
Proof theory, proof search,

and logic programming

Draft: 25-08-2023

This draft includes 10 of a total of 15 planned chapters. The missing chapters

are following:

• Chapters 8 and 9 deal with higher-order quantification (and these need

significant work) and

• Chapters 11 (finite state machines), 14 (proof checking), and 15 (discus-

sions). Of these, Chapter 14 will be a rewrite of an existing paper.

Comments and corrections are welcome.

© Dale Miller

Inria Saclay & Laboratoire d’Informatique (LIX)

1 rue Honoré d’Estienne d’Orves

Campus de l’École Polytechnique

91120 Palaiseau France

dale.miller at inria.fr

ii

Contents

Preface 1

1 Introduction 5

1.1 A spectrum of logics . 5

1.2 Logic and the specification of computations 7

1.3 Proof search and logic programming 8

1.4 Designing logic programming languages 9

1.5 Why use logic to write programs? 10

1.6 Bibliographic notes . 11

2 Terms, formulas, and sequents 13

2.1 Untyped λ-terms . 13

2.2 Types . 15

2.3 Signatures and typed terms . 16

2.4 Formulas . 17

2.5 Sequents . 19

2.6 Bibliographic notes . 21

3 Sequents calculus proofs rules 23

3.1 Sequent calculus and proof search 23

3.2 Inference rules . 25

3.2.1 Structural rules . 26

3.2.2 Identity rules . 27

3.2.3 Introduction rules . 27

3.3 Additive and multiplication inference rules 29

3.4 Sequent calculus proofs . 30

3.5 Permutations of inference rules 32

3.6 Cut-elimination and its consequences 34

3.7 Bibliographic notes . 36

iv Contents

4 Classical and intuitionistic logics 39

4.1 Classical and intuitionistic inference rules 40

4.2 The identity rules and their elimination 45

4.3 Logical equivalence . 51

4.4 Invertible introduction rules . 52

4.5 Negation, false, and minimal logic 54

4.6 Choices to consider during the search for proofs 56

4.7 Bibliographic notes . 57

5 Two abstract logic programming languages 59

5.1 Goal-directed search . 59

5.2 Horn clauses . 61

5.3 Hereditary Harrop formulas . 64

5.4 Backchaining as focused rule application 68

5.5 Formal properties of focused proofs 71

5.6 Kripke model semantics . 82

5.7 Backchaining as a single left rule 84

5.8 Synthetic inference rules . 86

5.9 Disjunctive and existential goals 87

5.10 Examples of fohc logic programs 89

5.11 Dynamics of proof search for fohc 92

5.12 Examples of fohh logic programs 92

5.13 Dynamics of proof search for fohh 95

5.14 Limitations to fohc and fohh logic programs 95

5.15 Bibliographic notes . 98

6 Linear logic 101

6.1 Reflections on the structural inference rules 101

6.2 LK vs LJ: An origin story for linear logic 104

6.3 Sequent calculus proof systems for linear logic 105

6.3.1 Multiplicative additive linear logic 105

6.3.2 Linear logic as MALL plus exponentials 107

6.3.3 Duality and polarity . 109

6.3.4 Introducing implications 112

6.4 Single conclusion sequents with two zones 113

6.5 Embedding fohh into linear logic 118

6.6 A model of resource consumption 120

6.7 Multiple conclusion uniform proofs 124

6.8 Formal properties of Forum proofs 128

6.8.1 Paths and synthetic inference rules 128

6.8.2 Admissibility of the general initial rule 133

6.8.3 Cut rules and cut elimination 134

Contents v

6.8.4 Soundness and completeness of the focused proof system 141

6.9 Bibliographic notes . 149

7 Linear logic programming 153

7.1 Encoding multisets as formulas 153

7.2 A syntax for Lolli programs . 154

7.3 Permuting a list . 155

7.4 Multiset rewriting . 156

7.5 Context management in a theorem prover 159

7.6 Multiset rewriting in Forum . 161

7.7 Specification of sequent calculus proof systems 162

7.8 Bibliographic notes . 165

8 Meta-theory of higher-order linear logic 167

8.1 Introduction . 168

8.2 Near-focused proofs . 169

8.3 Returning to the cut-elimination argument 177

8.4 Conservativity results . 179

9 Higher-order quantification 181

9.1 Higher type quantification . 183

9.2 Higher-order Horn clauses . 184

9.3 Higher-order Hereditary Harrop Formulas 188

9.4 Uniformity proof search in hohh 191

9.5 Examples of higher-order logic programs 197

9.6 Support for abstract data types 197

9.7 Higher-order quantification and linear logic 197

9.8 Proving that reverse is symmetric 198

9.9 Bibliographic notes . 200

10 Collection analysis for Horn clauses 201

10.1 Introduction . 201

10.2 The undercurrents . 202

10.2.1 If typing is important, why use only one type system? . 202

10.2.2 Viewing constants and variables as one 203

10.2.3 Linear logic underlies computational logic 203

10.3 Abstraction and substitution in proof theory 204

10.3.1 Substituting for types 204

10.3.2 Substituting for non-logical constants 204

10.3.3 Substituting for assumptions 205

10.4 Multisets approximations . 206

10.5 Formalizing the method . 209

10.6 Sets approximations . 210

vi Contents

10.7 Automation of deduction . 212

10.8 List approximations . 215

10.9 Difference list approximations 216

10.10Future work . 217

10.11Bibliographic notes . 218

11 Finite state machines 219

11.1 Finite state machines as theories in linear logic 219

11.2 Semi-linear sets, PDAs, CFG, Parihk’s Theorem 222

11.3 Bibliographic notes . 223

12 Encoding security protocols 225

12.1 Communicating processes . 225

12.2 A conventional presentation of protocols 229

12.3 A linear logic formulation . 231

12.4 Encryption as an abstract data type 233

12.5 Abstracting internal states . 235

12.6 Roles as nested implications . 236

12.7 Bibliographic notes . 240

13 Formalizing operational semantic 241

13.1 Three frameworks for operational semantics 241

13.2 The abstract syntax of programs as terms 243

13.2.1 Encoding the untyped λ-calculus 243

13.2.2 Encoding the π-calculus expressions 243

13.3 Big step semantics: call-by-value evaluation 244

13.4 Small step semantics: π-calculus transitions 245

13.5 Binary clauses . 249

13.5.1 Continuation passing in logic programming 249

13.5.2 Abstract Machines . 250

13.6 Linear logic . 253

13.6.1 Adding a counter to evaluation 253

13.6.2 Specification of Concurrency primitives 256

13.7 Bibliographic notes . 258

14 Proof checking 259

14.1 Introduction . 259

14.1.1 Validate proofs, not provers 260

14.1.2 Proof checking vs proof reconstruction 261

14.2 Proof theory as a framework . 262

14.3 Focused versions of sequent calculi 262

14.3.1 Polarizing connectives 264

14.3.2 Grouping don’t-care and don’t-know nondeterminism . 265

Contents vii

14.3.3 Identity and Structural rules 266

14.3.4 Synthetic inference rules 266

14.3.5 Soundness and completeness of focusing 267

14.4 Foundational proof certificates 267

14.5 A proof checker as a logic program 269

14.6 Nondeterminism in proof checking 271

15 Discussion 275

15.1 Some high-level motivations . 275

15.2 The more general setting of polarity: the positive connectives . 276

15.3 Additional notes . 276

Solutions to Selected Exercises 279

Bibliography 288

Index 309

viii Contents

Preface

This book develops some of the proof theory of classical, intuitionistic, and

linear logics and applies that theory to the design and applications of logic

programming. In particular, we view computation based on logic programs as

searching for specific kinds of proof. During the search for a proof, the current

logic program P and the current goal G are recorded using the simple pairing

construction, P ⊢ G, formally called a sequent. We shall use Gentzen’s sequent

calculus framework to formalize the notion of proof in our setting. Of all the

many ways one might attempt a proof of the sequent P ⊢ G, we shall limit

ourselves to proofs that are goal-directed. The notion of goal-directed proof

search is formalized using the technical concept of uniform proof in which

sequent calculus proofs are built using alternating phases, one performs goal-

reduction and the other backchaining. The completeness of uniform proofs is

a formal criterion for judging if a particular choice of goal formulas and logic

programs yields a logic programming language.

This proof theory foundation allows us to define several logic programming

languages based on first-order and higher-order classical, intuitionistic, and

linear logics. In this way, we provide a proof-theoretic foundation for Prolog

(using first-order Horn clauses in classical logic), λProlog (using higher-order

hereditary Harrop formulas in intuitionistic logic), and two linear logic pro-

gramming languages, named Lolli and Forum. As we shall illustrate, these

increasingly expressive logic programming languages add abilities to the logic

programming paradigm to express modular programming, higher-order pro-

gramming, abstract datatypes, state encapsulation, and concurrency.

