This makes for a concise and precise definition.
Similar to the discussion in remark 5.2.1, one can extend these definitions to deal
with less detailed proof evidence formats.

Extending to first-order resolution

Thanks in no small part to the relational aspect of the Foundational Proof Certifica-
tion framework, the semantics for propositional resolution seen in section 5.3.2 can
be easily extended to handle first-order resolution refutations. Support for quanti-
fiers through clerks and experts is added to the unmodified p.r.i.c.e. fragment for
the step checker process.

87

Ξ7 ` 〈lit, a−〉, 〈lit, a+〉,Γ ⇓ a+
Ie(Ξ7, lit)

Ξ7 ` 〈lit, a−〉, 〈lit, a+〉,Γ ⇑ ·
De(Ξ7,Ξ7, lit)

Ξ7 ` 〈lit, a+〉,Γ ⇑ a−
Sc(Ξ7, ,Ξ7, lit)

Ξ7 ` 〈lit, a+〉,Γ ⇓ a−
Re(Ξ7,Ξ7)

Ξ6 ` 〈lit, b−〉, 〈lit, a+〉,Γ ⇓ b+
Ie(Ξ7, lit)

Ξ6 ` 〈lit, b−〉, 〈lit, a+〉,Γ ⇑ ·
De(Ξ6,Ξ7, idx 3)

Ξ6 ` 〈lit, a+〉,Γ ⇑ b−
Sc(Ξ6, ,Ξ6, lit)

Ξ6 ` 〈lit, a+〉,Γ ⇓ b−
Re(Ξ6,Ξ6)

Ξ6 ` 〈 lit, a+〉,Γ ⇓ a−∧+ b−
∧+
e (Ξ6,Ξ7,Ξ6)

Ξ2 ` 〈lit, a+〉,Γ ⇑ ·
De(Ξ2,Ξ6, idx 1)

Ξ2 ` Γ ⇑ a+ Sc(Ξ2, ,Ξ2, lit)

Ξ6 = step[3] Ξ7 = step(br[])

Figure 5.9: The step region of the derivation π for example 5.3.1 in figure 5.5

∀c(stepR, λx.(stepR)) ∃e(stepR, stepR, V)

Figure 5.10: Clerks and Experts working on the step case

Aside from the clauses, which are now considered first-order, the previous notion
of proof evidence remains unchanged. The added agents are näıve and instantiations
of quantifiers are left out to emphasize the proof reconstruction capabilities offered
by unification, one of the desiderata in section 3.1.5.

88

5.3.3 Interpreting a hyperresolution step

Resolution is arguably one of the most widely used proof technique in the area
of automated deduction and gave rise to several extensions and refinements. This
section explores a refinement called hyperresolution[Robinson, 1965a].

Definition 5.3.4. An affirmative clause is a disjunction of only non-negated literals.
A positive resolution step is a step where one of the resolved clauses is affirmative.
•

The refinement to positive resolution stems from the observation that resolution
retains completeness when every resolution step is restricted to be a positive resolu-
tion step. In the same paper[Robinson, 1965a], positive resolution is generalized to
hyperresolution.

Consider a positive resolution step between an affirmative clause L1 ∨ Q and
another clause ¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Ln ∨ P where P is an affirmative (sub)clause.
The resolvent clause will be ¬L2 ∨ · · · ∨ ¬Ln ∨ P ∨ Q. If n > 1, then this clause
contains at least a negated literal, making it a non-affirmative clause which means,
in a positive resolution step, it can only be resolved with an affirmative clause. This
affirmative clause will have exactly one literal that is the compliment of one of the
Li (i = 2 · · ·n) and if the resolvent clause is still not affirmative (n > 3), it will also
have to be resolved with an affirmative clause and so on.

A hyperresolution refutation groups together the steps of positive resolution
where the clause ¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Ln ∨ P participates. More formally:

Definition 5.3.5. A hyperresolution step is a refinement of a resolution step where
a number of affirmative clauses are resolved with a non affirmative clause called
a nucleus to yield an affirmative clause as resolvent. The notion of a sequence of
refutations is the same as that of definition 5.3.3, i.e.,a sequence of tuples 〈S, K, CK〉,
but now CK is affirmative and S is a pair 〈AL,Nu〉 where AL is the list of indexes of
affirmative clauses and Nu is the index of the nucleus. A negated affirmative clause
is called affirmative coclause and a negated nucleus is called a conucleus. •

The p.r.i.c.e. given in section 5.3.1 for the region responsible for checking the
sequence of refutations can mostly be used as it is for hyperresolution. Similarly,
a hyperresolution step follows the same interpretation as that of a resolution step
seen in 5.3.2 and its polarity choice and indexing are the same. Slight changes are
required for the cases and agents, however, and they are introduced in the following
section.

89

Agents and cases of a hyperresolution step

Example 5.3.2. The agents will be introduced in order of appearance and one can
follow their definitions in figure 5.12 that shows the hyperresolution step resolving the
affirmative clauses a∨p, b and the nucleus ¬a∨¬b∨q, where a, b, c, p, q are atoms, into
the affirmative clause p∨q. Polarization produces the coclauses a−∧+p−, b−, a+∧+ b+∧+ q−

that resolve into the clause p+∨− q+. �

The constructor for the stuple type for this region is:

type hyp list N→ N→ list ξ → stuple.

where the arguments are the resolved clauses in two pieces: the list of indexes for
affirmative clauses AL and the index of the nucleus Nu. The purpose of the third
argument, the list of indexes Atms, will be explained later.

In keeping with remark 5.3.4, the step case is written step ALNu [lit] instead
of step (hyp ALNu [lit]).

The end sequent of the left premise of a cut rule checking the step 〈〈AL,Nu〉, K, CK〉
is as follows:

step ALNu [lit] ` ∆ ⇑ Ck
The invertible phase applies a series of ∨− rules augmented with the following näıve
clerk:

∨−
c (step ALNu Atms, step ALNu Atms)

Each time an atom is reached, it is stored under the guidance of the following clerk:

Sc(step ALNu Atms, , step ALNu Atms, lit)

When the invertible phase is over, a decide rule is applied.

Remark 5.3.9. Before defining the decide expert De, one can make several remarks:

� Because the affirmative clauses contain only non negated literals, their polar-
ized version contains only positive atoms, and the corresponding affirmative
coclauses contain only negative atoms. This means that a decide on an af-
firmative non atomic coclause will result in a focused phase of which all the
premises end in a release i.e.,a positive phase that will not fail.

� The nucleus is the only clause containing negated literals and those literals
are exactly the conflict literals. These literals become positive atoms in the
conucleus and are the only atoms whose complements are not in the resolvent

90

clause’s atoms but in the affirmative coclauses. This entails that no decide on
the conucleus can succeed until all the complementary (negative) atoms of the
(positive) conflict atoms are stored, i.e.,until all the affirmative coclauses have
been processed and their conflict literals stored.

� An atomic affirmative coclause contains only a negative atom and is thus un-
suited for a decide rule.

Because it is “safe” to decide on a non atomic affirmative clause, the decide expert
can pick the indexes in order:

De(step [I|AL]Nu Atms, step ALNu Atms, idx I)

The focused phase starts on a positive conjunction. Because there is only one nucleus,
all the affirmative clauses have exactly one atom that can only be mated with an
atom in the nucleus, all the others appear in the resolvent. This observation allows
for a ∧+

e definition similar to the one seen for the binary resolution, where only one
of the premises receive the rest of the resolved clauses while all the other finish after
one decision:

∧+

e (step ALNu Atms, step ALNu Atms, oneOf [lit])

∧+

e (step ALNu Atms, oneOf [lit], step ALNu Atms)

All the premises eventually focus on a negative atom and thus release. For the
premises focused on the non conflict literals, the release expert Re is already defined
on the default case oneOf. The following additional definition of Re is for the one
premise with the focus on the conflict (negative) atom:

Re(step ALNu Atms, step ALNu Atms)

The decide expert has also a definition for the case where the head of the affirmative
list AL is the index of an atom. If it is, that index is added to the third argument
which holds the indexes of the formulas that were not subject to a decide, and the
decide expert analyzes the following index.

De(step [I|AL]Nu Atms,Ξ, X) :- De(step ALNu [idx I|Atms],Ξ, X)

Remark 5.3.10. This last definition of the decide expert involves an unwanted search
space because this definition puts the index idx I in the third argument without
knowledge of whether or not it is the index of an atomic coclause. The overall
derivation cannot succeed when the index of a non atomic coclause is put in the
third argument and, therefore, not decided on. This issue is ignored for now but
discussed further in this chapter.

91

A final definition of the decide expert is needed for when the list of affirmative
clauses is empty. In this case, if all the non atomic coclauses were decided on and de-
composed, all the complementary atoms of the conflict literals withing the conucleus
are present in the storage. The decide expert simply decides on the conucleus:

De(step []Nu Atms, last Atms, idx Nu)

The returned case is a new case called last containing the list of atoms. If the
conucleus is an atom, it is necessary a positive atom because it must contain the
negated conflict literal which becomes a positive atom in the conucleus. Thus, the
next rule is an initial and is guided by the following expert:

Ie(last Atoms, I) :- I ∈ Atoms

If the conucleus is not atomic, it is a conjunction and thus the positive conjunction
expert ∧+

e must be defined on the last case. There is no advantage in ordering the
premises so an arbitrary order is chosen.

∧+

e (last Atoms, last Atoms, last Atoms)

When arriving at the end of the focused phase with a sequent focused on a positive
atom, this atom is necessarily a conflict literal and must end with a member of the
list Atms. The above definition of initial expert Ie still works. If the focused phase
ends with a sequent focused on a negative atom, this atom does not come from a
conflict literal and therefore is complemented in the resolvent clause’s stored atoms.
The phase ends in a release:

Re(last Atoms, last Atoms)

After a store the case changes to a oneOf case:

Sc(last Atoms, , oneOf [lit], lit)

The team of clerks and experts is summarized in figure 5.11

Reviewing polarity assignment

One can take advantage of the structure of a hyperresolution rule to shorten the size
of the proofs of the left premises of cuts. To answer the unwanted behavior stated in
remark 5.3.10, the effect of another polarity choice for the atoms is discussed here.

92

∨−
c (step ALNu Atms, step ALNu Atms)

Sc(step ALNu Atms, , step ALNu Atms, lit)

De(step [I|AL]Nu Atms, step ALNu Atms, idx I)

Re(step ALNu Atms, step ALNu Atms)

∧+

e (step ALNu Atms, step ALNu Atms, oneOf [lit])

∧+

e (step ALNu Atms, oneOf [lit], step ALNu Atms)

De(step [I|AL]Nu Atms,Ξ, X) :- De(step ALNu [idx I|Atms],Ξ, X)

De(step []Nu Atms, last Atms, idx Nu)

Ie(last Atoms, I) :- I ∈ Atoms
∧+

e (last Atoms, last Atoms, last Atoms)

Re(last Atoms, last Atoms)

Sc(last Atoms, , oneOf [lit], lit)

Figure 5.11: Team of agents for checking a hyperresolution step.

The polarity assignment for the connectives is the same as in figure 5.7 the polarity
of literals is reversed:

JaK± = a- J¬aK± = a+

With this polarity, one can make symmetrical notes to those in remark 5.3.9. Now
all the conflict literals in the conucleus are negative atoms, and the positive atoms
in the conucleus have their complements in the resolvent clause (i.e.,already stored
under index lit). So the decide cannot fail when done on the conucleus.

The premises of the positive phase engaged on the conucleus are of two kinds:

� either they are focused sequents on positive atoms, then these atoms are nec-
essarily in the resolvent clause and the premise is accepted through the initial
rule or

� they are focused sequents on negative atoms, which are the conflict literals,
then the sequents are the conclusion of a release rule.

On these latter sequents, at most one extra decide rule is needed on the unique
coclause containing the complement of the conflict literal.

In the special case where the conucleus is an atomic formula, it is necessarily a
negative atomic formula (because it has to contain at least one conflict literal, which

93

Ξ4 ` Γ2, (a
−)lit ⇓ a+

Ie(Ξ4, lit)
π

Ξ4 ` Γ2, (a
−)lit ⇓ a+∧+ b+∧+ q−

∧+
e (Ξ4,Ξ4,Ξ4)

Ξ2 ` Γ2, (a
−)lit ⇑ ·

De(Ξ2,Ξ4, idx 3)

Ξ2 ` Γ2 ⇑ a−
Sc(Ξ2, ,Ξ2, lit)

Ξ2 ` Γ2 ⇓ a−
Re(Ξ2,Ξ2)

Ξ5 ` Γ2, (p
−)lit ⇓ p+

Ie(Ξ5, lit)

Ξ3 ` Γ2, (p
−)lit ⇑ ·

De(Ξ3,Ξ5, lit)

Ξ3 ` Γ2 ⇑ p−
Sc(Ξ3, ,Ξ3, lit)

Ξ3 ` Γ2 ⇓ p−
Re(Ξ3,Ξ3)

Ξ2 ` Γ2 ⇓ a−∧+ p−
∧+
e (Ξ2,Ξ2,Ξ3)

Ξ1 ` Γ2 ⇑ ·
De(Ξ1,Ξ2, idx 1)

Ξ1 ` Γ1 ⇑ p+∨− q+
∨−
c (Ξ1,Ξ1) + 2×Sc(Ξ1, ,Ξ1, lit)

Ξ4 ` Γ2, (a
−)lit ⇓ b+

Ie(Ξ4, idx 2)

Ξ5 ` Γ2, (a
−)lit, (q

−)lit ⇓ q+
Ie(Ξ5, lit)

Ξ4 ` Γ2, (a
−)lit, (q

−)lit ⇑ ·
De(Ξ4,Ξ5, lit)

Ξ4 ` Γ2, (a
−)lit ⇑ q−

Sc(Ξ4, ,Ξ4, lit)

Ξ4 ` Γ2, (a
−)lit ⇓ q−

Re(Ξ4,Ξ4)

Ξ4 ` Γ2, (a
−)lit ⇓ b+∧+ q−

∧+
e (Ξ4,Ξ4,Ξ4)

π

with

Γ1 = {(a−∧+ p−)idx 1, (b
−)idx 2, (a

+∧+ b+∧+ q−)idx 3} Γ2 = Γ1 ∪ {(p+)lit, (q+)lit}

Ξ1 = step [1, 2][3][lit] Ξ2 = step [2][3][lit]

Ξ3 = oneOf [lit] Ξ4 = last [idx 2, lit]

Ξ5 = done

Figure 5.12: Derivation of example 5.3.2

94

∨−
c (step ALNu, step ALNu)

Sc(step ALNu, , step ALNu, lit)

De(step ALNu, oneOf AL, idx Nu)

De(oneOf AL, initWith [lit], idx I) :- I ∈ AL
De(step [I]Nu, initWith [lit, idx Nu], idx I)

∧+

e (oneOf AL, oneOf AL, oneOf AL)

Re(oneOf AL, oneOf AL)

Sc(oneOf AL, , oneOf AL, lit)

Ie(oneOf AL, lit)

Figure 5.13: Modified clerks and experts for reversed atoms’ polarity

will be negative). This means the list of affirmative clauses is a singleton, because
there is only one conflict literal and there must be as many coclauses as conflict
literals.

Reviewing example 5.3.2 with this new polarization, one gets the coclauses b+,
a+∧+ p+, a−∧+ b−∧+ q+ resolving into the clause p−∨− q−.

The modified team of clerks and experts is given in figure 5.13, they are defined on
a modified step case now only having as arguments the list of affirmative coclauses
indexes AL and the index of conucleus Nu. An auxiliary case, oneOf holds a list of
indexes the decide expert can decide on.

95

5.4 Expansion Trees

From Herbrand’s theorem [Herbrand, 1930], it is known that recording instantiations
of existential quantifiers is sufficient to describe a classical cut-free proof of a formula
in prenex normal form. This compact formalism is used by many automated proof
tools, especially for instantiation based reasoning [Korovin, 2013].

Building on Herbrand’s insight, Miller defined expansion trees for full higher-order
logic [Miller, 1987] as a structure to record such instantiation information without
restriction to prenex normal form.

Remark 5.4.1. While the terminology used in [Miller, 1987] include the terms “pos-
itive” and “negative”, these terms are unrelated to their meaning in this thesis. If
one is familiar with the original work by Miller [1987], one notices that the present
section does not mention certain notions that are irrelevant in this setting. In par-
ticular, dual expansion trees are not use because the present work is built on one
sided LKF where the formulas are in negation normal form.

Decades later, expansion trees were generalized [Hetzl and Weller, 2013] to de-
scribe not only analytic cut-free proofs but also proofs with cuts. This section,
however, investigates only the original setting by [Miller, 1987] for first-order proofs.

Definition 5.4.1. An expansion tree E of a formula A is defined inductively as
follows:

� If A is a unit or a literal then E is a final node labelled A.

� If E1 and E2 are expansion trees of formulas A1 and A2, and ◦ ∈ {∧,∨} then
E1

.◦ E2 is an expansion tree of formula A1 ◦ A2 with top node
.◦.

� If E is an expansion tree of formula [y/x]A and y is not an eigenvariable of

any node in E then
.

∀+y E is an expansion tree of formula ∀x.A with top node
.

∀. The variable y is called a selection variable of its top node.

� If {t1, . . . , tn} is a set of terms and E1, . . . , En are expansion trees of formulas

[ti/x]A for i = 1, . . . , n, then E ′ =
.

∃ +t1 E1 . . . +tn En is an expansion tree of

formula ∃x.A with top node
.

∃. The terms t1, . . . , tn are known as the expansion
terms of its top node.

•

Remark 5.4.2. A variable can be both a selection variable for a universal node
.

∀ and
appear in an expansion term for an existential node

.

∃, just as an eigenvariable can

96

appear inside a witness for an existential after having been introduced by a universal
rule application.

Example 5.4.1. The expansion tree corresponding to the proof of the Drinker’s
Paradox, ∃x.(¬D(x) ∨ ∀y.D(y)) is as follows:

E =
.

∃+c [¬D(c)
.
∨ (

.

∀+α D(α))] +α [¬D(α)
.
∨ (

.

∀+β D(β))]

which gives the following graphical representation:

.

∃
.
∨

.
∨

¬D(c)
.

∀

D(α)

¬D(α)
.

∀

D(β)

c α

α β

�

Definition 5.4.2. Let E be an expansion tree, the deep formula Dp(E) is defined
inductively as

� Dp(L) = L′ where L is a leaf node annotated with literal or unit L′

� Dp(E1
.◦ E2) = Dp(E1) ◦Dp(E2)

� Dp(
.

∃+t1 E1 . . .+
tn En) =

∨n
i=1 Dp(Ei)

� Dp(
.