When attempting to develop the proof theory of uniform proofs, one no-

tices that they allow for asymmetry between the goals and logic programs and

that asymmetry makes the development of a proof theory for uniform proofs

difficult. By making certain simple restrictions on the occurrences of logical

connectives, uniform proofs become examples of focused proofs, and these pro-

vide an excellent setting to develop several proof-theoretic concepts, including

2 Preface

cut elimination.

The reader of this book will learn the following, grouped into the three

themes of this book.

1. Proof theory

• Sequent calculus proof systems for classical, intuitionistic, and lin-

ear logics.

• Major proof-theoretic properties of these sequent calculus proof sys-

tems, including cut-elimination for first-order and higher-order ver-

sions of intuitionistic and linear logics.

2. Proof search

• The operational reading of logic formulas as programs via their

impact on the construction of proofs.

• The formalization of goal-directed search using the notion of uni-

form proofs.

• Focused proof systems as a formal framework to provide structures

to the sequent calculus to support the search for proofs.

3. Logic programming

• Examples of deploying the meta-theory of sequent calculus proofs

to support formal reasoning about logic programs.

• The application of logic programming in intuitionistic and linear

logic to several computer-science-motivated applications, including

the specification of finite state machines, security protocols, oper-

ational semantics for other programming languages, and flexible

proof-checking mechanisms.

This book does not discuss the Curry-Howard correspondence (the “proofs-

as-programs” paradigm). Relating computation to proof search offers an en-

tirely different dimension to the role of logic and proof in computational logic

than the one offered by the Curry-Howard correspondence.

The reader of this book should be familiar with the basic syntactic prop-

erties of first-order logic and the (simply typed) λ-calculus. No background in

the formal representation of proofs is needed, although such a background is

helpful. We shall occasionally present examples of logic programs to help illus-

trate proof-theoretic concepts: such examples will be presented using the syn-

tactic conventions of λProlog. While some familiarity with Prolog or λProlog

is helpful for understanding the examples, the reader unfamilar with these

3

languages should be able to comfortably read these examples since the syn-

tactic conventions of λProlog closely match the syntactic conventions used in

presenting formulas in (higher-order) logic.

The search for proofs has many dimensions that are not addressed here.

In particular, this book does not cover topics related to the implementation of

proof search: for example, unification and backtracking search are not explic-

itly discussed. Thus, the approach here differs from standard approaches to

describing the foundations of Prolog using, for example, SLD-resolution: that

approach explicitly employs the notion of term unification in such foundations.

Here, our foundation formally leaves unification out of the picture, although

it is implicitly used in developing our example applications.

The first part of this book, which ends with Chapter 9, describes how

the sequent calculus can be used to design and reason about various logic

programming languages based on classical, intuitionistic, and linear logics.

In the second part of this book, which starts with Chapter 10, we describe

applications of some of these logic programming languages.

Many chapters contain exercises designed to illustrate and explore ideas

related to the main text. Exercises marked by (‡) have partial or complete

solutions towards the end of this book.

Acknowledgments. Versions of this book have been used in graduate-level

(M2) courses in Paris, Copenhagen, Venice, Bertinoro, and Pisa. I thank the

many students from these courses and Gopalan Nadathur for their comments

on earlier drafts of this book.

4 Preface

Chapter1
Introduction

There are many ways to specify and reason about computation. The early

work of Church, Turing, Gödel, Curry, and others revealed that several dif-

ferent specification devices—such as the λ-calculus, Turing machines, and re-

cursive equations—all specified the same set of computable functions. Many

programming languages—such as LISP, C, Pascal, and Ada—have been de-

signed that can be used to implement (in principle) this same set of computable

functions. Apparently, no programming language can be viewed as canonical:

the choice of which programming language one uses comes down to issues such

as which language has compilers for a particular piece of computer hardware,

which language is being used by one’s collaborators, etc.

Given that logic can be seen as arising from foundational concerns within

mathematics and computer science, it is interesting to consider using logical

expressions themselves as programs. The logic programming paradigm arises

from directly addressing questions such as: How might logic be used directly

as a programming language? How expressive can such logic programming

languages be? What benefits arise from basing the syntax and operational

meaning of programs on techniques and ideas formulated by logicians in the

first half of the 20th century?

This book addresses this latter set of questions. But first, we address the

fact that there are many logics and kinds of proof by organizing them into

a conceptually clean framework before attempting to deliver a foundation for

logic-based programming.

1.1 A spectrum of logics

The syntax for terms and formulas will be given in Chapter 2 using the frame-

work provided by Church in his Simple Theory of Types [1940]: in particu-

lar, both terms and formulas are simply typed λ-terms, and the equality of

6 Chapter 1. Introduction

terms and formulas is identified with the equality of such λ-terms (i.e., by the

equations of α, β, and η conversion). Terms that have a particular primi-

tive formula type—the Greek letter omicron o (following [Church, 1940])—are

classified, in fact, as formulas. The symbol ∧, ∨, and ⊃ are written in infix to

denote conjunction, disjunction, and implications, respectively. Negation will

be written as the prefix operator ¬.
In this book, logics are classified along two major axes. The first axis

involves the universal ∀ and existential ∃ quantifiers. A logic with no quan-

tifiers is a propositional logic. A logic with quantifiers is a quantificational

logic. Quantifiers in this book will bind typed variables (again following Church

[1940]). A logic in which the type of a quantified variable is limited to prim-

itive and non-propositional types is first-order. A higher-order logic allows

quantification at all types, including propositional and functional types.

The second axis consists of the following three logics.

• Classical logic is a logic of truth values. For example, propositional

formulas are either true or false depending on the truth value of the

propositional variables it contains. Such a truth value can be computed

using truth tables. For example, the formulas p ∨ ¬p and ((p ⊃ q) ⊃
p) ⊃ p are true no matter what truth value is given to p and q.

• Intuitionistic logic can be seen as a logic based on a constructive ap-

proach to proof. For example, a proof that the formula ∃x.B(x) is a

theorem must contain a specific term, say t, and a proof that B(t) is a

theorem. Similarly, a proof that B1 ∨ B2 is a theorem contains a spe-

cific value of i ∈ {1, 2} and a proof of Bi. For this reason, the formula

p ∨ ¬p may not be a theorem since, without more information about p,

we might not be able to provide a proof of either p or ¬p. If p is a state-

ment such as 3 = 4 then we can prove p ∨ ¬p since we can presumably

prove ¬(3 = 4). However, if we know nothing about p, then we cannot

prove either of these disjuncts.

• Linear logic, introduced by Girard [1987], can be seen as a logic of re-

sources. For example, having one occurrence of p can be different from

having two occurrences, as in p ∧ p. As such, it is possible to model

vending machines (e.g., two 50 cent coins yields one coffee), Petri nets,

and process calculi.

Gentzen [1935] introduced the sequent calculus as a technical device to rep-

resent proofs in both classical and intuitionistic logics. The sequent calculus

also provides an ideal setting for describing proofs for linear logic. As a result,

we adopt the sequent calculus here and stress the modular and straightfor-

ward way in which it can be used to describe provability in these three logics.

Our approach here does not attempt to merge classical, intuitionistic, and

1.2 Logic and the specification of computations 7

linear logics into one logic: instead, we view these logics as having different

but closely related proof systems. In fact, the proof systems will be so closely

related, that results in one of these logics can often be lifted with slight mod-

ification to provide results in another logic.

1.2 Logic and the specification of computations

Logic can be applied to the specification of computing in a few ways. We give

an overview of these roles for logic in order to identify the particular niche

that is our focus in this book.

In the specification of computation, logic is generally used in one of two ap-

proaches. In the computation-as-model approach, computations are encoded

as mathematical structures, containing such items as nodes, transitions, and

states. Logic is used in an external sense to make statements about those

structures. That is, computations are used as models for logical formulas.

Intensional operators, such as the triples of Hoare logic or the modals of tem-

poral and dynamic logics, are often employed to express propositions about

state changes. This use of logic to represent and reason about computation

is probably the oldest and most broadly successful use of logic specifications

with computation.

The computation-as-deduction approach uses pieces of logic’s syntax (such

as formulas, terms, types, and proofs) as elements of the specified computa-

tion. In this more rarefied setting, there are two different approaches to how

computation is modeled.

The proof normalization approach views the state of a computation as a

proof term and the process of computing as normalization (know variously as

β-reduction or cut-elimination). Functional programming can be explained us-

ing proof-normalization as its theoretical basis [Martin-Löf, 1982] and has been

used to justify the design of new functional programming languages [Abram-

sky, 1993].

The proof search approach views the state of a computation as a sequent (a

structured collection of formulas) and the process of computing as the process

of searching for a proof of a sequent: the changes that take place in sequents

capture the dynamics of computation. This perspective on computation is the

subject of this book.

Both of these programming paradigms include nondeterminism in their

computational mechanisms. When functional programming languages are de-

signed based on proof normalization, explicit control of the order in which

redexes are rewritten are usually carefully described: such controls are often

associated with either call-by-value or the call-by-name. In general, evaluation

in functional programming languages is so tightly controlled that evaluation

becomes deterministic. Computation based on searching for proofs is also non-

8 Chapter 1. Introduction

deterministic. Removing some elements of nondeterminism is often a design

goal of most logic programming languages and their interpreters. In general,

however, some nondeterminism is retained in logic programming languages:

it presence and exploitation provides some of the expressiveness of the logic

programming paradigm.

The separation of proof normalization from proof search given above is in-

formal and suggestive: such a division helps point out different sets of concerns

represented by these two broad approaches. For example, proof normalization

focuses on describing rewritings and their confluence, while proof search fo-

cuses on the nondeterminism and the reverse reading of inference rules. Of

course, new advances in computational logic and proof theory might allow us

to merge or reorganize this classification.

1.3 Proof search and logic programming

The earliest theoretical framework for logic programming was not an analysis

of proofs but rather of resolution refutations [Robinson, 1965] and, in partic-

ular, SLD-resolution. This choice of foundations for logic programming was

unfortunate for at least the following reasons.

1. Resolution is used to refute: that is, it attempts to derive a contradiction.

This choice is counterintuitive since logic programming certainly seems

to be about proving a goal formula from a collection of other formulas

(the logic program).

2. Most refutation systems work with formulas that are in conjunctive nor-

mal form and Skolem normal form. Unfortunately, the only logic we

wish to study for which restricting to such normal forms is possible is

classical logic. Furthermore, these normal forms are not preserved when

higher-order, predicate variables are substituted with expressions con-

taining quantifiers and connectives.

3. A key inference step in resolution is the computation of most general

unifiers. In many ways, unification seems to be part of the implementa-

tion behind the interplay of quantification and equality. It seems more

natural first to try to understand that interplay before forcing one to

implement it.

It is thus appealing to find a different approach to describing logic pro-

gramming that is cast in terms of proving and in which normal forms and

unification are not required. The sequent calculus provides just such a set-

ting. Furthermore, removing unification from the abstract notion of proof

search has a couple of benefits. First, it makes it possible for the interplay

1.4 Designing logic programming languages 9

between universal and existential quantifiers to be explored without forcing

the use of Skolem functions. Second, the use of most general unifiers within

resolution means that it cannot handle those situations where most general

unifiers do not exist (which can happen when attempting to unify simply typed

λ-terms [Huet, 1975]).

1.4 Designing logic programming languages

A concern in the early history in the development of Prolog focused on how

best to control search within a Prolog interpreter. For example, Kowalski

[1979] proposed the equation

Algorithm = Logic + Control,

which makes the important point that there is a gap between logic (here, first-

order Horn clause specifications) and algorithms. For example, the naive Horn

clause specification of the Fibonacci series could yield both the exponential-

time algorithm and the linear time algorithm depending on whether a top-

down (goal-directed) or a bottom-up (program-directed) proof search is em-

ployed. Clearly, the programmer must be able to have some control over which

of these algorithms ultimately arises from this single logic specification. Var-

ious non-logical features have also been added to Prolog—such as the cut !

and negation-as-failure—in order to allow for some explicit control of search.

Given that the logical foundation of Prolog is rather weak (see the dis-

cussion in Section 5.13), the design of new logic programming languages have

made several additional extensions to logic, yielding a equation more like the

following.

Programming = Logic + Control + Input/Output

+ Higher-order programming

+ Data abstractions

+ Modules

+ Concurrency +

Such extensions are generally made in an ad hoc fashion and logic, which was

the motivation and the intriguing starting point for a language like Prolog,

was moved from center stage. With such an approach to building a program-

ming language, the features added to address, say, higher-order programming

can interact in complex ways with features that were added to address, say,

modules. Describing such interaction of features can greatly complicate the

design, implementation, and semantics of a programming language.

A interesting project is to see how one might satisfy the equation

Programming = Logic.

10 Chapter 1. Introduction

If this equation is at all possible, then one will certainly need to rethink what

is meant by “Programming” and by “Logic.” This book explores reinter-

preting “Logic” by moving from first-order classical logic of Horn clauses to

intuitionistic and linear logics possibly based on higher-order quantification.

Chapters 12 through 14 provide several extended examples in which the task

of programming and the use of rich logics coincide.

1.5 Why use logic to write programs?

Several benefits arise from writing programs as logic formulas and viewing

computation as the construction of proofs. We list several here.

1. Logical formulas come with various operations on them that generally

satisfy useful properties. For example, applying substitutions into for-

mulas or replacing a subformula with a logically equivalence subformula

is meaningful. Thus, applying substitutions into programs and then ap-

plying, say, modus ponens to two program clauses could well be expected

to return a new, meaning-preserving program element.

2. There are generally multiple ways to describe central concepts in logic.

For example, the set of theorems can usually be described as both the

set of all provable formulas and the set of all true formulas (based on

some suitable model theory). Also, provability might be characterized

in strikingly different ways: via, for example, sequent calculus proofs,

natural deduction, resolution refutations, tableaux, etc. Thus, different

models of logic program execution might be structured in different ways

while preserving the original declarative meaning of the program.

3. Proof theory generally comes with various kinds of abstractions, and a

suitably designed logic programming language can harness these. For ex-

ample, higher-order intuitionistic logic can provide logic programs with

abstract data types, modular programming, and higher-order program-

ming. Furthermore, all new features do not have undefined or complex

interactions.

4. The meaning of logics we consider here have universally accepted de-

scriptions. Thus, logic programs can, in principle, be meaningful many

years in the future even if no particular compiler or interpreter used to

execute them today is available in that future time.

Such benefits from using logic as a programming language are rather strik-

ing and worthy of additional exploration.

1.6 Bibliographic notes 11

1.6 Bibliographic notes

The Stanford Encyclopedia of Philosophy has good, overview articles on proof

theory [Rathjen and Sieg, 2020], the development of proof theory [Plato, 2018],

intuitionistic logic [Moschovakis, 2021], linear logic [Di Cosmo and Miller,

2019], and Church’s Simple Theory of Types [Benzmüller and Andrews, 2019].

For more about the use of resolution and SLD-resolution to describe logic

programming based on Horn clauses in first-order classical logic, see the early

papers [Apt and Emden, 1982] and [Emden and Kowalski, 1976], as well as

textbooks such as [Gallier, 1986] and [Lloyd, 1987]. The author has written

about the influences that logic programming and proof theory have had on each

other [2021] as well as a survey [2022] describing several decades of research

into using proof theory as a foundation for logic programming.

12 Chapter 1. Introduction

Chapter2
Terms, formulas, and sequents

This book covers topics in both first-order and higher-order logic. Only first-

order quantification is used in Chapters 3 through 7 while higher-order quan-

tification will be used in the remaining chapters. This chapter provides the

basic syntactic definitions and operations for higher-order quantification and

higher-order substitutions: the first-order variants of quantification and sub-

stitution can be seen as a natural restriction on the general setting.

In his 1940 paper, Church presented the simple theory of types (STT) as a

higher-order version of classical logic in which the simply typed λ-calculus is

used to organize its syntax. Since Church’s goal for STT was to formulate a

logical foundation for mathematics, he also added to STT various mathemat-

ically motivated axioms, such as those for choice, extensionality, and infinity.

By ignoring these mathematical axioms, one has a logical system, called ele-

mentary theory of types (ETT) [Andrews, 1974], that is useful for exploring

the nature of higher-order quantification within logic.

2.1 Untyped λ-terms

While we will employ simply typed λ-terms throughout this book, we briefly

consider the untyped λ-calculus, which shares an equality theory with the

simply typed terms.

We shall start our syntax presentation by assuming that there is a fixed

and denumerably infinite set of tokens (or identifiers). In this section, we

will use the term token and variable interchangeable. Later in this chapter,

when we introduce different ways to declare the type and scope of bindings for

tokens, we shall distinguish between token-as-variable and token-as-constant.

Such tokens are considered as variables in the λ-calculus. There are two other

ways to build λ-term. Given two terms, say M and N , their application is

(MN) (applications is the infix juxtaposition operation and it associates to

14 Chapter 2. Terms, formulas, and sequents

the left). Given a term M and a token x, the abstraction of x over M is

(λx.M). Here, the token x is a bound variable with scope M . We shall often

drop the outermost parentheses and the period to improve readability.

The usual notions of free and bound occurrences of variables are assumed.

If two terms differ up to an alphabetic change of their bound variables, we say

that these terms are α-convert. We identify two terms up to such α-conversion.

A subexpression of the form (λx.M)N is a β-redex and a subexpression of

the form (λx.(Mx)), where x has no free occurrence in M , is an η-redex.

Replacing an occurrence of the β-redex ((λx.M)N) with the capture-avoiding

substitution of N for x in M , also written as M [x/N], is called β-reduction.