∀+t E) = Dp(E)

•

Definition 5.4.3. A node n dominates a node m if n appears higher than m on a
common branch (expansion trees are viewed with the root on the top and leaves at
the bottom). Let E be an expansion tree and let ≺E be the binary relation on the
occurrences of expansion terms in E defined by t ≺E s if there is an α which is free
in s and is a selection variable of a node dominated by t. Then, the transitive closure
of ≺E, designated by ≺∗E, is called the dependency relation of E. e.g., in the tree of
example 5.4.1, the expansion terms of the root, c and α, satisfy the relation c ≺E α
because α (which is free in α) is also the selection variable of a

.

∀ node dominated by
c. •

97

Definition 5.4.4. An expansion tree E on its own is not considered proof. It con-
stitutes an expansion proof only if:

� Dp(E) is a tautology

� The dependency relation ≺∗E is acyclic.

•

5.4.1 Expansion trees in LK

In this section, a modified classical sequent calculus for expansion trees is introduced.
This sequent calculus shows how to elaborate an LK proof from an expansion tree
and will simplify understanding of the semantics definition in next section.

Remark 5.4.3. Once an LK proof is obtained, the formula is proved to be valid. There
is no further need of proving the deep formula of the expansion tree tautologous or
the dependency relation acyclic (definition 5.4.4). As a result, while the expansion
tree alone does not constitute sufficient proof, it is enough evidence to guide the
checker towards proof of a given formula.

Definition 5.4.5. Sequentializing an expansion tree is the process of building a se-
quent calculus proof out of that expansion tree. An expansion sequent is of the form

σ ‡Ψ ‡ Φ ` A ‡ E ‡∆

where σ is a set of substitutions of the form [y/u] where y is an eigenvariable and u
is a selection variable, Ψ is a set of tuples 〈T, τ, I〉 where T is an expansion term, τ
is an expansion tree and I is an index, Φ is a list of expansion trees, A is a set of
literals, E is a set indexed existential formulas of the form 〈I,∃x.F 〉 and finally ∆
is a list of formulas. The expansion sequent calculus is the sequent calculus given in
5.14. Because the deep formula of the expansion tree is not explicitly verified to be
tautologous, there is no need to label the leaves of the tree with the atoms and units.
Thus the definition of expansion tree changes slightly in that the leaves are simply
labeled by the symbol �, adding to the compactness of the proof certificate. •

Remark 5.4.4. One notices in the representation of expansion trees that both the
disjuncts are present at the disjunction nodes

.
∨, which influenced the rule for the dis-

junction in the expansion sequent calculus to be invertible. Section 2.2.1, discussing
invertibility in LK, mentions that existential formulas are the only LK formulas for
which there are no invertible right-introduction rule. Contraction can, then, be re-
stricted to existential formulas. This relates to Herbrand’s expansion and to the

branching in expansion trees at existential nodes
.

∃.

98

σ ‡Ψ ‡ τ1,Φ ` A ‡ E ‡ F1,∆ σ ‡Ψ ‡ τ2,Φ ` A ‡ E ‡ F2,∆

σ ‡Ψ ‡ τ1

.
∧ τ2,Φ ` A ‡ E ‡ F1 ∧ F2,∆

.
∧

σ ‡Ψ ‡ τ1, τ2,Φ ` A ‡ E ‡ F1, F2,∆

σ ‡Ψ ‡ τ1

.
∨ τ2,Φ ` A ‡ E ‡ F1 ∨ F2,∆

.
∨

σ ‡Ψ ‡ Φ ` a,A ‡ E ‡∆

σ ‡Ψ ‡ .a,Φ ` A ‡ E ‡ a,∆ atm

{[y/u]}
⊎
σ ‡Ψ ‡ τ,Φ ` A ‡ E ‡ F [y/x],∆

σ ‡Ψ ‡
.

∀+u τ,Φ ` A ‡ E ‡ ∀x.F,∆
.

∀
\

σ ‡ {〈t1, τ1, i〉, · · · , 〈tn, τn, i〉}
⊎

Ψ ‡ Φ ` A ‡ {〈i, ∃x.F 〉}
⊎

E ‡∆

σ ‡Ψ ‡
.

∃+t1 τ1 + · · ·+tn τn,Φ ` A ‡ E ‡ ∃x.F,∆
.

∃
\

σ ‡Ψ ‡ τ ` A ‡ {〈i, ∃x.F 〉}
⊎

E ‡ F [tσ/x]

σ ‡ {〈t, τ, i〉}
⊎

Ψ ‡ · ` A ‡ {〈i, ∃x.F 〉}
⊎

E ‡ · instantiate?

a atomic
σ ‡ · ‡ · ` a,¬a,A ‡ E ‡ · init

Figure 5.14: Expansion classical sequent calculus.In ?, the proviso is that t is minimal,
and thus tσ is a sequent-level term. In \, i and y are fresh (do not appear anywhere
in the conclusion of the rule).

Definition 5.4.6. The selection variable u of a universal node
.

∀+u τ is introduced

when a
.

∀ rule is applied on that node, generating a fresh eigenvariable y for the cor-
responding formula ∀xF and adding the substitution [y/u] to the list of substitutions
σ, y is called the mirror of u. An expansion term is called minimal if it doesn’t
depend on any non-introduced selection variable. A branch of an existential node
is unlocked (resp locked) if its expansion term is minimal (resp. not minimal). A
tree-level expansion term can be used as a sequent-level witness in an instantiate rule
only if it is minimal and only after substituting all its (tree-level) selection variables
by their mirror (sequent-level) eigenvariables, which requires their presence in σ. •

Proposition 5.4.1. Provability of an expansion sequent · ‡ · ‡ τ ` · ‡ · ‡ F entails
provability of the LK sequent ` F

Proof. By erasing the left-hand side of the expanded sequents in an expansion sequent
calculus proof, one gets LK sequents in a valid LK proof. (By induction on the
derivation of the expansion proof)

99

[s/β][z/α] ‡ · ‡ · ` D(s),¬D(z), D(z),¬D(c) ‡ 〈i, F 〉 ‡ · init

[s/β][z/α] ‡ · ‡D(β) ` ¬D(z), D(z),¬D(c) ‡ 〈i, F 〉 ‡D(s)
atom

[z/α] ‡ · ‡
.

∀+β D(β) ` ¬D(z), D(z),¬D(c) ‡ 〈i, F 〉 ‡ ∀y.D(y)

.

∀

[z/α] ‡ · ‡
.

¬D(z),
.

∀+β D(β) ` D(z),¬D(c) ‡ 〈i, F 〉 ‡ ¬D(z),∀y.D(y)
atom

[z/α] ‡ · ‡ τ3 ` D(z),¬D(c) ‡ 〈i, F 〉 ‡ ¬D(z) ∨ ∀y.D(y)
.
∨

[z/α] ‡ 〈α, τ3, i〉 ‡ · ` D(z),¬D(c) ‡ 〈i, F 〉 ‡ · instantiate

[z/α] ‡ 〈α, τ3, i〉 ‡
.

D(α) ` ¬D(c) ‡ 〈i, F 〉 ‡D(z)
atom

· ‡ 〈α, τ3, i〉 ‡
.

∀+α D(α) ` ¬D(c) ‡ 〈i, F 〉 ‡ ∀y.D(y)

.

∀

· ‡ 〈α, τ3, i〉 ‡
.

¬D(c),
.

∀+α D(α) ` · ‡ 〈i, F 〉 ‡ ¬D(c),∀y.D(y)
atom

· ‡ 〈α, τ3, i〉 ‡ τ2 ` · ‡ 〈i, F 〉 ‡ ¬D(c) ∨ ∀y.D(y)
.
∨

· ‡ 〈α, τ3, i〉, 〈c, τ2, i〉 ‡ · ` · ‡ 〈i, F 〉 ‡ ·
instantiate?

· ‡ · ‡ τ1 ` · ‡ · ‡ F
.

∃

τ1 =
.

∃+c τ2 +α τ3 τ2 = [¬D(c)
.
∨ (

.

∀+α D(α))] τ3 = [¬D(α)
.
∨ (

.

∀+β D(β))]

F = ∃x.(¬D(x) ∨ ∀y.D(y))

Figure 5.15: Expansion sequent proof for example 5.4.1. At ?, the branch labeled α
cannot expand yet, α contains a non introduced selection variable: α itself.

The expansion sequent calculus proof of example 5.4.1 is shown in figure 5.15.

5.4.2 Sequentialization of expansion trees to LKF a

After seeing the sequentialization of an expansion trees in LK, this section defines
the p.r.i.c.e. for checking expansion trees. Augmentation of LKF sequents through
indexes and cases will closely resemble the expansion of the sequents seen in def-
inition 5.4.5. Augmentation of LKF rules with agents is, in effect, similar to the
augmentation of rules that yields the expanded sequent calculus seen in 5.14. The

100

type of expansion trees is given the name χ, it has the following constructors:

type � χ

type
.
∨ χ→ χ→ χ

type
.
∧ χ→ χ→ χ

type
.

∀ (κ× χ)→ χ

type
.

∃ list (%× χ)→ χ

where: κ is the type of selection variables and % is the type of expansion terms.

Polarity

All ambiguous connectives are given negative polarity and atoms can be arbitrarily
and globally polarized. Similar to the polarity assignment for the conjunctive normal
form decision procedure seen in figure 5.1:

JB ◦ CK± = JBK± ◦- JCK± JaK± = a+ J¬aK± = a-

where ◦ ∈ {∨,∧} and a is atomic.
In the expansion sequent calculus, all existential formulas are potentially subject

to contraction separately which is not the case in LKF. To understand the difference,
consider the following formula:

∃x1.∃x2. · · · ∃xn.∃y.F (5.7)

where F is some formula containing x and y, with expansion tree:

.

∃+a1 (
.

∃+a2 · · · (
.

∃+an (
.

∃+c τ1 +b τ2)) · · ·)

where τ1 and τ2 are some expansion trees.
In expansion sequent calculus, the formula 5.7 will be instantiated once with

a1, as will all its existential subformulas ∃x2. · · · ∃xn.∃y.F with a2, ∃x3. · · · ∃xn.∃y.F
with a3, and so forth until ∃y.F , which will be instantiated twice, once with b and
once with c. However, in the aggressively focused LKF where focused phases are
maximal, when deciding on the formula 5.7 the focused phase will proceed with the
subformulas without releasing. This means that the whole chain of instantiation with
the terms ai will be repeated twice, the first time ending with the instantiation of y

101

with b, and the second time ending with the instantiation of y with c. This requires
that all the expansion terms ai be stored and maintained while, in the expansion
sequent calculus, they were discarded after use by instantiate rule.

A better embedding is thus to use a negative delay ∂−(·) after each existential
formula, prompting a release after instantiation in an LKF derivation and subsequent
storing of the existential subformula.

J∃x.BK± = ∃x.∂−(JBK±)

5.4.3 Indexing

As a result of the negative polarity assignment to all ambiguous connectives, the
only formulas to be stored are existential formulas and atoms. The proof certificate
holds no information on the pairing of complementary atoms (as was the case for
mating). The atoms can, therefore, be given dummy index:

type lit ξ.

The existential formulas, as seen in the
.

∃ figure 5.14, are stored with a fresh
index. To provide this fresh index, the store clerk relies on a counter initialized at
0 and incremented after each storage of an existential formula. The constructor for
these indexes is:

type id N→ ξ.

whith N the type of integers.

5.4.4 Region delimitation

The sequentialization can be separated into two main processes, closely related to
tree traversals.

The first process starts at a node (initially, the root) and traverses the
.
∨,

.
∧ and

.

∀ nodes of the tree from father to son (these are the invertible rules). For the
.

∀ node,
the selection variable introduced at the level of the expansion tree is paired with the
eigenvariable generated at the level of sequent calculus proof, and this pair is added

to the substitutions list σ. When
.

∃ nodes are reached, the traversals halts at these
nodes and the out-going branches of these nodes are added to a set of triples in Ψ
from which the traversal can restart. When a leaf is reached, the traversal of that
branch also halts.

The second process takes place when all the branches have been traversed. Then
if there are still nodes in Ψ, the process picks a branch with a minimal expansion

102

term, removes it from Ψ, and repeats process one. If Ψ is not empty but none of its
expansion terms are minimal, the expansion tree is false. If Ψ is empty then a pair
of complementary atoms should be present in the storage: finish with an initial rule.

Regarding the cases, the pieces of information that need to be maintained are the
set of substitutions σ and the set of existential branches Ψ. These must be globally
accessible: σ is needed to make a minimal expansion term into a sequent-level term
to serve as a witness for existential formulas; the branches in Ψ are supplied by
the store clerk and used by the decide expert to start sequentialization at unlocked
branches.

The main case, named exp, has the following type:

type exp N→ list (ι× κ)→ list (%× χ× N)→ list χ

where the first argument, an integer, is the counter used to provide fresh indexes
and the rest of arguments mirror the elements on the left-hand side of an expansion
sequent. In other words:

� the list of substitutions presented as pairs of ι, the type of sequent level terms,
and κ, the type of selection variables

� the list of expansion branches which are triples of, respectively, an expansion
term (of type %), an expansion tree (of type χ) and the integer corresponding
to the index of the existential formula

� the list of expansion branches and the current nodes being traversed, in one-
to-one correspondence with the formula in the workbench

5.4.5 Clerks and experts

The end-sequent of a derivation guided by an expansion tree’s proof certificate is
thus:

exp 0 [] [] [τ] ` · ⇑ F

where τ is the tree associated with formula F.
The negative conjunction ∧−

c and disjunction ∨−
c clerks simulates what happens

on the left-hand side of the expanded sequent in the
.
∧ and

.
∨ rules seen in figure

5.14:
∧−
c (exp c σ Ψ [τ1

.
∧ τ2|Φ], exp c σ Ψ [τ1|Φ], exp c σ Ψ [τ2|Φ])

∨−
c (exp c σ Ψ [τ1

.
∨ τ2|Φ], exp c σ Ψ [τ1, τ2|Φ])

103

The universal clerk ∀c must add to σ a link between the fresh eigenvariable
introduced by the kernel (LKF) at the ∀ rule and the selection variable known to the

expansion tree and introduced by the
.

∀ node. This maneuver is necessary because
the selection variable in an expansion tree is known to the whole expansion tree,
which lays inside the exp case, i.e.,it is not fresh in the sequent proof. Thus a
fresh variable is mapped to each selection variable and is used, at the sequent level,
whenever that selection variable is used.

∀c(exp c σ Ψ [
.

∀+u τ |Φ], λx.exp c ([x/u] :: σ) Ψ [τ |Φ])

To see how these clerks simulate the rules seen in figure 5.14, one has to consider the
entire augmented rule, e.g., the augmented ∀ rule of LKF a is the following:

Ξ′ y ` Γ ⇑B y ∀c(Ξ,Ξ′)
Ξ ` Γ ⇑ ∀B

where Ξ = exp c σ Ψ [
.

∀+u τ |Φ] and Ξ′ = λx.exp c ([x/u] :: σ) Ψ [τ |Φ]. By applying
the same fresh eigenvariable to both the formula under a universal connective (B y)
and the case abstracted over a variable (Ξ′ y = exp c ([y/u] :: σ) Ψ [τ |Φ]), the kernel
and the continuation case (and through this case, all the agents defined on it) will
share variables.

The store clerk Sc behaves differently according to the head tree of Φ. When it
is a leaf, the formula should be an atom and is stored with a dummy index lit.

Sc(exp c σ Ψ [�|Φ], , exp c σ Ψ Φ, lit)

If the node at the head of the list of trees is an existential node
.

∃, the store clerk
assumes the head formula of the workbench is an existential formula. Using the
counter c, the store clerk generates a fresh index (id c) and increments the counter.
This clerk also adds all the outgoing branches to the list Ψ along with the index c
given to their relative existential formula. To avoid obfuscation, this can be done
through the use of an auxiliary predicate expand adding the expansion branches list
EB to Ψ to get Ψ′.

Sc(exp c σ Ψ [
.

∃EB |Φ],∃ , exp (c+ 1) σ Ψ′ Φ, id c) :- expand Ψ c EB Ψ′.

where expand is declared with this type:

type expand list (%× χ× N)→ N→ list (%× χ)→ list (%× χ× N)→ o

104

and defined with the following horn clauses:

expand Ψ [] Ψ.

expand Ψ c [+tτ |EB][〈t, τ, id c〉|Ψ′] :- expand Ψ c EB Ψ′.

The instantiate rule in figure 5.14 is the combination of two rules: a contraction
and an instantiation of existential. Therefore, it is mapped in LKF a to a decide
rule followed by an existential rule. At the end of the invertible phase, the decide
expert De succeeds with a member 〈T, τ, I〉 of Ψ and removes it from Ψ. This expert
gives to the kernel the index I of the corresponding (previously stored) existential
formula and generates the term Tσ, if the term T is minimal, this substitution yields
a sequent-level term (with no selection variables). If it is not minimal, it contains a
selection variable not yet introduced, i.e.,if the expansion branch 〈T, τ, I〉 is locked
(see definition 5.4.6) and thus the term Tσ is not usable as a sequent-level term.
If substitution fails to produce any sequent-level term out of all members of Ψ,
the dependency relation is cyclic and the proof checking halts. If the substitution
succeeds, the resulting term Tσ is encapsulated in the default case witness that can
be seen as placing a post-it note on the exp case (see section 4.3.3 for the existential
expert defined on this case).

De(exp c σ ({〈T, τ, I〉}]Ψ) [], witness (Tσ) (expc σ Ψ [τ]), I)

105

Chapter 6

FPC for intuitionistic logic

This chapter offers a series of case studies for various semantics definitions in intu-
itionistic logic, starting with simple formats and moving to more elaborated ones.
While the number of rules in the (two-sided) LJF a system is twice that of the rules
in the (one-sided) LKF a system, communication between proof certificate and ker-
nel follows the same mechanics. Invertible phases are populated with clerks, focused
phases are populated with experts, formulas in the left storage are paired with an
index, cases serve as the main of communication between agents, etc.

6.1 Mimic

This section is intended as an easy first step in understanding the Foundational
Proof Certification framework in the case of intuitionistic logic. This first section,
like the first section of the previous chapter, shows the elaboration of a p.r.i.c.e. for a
decision procedure. In particular, a decision procedure that succeeds if two formulas
are equal. A similar p.r.i.c.e. can be defined in LKF a for classical logic.

6.1.1 Initial in LJF a

As seen in figure 3.3, initial rules of LJF a are restricted to atomic formulas. As a
result, when the derivation reaches, for instance, a sequent · ⇑ F ` F ⇑ · where F is
a potentially large formula, the derivation must continue decomposing F on either
side of the turnstile until reaching the atoms. While one might see this restriction
to atomic initial as a weakness of focusing and believe there could be advantages
in allowing the (perfectly admissible) non-atomic initial, adding this rule is not an
optimization for the following reasons:

106

1. there is only one sequent that is the conclusion of more than one rule in (the
otherwise syntax directed) LJF a: Γ⇑· ` ·⇑R can be both the conclusion of a cut
rule and of one of the decide rules. Adding a non-atomic initial rule will make
every sequent the potential conclusion of an initial rule. With proof search as
an objective, this behavior is far from ideal and a related disadvantage of this
is the discontinuation of the communication protocol between proof certificate
and kernel,

2. to check applicability of initial rule, the entire sequent is searched and an
equality test is done on each of its formulas,

3. on the one hand, testing equality of formulas is done through a (direct) traversal
of their syntax tree: if the head connectives are the same, check equality of
the respective subformulas. On the other hand, applying introduction rules
on the connectives of a formula is, in effect, also a traversal of its syntax
tree: introduce the head connective, then continue with the subformulas. If
the process of applying the introduction rules on a formula is given enough
guidance, the ensuing derivation can be made to succeed on equal formulas
with a similar cost as the direct traversal required for testing equality.

The next sections investigate how to guide the kernel to build the proof of equal
formulas.

6.1.2 Negative/positive alternation

The sequent · ⇑ F ` F ⇑ · appears in an invertible phase. Depending on the polarity
of F , one of its two occurrences is stored and called the mirror F . In particular,
if F is negative (resp. positive) the left (resp. right) occurrence is stored while the
other occurrence, belonging in the invertible phase, is decomposed, i.e.,its top-level
connective is introduced. Of the resulting subformulas of F , those also belonging
to the invertible phase are decomposed, then their invertible-belonging subformulas,
and so on until reaching non invertible-belonging formulas (positive on the right,
negative on the left, or atoms) which are then stored.

A focused phase is engaged by a decide on the mirror F . This focused phase
will introduce the same connectives of the mirror formula as those connectives of
the other occurrence of F introduced during the previous invertible phase. The
focused phase ends at the same subformulas as the previous invertible phase did. Of
those subformulas, some may be introduced by an initial (if focused on atoms that
belong in the focused phase -negative on the left, positive on the right), others are

107

released, causing another alternation of invertible and focused phases similar to the
one described above.

The pattern appears to be that the invertible phase (starting with the end-sequent
or with a release) is the challenge phase where player A makes some steps and then
gives the hand to the opponent B and dares him to do the same steps (introduce the
same connectives). Player B then decides on the head of the (sub)formula that the
invertible phase of A introduced and engages in a focused phase that introduces the
same connectives. Figure 6.2 shows this alternation.

Example 6.1.1. As a further illustration, consider the formula F = ((a∧− b)∨ c) ⊃
(d∧+ e) where a, b, d are negative atoms and c, e are positive atoms. Figure 6.1 shows
the derivation of the sequent · ⇑ F ` F ⇑ ·. Player A starts the derivation with an
invertible phase on F on the right-hand side. After decomposing the part of F that
belongs to the invertible phase (⊃ and ∨), it ends with the following premises:

a ∧− b, F ⇑ · ` · ⇑ d ∧+ e

and

c, F ⇑ · ` · ⇑ d ∧+ e

In both of these premises, player B is challenged to mimic the steps player A just
took. The double horizontal line in figure 6.1 represents the change in players. Player
B starts with a decide rule on F , and the subsequent focused phases decompose the
same connectives as the previous invertible phase, i.e.,⊃ and ∨, then either end with
an initial if an atom is reached (as is the case for c) and player B successfully
accepts that branch of F , or release the focus after having mimicked player A up to
the following premises:

c, F ⇑ d ∧+ e ` · ⇑ d ∧+ e

a ∧− b, F ⇑ d ∧+ e ` · ⇑ d ∧+ e

a ∧− b, F ⇑ · ` a ∧− b ⇑ ·

then, player B decompose deeper into F the ∧+ and ∧− connectives. After these
invertible phases, it is time (notice the double horizontal line in figure 6.1) for player
A to engage in a focused phase and mimic player B: the derivations starting with
the first two of the three above sequents will decide on the right and focus on formula
d∧+ e, while the derivation starting with the third sequent will decide on the left-hand
side and focus on formula a ∧− b, and the alternation continues. �

108

a ∧− b, F ⇓ a ` a Il

a ∧− b, F ⇓ a ∧− b ` a ∧
−
l

a ∧− b, F ⇑ · ` · ⇑ a Dl

a ∧− b, F ⇑ · ` a ⇑ · S
r

a ∧− b, F ⇓ b ` b Il

a ∧− b, F ⇓ a ∧− b ` b ∧
−
l

a ∧− b, F ⇑ · ` · ⇑ b Dl

a ∧− b, F ⇑ · ` b ⇑ · S
r

a ∧− b, F ⇑ · ` a ∧− b ⇑ · ∧−
r

a ∧− b, F ` a ∧− b ⇓ Rr

a ∧− b, F ` (a ∧− b) ∨ c ⇓
∨r

π(a ∧− b)

a ∧− b, F ⇓ F ` d ∧+ e
⊃l

a ∧− b, F ⇑ · ` · ⇑ d ∧+ e Dl

a ∧− b, F ⇑ · ` d ∧+ e ⇑ · S
r

F ⇑ a ∧− b ` d ∧+ e ⇑ · Sl π′

F ⇑ (a ∧− b) ∨ c ` d ∧+ e ⇑ ·
∨l

F ⇑ · ` F ⇑ · ⊃r

· ⇑ F ` F ⇑ · S
l

π′:

c, F ` c ⇓ Ir

c, F ` (a ∧− b) ∨ c ⇓
∨r

π(c)

c, F ⇓ F ` d ∧+ e
⊃l

c, F ⇑ · ` · ⇑ d ∧+ e Dl

c, F ⇑ · ` d ∧+ e ⇑ · S
r

F ⇑ c ` d ∧+ e ⇑ · Sl

π(�):

e, d,�, F ⇓ d ` d Ir

e, d,�, F ⇑ · ` · ⇑ d Dl

e, d,�, F ⇑ · ` d ⇑ · S
r

e, d,�, F ` d ⇓ Rr

e, d,�, F ` e ⇓ Ir

e, d,�, F ` d ∧+ e ⇓ ∧+
r

e, d,�, F ⇑ · ` · ⇑ d ∧+ e
Dr

d,�, F ⇑ e ` · ⇑ d ∧+ e Sl

�, F ⇑ d, e ` · ⇑ d ∧+ e Sl

�, F ⇑ d ∧+ e ` · ⇑ d ∧+ e
∧+

l

�, F ⇓ d ∧+ e ` d ∧+ e Rl

Figure 6.1: Derivation of example 6.1.1
109

Figure 6.2: Alternation of phases according to polarity and side of the sequent

6.1.3 A p.r.i.c.e. for mimic

This decision procedure is set inside of LJF, i.e.,on polarized formulas, thus there is
no polarity assignment to discuss. The formulas are stored using their path (see def-
inition 5.2.1). The derivations are separated into the challenging region, containing
the dare case having this declaration:

type dare ξ → list ξ → ξ → case

where the first argument is the index of the formula on which to do the next decide
rule, the second argument is a list of indexes in one-to-one correspondence with the
left-hand side workbench and the third argument is the index associated with the
formula on the right-hand side of the turnstile (be it stored or not).

The second region is the mimicking region. The sequents focused on the left are
augmented with the mimL case:

type mimL ξ → ξ → case

where the first argument is the index of the formula under the left focus while the
second argument is the index of the formula on the right-hand side of the turnstile.
The sequents focused on the right are augmented with the mimR case:

mimR : ξ → case

where the argument is the index of the formula on the right-hand side of the turnstile.

110

The challenging phase is inhabited by clerks. Those clerks relative to a connec-
tive simply maintain the correspondence between the paths in the second and third
arguments of the dare case and the formulas in the workbenches.

⊃c (dare I [] J, dare I [≺ J] (� J))

∧−
c (dare I [] J, dare I [] (≺ J), dare I [] (� J))

∧+

c (dare I [H|R] J, dare I [≺ H,� H|R] J)

∨c (dare I [H|R] J, dare I [≺ H|R] J, dare I [� H|R] J)

The store clerks ensure that formulas are stored with their corresponding path:

Src(dare I [] J, , dare I []J)

Slc(dare I [H|R] J, ,H, dare I R J)

The mimicking phase is inhabited by experts. The first expert called, the decide
expert, starts the mimicking on the formula under the first argument of the dare

case.

Dr
e(dare I [] I, mimR I)

Dl
e(dare I [] J, I, mimL I J)

The paths are also maintained during this phase, be it while introducing connectives
on the left:

∧−
e (mimL I J, left, mimL (≺ I) J)

∧−
e (mimL I J, right, mimL (� I) J)

⊃e (mimL I J, mimR (≺ I), mimL (� I) J)

or on the right:

∨e (mimR I, left, mimR (≺ I))

∨e (mimR I, right, mimR (� I))

∧+

e (mimR I, mimR (≺ I), mimR (� I))

111

and the initial expert relies on this information to allow ending the proof on certain
indexes and not others:

Ile(mimL I I)

Ire(mimR I, I)

The release expert is the one that sets the new first argument of the dare case for
the following mimicking phase:

Rl
e(mimL I J, dare I [I] J)

Rr
e(mimR I, dare I [] I)

6.1.4 Extending to first order

Support for first order formulas is simply a matter of adding the agents and expanding
the notion of path. Now, in addition of the path constructors introduced in definition
5.2.1, if ρ is a path then (t> ρ) is also a path, where t is a term, or more formally:

type .> . ι→ ξ → ξ.

where the notation . ◦ . means that the operator ◦ is infix.
The ∃c and ∀c have similar behaviors:

∃c(dare I [H|R] J, λy.dare I [(y >H)|R] J)

∀c(dare I [] J, λy.dare I [] (y > J))

and the ∃e and ∀e have similar behaviors:

∃e(mimR I, mimR (X > I), X)

∀e(mimL I J, mimL (X > I) J,X)

where X is a logic variable. At the initial rule, the initial experts check if the paths
of the complementary atoms match. This ensures that logic variables introduced
for a connective only unify with their corresponding eigenvariables introduced at the
same connective (same position) in the mirror formula.

Remark 6.1.1. Note that the index of the root formula, noted 4 in the mimic section
6.1, does not have to be 4, it can be any element of type ξ. This allows mimic
p.r.i.c.e. to be used as an add-on to another p.r.i.c.e. to check non atomic initial.

112

6.2 λ-calculus

The untyped λ-calculus is a formal system for expressing computation introduced
in [Church, 1936]. A few years later, the simply-typed version of λ-calculus was
introduced [Church, 1940] and achieved Church’s goal of having a formal logic sys-
tem [Benzmüller and Miller, 2014]. Later on, simply-typed λ-calculus was found to
be equivalent to intuitionistic natural deduction through what is called the proofs-
as-programs and formulas-as-types interpretation. A typed λ-calculus term can thus
be taken as the intuitionistic natural deduction proof of its type. This section relates
to this correspondence.

Untyped λ-calculus

Terms in the λ-calculus, or λ-terms, are syntactically defined as

T, U ::= x | T U | λx. T

respectively designating variables, function applications and function abstractions.
The set FV (t) of free variables of a λ-term t is defined as

FV (x) = {x} FV (t u) = FV (t) ∪ FV (u) FV (λx.t) = FV (t) \ {x}

A variable that is not free is bound by the abstraction operator λ that is closest to it,
e.g., in the term λx.λx.x, the variable x is bound by the second λ operator. Function
application associates to the left, i.e.,the term t u z is the same as the term (t u) z
but not the same as the term t (u z) The λ operator binds as far right as possible,
i.e.,the term λx.t u is understood as λx.(t u) not as (λx.t) u.

An α-conversion of a λ-term is the renaming of its bound variables without chang-
ing the meaning of the λ-term itself, e.g., the term λx.y x can be α-converted to the
term λz.y z but not to the term λy.y y as it is no longer the same term.

A β-redex is a term of the form (λx.t)u. A term is in β-normal form if it contains
no subterm which is a β-redex.

Simply-typed λ-calculus

Simple types are built using the following grammar:

τ, σ ::= ι | τ → σ

denoting the base type and arrow types respectively. An arrow-typed variable x of
type ι1 → ...→ ιn → ι is said to be fully applied in a term t if all the occurrences of

113

x are applied to n arguments of the right type ui : ιi. The typing relation Γ � t : σ
is valid if the λ-term t has type σ in context Γ. The rules for this relation are the
following:

Γ, x : τ � t : σ

Γ � λx.t : τ → σ
abs

Γ � u : τ → σ Γ � t : τ
Γ � u t : σ

app
x : τ,Γ � x : τ

var

As said above, there is a correspondence with natural deduction. In particular, the
rules abs, app, var correspond, respectively, to implication introduction, implication
elimination and initial rule:

Γ, B ` C
Γ ` B ⊃ C

⊃i Γ ` B ⊃ C Γ ` B
Γ ` C ⊃e

B,Γ ` B init

A λ-term t of type τ → σ can be η-expanded into the term λx.t x of the same type.
A λ-term t is said to be in η-long normal form if all occurrences of all its arrow-typed
variables are fully applied.

Example 6.2.1. The typed term:

λxλy.y x : (a→ b)→ ((a→ b)→ (c→ d)→ e)→ (c→ d)→ e

is not in η-long-normal form. Its η-long-normal form is the term

λxλyλt.y (λz.x z)(λh.t h)

�

Notations

De Bruijn indices [de Bruijn, 1972] are a notation for λ-calculus where variable names
are replaced by integers such that α-convertible named terms have syntactically equal
de Bruijn notations.

A λ-term in de Bruijn notation is generated from the following grammar:

M,N ::= n |M N | λM

where each variable is replaced by the number of binders between its binder and
its occurrence. In addition to de Bruijn indices, terms are written in spine nota-
tion [Herbelin, 1995a] where a variable is applied to a list of terms. If the term is
in β-normal form, the λ symbol is omitted. A β-normal form term written using de
Bruijn indices where the λ symbol is omitted is said to be in light de Bruijn notation.

114

c+ 1|t � Γ, Bc ` D
c|t � Γ ` B ⊃ D

⊃r

c|t1 � Γ ` B1 · · · c|tn � Γ ` Bn (B1 ⊃ · · · ⊃ Bn ⊃ D)(c−i−1) ∈ Γ

c|i[t1, · · · , tn] � Γ ` D
⊃l

(c− i− 1 : B) ∈ Γ

c|i � Γ ` B init

Figure 6.3: Modified sequent calculus for checking guided by λ-terms proof evidence

Example 6.2.2. λx.λt.λy.x t (λz.z y) is written in de Bruijn notation as λλλ.2 1 (λ.0 1).
In spine notation, the same term becomes λλλ.2 [1, (λ.0 [1])]. Since it is in β-normal
form, its light de Bruijn notation is 2 [1, 0 [1]]. �

Remark 6.2.1. A light de Bruijn notation can be mapped to more than one lambda
term. For instance, the term 1 [0 [1]] is the light de Bruijn notation of both the term
λx.λy.x (λz.z y) and the term λx.λy.x (y x).

Using η-long β-normal form λ-terms as proof evidence

Using an η-long β-normal form λ-term s as proof evidence for checking a formula B
is not the same as checking that the λ-term s has type B. If s � · ` B is taken as
the notation for: “the term s provides evidence that the sequent · ` B is provable”,
then the only implication needed is:

· � s : B ⇒ s � · ` B

A modified intuitionistic sequent calculus is given in figure 6.3. The sequents of
this calculus are of the form:

c|t � Γ ` D
where c is an integer counter, t is a λ-term, Γ is a multiset of indexed formulas and
D is a formula. The end sequent of derivations in this sequent calculus is:

0|t � · ` D

that is to say, the counter is initialized to 0. In the ⊃l rule, an implicit sequent is
the conclusion of an initial rule on the (necessarily atomic) formula D.

To illustrate the mechanism of this calculus, the derivation of the formula

(b ⊃ ((c ⊃ d) ⊃ d) ⊃ e) ⊃ b ⊃ c ⊃ e

115

b(3−1−1) ∈ Γ

3|1 � Γ ` b init

c(4−1−1) ∈ Γ

4|1 � Γ, (c ⊃ d)3 ` c
init

4|0 [1] � Γ, (c ⊃ d)3 ` d
⊃l

3|0 [1] � Γ ` (c ⊃ d) ⊃ d
⊃r

3|2 [1, 0 [1]] � Γ ` e
⊃l

2|2 [1, 0 [1]] � (b ⊃ ((c ⊃ d) ⊃ d) ⊃ e)0, b1 ` c ⊃ e
⊃r

1|2 [1, 0 [1]] � (b ⊃ ((c ⊃ d) ⊃ d) ⊃ e)0 ` b ⊃ c ⊃ e
⊃r

0|2 [1, 0 [1]] � · ` (b ⊃ ((c ⊃ d) ⊃ d) ⊃ e) ⊃ b ⊃ c ⊃ e
⊃r

Γ = (b ⊃ ((c ⊃ d) ⊃ d) ⊃ e)0, b1, c2

Figure 6.4: Example derivation for example 6.2.2

guided by the η-long β-normal form term 2 [1, 0 [1]] from example 6.2.2 is given in
figure 6.4. The proof certificates defined in the sections below are inspired from the
simple sequent calculus in figure 6.3.

6.2.1 p.r.i.c.e. for simply-typed η-long β-normal form λ-terms

The only polarity assignment to choose is that of atoms since the only other formula
constructor is the implication ⊃, which is inherently negative (see section 2.2.1).
Atoms are also given a negative polarity.

The extra information in the modified sequent calculus in figure 6.3 is the λ-term
and the counter. A direct way of maintaining this information is the following case
constructor:

type lam N→ λt → case.

where λt is the type of the inner representation of λ-terms in light de Bruijn notation.
Constructors for λt are the following:

type infix @ λt → list λt → λt.

type v N→ λt.

but for convenience, the (more natural) notation i [u1, · · · , un] and the notation
(v i)@[u1, · · · , un] are used interchangeably.

116

The rules of the system in figure 6.3 can be simulated with sequences of LJF a

rules. For example, the ⊃r is simulated through:

lam (c+ 1) t : Γ, Bc ⇑ · ` D ⇑ ·
lam c t : Γ ⇑B ` D ⇑ ·

lam c t : Γ ⇑ · ` B ⊃ D ⇑ ·

while the ⊃l rule is simulated through:

lam c t1 : Γ ⇑ · ` B1 ⇑ ·
Γ ` B1 ⇓ Rr?

lam c tn : Γ ⇑ · ` Bn ⇑ ·
Γ ` Bn ⇓ Rr?

Γ ⇓ d ` d init

Γ ⇓ Bn ⊃ d ` d ⊃l
....