The converse relation is called β-expansion. A term is β-convertible to a term

s if there is a sequence (including the empty sequence) of β-reductions and

β-expansions steps that rewrites t to s. Replacing an occurrence of an η-redex

(λx.(Mx)) with M is called η-reduction. The converse relation is called η-

expansion. A term is η-convertible to a term s if there is a sequence (including

the empty sequence) of η-reductions and η-expansions steps that rewrites t to

s. A term M is βη-convertible to N if there is a sequence of β-conversion and

η-conversion steps that carries M to N . When we use the terms β-conversion

and βη-conversion, we always assume the α-conversion rule is implicit.

A term is β-normal if it does not contain a β-redex. Stated in a positive

form, a term is β-normal if it has the form λx1 . . . λxn.(ht1 . . . tm) where n,m ≥
0 and where h, x1, . . . , xn are tokens, and the terms t1, . . . , tm are all in β-

normal form. In this case, we call the list x1, . . . , xn the binder, the token h

the head, and the list t1, . . . , tm the arguments of the term.

Exercise 2.1. Not all λ-terms are β-convertible to a term that is β-normal.

Of the following terms, determine which is not β-convertible to a β-normal

term and which are. In the latter case, compute that normal form.

1. ((λx.y)(λx.x))

2. ((λx.x)(λx.x))

3. ((λx.(xx))(λx.x))

4. ((λx.(xx))(λx.(xx)))

5. ((λx.y)((λx.(xx))(λx.(xx))))

Exercise 2.2. Church numerals are the following sequence of closed λ-terms:

(λfλx.x) (λfλx.(fx)) (λfλx.(f(fx))) (λfλx.(f(f(fx)))) . . .

These terms can be used to encode the natural numbers 0, 1, 2, 3, The two

λ-terms

S = λNλMλfλx.((Nf)(Mfx)) P = λNλMλfλx.((N(Mf))x)

2.2 Types 15

can be used to compute the sum (using S) and product (using P) of two

Church numerals. Check this claim by computing the β-normal forms of the

following two λ-terms, which encode 2 + 3 and 2× 3.

((S (λf.λx.(f(fx)))) (λf.λx.(f(f(fx)))))

((P (λf.λx.(f(fx)))) (λf.λx.(f(f(fx)))))

Exercise 2.3.(‡) Computing β-normal forms can cause the size of terms to

grow quickly. For example, consider the following sequence of λ-terms.

E0 =
((
(λgλe.e) (λeλf(e(ef)))

)
(λfλx(f(fx)))

)
E1 =

((
(λgλe.(ge)) (λeλf(e(ef)))

)
(λfλx(f(fx)))

)
E2 =

((
(λgλe.(g(ge))) (λeλf(e(ef)))

)
(λfλx(f(fx)))

)
E3 =

((
(λgλe.(g(g(ge)))) (λeλf(e(ef)))

)
(λfλx(f(fx)))

)
The term En is the Church numeral encoding n applied twice to the encoding

of 2. The β-normal form of E0 encodes 2 while E1 reduces to the encoding of

4. What number is encoded by the β-normal form of En?

As the previous two exercises show, it is possible to use λ-terms to compute.

That observation is often used as a starting point for describing functional

programming based on λ-terms. While the dynamics of β-reduction will be

important for us here, we shall employ those dynamics in a straightforward

fashion: β-reduction will usually be used to instantiate quantified expressions.

Exercise 2.4.(‡) Is there an expression N such that (λx.w)[N/w] is equal to

λy.y (modulo α-conversion, of course)? Phrased slightly differently, is there

an expression N such that ((λwλx.w)N) has (λy.y) as a β-normal form? The

expression N may or may not have free occurrences of variables.

2.2 Types

Let S be a fixed, non-empty set of tokens. The tokens in S will be used as

primitive types (also called sorts). The set of types is the smallest set of expres-

sions that contains the primitive types and is closed under the construction of

arrow types, denoted by the binary, infix symbol →. The Greek letters τ and

σ are used as syntactic variables ranging over types. The type constructor →
associates to the right: read τ1 → τ2 → τ3 as τ1 → (τ2 → τ3).

These types are called simple types. Such type expressions do not contain

binders nor are they polymorphic. Instead, these types are used as syntactic

types in order to separate expressions of different syntactic categories. For

example, in Section 13.2, the syntax of the π-calculus is encoded using two

primitive types n (for names) and p (for process). The type n → p is a

16 Chapter 2. Terms, formulas, and sequents

syntactic type denoting a name abstraction over a process. This type is not

intended to denote all functions from names to processes. Of course, every

abstraction of type n → p does indeed represent a function from names to

processes: for example, if M : n → p and N is a name, then the β-normal

form of (MN) is a process (the result of substituting N for the abstracted

variable of M). However, there are functions from names to processes that do

not correspond to an actual syntactic expression of type n → p: for example,

the function that maps a particular name, say a, to the process expression P1

and all other names to a different process P2 is not encoded in the syntax as

an expression of type n → p.

Let τ be the type τ1 → · · · → τn → τ0 where τ0 ∈ S and n ≥ 0. The types

τ1, . . . , τn are the argument types of τ while the type τ0 is the target type of τ .

If n = 0 then τ is τ0 and the list of argument types is empty. The order of a

type τ is defined as follows: If τ is primitive then τ has order 0; otherwise, the

order of τ is one greater than the maximum order of the argument types of τ .

As a recursive definition, the order of a type, written ord(τ), can be defined

by the following two clauses.

ord(τ) = 0 provided τ ∈ S
ord(τ1 → τ2) = max(ord(τ1) + 1, ord(τ2))

Note that τ has order 0 or 1 if and only if all the argument types of τ are

primitive types.

2.3 Signatures and typed terms

Signatures are used to formally declare that certain tokens are assigned a

certain type. In particular, a signature (over S) is a set Σ (possibly empty) of

pairs, written as x :τ , where τ is a type and x is a token. We require signatures

to be determinate in the sense that for every token x, if x : τ and x : σ are

members of Σ then τ and σ are the same type expression.

A signature Σ is said to have order n if every type associated to a token

in Σ has order less than or equal to n. Thus, Σ is a first-order signature if

whenever h : τ is a member of Σ, ord(τ) ≤ 1.

A typing judgment, Σ ⊩ t : τ , relates a signature Σ, a λ-term t, and a

type τ . We consider the variables in Σ as being bound over such a judgment.

Common inference rules for determining such typing rules are the following.

Σ, x : τ ⊩ x : τ
Σ ⊩ t : σ → τ Σ ⊩ s : σ

Σ ⊩ (t s) : τ

Σ, x : τ ⊩ M : σ

Σ ⊩ (λx.M) : τ → σ

In the last inference rule, it is assumed that the bound variable x does not

occur in Σ. These three typing rules can be used with terms not in β-normal

2.4 Formulas 17

Σ, x1 : τ1, . . . , xn : τn ⊩ t : τ0
Σ ⊩ λx1 . . . λxn.t : τ1 → · · · → τn → τ0

Σ ⊩ t1 : σ1 · · · Σ ⊩ tn : σn h : σ1 → · · · → σn → τ0 ∈ Σ

Σ ⊩ (h t1 · · · tn) : τ0

Figure 2.1: Typing judgment for Σ-terms of type τ . Here, both rules are

restricted so that τo ∈ S and n ≥ 0. Also, the variables x1, . . . , xn are

assumed to not occur in Σ.

form. However, in this book, we shall restrict the typing judgment so that

only β-normal formulas are given types. Thus, we shall adopt the inference

rules in Figure 2.1 as the official rules for this judgment.

When the judgment Σ ⊩ t:τ is provable, we say that t is a Σ-term of type τ .

Note that if a term is given a type, then that term is β-normal. Furthermore,

any term that is given a type is also said to be in βη-long normal form. This

normal form can be arrived at by first computing the β-normal form, and then

applying some η-expansion steps. For example, if i ∈ S, then the judgment

Σ ⊩ λx.x : (i → i) → i → i is not provable, but the judgment

Σ ⊩ λxλy.xy : (i → i) → i → i,

based on the η-expanded version of the term, is provable.

Exercise 2.5.(‡) Fix a set of sorts S and a signature Σ over S. Prove that if

there are primitive types τ and τ ′ such that Σ ⊩ t:τ and Σ ⊩ t:τ ′, then τ = τ ′.

Show that this statement is not true if we allow τ and τ ′ to be non-primitive.

2.4 Formulas

Most descriptions of predicate logic first present terms and then present formu-

las as a separate structure that incorporates terms. Following Church [1940],

we shall instead define formulas as terms of the particular type o (the Greek

letter omicron).

When defining the formulas of a given logic (e.g., first-order classical logic),

we shall first fix the declaration of the logical constants. That signature, which

we denote as Σ−1 (the signature of the basement), attributes to various tokens

types which have target type o.

These logical constants are divided into two groups: propositional con-

stants and quantifiers. The propositional constants are given types that only

use the primitive type o and that have order 0 or 1. For example, in Chapter 4,

18 Chapter 2. Terms, formulas, and sequents

the propositional connectives in the formulas for classical and intuitionistic

first-order logic are declared by the following signature.

{t : o, f : o, ∧ : o → o → o, ∨ : o → o → o, ⊃ :o → o → o}

The binary symbols ∧, ∨, and ⊃ are written as infix operators. For example,

the λ-term ((∧ P) Q) is written in the more common form (P ∧Q). Also, ∧
and ∨ associating to the left and ⊃ associating to the right and ∧ has higher

priority than ∨, which has higher priority than ⊃.

There are two classes of quantifiers we consider in this book, namely, ∀τ ,
for universal quantification for type τ , and ∃τ , for existential quantification

for type τ . Both ∀τ and ∃τ are assigned the type (τ → o) → o. In principle,

there are denumerably infinite many such quantifiers, one for each type τ . The

expressions ∀τ (λx.B) and ∃τ (λx.B) are abbreviated as ∀τx.B and ∃τx.B, re-

spectively, or as simply ∀x.B and ∃x.B if the value of the type subscript is not

important or can easily be inferred from context. Note that the binding oper-

ation of quantification is identified as the binding operation of the underlying

λ-calculus.

After fixing the set of logical constants, we generally fix the non-logical

symbols by picking another signature Σ0. Let c : τ1 → · · · → τn → τ0 ∈ Σ0,

where τ0 is a primitive type and n ≥ 0. If τ0 is o, then c is a predicate symbol

of arity n. If τ0 ∈ S\{o} (i.e., τ0 is not o), then c is a function symbol of

arity n. A Σ−1 ∪Σ0-term of type o is also called a Σ−1 ∪Σ0-formula, or more

usually either a Σ0-formula (since Σ−1 is usually fixed) or just a formula (if

Σ0 is understood).

A logic is propositional if the only logical connectives it contains are propo-

sitional connectives (i.e., no quantifiers). A logic is first-order if the only

quantifiers allowed in its formulas are contained in the set

{∀τ : (τ → o) → o | τ ∈ S\{o}} ∪ {∃τ : (τ → o) → o | τ ∈ S\{o}}.

The types in this signature are of order 2. The restriction on the type of

quantifiers, namely τ ∈ S\{o}, implies that in a first-order formula, the only

quantification is over primitive (and non-formula) types. A logic that provides

no restriction on the types used in quantification is a higher-order logic.

Assume that Σ−1 declares logical connectives for a first-order logic and

that Σ0 is a first-order signature. Let τ be a primitive type different from o.

A first-order term t of type τ is either a token of type τ or it is of the form

(f t1 . . . tn) where f is a function symbol of type τ1 → · · · → τn → τ and,

for i = 1, . . . , n, ti is a term of type τi. In the latter case, f is the head and

t1, . . . , tn are the arguments of this term. Similarly, a first-order formula either

has a logical symbol as its head, in which case, it is said to be non-atomic, or

a non-logical symbol at its head, in which case it is atomic.

2.5 Sequents 19

As mentioned above, formulas in both classical and intuitionistic first-order

logic make use of the same set of logical connectives, namely, ∧ (conjunction),

∨ (disjunction), ⊃ (implication), t (truth), f (absurdity), ∀τ (universal quan-

tification over type τ), and ∃τ (existential quantification over type τ). The

negation of B, sometimes written as ¬B, is an abbreviation for the formula

B ⊃ f .

The nesting of implications within formulas will prove to be a useful feature

of formulas to quantify. We define clausal order of formulas using the following

recursion on formulas in classical and intuitionistic logic.

order(A) = 0 provided A is atomic, t , or f

order(B1 ∧B2) = max(order(B1), order(B2))

order(B1 ∨B2) = max(order(B1), order(B2))

order(B1 ⊃ B2) = max(order(B1) + 1, order(B2))

order(∀x.B) = order(B)

order(∃x.B) = order(B)

This measure counts the number of times implications are nested to the left of

implications. In particular, order(¬B) = order(B) + 1. The clausal order of a

finite set or multiset of formulas is the maximum clausal order of any formula

in that set or multiset. Note the similarity to the way the order of types is

given in Section 2.2.

The polarity of a subformula occurrence within a formula is defined as

follows. If a subformula C of B occurs to the left of an even number of

occurrences of implications in B, then C is a positive subformula occurrence

of B. On the other hand, if a subformula C occurs to the left of an odd number

of occurrences of implication in a formula B, then C is a negative subformula

occurrence of B. More formally:

• B is a positive subformula occurrence of B.

• If C is a positive subformula occurrence of B then C is a positive sub-

formula occurrence in B ∧ B′, B′ ∧ B, B ∨ B′, B′ ∨ B, B′ ⊃ B, ∀τx.B,

and ∃τx.B; C is also a negative subformula occurrence in B ⊃ B′.

• If C is a negative subformula occurrence of B then C is a negative

subformula occurrence in B∧B′, B′∧B, B∨B′, B′∨B, B′ ⊃ B, ∀τx.B,

and ∃τx.B; C is also a positive subformula occurrence in B ⊃ B′.

2.5 Sequents

Proof and provability generally need to be given for a collection of formulas

instead of a single, isolated formula. For example, a typical way to describe

20 Chapter 2. Terms, formulas, and sequents

the provability of the implication B ⊃ C is to pose the hypothetical judgment

involving two formulas: if B then C. The sequents introduced by Gentzen

[1935] are one way to organize the multiple formulas that are involved in

stating a provable statement. In their simplest form, sequents are a pair,

written Γ ⊢ ∆, of the two collections of formula Γ and ∆. Gentzen used −→
instead of ⊢ for building a sequent but we will follow the more traditional

approach and use ⊢ largely since the arrow notion is used in many other

computational-oriented situations (see, for example, Chapter 13). Consider

a mathematician’s attempt at a proof: at the top of her page, she lists the

formulas in Γ as assumptions, and at the bottom of the page, she displays the

formula B that is her goal to prove. The sequent Γ ⊢ B, in which there is

exactly one formula to the right of the ⊢, can be used to encode that state of

her proof attempt. More intuition about sequents and logical reasoning will

be given in Section 3.1.

Within this book, sequents will vary somewhat in structure: we outline

here these variations.

Collections of formulas in sequents will be either lists or multisets or sets.

Sequents can also be one-sided or two-sided. One-sided sequents are usually

written as ⊢ ∆ and two-sided sequents are usually written as Γ ⊢ ∆: here, Γ

and ∆ are one of the three kinds of collections of formulas mentioned above.

Sometimes we shall see multiple collections of formulas, separated by a semi-

colon, on both the left and right sides of sequents; for example, Γ; Γ ⊢ ∆;∆′

and ⊢ ∆;∆′. In the two-sided sequent Γ ⊢ ∆, we shall say that Γ is this se-

quent’s antecedent or left-hand side and that ∆ is its succedent or right-hand

side. Finally, we will add ⇓ to certain sequents when we discussed focused proof

systems: in particular, Σ : Γ ⇓ D ⊢ A in Section 5.4 and Σ : Ψ;∆ ⇓ B ⊢ Γ;Υ

in Section 6.7.

The formulas in a sequent are typed, and the signatures that declare the

type of the token in those formulas must be clearly specified. As in the pre-

vious section, we shall generally assume that once we pick a particular logic

(classical, intuitionistic, or linear), we have fixed the signature Σ−1. Further-

more, a set of non-logical constants Σ0 will often be fixed as well. Finally, the

rules that Gentzen gives for the treatment of quantifiers involves the introduc-

tion of eigenvariables: these variables may appear free in the formulas of some

sequents. To properly declare those variables and their types, we shall often

prefix a sequent with a signature: for example, Σ : ⊢ ∆ and Σ : Γ ⊢ ∆. In all

these cases, a formula that appears in ∆ or Γ must be given type o using the

union of the three signatures Σ−1, Σ0, and Σ.

We note some issues concerning matching expressions with schematic vari-

ables. For example, let B denote a formula and let Γ and Γ′ denote collections

of formulas. Considering what it means to match the expressions B,Γ′ and

Γ′,Γ′′ to a given collection, which we assume contains n ≥ 0 formulas.

2.6 Bibliographic notes 21

• If the given collection is a list, then B,Γ′ matches if the list is non-empty

and B is the first formula and Γ′ is the remaining list. The expression

Γ′,Γ′′ matches if Γ′ is some prefix and Γ′′ is the remaining suffix of that

list: there are n+ 1 possible matches.

• If the given collection is a multiset then B,Γ′ matches if the multiset

is non-empty and B is a formula in the multiset and Γ′ is the multi-

set resulting from deleting one occurrence of B. The expression Γ′,Γ′′

matches if the multiset union of Γ′ and Γ′′ is Γ: there can be as many

as 2n possible matches since each member of Γ can be placed in either

Γ′ or Γ′′.