Γ ⇓ B2 ⊃ · · · ⊃ Bn ⊃ d ` d
Γ ⇓ B1 ⊃ · · · ⊃ Bn ⊃ d ` d

⊃l

lam c i[t1, · · · , tn] : Γ ⇑ · ` · ⇑ d Dl

lam c i[t1, · · · , tn] : Γ ⇑ · ` d ⇑ · S
r

where (B1 ⊃ · · · ⊃ Bn ⊃ d)(c−i−1) ∈ Γ and d is an atomic formula. By construction,
variables are always fully applied. In ?, right release rule is the only applicable rule
because the formulas can only have negative atoms and implications.

The omission of case augmenting parts of this derivation (namely the focused
phase) is to clarify the simulation of the ⊃l rule in the calculus in figure 6.3 using
LJF a derivations. To complete the augmentation of the rest of the derivation, the
following case constructor maintains the argument list so that the ⊃e matches each
argument with the corresponding lam case:

type arg N→ list λt → case.

The indexes are generated through a simple constructor:

type id N→ ξ.

but for convenience, the notation Bi will stand for the indexed formula 〈id i, B〉.
Figure 6.5 shows both the teams of agents.

6.2.2 Simply-typed β-normal form λ-terms evidence

This section shows how the p.r.i.c.e. for mimic, defined in section 6.1, can be used
modularly alongside a p.r.i.c.e. for simply typed η-long β-normal form λ-terms to
check λ-terms that are in β-normal form but not necessarily η-long-normal form.

117

Team lam :

⊃c (lam C T, lam C T).

Slc(lam C T, , lam (C + 1) T, (id C)).

Src(lam C T, , lam C T).

Dl
e(lam C (I@L), arg C L, (id C − I − 1)).

Dl
e(lam C (v I), arg C [], (id C − I − 1)).

Rr
e(lam C T, lam C T).

Team arg :

⊃e (arg C [T |L], lam C T, arg C L).

Ile(arg C []).

Figure 6.5: Experts and clerks for teams lam and arg

Remark 6.2.2. As seen above, checking the validity of a formula B using a λ-term s
as proof evidence and type checking the λ-term s against the type B are two different
processes. In particular, while the λ-term has only one type:

· � λxλx.x : A→ B → B

there is no objection to use that same term as evidence for the formula B → A→ B
as well:

λxλx.x � · ` B → A→ B and λxλx.x � · ` A→ B → B

The light de Bruijn notation would not be sufficient evidence for dealing with
non-η-long-normal form. For this section, the spine notation is used but not de
Bruijn. In other words terms follow this grammar

T, T1 · · ·Tn ::= λx.T | (v x)@[T1 · · ·Tn]

where x is a variable name (e.g., a string), and the types of the constructors are:

type v string→ λt.

type λ string→ λt → λt.

118

The application symbol’s type (@) remains unchanged. A variable (v x) is written
as an application of that variable to an empty list of arguments, i.e.,(v x)@[].

Modified case and index ξ constructors are used for the p.r.i.c.e. definition:

type lam λt → case.

type arg list λt → case.

type id string→ ξ.

Example 6.2.3. Before presenting the agents for this p.r.i.c.e. definition, an exam-
ple of LJF a derivation is shown in figure 6.6 for the λ-term:

λxλy.y [x []] � · ` c→ F → (a→ b)→ a

where F = c → (a → b) → a. Notice that the conclusion of the derivation π′ is
augmented with the case for mimic, seen in 6.1. �

The agents of this p.r.i.c.e., unsurprisingly similar to the ones seen for the η-
long β-normal form λ-terms, are shown in figure 6.7. The differences are: there is
now only one decide expert (because variables are considered as being applications
with no arguments), no numerical operations are needed as the de Bruijn notation
is not used, the store clerk simply uses the name of the variable as index. The
most notable difference is marked with ?: the store clerk returns the root index 4
(defined for mimic in section 6.1) if the formula to store does not correspond to any
λ-abstraction (which means the term is not in η-long-normal form). For the same
reason, when the implication expert is called for an implication introduction that
does not correspond to any argument, the mimic p.r.i.c.e. takes over and assumes
the role of the interlocutor for the kernel.

6.2.3 Dependently-typed β-normal form λ-terms evidence

Dependent types extend the simply typed λ-terms with types that may depend on
terms and occupy one of the corners of the Lambda Cube [Barendregt, 1991]. The
grammar for the terms may stay the same, using abstraction to bind universally
quantified variables, but the grammar for types is changed to:

τ, σ ::= ι | τ → σ | Πx : τ.σ

where ι can contain λ-terms and Πx : τ.σ. Dependently typed λ-calculus is a more
expressive language where, for example, the type of vectors can depend on an integer
indicating their size.

119

arg([]) : (a ⊃ b)4, Fy, cx ⇓ c ` c
lam(x[]) : (a ⊃ b)4, Fy, cx ⇑ · ` · ⇑ c
lam(x[]) : (a ⊃ b)4, Fy, cx ⇑ · ` c ⇑ ·
lam(x[]) : (a ⊃ b)4, Fy, cx ` c ⇓

π
arg([]) : (a ⊃ b)4, Fy, cx ⇓ (a ⊃ b) ⊃ a ` a

arg([x[]]) : (a ⊃ b)4, Fy, cx ⇓ F ` a
lam(y[x[]]) : (a ⊃ b)4, Fy, cx ⇑ · ` · ⇑ a
lam(y[x[]]) : (a ⊃ b)4, Fy, cx ⇑ · ` a ⇑ ·
lam(y[x[]]) : Fy, cx ⇑ (a ⊃ b) ` a ⇑ ·

?

lam(y[x[]]) : Fy, cx ⇑ · ` (a ⊃ b) ⊃ a ⇑ ·
lam(λy.y[x[]]) : cx ⇑ F ` (a ⊃ b) ⊃ a ⇑ ·

lam(λy.y[x[]]) : cx ⇑ · ` F ⊃ ((a ⊃ b) ⊃ a) ⇑ ·
lam(λxλy.y[x[]]) : · ⇑c ` F ⊃ ((a ⊃ b) ⊃ a) ⇑ ·

lam(λxλy.y[x[]]) : · ⇑· ` c ⊃ F ⊃ ((a ⊃ b) ⊃ a) ⇑ ·

π:

π′

mimR 4 : (a ⊃ b)4, Fy, cx ` (a ⊃ b) ⇓ arg([]) : (a ⊃ b)4, Fy, cx ⇓ a ` a
arg([]) : (a ⊃ b)4, Fy, cx ⇓ (a ⊃ b) ⊃ a ` a

Figure 6.6: Derivation of the example 6.2.3

120

Team lam :

⊃c (lam T, lam T).

Slc(lam λX.T, , lam T, (id X)).

Slc(lam (X@L), , lam (X@L),4).?

Src(lam T, , lam T).

Dl
e(lam (X@L), arg L, (id X)).

Rr
e(lam T, lam T).

Team arg :

⊃e (arg [T |L], lam T, arg L).

⊃e (arg [], (mimR 4), arg []).?

Ile(arg []).

Figure 6.7: Agents for β-normal λ-terms.

Example 6.2.4. The following term t takes as arguments:

� an append function app applicable to two vectors along with their respective
lengths and returning a vector of the added length of those vectors,

� some encoding len (in λ-calculus) of an integer,

� vector v of length len.

t = λappλlenλv.app [len, v, len, v]

The type of term t is:

appτ ⊃ Πx : nat ⊃ vec x ⊃ vec(x+ x)

where nat denotes the type of integer encoding, n+m is a notation for some encoding
of the integer addition and the type of the app function, noted appτ , is:

Πn : nat.vec n ⊃ Πm : nat.vec m ⊃ vec(n+m)

�

121

Mapping dependent types into LJF

The notion of formulas introduced in definition 2.1.1 needs to be extended to account
for dependent-types. There, terms are built from function symbols and variables,
which do not allow for λ-terms in the predicates. Here, predicate symbols can have
(higher-order) λ-terms but the overall system is still first-order, since the formulas
are only first-order (no quantification over formulas). In addition, the initial rules of
the LJF a system are are applied modulo βη-equivalence. That is to say, the rules:

Γ ⇓ A ` A′ I
l

Γ, A ` A′ ⇓ Ir

succeed if A and A′ are equivalent modulo βη-equivalence (polarity requirements still
apply). This accounts for the so-called conversion rule of dependently typed lambda
calculus:

Γ � t : B′ B ≈βη B′
Γ � t : B

Encoding Π: A dependent type is encoded into an LJF formula using the following
function [·]λΠ:

[τ]λΠ = τ− [A→ B]λΠ = [A]λΠ ⊃ [B]λΠ [Πn : A.B]λΠ = ∀n.[A]λΠ ⊃ [B]λΠ

where τ is a base type that is encoded by an atom with a negative polarity in LJF.
For example, the type of term t in example 6.2.4 is encoded by the following LJF
formula:

F ⊃ ∀(λx.nat ⊃ vec x ⊃ (vec(x+ x)))

where F is:

(∀(λn.nat ⊃ vec n ⊃ ∀(λm.nat ⊃ vec m ⊃ vec(n+m))))

Dependent types as p.r.i.c.e.

The λ-term used as evidence are in η-long β-normal form, also called canonical
terms [Harper and Pfenning, 2005]. To accommodate dependent types, one adds the
following universal agents to figure 6.7:

∀c(lam T, λx.lam T).

∀e(lam T, lam T,).

122

....
arg ([len, v, len, v]) : (vec u)v, natlen , Fapp ⇓ nat ⊃ vec n ⊃ G ` vec(u+ u)

arg ([len, v, len, v]) : (vec u)v, natlen , Fapp ⇓ F ` vec(u+ u)
?

lam (app [len, v, len, v]) : (vec u)v, natlen , Fapp ⇑ · ` · ⇑ vec(u+ u)

lam (λv.app [len, v, len, v]) : natlen , Fapp ⇑ · ` vec u ⊃ (vec(u+ u))) ⇑ ·
lam (λlenλv.app [len, v, len, v]) : Fapp ⇑ nat ` vec u ⊃ (vec(u+ u))) ⇑ ·

lam (λlenλv.app [len, v, len, v]) : Fapp ⇑ · ` nat ⊃ vec u ⊃ (vec(u+ u))) ⇑ ·
lam (λlenλv.app [len, v, len, v]) : Fapp ⇑ · ` ∀(λx.nat ⊃ vec x ⊃ (vec(x+ x))) ⇑ ·

?

lam (λappλlenλv.app [len, v, len, v]) : · ⇑F ` ∀(λx.nat ⊃ vec x ⊃ (vec(x+ x))) ⇑ ·
lam (λappλlenλv.app [len, v, len, v]) : · ⇑· ` F ⊃ ∀(λx.nat ⊃ vec x ⊃ (vec(x+ x))) ⇑ ·

Here, G = ∀(λm.nat ⊃ vec m ⊃ vec(n+m)

Figure 6.8: Derivation for example 6.2.4

For instance, the case augmenting the end-sequent of a derivation guided by term t
in example 6.2.4 is:

lam (λappλlenλv.app [len, v, len, v])

Part of the derivation is shown in figure 6.8. The only novelties are left and right
universal introduction rules, marked with ?. The rest of the rules remains unchanged.

Conversion rule

The expressive power of dependently typed λ-calculus partly resides in the conversion
rule. To illustrate its use, consider the Church encoding of natural numbers:

0̄ = λf.λx.x

1̄ = λf.λx.(fx)

2̄ = λf.λx.(f(fx))

3̄ = λf.λx.(f(f(fx)))

4̄ = λf.λx.(f(f(f(fx))))

123

and addition and multiplication as:

add = λm.λn.λf.λx.mf(nfx)

mult = λm.λn.λf.m(nf)

With this encoding, the return type of term t from example 6.2.4 can be vec d where
d is either

add n n = λf.λx.nf(nfx)

or
mult 2̄ n = λf.2̄(nf) = λf.(λf.λx.(f(fx)))(nf)→β add n n

but d cannot be mult n 2̄, as that term is not βη-equivalent to add n n given the
chosen encoding.

124

Chapter 7

Reasoning with equality

Equality is central not only to computer science but also mathematics and physics.
It is therefore understandable that handling equality in theorem proving has been
at the core of an important research effort in the field of formal logics. This chapter
introduces a p.r.i.c.e. definition for checking proof evidence involving term equalities
and, as an example, shows how it can be used in conjunction with other p.r.i.c.e.
definitions to describe an equality reasoning technique.

7.1 Introduction

There are a myriad of techniques and ideas to deal with equality in theorem proving,
including paramodulation, superposition, narrowing, ρ-calculus and E-unification.
There are also practical methods to implement them, such as generating a converging
term rewriting system as a decision procedure, saturation methods and redundancy
elimination. Given that there are so many ways to discover and represent equality
proofs, a scheme for checking such proofs must be flexible.

Equality

The question “what is equality” is often answered in different ways. Occasion-
ally, equality is taken as a primitive logical symbol [Andrews, 1972, Girard, 1992,
Schroeder-Heister, 1993]. Sometimes it is defined using Leibniz’s (higher-order) rule:
two terms are equal if they satisfy exactly the same predicates. More commonly,
equality is taken to be a non-logical binary predicate symbol that is axiomatized
with rules for reflexivity, symmetry, transitivity, and congruence (for predicates and
functions). This latter approach to equality is used in this chapter.

125

Term rewriting

Term Rewriting is a generic label that designates a plethora of methods for replacing
terms with other terms that are considered equal and is an effective tool for reasoning
with equality. A rewrite rule is a restriction of an equality in that it is used as a
directed replacement rule (replace the left argument with the right argument). A set
of such rules forms a Term Rewriting System (or TRS). Much research in the area
of TRS involves proving properties about TRSs—such as confluence, termination,
completion, and the decidability of certain set of equalities. Instead, the focus here
is on “infrastructure”: certifying reasoning that takes place within a TRS and is
merged with logical deduction.

⇀ indicates that the equality must be used from left to right (i.e.,rewrite s into
t), the direction ↽ ind

7.2 Formalizing equality reasoning

There is only one binary predicate symbol defined for this proof format: the equality
predicate, noted = and given a negative polarity. In LKF, the negation of an
equality predicate a = b, like the negation of any atomic formula, is noted ¬(a = b)
(and the negation flips the polarity of these occurrences to a positive one).

Equality can then be axiomatized for LJF a through the following indexed formu-
las:

〈refl,∀x.x = x〉
〈sym,∀x.∀y.x = y ⊃ y = x〉
〈trans,∀z.∀x.∀y.x = y ⊃ y = z ⊃ x = z〉

and for LKF a through the following indexed formulas (negated, because LKF is
one-sided):

〈refl,∃x.¬(x = x)〉
〈sym,∃x.∃y.x = y ∧+ ¬(y = x)〉
〈trans,∃z.∃x.∃y.x = y ∧+ y = z ∧+ ¬(x = z)〉

In addition to these rules, the congruence closures for all function symbol allow
traversing the term structure. For example, the congruence rule for a binary function
symbol f is written:

x = x′ y = y′

f(x, y) = f(x′, y′) (7.1)

126

Remark 7.2.1. Equality reasoning also requires congruence rules for predicates. For
LKF and for a unary predicate p of negative polarity, they can take the form of:

∃s.∃s′.(p(s) ∧+ (s = s′)) ∧+ ¬(p(s′)).

However, the p.r.i.c.e. defined in this section, formalizing equality reasoning, is in-
tended to be called by other p.r.i.c.e. definitions. This p.r.i.c.e. definition only deals
with equality of terms, ignoring everything concerning the predicates, including their
congruence formulas. Therefore, any mention of congruence in this section refers to
function congruence.

7.2.1 Smallest common unit

The intended purpose of this p.r.i.c.e. is to be modularly used with multiple proof
evidence formats involving term equality. To do so, one has to identify the smallest
unit common to those formats. In the case of equational reasoning, a one-step rewrite
can be such a common unit.

Definition 7.2.1. Given a set of equalities E, a one-step rewrite, relates terms t
and s when:

� t can be written C[r] (where the context C[·] has exactly one hole);

� s can be written C[u];

� r = s ∈ E.

•

Using this smallest unit would not require transitivity. To use a set of equalities
as a TRS, symmetry is not used. This leaves reflexivity, which can also be left aside
by modifying the conversion rules. Rule 7.1 makes it harder to limit the number of
rewrite steps to one. Indeed, both premises can end either in a rewrite step or with
a reflexivity rule. Instead, to require each rewrite operation to be done on exactly
one subterm, congruence rules are written:

x = x′

f(x, y) = f(x′, y)

y = y′

f(x, y) = f(x, y′)

and are ensured by the following LKF formulas:

∃x.∃y.∃x′.((x = x′) ∧+ (¬(f(x, y) = f(x′, y)) ∨+ (¬(f(y, x) = f(y, x′)).

127

7.2.2 Proof evidence and system’s properties

Performing a rewrite step relies on the following information:

� the set of indexes E of allowed equalities to use

� the set of indexes C of congruence rules to allow deep rewriting inside the terms

� the search for a subterm can either be bound by the depth of the subterm (a
positive integer) or be unbounded (a negative integer) in the case of closed
terms

� a direction in which to use an equality s = t: ⇀ indicates that the equality
must be used from left to right (i.e.,rewrite s into t), ↽ indicates the opposite
direction, and
 indicates that the equality can be used in both directions

This amount of information is rather minimal as it consists only of the set of
equality susceptible of being used is given. But one can give further details such as
the exact path to a subterm to rewrite. For simplicity, the p.r.i.c.e. defined here
follows minimal proof evidence. In doing so, the checking relies heavily on unification,
which is an assumed property of the framework (see section 3.1). To benefit from
unification, the reconstructed proof is organized in a more precise manner than in
chapters 5 and 6. In particular, when a rule generates two premises one can choose
which of them is completed first. This ordering allows to benefit from unification by
chosing the premise that maximizes the constraints.

Such a change is a further specification that is not motivated by logic. Indeed,
from the perspective of poof theory, there is no notion of order or priority between,
say, the two premises of a conjunction rule. Nonetheless, The ultimate and unhid-
den goal of this thesis, as discussed in section 4.2, is to establish a programmable
framework. Such a tuning of the checking mechanism, therefore, seems sensible and
comparable to the ordering of clauses in a Prolog program.

To do so, new case constructors are defined:

type infix ←−c ,−→c case→ case→ case.

Agents of single-premised rules are näıvely defined on these constructors. For exam-
ple, the existential expert:

∃e((A←−c B), (A←−c B),). ∃e((A−→c B), (A−→c B),).

128

while agents of double-premised rules are extended with one argument and their
definitions split these constructors in the following way:

∧+

e ((A←−c B), A,B, left). ∧+

e ((A−→c B), A,B, right).

Notice the extra parameter of this agent, of type δ, indicating which of the premises
should be accomplished first in order to extract the most information for unification.
The type of the ∧+

e , seen in figure 4.2, is changed to:

type ∧+

e case→ case→ case→ δ → o.

7.2.3 A p.r.i.c.e. definition for one-step rewrite

The definition given here is relative to an LKF kernel; an LJF version follows the
same steps. One defines the following constructors:

type ⇀,↽,
 orientation.

type rew N→ list ξ → list ξ → N→ orientation→ case.

where the first argument of rewis a counter used to provide fresh indexes and the rest
of the arguments follow, in order, the notion of rewrite proof evidence given above
(E ,C,depth of rewrite and the orientation of equality:⇀, ↽ and
). For convenience,
the counter is written as a superscript on rew.

The end-sequent of an LKF a proof of equality is then:

rew0 E C D O : ` Γ ⇑ t = s

The agents are given in order of appearance in a proof. The store rule is augmented
with the following clerk:

Sc((rew
N E C D O), , (rew(N+1) E C D O), (link (N + 1)))

where the index constructor is declared by:

type link N→ ξ.

which uniquely identifies the intermediate equalities. In particular, the formula
stored with the current value of the counter N is the last stored formula, subse-
quently called last formula. The next rule is a decide on either of the following:

� a member of C, which succeeds if the depth counter D is either strictly positive
(the bound is not reached) or strictly negative (there is no bound) and the two
arguments of the last formula share the top function symbol;

129

� one of the equalities of E , which succeeds if the last formula is an instance of
that equality following the orientation O that is the last argument of the rew

case.

In the first case, the decide expert has the following definition:

De((rew
N E C D O), (rewN E C (D − 1)O)−→c (initWith (link N)), I) :-

(D > 0;D < 0), I ∈ C.

In the second case, the decide expert has three definitions, depending on the orien-
tation O in which to use the equality:

De((rew
NE C D ⇀), (initWith (link N)), I) :- I ∈ E .

De((rew
NE C D ↼), (Ψ)−→c (initWith (link N)), sym).

De((rew
NE C D
),Ξ, I) :- De((rew

NE C D ⇀,Ξ, I); De((rew
NE C D ↼),Ξ, I).

where Ψ : tag from (oneOf E(initWith [from])). After a decide, the existential
and positive conjunction rules use the previously seen definitions of their respective
agents.

7.3 Paramodulation

Robinson and Wos [1983] introduced paramodulation as a generalization of resolu-
tion in order to include equality and isolate the inference apparatus dealing with
equality. Despite it being one of the earliest methods of reasoning for such problems,
paramodulation is still well suited for various problem domains in group and ring
theory.

Definition 7.3.1. Given clauses A and (α′ = β′)∨B, having no variables in common
and such that A contains a term δ with δ and α′ having most general common instance
α identical to α′[si/ui] and δ[tj/wj], a paramodulation application infers the clause
A′ ∨ B[si/ui], called paramodulant, where A′ is obtained by replacing in A a single
occurrence of α (resulting from an occurrence of δ) by β′[si/ui]. •

Example 7.3.1. From f(x, g(x)) = e ∨ q(x) and p(y, f(g(y), z), z) ∨ w(z) one can
infer p(y, e, g(g(y))) ∨ q(g(y)) ∨ w(g(g(y))) by paramodulating with f(x, g(x)) as α′

and f(g(y), z) as δ. �

Paramodulation is restricted here to unit clauses and the equality predicate =

is the only atomic formula and is given a negative polarity.

130

Example 7.3.2. The set of containing equalities 1, 2, 3 below is refuted through
paramodulation:

1. ¬(h(g(g(c))) = g(g(g(c)))).

2. ∀x.∀y.h(f(g(x), y)) = g(y).

3. ∀x.f(x, g(x)) = g(x).

−−−−−−−−−−−−−−−−−−
4. ∀x.h(g(g(x))) = g(g(g(x)))(from 3 into 2).

5. false (from 1 and 4).

�

There are clear similarities with the resolution example 5.3.1. In fact, the p.r.i.c.e.
definition introduced in section 5.3.1 for a refutation sequence can also be used for
paramodulation. Indeed, the sequence checker p.r.i.c.e. is defined specifically to
check a refutation sequence without knowledge of how the individual steps of that
sequence are carried out and is used alongside a resolution p.r.i.c.e. and a hyperres-
olution p.r.i.c.e..

In this section, the sequence checker p.r.i.c.e. is used with a p.r.i.c.e. for a
paramodulation step to describe the semantics for paramodulation refutations. This
work is part of the paper [Chihani et al., 2015].

7.3.1 Describing a paramodulation in LJF a

Since the paramodulation refutation sequence is mapped in the same way a resolution
refutation is (i.e., through a backbone of cut rule applications) this section focuses on
the mapping of an individual paramodulation step, corresponding to the left premise
of each cut rule. The mapping of each step forms the prototypical LKF derivation
shown in figure 7.1.

The proof starts by introducing any universally quantified variables in r[s′], which
is then stored under index res (for result). The proof continues by deciding, on the
predicate congruence indexed by pred. Existentially quantified variables are then
replaced by logic variables (to be instantiated later), X for x, X ′ for x′ and as many
logic variable as there are variables in z̄, some of which appear in r. Then three
premises π1, π2 and π3 are completed in this order.

The conclusion of π1 is a sequent focused on a positive atom, it ends with an
initial rule on the res-indexed formula and fixes the logic variable X ′ to s′, as well
as any logic variable in r[X ′]. These instantiations are passed to the other premises.

131

π2

` Γ′ ⇓ r[X]
π3

` Γ′ ⇓X = X ′

` Γ′ ⇓ r[X] ∧+ X = X ′
∧+

π1

` Γ′ ⇓ ¬(r[X ′])

` Γ′ ⇓ (r[X] ∧+ X = X ′) ∧+ ¬(r[X ′])
∧+

` Γ′ ⇓ ∃x′.∃x.∃z̄.(r[x] ∧+ x = x′) ∧+ ¬(r[x′])
∃

` Γ′ ⇑ · D on pred

` Γ ⇑ r[s′] S

` Γ ⇑ ∀z̄.r[s′] ∀

Γ : {(∃x′.∃x.∃z̄.(r[x] ∧+ x = x′) ∧+ ¬(r[x′]))pred, (∃x̄.¬(s = s′))F , (∃z̄.¬(r[s]))I}
Γ′ : {Γ, (r[s′])res}

Here, the equality indexed by F (called the from equality) is used to rewrite into the
formula indexed by I and the predicate r has a negative polarity.

Figure 7.1: Prototypical paramodulation derivation

The conclusion of π2 is focused on a negative atom, it is released and stored
under index into. Then a decide is made on the formula indexed by I and the logic
variables of r[X] are unified with those of r[s].

The final proof, π3, is a rewrite of term s into s′ using the from equality.

Unit equality

For the particular case of unit-equality paramodulation, the predicate symbol r is
always the equality predicate. Thus the only predicate congruence rules are:

〈pred 1,∃x′.∃x.∃y.x = y ∧+ x = x′ ∧+ ¬(x′ = y)〉
〈pred 2,∃x′.∃x.∃y.y = x ∧+ x = x′ ∧+ ¬(y = x′)〉

where r[·] is � = y in the first formula, y = � in the second formula, and in both
cases the extra variables z̄ are the single variable y. In what follows, the notation the
notation r[·] is used to avoid confusion between the from equality (noted as equality)
and the into equality (noted as a predicate r with a hole).

132

7.3.2 A p.r.i.c.e. for a paramodulation step

The derivation shown in figure 7.1 can be seen as split in four regions. The proof
starts in a region that uses the congruence for predicates and ends with the three
premises π1, π2 and π3. Then, one region for each of these proofs.

This first region must keep track (similar to the binary resolution p.r.i.c.e.) of
two indexes: I and F . Because paramodulation p.r.i.c.e. is added to the sequence
checker p.r.i.c.e., some interface between the is used. Recall the cut expert definition
seen in the definition of the sequence checker p.r.i.c.e. (section 5.3.1):

Ce(rlist [〈S, K, Ck〉|R], step S, rlisti K R,Ck)

where the type of S is simply fixed at stuple. Recall also that this type is given
different constructors for resolution and hyperresolution. Here, it is given yet another
constructor for paramodulation:

type pm ξ → ξ → stuple.

where the first argument of pm is the from equality and the second argument is the
into clause. The augmented sequent of the left premise of the cut is:

step (pm I F) : ` Γ ⇑ ∀z̄.r[s′]

The checking thus starts with an invertible phase: introducing eigenvariables for each
universally quantified variable in the paramodulant clause.

∀c(step (pm I F), λx.(pm I F)).

Then, it stores the resulting negative atom (recall that the equality predicate symbol
was given a negative polarity):

Sc(step (pm I F), , step (pm I F), res).

where res is an index constructor.
Once the invertible phase ends, a decide must be done on one of the congruence

rules for predicates. Let the indexes of these rules be stored in a list Q. Then the
decide expert has the following definition:

De(step (pm I F), (Ξ←−c (rew0[F]C (−1)
))−→c (initWith [res]), P) :- P ∈ Q.

where Ξ : tag into (oneOf [I](initWith [into])) and C is the set of function con-
gruence rules.

133

At the boundary of this region are the three conclusions of the proofs π1, π2, π3.
They are now augmented to yield the sequents:

π1

initWith [res] : ` Γ′ ⇓ ¬(r[X ′])

π2

tag I Ξ: ` Γ′ ⇓ r[X]

π3

rew0[F]C (−1)
 : ` Γ′ ⇓X = X ′

By establishing an order of verification between these premises (discussed in section
7.2.2), the proof π1 is completed first using the default initWith team presented
in section 4.3.1. This instantiates the logic variable X ′ with the term s′, which is
propagated to the other premises. The sequent concluding π2 is solved next through
the default teams tag and initWith defined in sections 4.3.4 and 4.3.1. When π2 is
performed, the logic variable X is constrained to s. The last premise becomes:

π3

rew0[F]C (−1)
 : ` Γ′ ⇓ s = s′

with F the index of the rewrite rule to use on subterms of s and s′. This proof is
completed following the guidance of the one-step rewrite p.r.i.c.e. shown in section
7.2.3.

134

Chapter 8

Satellite interests

In this chapter, further exploration of the framework’s expressiveness is carried out.
After having presented case studies for classical and intuitionistic logics, this chapter
proposes elaborate ways to work on p.r.i.c.e. objects.

8.1 Hosting kernels

If they find a parrot who could answer to everything, I would claim it
to be an intelligent being without hesitation.

- Denis Diderot Penses philosophiques

The possibility to recover classical provability through intuitionistic provability
has been known for a long time. To what extent can one make the same claim
regarding proofs? In other words, can a classical proof be mapped to an intuitionistic
proof with the same structure? And if so, can an intuitionistic checker trick the user
into thinking it is a classical checker by following the guidance of a classical proof
certificate as closely as a classical checker would?

The independence of proof certificates from the technology that generated them
is stated as one of the main goals of the Foundational Proof Certification framework.
This chapter answers the above questions, pushing the independence of proof cer-
tificates even further. Not only are they independent of the technology that created
them, but they can also be, to some extent, independent from the technology that
checks them.

135

8.1.1 Introduction

Three levels of adequacy are identified in the literature when it comes to encoding a
source proof system A into a target proof system B (e.g., [Nigam and Miller, 2010]
or [Girard, 2006] for a semantically similar classification). The first level is adequacy
of provability, where a theorem T is provable in A if and only if its encoding T ′ is
provable in B. The second level is that of (closed) proofs, where every closed proof
of T in A corresponds to one and only one proof of T ′ in B. The last level is that of
derivations, or open proofs where even incomplete proofs of T in A are in one-to-one
correspondence with incomplete proofs of T ′ in B.

This last level of adequacy is of particular interest in the discipline of proof
checking as opposed to theorem proving. Indeed, classical provability of a theorem
T can be established in an intuitionistic prover using a double-negation translation
of T . But if one wants to check a classical proof certificate using an intuitionistic
checker, this checker must be able to understand the guiding information enclosed in
that certificate. In particular, the goal is then to have an intuitionistic proof checker
imitate every step of a classical proof checker. By doing so, not only is the number
of kernels to implement reduced, but the proof certificates gain more independence
as well.

History

The difference between classical and intuitionistic logics was brought down to the
syntactic level in the original sequent calculus papers by Gentzen, where he reduced
this difference to a restriction on the number of formulas allowed on the right-hand
side of his LK and LJ sequents (at most one in LJ). Later on, this right-hand side
cardinality restriction was further reduced to only universal and implication rules,
the earliest such systems were introduced in [Kleene, 1952] and in [Maehara, 1954]
(in German, described in [Takeuti, 1987]).

Furthermore, several embeddings at the level of provability, in both directions,
were proposed in numerous papers. From classical provability to intuitionistic prov-
ability, various double-negation translations ([Gödel, 1932, Gentzen, 1936, Kolmogorov,
1925], etc.) map classical logic provability directly into intuitionistic logic. From in-
tuitionistic provability to classical provability, embeddings need logical devices that
are external to classical logic. For example, modal logic [Gödel, 1933] or linear logic
connectives [Girard, 1987].

Embeddings from classical to intuitionistic systems is arguably more direct than
the converse (in that it does not require any external artifacts). Therefore, the
following sections explore such an embedding, this time at the level of proofs, from

136

dt+e+ = t dt−e- = f
df+e+ = f df−e- = t

dB ∨+ Ce+ = dBe+ ∨ dCe+ dB ∨− Ce- = dBe- ∧+ dCe-
dB ∧+ Ce+ = dBe+ ∧+ dCe+ dB ∧− Ce- = dBe- ∨ dCe-
d∃x.Ae+ = ∃x.dAe+ d∀x.Ae- = ∃x.dAe-
dA+e+ = A+ dA−e- = A+

dNe+ = dNe- ⊃ q dP e- = dP e+ ⊃ q

Figure 8.1: The functions d·e+ and d·e- which map LKF formulas onto LJF formulas.

LKF to LJF.

8.1.2 Mapping LKF sequents to LJF sequents

Because most double-negation translations are defined on unpolarized syntax, the
embedding they produce lacks the desired precision. The Foundational Proof Cer-
tification framework, on the other hand, relies on a polarized syntax, therefore a
different kind of embedding is needed. The one presented in this section relies on
results from Chaudhuri [2010]. Figure 8.1 describes two mappings, d·e+ and d·e-, of
LKF formulas to LJF formulas, where q is a fixed, negative atom that is not allowed
in the input LKF formulas and all other atoms in the target LJF formula are assigned
positive polarity (A+). The embedding, defined through both the mappings d·e+ and
d·e-, is noted d·e± and called the focused embedding.

Remark 8.1.1. The output formulas of d·e± are either a positive formula or an impli-
cation of the form B ⊃ q for some positive formula B (the output of d·e+ on a positive
LKF formula and of d·e- on a negative LKF formula can only be a positive LJF for-
mula). This implies that focused phases on the left-hand side can only introduce the
implication (and the negative atom q) while all other focusing rules introduce con-
nectives on the right-hand side. Furthermore, a focused phase on the left contains
at most one implication left-introduction rule. Symmetrically, all invertible intro-
duction rules appear on the left-hand side except the implication right-introduction
rule. Overall, it is invariably true that the left-hand side storage of LJF only contains
implications and positive atoms. It is also invariably true that the right-hand side
storage can only contain the negative atom q. Indeed, the only negative formulas
appearing on the right are implication formulas, and the only implication formulas
have q for right subformula.

It is proven by Chaudhuri [2010, Theorem 12] that the focused embedding pre-

137

serves adequacy at the level of phases between LKF and LJF. More precisely, Chaud-
huri shows that:

� an LKF-phase ending with the sequent ` Θ ⇑ Γ corresponds to an LJF-phase
ending with the sequent dΘe- ⇑ dΓe- ` q⇑, and

� an LKF-phase ending with the sequent ` Θ ⇓ B corresponds to an LJF-phase
ending with the sequent dΘe- ` dBe+ ⇓

where dΓe- is a notation for the set {dDe- | D ∈ Γ}.
Example 8.1.1. To illustrate this translation, consider the following LKF formula
F = a ∨+ ¬a where a is a positive atom. An LKF proof of this formula is:

` a ∨+ ¬a,¬a ⇓ a I

` a ∨+ ¬a,¬a ⇓ a ∨+ ¬a ∨
+

` a ∨+ ¬a,¬a ⇑ · D

` a ∨+ ¬a ⇑ ¬a S

` a ∨+ ¬a ⇓ ¬a R

` a ∨+ ¬a ⇓ a ∨+ ¬a ∨
+

` a ∨+ ¬a ⇑ · D

` · ⇑ a ∨+ ¬a S

which is mapped to the following LJF proof of the translated end-sequent, where
dF e- = (a ∨ (a ⊃ q)) ⊃ q:

dF e-, a ` a ⇓ Ir

dF e-, a ` a ∨ (a ⊃ q) ⇓ ∨ · · · ⇓ q ` q
dF e-, a ⇓ (a ∨ (a ⊃ q)) ⊃ q ` q

⊃l

dF e-, a ⇑ · ` · ⇑ q Dl

dF e-, a ⇑ · ` q ⇑ · S
r

dF e- ⇑ a ` q ⇑ · Sl

dF e- ⇑ · ` a ⊃ q ⇑ ·
⊃r

dF e- ` a ⊃ q ⇓ Rr

dF e- ` a ∨ (a ⊃ q) ⇓ ∨ · · · ⇓ q ` q
dF e- ⇓ (a ∨ (a ⊃ q)) ⊃ q ` q

⊃l

dF e- ⇑ · ` · ⇑ q Dl

dF e- ⇑ · ` q ⇑ · S
r

· ⇑ dF e- ` q ⇑ · S
l

138

�

Example 8.1.2. Now consider an LKF proof of another polarization of the excluded
middle: F ′ = a ∨− ¬a where a is a positive atom:

` a,¬a ⇓ a I

` a,¬a ⇑ · D

` a ⇑ ¬a S

` · ⇑ a,¬a S

` · ⇑ a ∨− ¬a ∨
−

which is mapped to the following LJF proof, where dF ′e- = a ∧+ (a ⊃ q):

a, a ⊃ q ` a ⇓ Ir
a, a ⊃ q ⇓ q ` q Il

a, a ⊃ q ⇓ a ⊃ q ` q ⊃l

a, a ⊃ q ⇑ · ` · ⇑ q Dl

a, a ⊃ q ⇑ · ` q ⇑ · S
r

a ⇑ a ⊃ q ` q ⇑ · Sl

· ⇑ a, a ⊃ q ` q ⇑ · S
l

· ⇑ a ∧+ (a ⊃ q) ` q ⇑ · ∧
+

�

These two examples illustrate the following one-to-one mappings of LKF rules
(on the left-hand side of ↪→) and LJF rules (on the right-hand side of ↪→):

S ↪→ Sl D ↪→ Dl ∨+ ↪→ ∨r R ↪→ Rr I ↪→ Ir ∨− ↪→ ∧+

l

Other one-to-one mappings, not seen in the above derivations, are as follows:

∧+ ↪→ ∧+

r ∧− ↪→ ∨l ∀ ↪→ ∃l ∃ ↪→ ∃r f− ↪→ tl t− ↪→ fl t+ ↪→ tr

In addition to these rules, some LJF rules do not have LKF counterparts but are
introduced by the embedding itself: the left and right ⊃ rules, the store right-rule
Sr, the initial left-rule Il. Other rules of LJF, namely Rl, Dr and introduction rules
for all negative connectives, never appear.