• If the given collection is a set then B,Γ′ matches if the set is non-empty

and B is a formula in the set and Γ′ is either the given set or the set

resulting from removing B from the set. The expression Γ′,Γ′′ matches

if the set union of Γ′ and Γ′′ is Γ: there can be as many as 3n possible

matches, since each member of Γ can be placed in either Γ′ or Γ′′ or in

both.

2.6 Bibliographic notes

The approach to specifying terms and formulas in elementary type theory

(ETT) is a popular choice in the construction of modern theorem prover sys-

tems: for example, ETT is used in the HOL family of provers [Gordon, 2000]

as well as in Isabelle [Paulson, 1994], Abella [Baelde et al., 2014], and the

logic programming language λProlog [Miller and Nadathur, 2012]. The text-

books Andrews [1986] and Farmer [2023] treat this logic in detail.

For a comprehensive treatments of the untyped λ-calculus, see [Barendregt,

1984], and of the typed λ-calculus, see [Krivine, 1990; Barendregt et al., 2013].

The use of untyped λ-terms here is similar to the so-called “Curry-style” of

typed λ-terms: bound variables are not assumed globally to have types but

are provided a type when they are initially bound. This approach to typing

contrasts that used by Church, where variables have types independently of

whether or not they are bound. For more about these different approaches to

types in the λ-calculus, see [Pfenning, 2008].

The perspective that (natural deduction) proofs correspond to (depen-

dently) typed λ-terms and that β-reductions correspond to (functional) com-

putation is part of the well known Curry-Howard correspondence approach to

modeling computation (see [Sørensen and Urzyczyn, 2006]). This approach to

computation is not used in this book: instead, we model computation as the

search for (cut-free) proofs, an approach that is often referred to as the proof

search approach to computation.

22 Chapter 2. Terms, formulas, and sequents

Richer types than the simple ones introduced in this chapter are indeed

useful within logical formulas and logic programming more specifically. For

example, the programming language λProlog has a form of polymorphic typ-

ing [Nadathur and Pfenning, 1992; Appel and Felty, 2004; Miller and Na-

dathur, 2012] and the Elf logic programming language (based on the LF logi-

cal framework) uses dependently type λ-terms [Pfenning, 1989; Pfenning and

Schürmann, 1999].

Chapter3
Sequents calculus proofs rules

A familiar form of formal proof, often attributed to Frege and Hilbert, accepts

certain formulas as axioms (e.g., (p ⊃ (q ⊃ p)) and (((p ⊃ q ⊃ r) ⊃ (p ⊃ q) ⊃
(p ⊃ r)))) and certain inference rules (e.g., from p and (p ⊃ q) conclude q).

A formal Frege proof is a list of formulas such that every formula occurrence

in that list is either an axiom or the result of applying an inference rule to

previous formulas in the list. Such proof structures are easy to trust: any

provable formula (i.e., by appearing in such a list of formulas) must be as

trustworthy as the trust one puts into the axioms and inference rules. However,

such proof objects have so little structure that it is hard to imagine effective

proof search mechanisms for them. In contrast, the notion of sequent calculus

proofs provides a much more valuable way of structuring proofs. As we shall

see, such proof structures are natural for modeling abstract execution models

in the logic programming paradigm.

3.1 Sequent calculus and proof search

The sequent calculus makes at least two significant departures from Frege

proofs. First, while inference rules are applied to formulas in Frege proofs, they

are applied to sequents—a more complex structure—in the sequent calculus.

Second, there are no axioms used within the sequent calculus proof systems we

study here: the burden of proof falls entirely on inference rules over sequents.

In Section 2.5, we presented sequents as formal, syntactic structures that

contain one or more collections of formulas with an outer layer of variable

bindings (denoted by the associated eigenvariable signature). Before formally

presenting inference rules in Section 3.2 involving such sequents, we provide

an intuitive reading of sequents by providing an informal reading of two-sided

sequents in which the right-hand side is a collection containing exactly one

occurrence of a formula. Consider, for example, attempting to prove that for

24 Chapter 3. Sequents calculus proofs rules

every natural number n, the product n(n + 1) is even. An informal proof of

this fact can be organized as follows. To prove that this is true for all natural

numbers, pick some arbitrary number, say, m. Now, m is either even or odd.

If m is even, then the product m(m + 1) is even. If m is odd, then m + 1 is

even and, again, the produce m(m + 1) is even. Hence, in either case, this

product is even.

A first step in formalizing this proof would be to identify (and name)

three lemmas about natural numbers that this argument accepts as previously

proved.

L1 ∀n.(even n) ∨ (odd n)

L2 ∀n.(odd n) ⊃ (even (s n))

L3 ∀n,m, p.((even n) ∨ (even m)) ⊃ (times n m p) ⊃ (even p)

For these lemmas to be proper formulas as defined in the previous chapter, we

must assume that the set of sorts contains a primitive type nat ∈ S and that

the signature of non-logical constants Σ0 must contain the following declara-

tions:

z : nat, s : nat → nat,

even : nat → o, odd : nat → o, times : nat → nat → nat → o

We assume that natural numbers are encoded as z, (s z), (s (s z)), etc and

that the predicate (times n m p) hold precisely when p is the product n×m.

Imagine that we now take a blank sheet of a paper and write at the top the

three lemmas that we accept as assumptions and write at the bottom of that

sheet the formula ∀n, p.(times n (s n) p) ⊃ (even p). Our task is to fill in the

gap between the assumptions at the top and the conclusion at the bottom. A

sequent is essentially a representation of the status of that sheet of paper: in

this case, that sequent (named T1) would be

T1 ·;L1, L2, L3 ⊢ ∀n, p.(times n (s n) p) ⊃ (even p).

The prefix, which is just the dot ·, is meant to show that there are no variables

bound over this particular sequent. One way to make progress on finishing

a proof of this sequent is to take a new sheet of paper on which we write

the assumptions L1, L2, L3 and (times n (s n) p) at the top and write the

conclusion (even p) at the bottom of that sheet. Thus, we now have an addi-

tional assumption that p is the product n(n+ 1) and the different conclusion

(even p). This new state in the construction of a formal proof is represented

by the sequent

T2 n, p;L1, L2, L3, (times n (s n) p) ⊢ (even p).

Note here that the variables n and p are bound over this sequent. The next

step in building proof uses lemma L1 to add the assumption (even n)∨(odd n).

3.2 Inference rules 25

That is, our sheet of paper now have five formulas at the top: it is encoded as

the sequent

T3 n, p;L1, L2, L3, (times n (s n) p), (even n) ∨ (odd n) ⊢ (even p).

The case analysis induced by the disjunctive assumption leads the proof to

have two subproofs. That is, the current sheet of paper can be replaced by

two sheets that are identical except that one of those sheets replaces that

disjunction with (even n) and the other sheet replaces it with (odd n). These

two sheets are encoded with the two sequents

T4 n, p;L1, L2, L3, (times n (s n) p), (even n) ⊢ (even p)

T5 n, p;L1, L2, L3, (times n (s n) p), (odd n) ⊢ (even p)

One way to represent the status of a proof’s development is to organize these

sequents into the tree
T4 T5

T3

T2

T1

To complete the formal description of this proof, we need to label each hor-

izontal line by the name of an inference rule. For example, the uppermost

horizontal line is justified by the “rule of cases” (also called the ∨L rule in

Chapter 4). As this tree shows, the process of proving sequent T1 has reduced

it to attempting to prove the two sequent T4 and T5.

This proof can be completed by appealing to lemma L3 to justify sequent

T4 and appealing to lemmas L2 and L3 to justify sequent T5.

Our subsequent study of sequent calculus proofs will not, however, focus

on capturing natural or human-readable proofs. Instead, we focus on low-level

aspects of proof that will ultimately make it possible to automate proof search

for, at least, some fragments of logic. The analysis of sequent calculus proofs

by Gentzen and others has led to richer sequents than those motivated above.

In particular, a sequent of the form x, y : B1, B2, B3 ⊢ C can naturally be

linked to the single formula ∀x∀y.[(B1 ∧B2 ∧B3) ⊃ C]. The usual treatment

of the sequent calculus also allows for the more general (albeit less intuitive)

multiple-conclusion sequent. In particular, the comma on the left can be

viewed as a conjunction, while the comma on the right can be viewed as a

disjunction. For example, the sequent x, y : B1, B2, B3 ⊢ C1, C2 is linked to

the formula ∀x∀y.[(B1 ∧B2 ∧B3) ⊃ (C1 ∨ C2)].

3.2 Inference rules

An inference rule in a sequent calculus proof system has a single sequent as

its conclusion and zero or more sequents as its premises. Of the numerous

26 Chapter 3. Sequents calculus proofs rules

Σ : Γ, B,C,Γ′ ⊢ ∆

Σ : Γ, C,B,Γ′ ⊢ ∆
xL

Σ : Γ ⊢ ∆, B,C,∆′

Σ : Γ ⊢ ∆, C,B,∆′ xR

Σ : Γ, B,B ⊢ ∆

Σ : Γ, B ⊢ ∆
cL

Σ : Γ ⊢ ∆, B,B

Σ : Γ ⊢ ∆, B
cR

Σ : Γ ⊢ ∆

Σ : Γ, B ⊢ ∆
wL

Σ : Γ ⊢ ∆

Σ : Γ ⊢ ∆, B
wR

Figure 3.1: Structural rules.

inference rules used in the various sequent calculi presentations we meet in

this book, all inference rules belong to exactly one of the following three broad

classes of rules: the structural rules, the identity rules, and the introduction

rules. We examine each of these classes separately below by showing examples

of each of these classes of rules.

3.2.1 Structural rules

Since sequents describe relationships among formulas, the nature of a formula’s

context is an important feature of proofs. To analyze the interplay between

a formula and its context, it is sometimes desirable to explore the structural

differences provided by lists, multisets, and sets. For example, one might

want an inference rule to permute items explicitly in a context or to replace

two occurrences of the same formula with one occurrence. There are three

standard structural rules, called exchange, contraction, and weakening, and

they are presented in Figure 3.1 in both left and right side versions. All

these structural rules can be used with contexts that are list structures. The

exchange rules, xL and xR, allows exchanging two consecutive elements. This

structural rule does not make sense when contexts are multisets or sets. The

contraction rules, cL and cR, can be used on lists and multisets to replace

two occurrences of the same formula with one occurrence: this structural

rule is not invoked on set contexts. The weakening rules, wL and wR, can

insert a formula into a context. If used with a list, these rules insert the new

formula occurrence only at the end of the context. If contexts are sets, the

only structural rules that make sense to specify are the weakening rules.

In this book, we shall never use the exchange rules, and contexts will almost

always be either multisets or sets.

Exercise 3.1. Let ∆′ be a permutation of the list ∆. Show that a sequence

of xR rules can derive the sequent Σ : Γ ⊢ ∆ from the sequent Σ : Γ ⊢ ∆′.

3.2 Inference rules 27

Σ :B ⊢ B
init

Σ : Γ ⊢ ∆, B Σ :B,Γ′ ⊢ ∆′

Σ : Γ,Γ′ ⊢ ∆,∆′ cut

Figure 3.2: The two identity rules: initial and cut.

3.2.2 Identity rules

The identity rules consist of the initial rule and the cut rule, examples of

which are displayed in Figure 3.2. Both of these rules contain repeated occur-

rences of schema variables: in the initial rule, the variable B is repeated in

the conclusion, and in the cut rule, the variable B is repeated in the premises.

Checking if an application of one of these rules is correct requires comparing

the identity of two occurrences of formulas. While the structural rules ad-

dress the structure of the contexts used in forming sequents, the identity rules

address the meaning of the sequent symbol ⊢. In particular, these two rules

can be seen as stating that ⊢ is reflexive and transitive. In Section 4.2, we

illustrate that, in a certain sense, these two rules describe dual aspects of ⊢.
Sometimes, an inference rule with zero premises is called an axiom. We

shall reserve that term for a formula that is accepted as the starting point

of some forms of proofs (e.g., the Frege proofs describe at the start of this

chapter). Since sequents are not formulas, we use other names (e.g., initial

sequents) for leaves in sequent calculus proof trees.

3.2.3 Introduction rules

The final group of inference rules contains the introduction rules, so called

because they introduce one occurrence of a logical connective into the conclu-

sion of the inference rule. In two-side sequent systems, a logical connective

is introduced on the left and right by two different, small sets of inference

rules. Here, the term “a small collection” means a collection of 0, 1, or 2

rules. (In the informal reading of sequents provided in Section 3.1, a left-

introduction rule describes how to reason from a logical connective while the

right-introduction rule describes how to reason to a logical connective.) If the

sequent is one-sided, then the left-introduction rules are usually replaced by a

right-introduction for the connective that is its De Morgan dual. Thus, one-

sided systems are usually limited to those logics where all connectives have De

Morgan duals. The only one-sided sequent proof system in this book appears

in Chapter 6 when we present linear logic.

Figure 3.3 presents a few examples of introduction rules for some logical

connectives. That figure provides two left introduction rules and one right in-

28 Chapter 3. Sequents calculus proofs rules

Σ :B,Γ ⊢ ∆

Σ :B ∧ C,Γ ⊢ ∆
∧L

Σ : C,Γ ⊢ ∆

Σ :B ∧ C,Γ ⊢ ∆
∧L

Σ : Γ ⊢ ∆, B Σ : Γ ⊢ ∆, C

Σ : Γ ⊢ ∆, B ∧ C
∧R

Σ : Γ ⊢ ∆, t
tR

Σ : Γ1 ⊢ ∆1, B Σ : C,Γ2 ⊢ ∆2

Σ :B ⊃ C,Γ1,Γ2 ⊢ ∆1,∆2
⊃L

Σ :B,Γ ⊢ ∆, C

Σ : Γ ⊢ ∆, B ⊃ C
⊸R

Σ ⊩ t : τ Σ : Γ, B[t/x] ⊢ ∆

Σ : Γ, ∀τx B ⊢ ∆
∀L

Σ, y : τ : Γ ⊢ ∆, B[y/x]

Σ : Γ ⊢ ∆, ∀τx B
∀R

Figure 3.3: Examples of left and right introduction rules.

troduction rule for conjunction, whereas both implication and universal quan-

tification are given one left and one right introduction rule each. There is one

right introduction rule and zero left introduction rule for t .

Also illustrated in Figure 3.3 is the role that the signature Σ plays in

the specification of the quantifier introduction rules. In particular, the intro-

duction of the universal quantifier ∀ on the left uses the signature and the

judgment Σ ⊩ t : τ to determine the range of suitable substitution terms t. On

the other hand, the right introduction rule for ∀ changes the signature from

Σ∪{y : τ} above the line to Σ below the line. Note that if we were to think of

signatures as lists of distinct typed variables, we must maintain that the vari-

able y is not free in any formula in the rule’s conclusion. By viewing quantifiers

as bindings in formulas and signatures as binders for sequents, the inference

rule ∀R essentially allows for the mobility of a binder: reading this inference

rule from premise to conclusion, the binder for y moves from a sequent-level

binding to the formula level binding for x. At no point is the binder replaced

with a “free variable.” Of course, this movement of the binder is only allowed

if no occurrences of the bound variable above the line are unbound below the

line. Thus, all occurrences of y in the upper sequent must appear in the dis-

played occurrence of B[y/x]. Such a sequent-level bound variable is called an

eigenvariable. Note that since we identify all binding structures that differ by

only an alphabetic change of variables, the ∀R rule could also be written as

Σ, x : τ : Γ ⊢ ∆, B

Σ : Γ ⊢ ∆, ∀τx B
∀R.

In this form, the mobility of the binder for x is more apparent.

The premise Σ ⊩ t : τ for the ∀L rule should actually be written as Σ−1 ∪
Σ0 ∪ Σ ⊩ t : τ where Σ−1 and Σ0 are the signatures for the logical and non-

logical constants, respectively. Since both these signatures are global for any

3.3 Additive and multiplication inference rules 29

particular proof, we write this condition with only the smaller signature for

convenience. Also, one has the choice to either include this typing judgment

as a part of the proof (hence, the proof of the typing judgment is a subproof

of a proof of the conclusion to this rule) or as a side condition, namely, the

requirement that that premise is provable (in this case, the proof of that side

condition is not incorporated into the sequent proof).

3.3 Additive and multiplication inference rules

When an inference rule has two premises, there are two natural ways to relate

the contexts in the two premises with the context in the conclusion. An

inference rule is multiplicative if contexts in the premises are merged to form

the context in the conclusion. The cut rule in Figure 3.2 and the ⊃L rule

in Figure 3.3 are examples of multiplicative rules. A rule is additive if the

contexts in the premises are the same as the context in the conclusion. The

∧R rule in Figure 3.3 is additive. An additive version of the cut inference rule

can be written as
Σ : Γ ⊢ ∆, B Σ :B,Γ ⊢ ∆

Σ : Γ ⊢ ∆
.

The use of the terms multiplicative and additive will be explained when the

exponentials of linear logic are presented in Section 6.3.2.

Another way to describe the difference between additive and multiplicative

rules is the following. We call a formula occurring in the conclusion of an infer-

ence rule that is not introduced in that rule a context formula. In an additive

rule, every occurrence of a context formula in the concluding sequent has an

occurrence in both premise sequents. In a multiplicative rule, every occurrence

of a context formula in the concluding sequent appears in exactly one premise

sequent. In both of these cases, these occurrences in the conclusion and the

premises are always on the same side of their respective sequents.

Another presentation of the introduction rules for conjunction involves the

multiplicative form of the ∧R rule.