The LKF and LJF sequent calculi used in this thesis are more deterministic than
the ones used by Chaudhuri [2010]. Indeed, both the workbench of LKF and the
left-hand side workbench of LJF are lists and the invertible rules applications are
always performed on the left-most formula. The theorem below is a more precise
version of Theorem 12 in Chaudhuri’s paper.

139

Theorem 8.1.1. There is a rule-preserving map of LKF proofs into LJF proofs:
that is, for a fixed (negatively polarized) atom q, the following two statements hold:

` Γ ⇑Θ ↪→ dΓe- ⇑ dΘe- ` q ⇑ · or dΓe- ⇑ dΘe- ` · ⇑ q
` Γ ⇓B ↪→ dΓe- ` dBe+ ⇓

Proof. The two statements are proven simultaneously and by induction on the deriva-
tion. All but the structural rules of release and decide in LKF are mapped to a single
proof rule in LJF. An example is the positive disjunction rule:

` Γ ⇓Bi

` Γ ⇓B1 ∨+ B2
∨+ ↪→

dΓe- ` dBie+ ⇓
dΓe- ` dB1e+ ∨ dB2e+ ⇓

∨r

where i ∈ {1, 2}, and dB1 ∨+ B2e+ = dB1e+ ∨ dB2e+. The negative disjunction rule is
also mapped to only one LJF rule:

` Γ ⇑ A,B,Θ
` Γ ⇑ A ∨− B,Θ ↪→

dΓe- ⇑ dAe-, dBe-, dΘe- ` q ⇑ ·
dΓe- ⇑ dA ∨− Be-, dΘe- ` q ⇑ · ∧

+
l

where dA ∨− Be- = dAe- ∧+ dBe-.
The case for rules of release and decide of LKF involves more rules (namely,

implication ⊃ and initial I rules). The mapping of the release rule is:

` Γ ⇑N
` Γ ⇓N R ↪→

dΓe- ⇑ dNe- ` q ⇑ ·
dΓe- ⇑ · ` dNe+ ⇑ ·

⊃r

dΓe- ` dNe+ ⇓ Rr

where dNe+ = dNe- ⊃ q, prompting the ⊃r rule. The decide rule is mapped as:

` P,Γ ⇓ P
` P,Γ ⇑ · D ↪→

dΓe- ` dP e+ ⇓ dΓe- ⇓ q ` q Il

dΓe-, dP e- ⇓ dP e- ` q
⊃l

dΓe-, dP e- ⇑ · ` · ⇑ q Dl

where dP e- = dP e+ ⊃ q, prompting the ⊃l rule.

This embedding is not limited to cut-free LKF proofs. Indeed, an LKF cut is also
mapped to an LJF cut. The LKF cut, seen in figure 2.4 yields two up-arrow sequents
as premises and introduces two formulas, one positive and one negative. Take B to
be the positive formula, without loss of generality, then ¬B is necessarily a negative
formula (from the de Morgan duality rules). The first premise will immediately go

140

into a store, the second premise engages in an invertible phase. The LJF cut follows
the same structure :

` Γ ⇑ ¬B
` Γ, B ⇑ ·
` Γ ⇑B

` Γ ⇑ · C
↪→

Γ ⇑ dBe+ ` q ⇑ ·
Γ ⇑ · ` dBe- ⇑ ·

⊃r
Γ, dBe- ⇑ · ` · ⇑ q
Γ ⇑ dBe- ` · ⇑ q

Γ ⇑ · ` · ⇑ q C

The proof follows from proposition 8.1.1 bellow:

Proposition 8.1.1. For any polarized classical formula B, d¬Be+ = dBe- and
d¬Be- = dBe+

Proof. By induction on the structure of B.
For example, if B = C ∧− D and ¬B = ¬C ∨+ ¬D, then

dBe+ = dC ∧− De- ⊃ q = (dCe- ∨ dDe-) ⊃ q = F

and by induction:

F = (d¬Ce+ ∨ d¬De+) ⊃ q = d¬C ∨ ¬De+ ⊃ q = d¬Be+ ⊃ q = d¬Be-

8.1.3 Mapping LKF a checking to LJF a checking

The above embedding is at the third level of adequacy from LKF to LJF. This makes
it possible for an LJF a kernel to check proof certificates written for an LKF a kernel
without it being apparent. This is done through a simple interface between agents of
the two augmented systems seen in figure 8.2. Agents augmenting the LKF a system

are preceded with superscript LKF and agents augmenting the LJF a system are

preceded with superscript LJF. The other parts of p.r.i.c.e. need not be redefined:
the case and index constructors are the same and the polarity assignment is uniquely
determined through the d·e± above. An added case constructor:

type qc case.

is used in dealing with the negative atom q.
The case for the cut rule is more subtle. The cut expert Ce provides a formula

B, the kernel uses B on the left premise and its negation ¬B on the right premise.
While the LKF cut rule seen above appears to be mapped to a single LJF cut rule,

141

LJF ∨c (Ξ0,Ξ1,Ξ2) :- LKF ∧−
c (Ξ0,Ξ1,Ξ2).

LJF ∧+

c (Ξ,Ξ′) :- LKF ∨−
c (Ξ,Ξ′).

LJF ∧+

e (Ξ0,Ξ1,Ξ2) :- LKF ∧+

e (Ξ0,Ξ1,Ξ2).
LJF ∨e (Ξ,Ξ′, C) :- LKF ∨+

e (Ξ,Ξ′, C).
LJF∃e(Ξ,Ξ′,W) :- LKF∃e(Ξ,Ξ′,W).
LJF∃c(Ξ,Ξ′) :- LKF∀c(Ξ,Ξ′).
LJF te(Ξ) :- LKF t+e (Ξ).
LJF tc(Ξ,Ξ

′) :- LKFf−
c (Ξ,Ξ′).

LJFSlc(Ξ, F,Ξ′, I) :- LKFSc(Ξ, F,Ξ
′, I).

LJFDl
e(Ξ,Ξ

′, I) :- LKFDe(Ξ,Ξ
′, I).

LJFRl
e(Ξ,Ξ

′) :- LKFRe(Ξ,Ξ
′).

LJF Ire(Ξ, I) :- LKFIe(Ξ, I).
LJF ⊃c (Ξ,Ξ).
LJFSrc(Ξ,Ξ,).
LJF ⊃e (Ξ,Ξ, qc).
LJF Ile(qc).

Figure 8.2: Interfacing LJF a agents to LKF a agents

142

Ξ1 ` Θ ⇑N Ξ2 ` Θ ⇑ ¬N cute(Ξ,Ξ1,Ξ2, N)

Ξ ` Θ ⇑ ·

↪→
Ξ1 : Γ ⇑ ` d¬Ne- ⇑ Ξ2 : Γ ⇑ d¬Ne- ` ⇑R Cute(Ξ,Ξ1,Ξ2, d¬Ne-)

Ξ: Γ ⇑ ` ⇑R
Ξ1 ` Θ ⇑ P Ξ2 ` Θ ⇑ ¬P cute(Ξ,Ξ1,Ξ2, P)

Ξ ` Θ ⇑ ·

↪→
Ξ2 : Γ ⇑ ` dP e- ⇑ Ξ1 : Γ ⇑ dP e- ` ⇑R Cute(Ξ,Ξ1,Ξ2, dP e-)

Ξ: Γ ⇑ ` ⇑R

Figure 8.3: Cut Embedding

the augmented cut rule of LKF a can be mapped to two LJF a augmented cut rules,
depending on the polarity of B, as seen in figure 8.3. Indeed, the cut formula in
the corresponding LJF cut must be an implication (the negative translation d·e- of
a positive formula). If N is a negative formula and P is a positive formula, then
interfacing the cut agents of the two systems is:

LJFCe(Ξ,Ξ1,Ξ2, d¬Ne-) :- LKFCe(Ξ,Ξ1,Ξ2, N).
LJFCe(Ξ,Ξ2,Ξ1, dP e-) :- LKFCe(Ξ,Ξ1,Ξ2, P).

8.2 Transducing proof certificates

Throughout the previous chapters, the trade-off is apparent in several places between
the amount of information contained in a proof certificate and the necessity of search
to reconstruct a proof. This section discusses the varying amount of details in proof
certificates by focusing in particular on both possible extremes: on the one hand the
least information that must be given by a proof certificate to avoid non-termination;
on the other hand the sufficient amount of information that makes a proof certificate
detailed enough to be functionally checkable, i.e.,non-reliant on proof search. This
section then discusses ways of obtaining these two extreme proof certificates from
other proof certificates: obtaining the detailed proof certificate is done through an
elaborating transducer while obtaining the least detailed proof certificate is done

143

through a forgetful transducer. The transducers considered here are used on LKF a

proof certificates, but the same points hold for LJF a proof certificates.

8.2.1 Elaborating transducer

The term transduction comes from automata theory where it designates a state
machine with two tapes: an input and an output tape. The term is used here for a
generic p.r.i.c.e., used to elaborate any proof certificate into a fully detailed proof
certificate. More precisely, because the elaborating transduction is used to supply
all details of a proof, three p.r.i.c.e. definitions are discussed in this section:

� an input p.r.i.c.e. previously defined, as usual, for a given format and used to
guide the kernel to a proof,

� an output p.r.i.c.e., defined as a standard p.r.i.c.e. for fully functional proof
certificates and

� the transduction p.r.i.c.e., that uses the input p.r.i.c.e. to obtain a proof and
constructs the output p.r.i.c.e..

The input certificate does not influence the definition of the transduction and is,
therefore, not the main topic. The output certificate will have the case constructors
shown in figure 8.4. They record all information in a tree skeleton that will be
isomorphic to the derivation generated by the proof checking process.

The polarity assignment is fixed by the input certificate and the transducer and
of the output p.r.i.c.e. comply with it. The agents of the output p.r.i.c.e. are
straightforwardly defined to unpack the input case and pass on the continuation
case. For instance, the decide expert is defined as:

De((
...
D I Ξ),Ξ, I)

The index of the output (and the transducer) p.r.i.c.e. cannot depend solely on
the index of the input p.r.i.c.e.. Indeed, if the former is to be completely defined so
as to leave no room for backtracking, the indexes have to be functional (i.e.,no two
formulas in the storage share the same index). To this end, the indexes of the are
formed between the indexes given by the original certificate and an integer that must
be distinct for each stored formula in order for the resulting elaborated p.r.i.c.e. to
be functional.

type pid (N ∗ ξ)→ ξ.

144

type
...
∧− case→ case→ case.

type
...
∨− case→ case.

type
...
∧+ case→ case→ case.

type
...
∨+ δ → case→ case.

type
...
∃ ι→ case→ case.

type
...
∀ (ι→ case)→ case.

type
...
t+ case.

type
...
t− case→ case.

type
...
S ξ → case→ case.

type
...
D ξ → case→ case.

type
...
R case→ case.

type
...
I ξ → case.

type
...
C fm→ case→ case→ case.

Figure 8.4: The case constructors for the elaborating transducer

145

To complete the transducer p.r.i.c.e. definition (the polarity assignment and the
indexing are described above), it remains to define the case constructor and the
agents. The only case constructor is defined as follows:

type infix I case→ case→ N→ case.

where the first parameter is the input case which is used to guide the kernel towards
a proof, the second parameter is the output case which records all steps taken by the
kernel, and the third parameter is a counter used to generate fresh indexes to store
formulas.

The team of agents defined on the I case is given in figure 8.5. To save space,

the counter c is written above the left arrow I, as such: Ξi

c
I Ξo. It is only used in

the store clerk definition (marked by ?).

8.2.2 Forgetful transducer

As mentioned in remark 4.1.2, the only rule susceptible of causing non-termination is
the decide rule. The least information to give is thus a bound on the proof search in
the form of a decide depth (see in definition 2.2.2). A decide depth can be enforced
in many ways: an integer counter decremented at each decide and prevented from
reaching zero, a list of indexes that are removed one by one every time a decide
is done on them, or any other data structure from which one can obtain a finitely
decreasing measure. One can even use the following case constructor as case:

type dd N→ case.

and define the decide expert to be

De(dd C, dd (C − 1),) :- C > 0.

while all other agent definitions are näıve.
Following the same constructor as for the elaborating transducer, one can design

a forgetful transducer. This transducer also acts on a pair of cases and only record
the conjunctions structure and the decide rules. Only the following case constructors
are used:

type infix B case→ case→ N→ case.

which is the case on which the forgetful transducing team is defined,

type ♣ case.

146

∧−
c (Ξ

c
I (

...
∧− Ξ′1 Ξ′2),Ξ1

c
I Ξ′1,Ξ2

c
I Ξ′2) :- ∧−

c (Ξ,Ξ1,Ξ2).

∨−
c (Ξ

c
I (

...
∨− Ξ′),Ξo

c
I Ξ′) :- ∨−

c (Ξ,Ξo).

∧+

e (Ξ
c
I (

...
∧+ Ξ′1 Ξ′2),Ξ1

c
I Ξ′1,Ξ2

c
I Ξ′2) :- ∧+

e (Ξ,Ξ1,Ξ2).

∨+

e (Ξ
c
I (

...
∨+ D Ξ′),Ξo

c
I Ξ′, D) :- ∨+

e (Ξ,Ξo, D).

∃e(Ξ
c
I (

...
∃ W Ξ′),Ξo

c
I Ξ′,W) :- ∃e(Ξ,Ξo,W).

∀c(Ξ
c
I (

...
∀ Ξ′), λy.(Ξo y)

c
I (Ξ′ y)) :- ∀c(Ξ,Ξo).

t+e (Ξ
c
I

...
t+) :- t+e (Ξ).

f−
c (Ξ

c
I (

...
f− Ξ′),Ξo

c
I Ξ′) :- f−

c (Ξ,Ξo).

Re(Ξ
c
I (

...
R Ξ′),Ξo

c
I Ξ′) :- Re(Ξ,Ξo).

Ce(Ξ
c
I (

...
C F Ξ′1 Ξ′2),Ξ1

c
I Ξ′1,Ξ2

c
I Ξ′2, F) :- Ce(Ξ,Ξ1,Ξ2, F).

Sc(Ξ
c
I (

...
S pid〈c, I〉 Ξ′), F,Ξo

c+1
I Ξ′, pid〈c, I〉) :- Sc(Ξ, F,Ξo, I).?

De(Ξ
c
I (

...
D pid〈J, I〉 Ξ′),Ξo

c
I Ξ′, pid〈J, I〉) :- De(Ξ,Ξo, I).

Ie(Ξ
c
I (

...
I pid〈J, I〉), pid〈J, I〉) :- Ie(Ξ, I).

Figure 8.5: Team of agents for the elaborating transduction

147

∧−
c (Ξ B (

...
∧ Ξ′1 Ξ′2),Ξ1 B Ξ′1,Ξ2 B Ξ′2) :- ∧−

c (Ξ,Ξ1,Ξ2).?

∨−
c (Ξ B Ξ′,Ξo B Ξ′) :- ∨−

c (Ξ,Ξo).

∧+

e (Ξ B (
...
∧ Ξ′1 Ξ′2),Ξ1 B Ξ′1,Ξ2 B Ξ′2) :- ∧+

e (Ξ,Ξ1,Ξ2).?

∨+

e (Ξ B Ξ′,Ξo B Ξ′, D) :- ∨+

e (Ξ,Ξo, D).

∃e(Ξ B Ξ′,Ξo B Ξ′,W) :- ∃e(Ξ,Ξo,W).

∀c(Ξ B Ξ′, λy.(Ξo y) B Ξ′) :- ∀c(Ξ,Ξo).

t+e (Ξ B ♣) :- t+e (Ξ).?

f−
c (Ξ B Ξ′,Ξo B Ξ′) :- f−

c (Ξ,Ξo).

Re(Ξ B Ξ′,Ξo B Ξ′) :- Re(Ξ,Ξo).

Sc(Ξ B Ξ′, F,Ξo B Ξ′, I) :- Sc(Ξ, F,Ξo, I).

De(Ξ B (∇Ξ′),Ξo B Ξ′, I) :- De(Ξ,Ξo, I).?

Ie(Ξ B ♣, I) :- Ie(Ξ, I).

Figure 8.6: Team of agents for the forgetful transduction

which is used as a leaf case at the initial,

type
...
∧ case→ case→ case.

and
type ∇ case→ case.

to mark the decide rule locations. No particular index is needed, it is left unspecified.
The team of agents is shown in figure 8.6. Notice that the cut expert is excluded
from the team. The agents marked with a star ? are the only non-näıve ones: the
ones that finish the proof fix the case to the leaf ♣, the decide expert records that
there has been a decide, and the conjunctions agents keep the structure of the tree.
After the transduction, a simple program can count the number of ∇ in the resulting
case tree and create a dd case.

Customized transducers

The amount of recorded information can be adjusted to one’s needs. For example,
if one wants only to keep only the instantiation terms, the forgetful p.r.i.c.e. can be

148

modified to fit this goal. Notice that the output of a forgetful transducer will, most
likely, fail to be fully functional.

8.3 Cooperating proof certificates

The fact that the framework ensures soundness regardless of how the semantics is
defined allows for great flexibility in the design of p.r.i.c.e.. One can even define
a (meta) p.r.i.c.e. that links together multiple p.r.i.c.e. definitions. This way, one
can link a possibly non-terminating decision procedure with a p.r.i.c.e. that has
a decide depth for only information. One can even link two (or more) incomplete
p.r.i.c.e. definitions and use their cooperation to guide proof checking or to generate
a complete proof certificate using a transducer p.r.i.c.e..

Consider the following case constructor:

type concur case→ case→ case.

This case holds a pair of cases, each of them presumably defined on its own team
of agents. The purpose of the concur team is to make sure that both teams defined
on the cases listed in the argument of the concur case agree on at least one set of
guidance to give to the kernel, thus on one reconstructed proof. To do so, every
agent from the concur team calls on its counterparts defined on both cases listed as
arguments of the concur case. For example, a disjunction expert is defined as:

∨+

e (concur Ξ1 Ξ2, concur Ξ′1 Ξ′2, D) :- ∨+

e (Ξ1,Ξ
′
1, D),∨+

e (Ξ2,Ξ
′
2, D).

The index constructor must be formed of the pair of indexes given by the two proof
certificates. It is defined as:

type pid (ξ ∗ ξ)→ ξ.

and the store clerk is defined as:

Sc(concur Ξ1 Ξ2, F, concur Ξ′1 Ξ′2, 〈I1, I2〉) :- Sc(Ξ1, F,Ξ
′
1, I1),Sc(Ξ2, F,Ξ

′
2, I2).

The rest of the team of agents is given figure 8.7.
The concur team can check what can be seen as trace equivalence between differ-

ent definitions of the semantics of the same language, or even semantic comparison
of different languages for particular proof evidence. One can also compare more than
two p.r.i.c.e. definitions by using pairs of pairs, e.g., (concur(concur(Ξ1 Ξ2)) Ξ3).
Finally, the concur p.r.i.c.e. can be used alongside the transducer to generate a
complete proof certificate from possibly incomplete ones.

149

∧−
c (concur Ξ1 Ξ2, concur Ξ′1 Ξ′2, concur Ξ′′1 Ξ′′2) :- ∧−

c (Ξ1,Ξ
′
1,Ξ

′′
1),∧−

c (Ξ2,Ξ
′
2,Ξ

′′
2).

∨−
c (concur Ξ1 Ξ2, concur Ξ′1 Ξ′2) :- ∨−

c (Ξ1,Ξ
′
1),∨−

c (Ξ2,Ξ
′
2).

∧+

e (concur Ξ1 Ξ2, concur Ξ′1 Ξ′2, concur Ξ′′1 Ξ′′2) :- ∧+

e (Ξ1,Ξ
′
1,Ξ

′′
1),∧+

e (Ξ2,Ξ
′
2,Ξ

′′
2).

∨+

e (concur Ξ1 Ξ2, concur Ξ′1 Ξ′2, D) :- ∨+

e (Ξ1,Ξ
′
1, D),∨+

e (Ξ2,Ξ
′
2, D).

∃e(concur Ξ1 Ξ2, concur Ξ′1 Ξ′2,W) :- ∃e(Ξ1,Ξ
′
1,W),∃e(Ξ2,Ξ

′
2,W).

∀c(concur Ξ1 Ξ2, λy.concur (Ξ′1y) (Ξ′2y)) :- ∀c(Ξ1,Ξ
′
1),∀c(Ξ2,Ξ

′
2).

t+e (concur Ξ1 Ξ2) :- t+e (Ξ1), t+e (Ξ2).

f−
c (concur Ξ1 Ξ2, concur Ξ′1 Ξ′2) :- f−

c (Ξ1,Ξ
′
1), f−

c (Ξ2,Ξ
′
2).

Re(concur Ξ1 Ξ2, concur Ξ′1 Ξ′2) :- Re(Ξ1,Ξ
′
1),Re(Ξ2,Ξ

′
2).

Ce(concur Ξ1 Ξ2, concur Ξ′1 Ξ′2, concur Ξ′′1 Ξ′′2, F) :- Ce(Ξ1,Ξ
′
1,Ξ

′′
1, F),Ce(Ξ2,Ξ

′
2,Ξ

′′
2, F).

Sc(concur Ξ1 Ξ2, F, concur Ξ′1 Ξ′2, pid〈I1, I2〉) :- Sc(Ξ1, F,Ξ
′
1, I1),Sc(Ξ2, F,Ξ

′
2, I2).

De(concur Ξ1 Ξ2, concur Ξ′1 Ξ′2, pid〈I1, I2〉) :- De(Ξ1,Ξ
′
1, I1),De(Ξ2,Ξ

′
2, I2).

Ie(concur Ξ1 Ξ2, pid〈I1, I2〉) :- Ie(Ξ1, I1),Ie(Ξ2, I2).

Figure 8.7: Team of agents for the cooperating p.r.i.c.e.

150

Chapter 9

Conclusion, related and future
work

One of the objectives of this thesis is to promote the idea that “feature zero” of
all provers should be the ability to communicate independently checkable outputs.
Obstacles to this feature include the need to translate into some theory-motivated
language and the size of the outputs. Using the Foundational Proof Certification
framework, the outputs are described rather than translated and parts of them can
be omitted, allowing for more compact objects.

By focusing on the semantics definition of proof languages, rather than the proof
objects, a broad spectrum of proof evidence formats (of which some were shown in
this thesis) can be formally defined independent of the technology that produced
them, proof languages can know the same mathematical definition as that brought
to programming languages by structured operational semantics. A relational setting
facilitates the support for modularity.

The Foundational Proof Certification framework is now being generalized to
proofs involving inductive and co-inductive definitions [Heath and Miller, 2015].
With that extension, it should be possible to check proof evidence coming from
model checkers1 and inductive theorem provers. Energy is also spent in extending
the Foundational Proof Certification framework to modal logics, starting by defining
a focused setting in these logics2

Proofs freed from the technologies that produced them take us one step closer to
the formal eternity that proof theorists have been seeking for a century.

1http://slimmer.gforge.inria.fr/bedwyr/pcmc/
2Submitted draft of the paper “Focused labeled proof systems for modal logic” by Miller and

Volpe: http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/focused-modal.pdf

151

http://slimmer.gforge.inria.fr/bedwyr/pcmc/
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/focused-modal.pdf

9.1 Future work

Being the first effort in the multi-year project ProofCert, this thesis offers many
directions in which to take the next steps. For example, to what extent can one
handle partial proofs or offer a satisfactory treatment of counterexamples? [Miller,
2014, Section 4.1].

However, it may be premature to tackle these longer-term goals of the ProofCert
project. Instead, this section focuses on the immediate next steps to be taken.

Completeness proof of embedding and assisting semantics specification

Recall the embeddings of expansion trees in sequent calculus (sections 5.4.2 and
5.4.2). The argument for the embeddings has the following form “if a node N in the
expansion tree appears with a formula F in the sequent then the rule R is applied.
The resulting premises are formed with the subformulas of F and the subnodes of
N and are embedded in the same way”. Compare this to the definition of agents (in
the order in which they appear in a sequentialization). These definitions have the
form “the agent relative to the rule R is defined on the case C, containing the node
N , gives back some output cases with subnodes of N that are used by the next agent
to be called”.

One notices the similarity between the two processes: the one describing the
embedding of a proof format in focused sequent calculus, and the one describing the
definition of agents that guide the kernel towards proofs of that form. The same
observation holds for the rest of the case studies in this thesis. It seems that, if
one proves the completeness of an embedding of a proof format in focused sequent
calculus, then one can extract a relational specification in the same way an ML
program can be extracted from Coq proofs.

In light of this, even without enforcing the rigors of a completeness proof, one
should be able to design a “semantics specifying assistant”. Such a tool could be
used by someone who is unfamiliar with focusing or logic programming. It should
be possible to supply several useful options, such as a polarity inference mechanism
that assigns polarity to a connective depending on how the user choses to treat that
connective. It can also have an indicator of the current size of the generated p.r.i.c.e.,
and a measure on choice points generated so that one can try to reduce proof search.

More independence

Section 8.1.3 showed that, while a logic (classical or intuitionistic) is chosen for
checking a proof certificate, the particular kernel (based on LKF a or on LJF a with

152

the d·e± embedding) needs not be specified. Similar hosting of kernels were tried
(though not formally proved) for LKF a and LJF a in fragments of an augmented
version of LKU. One can also explore the LKF fragment of LKU inside the LJF
fragment of LKU using an embedding similar to d·e±. The feasability of this is not
controversial, the goal of these investigations is to identify exactly what is the minimal
common notion of relational specification. In particular, can the same p.r.i.c.e.
written for an LKF a kernel be used, with no change, in kernels based on LJF, the
LKF and LJF fragments of LKU, or even some two-sided LKF kernel.

More implementations

At this stage, several kernels (based on LKU, LKF and LJF) exist in the Teyjus3

implementation of λProlog4 language. An implementation in Bedwyr5 also exists in
the work by Heath and Miller [2015], this time based on focused linear logic with fixed
points. The Foundational Proof Certification framework was implemented again (in
the span of a week-end6) in Ocaml7 and used in the work by Brock-Nannestad and
Chaudhuri [2015].

By minimizing the knowledge base needed to reimplement the framework (sec-
tion 3.2), one hopes that more and more implementations will be made, bringing
new ideas to improve the framework. Comparing different implementations can also
help find the best technology when the time comes to have an official release of a
proof checker.

Libraries

When describing the G4ip decision procedure [Dyckhoff, 1992] using the Foundational
Proof Certification framework, an initial investigation in the use of lemmas (not
included in this manuscript) was carried out. A new type of formulas, called generic,
was introduced.

Detailing the use of lemmas is an indispensable step for any real-world application
of this framework. Several questions remain unanswered: how can the libraries be
browsed? In theory, a URL can serve as an index, for example, and instead of
deciding on a formula in the storage, one can decide on a previously certified formula
from some trusted library. What exactly should be stored in the libraries? Should

3http://teyjus.cs.umn.edu/
4http://www.lix.polytechnique.fr/~dale/lProlog/
5http://slimmer.gforge.inria.fr/bedwyr/
6Conversation with the implementers.
7http://caml.inria.fr/ocaml/

153

http://teyjus.cs.umn.edu/
http://www.lix.polytechnique.fr/~dale/lProlog/
http://slimmer.gforge.inria.fr/bedwyr/
http://caml.inria.fr/ocaml/

the theorems be polarized or unpolarized (this would require adding mechanisms to
assign polarities). How can the safety of the libraries be guaranteed?

Interaction

The kernel guidance protocol defined through the agents can also be used to interact
with a user, or even with an outside program. To what extant can a proof certificate
interactively gain information from a user? Can someone rely on focusing to design
a similar framework for theorem proving instead of certificate checking?

Interactive theorem proving based on a focused framework is not, strictly speak-
ing, in the scope of this thesis. However, by investigating such possibilities, ideas
may appear that can also be applied to proof-certificate checking.

More formats

Handling more proof formats is a natural continuation of this thesis. Some formats
are still challenging. For example, the SAT solving community uses three formats
routinely: DRAT, DRUP and TRACECHECK. While the TRACECHECK format,
which essentially describes a resolution refutation, is naturally mapped to sequent
calculus, DRAT and DRUP are not so straightforwardly mapped. Nonetheless, fur-
ther investigation may lead to a support for these formats, with the use of cut rules
and more sophisticated definitions of agents (so far, the agents were defined using
very simple, often atomic, Horn clauses).

These difficulties require a clear definition of what constitutes acceptable proof
evidence. One such definition was suggested in a recent paper [Chihani et al., 2015].

Deployment

Recently, the organizers of the CADE ATP System Competition (or CASC8) changed
the design and procedures to “explicitly encourage” systems to produce solutions in
TPTP format, which, in the sense of this thesis, is a step forward in advocating for
explicitly and independently proof checking.

This competition (currently lacking foundational checking) can be a good place
to start a concrete application of the ideas in this thesis. Part of the output of one
participating prover (E prover9) was addressed [Chihani et al., 2015].

8http://www.cs.miami.edu/~tptp/CASC/
9http://www.eprover.org/

154

http://www.cs.miami.edu/~tptp/CASC/
http://www.eprover.org/

9.2 Related work

Interfacing provers, sharing proofs and certifying theorems are the goals of many
efforts. Some of them, centered around proof assistants and/or fully automated
provers, are briefly presented in this section.

Logosphere

Logosphere10 has the goal of sharing development of digital libraries of formal proofs
between different proof assistants in a foundational logic-independant framework,
built on Twelf. Unlike this thesis, the role of the “message” aspect of the proofs is
central to Logosphere as it aims at sharing semantic mathematical logic. Addition-
ally, the actual proofs of theorems are not intended to be translated in the context
of this thesis.

Dedukti

Dedukti is a proof checker based on the λΠ-calculus modulo rewriting [Boespflug
et al., 2012]. Cousineau and Dowek [2007] showed that the λΠ-calculus modulo
rewriting can encode all pure type systems. Dedukti can check proofs both from
proof assistants (e.g., Coq and HOL) and from automated provers (e.g., Zenon and
iProver), by first translating them in the λΠ-calculus modulo. Several specialized
translators were built since the beginning of the project including Holide for HOL
Light, Coqine for Coq, Zenonide for Zenon, Focalide for FoCaLiZe and a plugin to
iProver11.

It is premature to compare the proof translation effort in the setting of Dedukti
and the proof language description possibilities of the Foundational Proof Certifi-
cation framework. However, one lasting difference is the fourth desideratum of the
ProofCert project, namely proof reconstruction capabilities.

Other differences are foundational: where Dedukti relies on type theory, a func-
tional setting and intuitionistic logic, ProofCert relies on proof theory, a relational
setting, and both classical and intuitionistic logics. (Dedukti is able to check classical
proofs with the use of axioms).

10Logosphere’s URL (logosphere.org) redirects to the Delphin [Poswolsky and Schürmann, 2008]
project’s website, the language that was successfully used to express translations between various
logics, in the context of Logosphere.

11All of which are present at the following page https://www.rocq.inria.fr/deducteam/

software.html

155

https://www.rocq.inria.fr/deducteam/software.html
https://www.rocq.inria.fr/deducteam/software.html

TPTP and TSTP

The TPTP (Thousands of Problems for Theorem Provers) library is a browsable
repository of test problems varying in size and complexity. The main goal of the
TPTP library is to support the evaluation of automated theorem provers.

TSTP (Thousands of Solutions from Theorem Provers) is the solution library and
is “the flip-side of the TPTP”[Sutcliffe, 2007]. It is intended as a useful resource,
storing solutions in a standard format so that users can browse and understand
them with the goal of improving their own prover. A checking mechanism, called
GDV, applies structural and semantics verification. However, this checker relies on
automated theorem provers, those same tools whose output this thesis proposes to
check.

LF and LFSC

Although the first logical framework was de Bruijn’s Automath [de Bruijn, 1970],
the term LF usually designates the Edinburgh Logical framework. In their papers,
Harper et al. [1987] describe LF as a suitable basis for “logic-independent proof
development environment”. The overall aims of LF and of Automath are similar,
and the former can be seen as “carrying forward the aims” of the latter [Harper
et al., 1987]. Both of them are based on type theory and λ-calculus.

LFSC is an extension of LF with computational side conditions, allowing “some
parts of a proof to be established by computation” [Stump et al., 2013]. Although
LFSC is mainly used as a proof checker for SMT solvers, the same ideas can be applied
to other logics. The undeniable gain in efficiency is the main incentive behind this
effort, but it comes at the cost of allowing possibly non-checked decision procedure in
the “proof systems trusted computing base”. Using an unverified decision procedure,
said Milner [MacKenzie, 2001, p.295], is ”like selling your soul to the Devil – you
get this enormous power, but what have you lost? You’ve lost proof, in some sense”.
However, the functional programs of LFSC are usually small and readable and, if
efficiency is paramount, perhaps one can formally verify them. In any case, for the
purpose of presenting a framework, it would have been premature for this thesis to
sacrifice soundness.

But soundness may be only one of the differences. Consider this (shortened)
quote of Stump [2008]: “To encode binary propositional resolution with factoring in
pure LF, we must insist that each resolution inference comes with a proof of a side
condition showing that C1 and C2 resolve as just described to give the resolvent,
which the inference proves. That proof may be a trace of the computation of the
resolvent, or perhaps evidence based on a more declarative view of the relationship

156

between the resolvent and C1 and C2. But there is no obvious way to reduce its size
from O(|C1| + |C2|) to a constant. And hence, the size of resolution proofs will be
completely dominated by the size of the proofs of their side conditions”.

By using the Foundational Proof Certification framework, however, the size of
the proof evidence for a binary resolution inference can be reduced to a constant
(modulo the size of the resolvent clause). The size of resolution step to check is two
integer numbers (indexes of the clauses), and the size of the reconstructed proof (that
does not need to be communicated) is an LKF proof with a maximal decide depth
of 3. This can scale easily to hyperresolution, where the size of the proof evidence
for the resolution step is as many integer numbers as there are clauses to resolve.

Higher-order proof translation

Sultana [2015] investigated different approaches to proof translation for higher-order
logic. His thesis offers survey of many translation efforts and compares them along
three axes. Importer translators, located close to the source prover, exporter trans-
lators, close to the target prover, and transducer translator which is agnostic with
regard to the internal states of the target and the source provers. He also proposes
a promising compiler-like framework for translation and applies it to some provers.

His thesis is rather implementation-oriented, technology-dependent and focuses
on higher-order logic, whereas the present thesis is still at the theoretical stage,
independent of technology and focuses on first-order logics.

157

Bibliography

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J. of
Logic and Computation, 2(3):297–347, 1992.

Peter B. Andrews. General models, descriptions, and choice in type theory. Journal
of Symbolic Logic, 37(2):385–394, 1972.

Peter B. Andrews. Theorem proving via general matings. J. ACM, 28(2):193–214,
1981. doi: 10.1145/322248.322249.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof. Kluwer Academic Publishers, second edition, 2002.

Robert L. Ashenhurst. Acm forum. In Letters to the editors, volume 22, pages 621–
630, New York, NY, USA, November 1979. ACM. doi: 10.1145/359168.359177.
URL http://doi.acm.org/10.1145/359168.359177.

Andrea Asperti. Proof, message and certificate. In Johan Jeuring, John A. Camp-
bell, Jacques Carette, Gabriel Dos Reis, Petr Sojka, Makarius Wenzel, and Volker
Sorge, editors, Intelligent Computer Mathematics - Proceedings of AISC, DML,
and MKM 2012, volume 7362 of LNCS, pages 17–31. Springer, 2012. doi:
10.1007/978-3-642-31374-5.

David Baelde. Least and greatest fixed points in linear logic. ACM Trans. on
Computational Logic, 13(1), April 2012. doi: 10.1145/2071368.2071370. URL
http://tocl.acm.org/accepted/427baelde.pdf.

H. Barendregt and F. Wiedijk. The challenge of computer mathematics. Transactions
A of the Royal Society, 363(1835):2351–2375, October 2005.

Henk Barendregt. The impact of the lambda calculus in logic and computer science.
Bulletin of Symbolic Logic, 3(2):181–215, 1997.

158

http://doi.acm.org/10.1145/359168.359177
http://tocl.acm.org/accepted/427baelde.pdf

Henk P. Barendregt. Introduction to generalized type systems. Journal of Functional
Programming, 1(2):125–154, April 1991.

Jon Barwise. Mathematical proofs of computer system correctness. In Notices of the
American Mathematical Society, 36, 1989.

Christoph Benzmüller and Dale Miller. Automation of higher-order logic. In J. Siek-
mann, editor, Logic and Computation, volume 9 of Handbook of the History of
Logic, pages 215–254. North Holland, 2014. ISBN 978-0-444-51624-4.

W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig, second edition
edition, 1987.

Mathieu Boespflug, Quentin Carbonneaux, and Olivier Hermant. The λΠ-calculus
modulo as a universal proof language. In David Pichardie and Tjark Weber,
editors, Proceedings of PxTP2012: Proof Exchange for Theorem Proving, pages
28–43, 2012.

Taus Brock-Nannestad and Kaustuv Chaudhuri. Disproving using the inverse method
by iterated refinement of finite approximations. In Hans de Nivelle, editor, Pro-
ceedings of the 24th Automated Reasoning with Analytic Tableaux and Related
Methods (TABLEAUX), volume 9323 of LNAI, Wroc law, Poland, September 2015.
Springer. URL http://chaudhuri.info/papers/draft15saturate.pdf.

Kaustuv Chaudhuri. Classical and intuitionistic subexponential logics are equally
expressive. In Anuj Dawar and Helmut Veith, editors, CSL 2010: Computer Sci-
ence Logic, volume 6247 of LNCS, pages 185–199, Brno, Czech Republic, Au-
gust 2010. Springer. doi: 10.1007/978-3-642-15205-4\ 17. URL http://hal.

archives-ouvertes.fr/inria-00534865/en/.

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via
multi-focusing. In G. Ausiello, J. Karhumäki, G. Mauri, and L. Ong, editors, Fifth
International Conference on Theoretical Computer Science, volume 273 of IFIP,
pages 383–396. Springer, September 2008.

Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A multi-focused proof system
isomorphic to expansion proofs. J. of Logic and Computation, June 2014. doi:
10.1093/logcom/exu030. URL http://hal.inria.fr/hal-00937056.

Zakaria Chihani, Dale Miller, and Fabien Renaud. Foundational proof certificates
in first-order logic. In Maria Paola Bonacina, editor, CADE 24: Conference on
Automated Deduction 2013, number 7898 in LNAI, pages 162–177, 2013a.

159

http://chaudhuri.info/papers/draft15saturate.pdf
http://hal.archives-ouvertes.fr/inria-00534865/en/
http://hal.archives-ouvertes.fr/inria-00534865/en/
http://hal.inria.fr/hal-00937056

Zakaria Chihani, Dale Miller, and Fabien Renaud. Checking foundational proof cer-
tificates for first-order logic (extended abstract). In J. C. Blanchette and J. Urban,
editors, Third International Workshop on Proof Exchange for Theorem Proving
(PxTP 2013), volume 14 of EPiC Series, pages 58–66. EasyChair, 2013b.

Zakaria Chihani, Tomer Libal, and Giselle Reis. The proof certifier checkers. In
TABLEAUX 24: Automated Reasoning with Analytic Tableaux and Related Meth-
ods, number 9323 in LNAI, 2015.

Alonzo Church. An unsolvable problem of elementary number theory. American
Journal of Mathematics, 58:354–363, 1936.

Alonzo Church. A formulation of the Simple Theory of Types. J. of Symbolic Logic,
5:56–68, 1940.

Denis Cousineau and Gilles Dowek. Embedding pure type systems in the lambda-
pi-calculus modulo. In Simona Ronchi Della Rocca, editor, Typed Lambda Calculi
and Applications, 8th International Conference, TLCA 2007, Paris, France, June
26-28, 2007, Proceedings, volume 4583 of LNCS, pages 102–117. Springer, 2007.

Martin Davis and Hilary Putnam. A computing procedure for quantification theory.
J. ACM, 7(3):201–215, July 1960. ISSN 0004-5411. doi: 10.1145/321033.321034.
URL http://doi.acm.org/10.1145/321033.321034.

N. G. de Bruijn. The mathematical language automath, its usage, and some of
its extensions. In Symposium on Automatic Demonstration, pages 29–61. Lecture
Notes in Mathematics, 125, Springer, 1970.

Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with an application to the Church-Rosser
theorem. Indagationes Mathematicae, 34(5):381–392, 1972.

R. Dyckhoff and S. Lengrand. LJQ: a strongly focused calculus for intuitionistic
logic. In A. Beckmann and et al., editors, Computability in Europe 2006, volume
3988 of LNCS, pages 173–185. Springer, 2006.

Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J. of Symbolic
Logic, 57(3):795–807, September 1992.

Melvin Fitting. First-Order Logic and Automated Theorem Proving. Springer, 1990.

160

http://doi.acm.org/10.1145/321033.321034

Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The
Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland, Amsterdam,
1935. Translation of articles that appeared in 1934-35. Collected papers appeared
in 1969.

Gerhard Gentzen. Die widerspruchfreiheit der reinen zahlentheorie. Mathematische
Annalen, 112:493–565, 1936. Reprinted in English translation as “The consistency
of Elementary Number Theory” in The collected papers of Gerhard Gentzen, M.
E. Szabo, ed.

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.

Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting to the mailing
list linear@cs.stanford.edu, February 1992.

Jean-Yves Girard. Le Point Aveugle: Cours de logique: Tome 1, Vers la perfection.
Hermann, 2006.

Kurt Gödel. Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse eines
Mathematischen Kolloquiums, pages 34–38, 1932. English translation in The Un-
decidable (M. Davis, ed.) 1965, 75-81.

Kurt Gödel. Eine interpretation des intuitionistischen aussagenkalkuls. Ergebnisse
eines Mathematischen Kolloquiums., 4:39–40, 1933. Available in “Kurt Gödel:
Collected Works. Volume 1” edited by S. Feferman and et al.

Robert Harper and Frank Pfenning. On equivalence and canonical forms in the LF
type theory. ACM Trans. Comput. Log., 6(1):61–101, 2005. doi: 10.1145/1042038.
1042041. URL http://doi.acm.org/10.1145/1042038.1042041.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining logics.
In 2nd Symp. on Logic in Computer Science, pages 194–204, Ithaca, NY, June
1987.

Quentin Heath and Dale Miller. A framework for proof certificates in finite state
exploration. In Cezary Kaliszyk and Andrei Paskevich, editors, Proceedings Fourth
Workshop on Proof eXchange for Theorem Proving, Berlin, Germany, August 2-3,
2015, volume 186 of Electronic Proceedings in Theoretical Computer Science, pages
11–26. Open Publishing Association, 2015. doi: 10.4204/EPTCS.186.4.

161

http://doi.acm.org/10.1145/1042038.1042041

Hugo Herbelin. A λ-calculus structure isomorphic to gentzen-style sequent calculus
structure. In Leszek Pacholski and Jerzy Tiuryn, editors, Computer Science Logic,
volume 933 of Lecture Notes in Computer Science, pages 61–75. Springer Berlin
Heidelberg, 1995a. ISBN 978-3-540-60017-6. doi: 10.1007/BFb0022247. URL
http://dx.doi.org/10.1007/BFb0022247.

Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des séquents
comme calcul de lambda-termes et comme calcul de stratégies gagnantes. PhD
thesis, Université Paris 7, 1995b.

Jacques Herbrand. Recherches sur la Théorie de la Démonstration. PhD thesis,
University of Paris, 1930.

Stefan Hetzl and Daniel Weller. Expansion trees with cut. CoRR, abs/1308.0428,
2013.

Alfred Horn. On sentences which are true of direct unions of algebras. The Journal
of Symbolic Logic, 16:14–21, 3 1951. ISSN 1943-5886. doi: 10.2307/2268661. URL
http://journals.cambridge.org/article_S0022481200102385.

Stephen Cole Kleene. Introduction to Metamathematics. North-Holland, Amsterdam,
1952.

Andrei Nikolaevich Kolmogorov. On the principle of the excluded middle. Matem-
aticheskii sbornik, 32:646–667, 1925. English translation by Jean van Heijenoort
in From Frege to Gödel.

Boris Konev and Alexei Lisitsa. A sat attack on the erds discrepancy conjec-
ture. In Carsten Sinz and Uwe Egly, editors, Theory and Applications of Sat-
isfiability Testing SAT 2014, volume 8561 of Lecture Notes in Computer Sci-
ence, pages 219–226. Springer International Publishing, 2014. ISBN 978-3-319-
09283-6. doi: 10.1007/978-3-319-09284-3 17. URL http://dx.doi.org/10.1007/

978-3-319-09284-3_17.

Konstantin Korovin. Inst-gen a modular approach to instantiation-based automated
reasoning. In Andrei Voronkov and Christoph Weidenbach, editors, Programming
Logics, volume 7797 of Lecture Notes in Computer Science, pages 239–270. Springer
Berlin Heidelberg, 2013.

S.G. Krantz. The Proof is in the Pudding: The Changing Nature of Mathematical
Proof. SpringerLink : Bücher. Springer, 2011. ISBN 9780387487441. URL http:

//books.google.fr/books?id=mMZBtxVZiQoC.

162

http://dx.doi.org/10.1007/BFb0022247
http://journals.cambridge.org/article_S0022481200102385
http://dx.doi.org/10.1007/978-3-319-09284-3_17
http://dx.doi.org/10.1007/978-3-319-09284-3_17
http://books.google.fr/books?id=mMZBtxVZiQoC
http://books.google.fr/books?id=mMZBtxVZiQoC

Olivier Laurent. Etude de la polarisation en logique. PhD thesis, Université Aix-
Marseille II, March 2002.

Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic,
and classical logics. Theoretical Computer Science, 410(46):4747–4768, 2009. doi:
10.1016/j.tcs.2009.07.041.

Chuck Liang and Dale Miller. A focused approach to combining logics. Annals of
Pure and Applied Logic, 162(9):679–697, 2011. doi: 10.1016/j.apal.2011.01.012.

Dana Mackenzie. What in the name of euclid is going on here? Science, 307
(5714):1402–1403, 2005. doi: 10.1126/science.307.5714.1402a. URL http://www.

sciencemag.org/content/307/5714/1402.1.short.

Donald MacKenzie. Mechanizing Proof. MIT Press, 2001.

S. Maehara. Eine darstellung der intuitionistischen logik in der klassischen. Nagoya
Mathematical Journal, pages 45–64, 1954.

Ursula Martin. Stumbling around in the dark: Lessons from everyday mathematics.
In Amy P. Felty and Aart Middeldorp, editors, Automated Deduction - CADE-25,
volume 9195 of Lecture Notes in Computer Science, pages 29–51. Springer Interna-
tional Publishing, 2015. ISBN 978-3-319-21400-9. doi: 10.1007/978-3-319-21401-6
2. URL http://dx.doi.org/10.1007/978-3-319-21401-6_2.

Mathematicians. The qed manifesto. In Proceedings of the 12th International Confer-
ence on Automated Deduction, CADE-12, pages 238–251, London, UK, UK, 1994.
Springer-Verlag. ISBN 3-540-58156-1. URL http://dl.acm.org/citation.cfm?

id=648231.752823.

Dale Miller. A compact representation of proofs. Studia Logica, 46(4):347–370, 1987.

Dale Miller. Abstract syntax for variable binders: An overview. In John Lloyd and et
al., editors, CL 2000: Computational Logic, number 1861 in LNAI, pages 239–253.
Springer, 2000. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/cl2000.pdf.

Dale Miller. Proofcert: Broad spectrum proof certificates. An ERC Advanced
Grant funded for the five years 2012-2016, February 2011. URL http://www.

lix.polytechnique.fr/Labo/Dale.Miller/ProofCert.pdf.

163

http://www.sciencemag.org/content/307/5714/1402.1.short
http://www.sciencemag.org/content/307/5714/1402.1.short
http://dx.doi.org/10.1007/978-3-319-21401-6_2
http://dl.acm.org/citation.cfm?id=648231.752823
http://dl.acm.org/citation.cfm?id=648231.752823
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cl2000.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cl2000.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/ProofCert.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/ProofCert.pdf

Dale Miller. Communicating and trusting proofs: The case for broad spectrum proof
certificates. In Logic, Methodology, and Philosophy of Science. Proceedings of the
Fourteenth International Congress, 2014.

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform proofs
as a foundation for logic programming. Annals of Pure and Applied Logic, 51:125–
157, 1991.

Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social processes and
proofs of theorems and programs. Communications of the Association of Comput-
ing Machinery, 22(5):271–280, May 1979.

Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University Press,
2001.

Vivek Nigam and Dale Miller. A framework for proof systems. J. of Automated
Reasoning, 45(2):157–188, 2010. URL http://springerlink.com/content/

m12014474287n423/.

David A. Plaisted. History and prospects for first-order automated deduction.
In Automated Deduction - CADE-25 - 25th International Conference on Auto-
mated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings, pages 3–28,
2015. doi: 10.1007/978-3-319-21401-6 1. URL http://dx.doi.org/10.1007/

978-3-319-21401-6_1.

Gordon Plotkin. A structural approach to operational semantics. DAIMI FN-19,
Aarhus University, Aarhus, Denmark, September 1981.

Adam Poswolsky and Carsten Schürmann. System description: Delphin - A func-
tional programming language for deductive systems. In A. Abel and C. Urban, edi-
tors, International Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP 2008), volume 228, pages 113–120, 2008.

Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965.

Michael O. Rabin. Probabilistic algorithms. Algorithms and Complexity: New Di-
rections and Recent Results, pages 21–40, September 1976.

G Robinson and L Wos. Paramodulation and theorem-proving in first-order theories
with equality. In Automation of Reasoning, pages 298–313. Springer, 1983.

164

http://springerlink.com/content/m12014474287n423/
http://springerlink.com/content/m12014474287n423/
http://dx.doi.org/10.1007/978-3-319-21401-6_1
http://dx.doi.org/10.1007/978-3-319-21401-6_1

J. A. Robinson. Automatic deduction with hyper-resolution. International journal
of computer mathematics, 1:227–234, 1965a. ISSN 1943-5886.

J. A. Robinson. A machine-oriented logic based on the resolution principle. JACM,
12:23–41, January 1965b.

Andrew L. Russell. Open Standards and the Digital Age: History, Ideology, and Net-
works. Cambridge University Press, New York, NY, USA, 2014. ISBN 1107612047,
9781107612044.

Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor, 8th
Symp. on Logic in Computer Science, pages 222–232. IEEE Computer Society
Press, IEEE, June 1993.

Robert J. Simmons. Structural focalization. ACM Trans. Comput. Log., 15(3):21,
2014. doi: 10.1145/2629678. URL http://doi.acm.org/10.1145/2629678.

Aaron Stump. Proof checking technology for satisfiability modulo theories. In A. Abel
and C. Urban, editors, Logical Frameworks and Meta-Languages: Theory and Prac-
tice, 2008.

Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean, and Cesare Tinelli.
Smt proof checking using a logical framework. Formal Methods in System Design,
42(1):91–118, 2013. ISSN 0925-9856. doi: 10.1007/s10703-012-0163-3. URL http:

//dx.doi.org/10.1007/s10703-012-0163-3.

Nikolai Sultana. Higher-order proof translation. Technical Report UCAM-CL-TR-
867, University of Cambridge, Computer Laboratory, April 2015. URL http:

//www.cl.cam.ac.uk/techreports/UCAM-CL-TR-867.pdf.

Geoff Sutcliffe. Tptp, tstp, casc, etc. In Volker Diekert, MikhailV. Volkov, and Andrei
Voronkov, editors, Computer Science Theory and Applications, volume 4649 of
Lecture Notes in Computer Science, pages 6–22. Springer Berlin Heidelberg, 2007.
ISBN 978-3-540-74509-9. doi: 10.1007/978-3-540-74510-5 4. URL http://dx.

doi.org/10.1007/978-3-540-74510-5_4.

Gaisi Takeuti. Proof Theory. North Holland, 2nd edition, 1987.

A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory. Cambridge University
Press, 2 edition, 2000.

165

http://doi.acm.org/10.1145/2629678
http://dx.doi.org/10.1007/s10703-012-0163-3
http://dx.doi.org/10.1007/s10703-012-0163-3
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-867.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-867.pdf
http://dx.doi.org/10.1007/978-3-540-74510-5_4
http://dx.doi.org/10.1007/978-3-540-74510-5_4

Hao Wang. Proving theorems by pattern recognition i. Commun. ACM, 3(4):220–
234, April 1960. ISSN 0001-0782. doi: 10.1145/367177.367224. URL http://doi.

acm.org/10.1145/367177.367224.

Freek Wiedijk. The qed manifesto revisited. Studies in Logic, Grammar and Rhetoric,
10(23):121–133, 2007.

Doron Zeilberger and GeorgeE. Andrews. Theorems for a price: tomorrows semi-
rigorous mathematical culture. The Mathematical Intelligencer, 16(4):11–18, 1994.
ISSN 0343-6993. doi: 10.1007/BF03024696. URL http://dx.doi.org/10.1007/

BF03024696.

166

http://doi.acm.org/10.1145/367177.367224
http://doi.acm.org/10.1145/367177.367224
http://dx.doi.org/10.1007/BF03024696
http://dx.doi.org/10.1007/BF03024696

	Introduction
	Situating the thesis
	Scope of the thesis

	Preliminary notions on focusing
	Sequent calculi: From Gentzen to Girard
	Classical sequent calculus
	Intuitionistic sequent calculus

	Focused sequent calculi
	The tenets of focusing
	Focused classical sequent calculus LKF
	Intuitionistic sequent calculus LJF

	Global architecture
	Desired properties
	Poincaré Principle
	Modular integration
	Abstractions and typing
	Declarative and relational
	Proof reconstruction tools
	Parallelism
	Additional features

	Tailoring the framework
	Components of the framework
	The client's side
	The kernel checker's side
	The middle man: the semantics

	The augmented sequent calculus LKF a
	Experts
	Clerks
	The complete LKF a system

	Augmenting the LJF system

	Foundational Proof Certification
	Descriptive semantics
	Polarity assignment
	Region delimitation
	Indexing
	Clerks & Experts

	Programmable semantics
	Type signature
	Predicate definitions

	Default teams of agents
	The done team
	The oneOf team
	The witness case
	The tag case

	FPC for classical logic
	The CNF decision procedure
	Preliminaries
	CNFdec in the FPC framework

	Mating
	Mating's p.r.i.c.e.

	Resolution refutations
	Semantics of refutation sequences
	Semantics of a binary resolution step
	Interpreting a hyperresolution step

	Expansion Trees
	Expansion trees in LK
	Sequentialization of expansion trees to LKF a
	Indexing
	Region delimitation
	Clerks and experts

	FPC for intuitionistic logic
	Mimic
	Initial in LJF a
	Negative/positive alternation
	A p.r.i.c.e. for mimic
	Extending to first order

	-calculus
	p.r.i.c.e. for simply-typed -long -normal form-terms
	Simply-typed -normal form-terms evidence
	Dependently-typed -normal form-terms evidence

	Reasoning with equality
	Introduction
	Formalizing equality reasoning
	Smallest common unit
	Proof evidence and system's properties
	A p.r.i.c.e. definition for one-step rewrite

	Paramodulation
	Describing a paramodulation in LJF a
	A p.r.i.c.e. for a paramodulation step

	Satellite interests
	Hosting kernels
	Introduction
	Mapping LKF sequents to LJF sequents
	Mapping LKF a checking to LJF a checking

	Transducing proof certificates
	Elaborating transducer
	Forgetful transducer

	Cooperating proof certificates

	Conclusion, related and future work
	Future work
	Related work