Σ :B,C,Γ ⊢ ∆

Σ :B ∧ C,Γ ⊢ ∆
∧Lm

Σ : Γ1 ⊢ ∆1, B Σ : Γ2 ⊢ ∆2, C

Σ : Γ1,Γ2 ⊢ ∆1,∆2, B ∧ C
∧Rm

Exercise 3.2.(‡) Show that if the structural rules of weakening and contrac-

tion are available, then the rules ∧R and ∧L (from Figure 3.3) can be derived

from ∧Rm and ∧Lm, and conversely.

This exercise illustrates that the structural rules allows an additive rule to

account for a multiplicative rule, and vice versa. Another connection between

30 Chapter 3. Sequents calculus proofs rules

these concepts is suggested by the following collection of inference rules.

Σ :B ⊢ B
init

Σ :B ⊢ B
init

Σ :B ⊢ B ∧B
∧R

Σ : Γ, B,B ⊢ ∆

Σ : Γ, B ∧B ⊢ ∆
∧Lm

Σ : Γ, B ⊢ ∆
cut

Thus, if we adopt ∧Lm and ∧R as the left and right introduction rules for

conjunction, we can infer the cL rule. Since we do not wish for the contraction

rule to enter our proof systems without an explicit reference to the contraction

rule, then we must chose carefully how we pair left and right introduction

rules. Gentzen’s original sequent calculus (and the ones we adopt for classical

and intuitionistic logics in Chapter 4) paires ∧L with ∧R. When we turn to

linear logic in Chapter 6, we will allow for two conjunctions, written as & and

⊗, where the right introduction rule for & is the additive rule and the right

introduction rule for ⊗ is the multiplicative. The left introduction rule for &

will be similar to ∧L and for ⊗ will be similar to ∧Lm.

It is interesting to comment on the relative costs of naive implementations

of additive versus multiplicative binary inference rules. There are two direc-

tions for implementing such applications. The proof building direction works

by being given two premises and building the conclusion. The proof search di-

rection works by being given the conclusion and nondeterministically building

premises. Applying the proof building direction to a given additive inference

rule can be expensive since one must check that the context formulas are the

same (as multisets or sets) in the two premises: this check on equality of mul-

tisets can involve thousands of formulas (at least in the logic programming

setting we are targeting). At the same time, the proof search direction is in-

expensive for additive rules: given the conclusion, we need to build premises

that contain pointers to the same object that forms the contexts in the con-

clusion. On the other hand, applying the proof building direction to a given

multiplicative inference rule can be inexpensive since one can build the con-

clusion by pairing together the pointers to contexts in the premises: there is

no need to check equality of context formulas. At the same time, the proof

search direction can be expensive since there are exponentially many possible

splittings of contexts that may need to be considered.

3.4 Sequent calculus proofs

Given the definitions of formulas and sequents in Chapter 2 and the presen-

tation of inference rules in the previous section, we are can now define proofs,

in particular, sequent calculus proofs. Unlike terms and sequents, such proof

structures do not introduce new notions of bindings. This observation con-

trasts the usual Curry-Howard correspondence approach, where proofs are

3.4 Sequent calculus proofs 31

identified with natural deduction proofs, which, themselves, are encoded by

various kinds of λ-terms.

Assume that a signature of logical constants Σ−1 is given and that a collec-

tion of inference rules are specified. Derivations and proofs will be represented

by finite trees with labeled nodes and edges containing at least one edge. Nodes

are labeled by occurrences of inference rules or by two improper rules, open

and root. All trees contain exactly one node labeled root, called the root node.

Let N be another node in the tree. The edge leading from N to the root node

(via some path of edges) is called its out-arc while the other n ≥ 0 arcs termi-

nating at N are called its in-arcs: in this case, n is the in-degree of the node

N . If N is labeled with open, then N must have zero in-arcs. If N is labeled

by an occurrence of a proper inference rule, the out-arc must be labeled with

the conclusion of the inference rule occurrence, and the in-arcs must be la-

beled with the premise sequents. Of course, sequent labels are determined to

be equal using the rules of λ-expression.

Let S be a sequent. A derivation for S is such a labeled tree in which

the in-arc to the root is labeled with S. The smallest open derivation for S

is a tree with two nodes, one labeled with root and one labeled with open

and with the edge between them labeled with S. A derivation for S without

any nodes labeled open is a proof of S. In these cases, the sequent S is also

called the endsequent of the derivation or the proof. Given these definitions,

a derivation can also be considered a “partial proof.”

When we write derivation trees, leaves with no line over them are taken

as ending in an open node. If there is a line, then we assume that that line

denotes an inference rule with no premises: in other words, the tree ends with

a proper inference rule that has an in-degree of zero.

Assume that we have picked a particular style of sequent (e.g., one-sided,

two-sided, etc). By a proof system for such sequents, we mean a collection of

inference rules for those sequents, such as those described in Section 3.2. Let

X be such a set of rules for two-sided sequent. We write Σ : Γ ⊢X ∆ to denote

the fact that the sequent Σ : Γ ⊢ ∆ has a proof in X . If Σ is empty, we write

just Γ ⊢X ∆. If Γ is also empty, we write ⊢X ∆. If the proof system is assumed,

the subscript X is not written. Thus, ⊢ ∆ will mean that the sequent · : · ⊢ ∆

is provable. If a one-sided proof system is used instead, the same conventions

apply except that we do not write the left-hand context (keeping just the

signature). Note that the ⊢ symbol is used in two different ways: it is used

to mark a syntactic expression as being a sequent, and it is used to be the

proposition that a certain sequent is provable. The reader should be able to

always disambiguate between these two senses of the ⊢ symbol.

Exercise 3.3. Consider a (trivial) sequent calculus proof system containing

just the cut and initial inference rules. Describe what can be proved using

32 Chapter 3. Sequents calculus proofs rules

just those two rules. Show that every provable sequent can be proved without

the cut rule.

3.5 Permutations of inference rules

Sequent calculus inference rules can often be permuted over each other. For

example, assume that the following three introduction rules are part of a proof

system.

Σ : Γ1 ⊢ ∆1, B Σ : C,Γ2 ⊢ ∆2

Σ :B ⊃ C,Γ1,Γ2 ⊢ ∆1,∆2
⊃L

Σ :B,Γ ⊢ ∆, C

Σ : Γ ⊢ ∆, B ⊃ C
⊸R

Σ :B,Γ ⊢ ∆ Σ : C,Γ ⊢ ∆

Σ :B ∨ C,Γ ⊢ ∆
∨L

Here, the left and right-hand contexts are assumed to be multisets. In the first

derivation in Figure 3.4, the right introduction rule for implication is below

the left introduction of a disjunction. The second derivation in that figure has

the same root and leaf sequents but introduction rules are switched. (Note

that the latter derivation uses two occurrences of the right introduction of

implication while the former proof uses only one occurrence of that rule.)

Sometimes inference rules can be permuted if additional structural rules

are employed. For example, consider the first derivation in Figure 3.5. It is

possible to switch the order of the two introduction rules it contains, but this

requires introducing some weakenings and a contraction, as is witnessed by the

second derivation in that figure. If these additional structural rules are not

permitted in a given proof system (as we shall see is the case in intuitionistic

logic), then the original two inference rules cannot be permuted.

Understanding when inference rules can be permuted over each other can

make it possible to improve the effectiveness of searching for proofs. Consider

again, for example, the derivations in Figure 3.4. Imagine attempting to find

a proof of the sequent Σ : Γ, p ∨ q ⊢ r ⊃ s,∆ following the development of

the first derivation in that figure: namely, we first do an ⊸R rule followed by

the ∨L rule. Additionally, assume that there is, in fact, no proof of the left

premise Σ : Γ, p, r ⊢ s,∆: that is, an exhaustive search fails to find a proof

of this sequent. If we employ a naive proof search strategy, we might make

another attempt to find a proof of the endsequent by switching the application

of the ∨L and the ⊸R rules. As it is clear from the second derivation, this

other order of rule applications will lead to an attempt to prove the same left

premise for which we already know no proof exists. Clearly, this particular

second attempt at proving this endsequent does not need to be made.

An inference rule asserts that whenever its premises are provable, its con-

clusion is provable. The converse—that is, if the conclusion is provable then

3.5 Permutations of inference rules 33

Σ : Γ, p, r ⊢ s,∆ Σ : Γ, q, r ⊢ s,∆

Σ : Γ, p ∨ q, r ⊢ s,∆
∨L

Σ : Γ, p ∨ q ⊢ r ⊃ s,∆
⊸R

Σ : Γ, p, r ⊢ s,∆

Σ : Γ, p ⊢ r ⊃ s,∆
⊸R

Σ : Γ, q, r ⊢ s,∆

Σ : Γ, q ⊢ r ⊃ s,∆
⊸R

Σ : Γ, p ∨ q ⊢ r ⊃ s,∆
∨L

Figure 3.4: Two derivations that differ in the order of two inference rules.

Σ : Γ1, r ⊢ ∆1, p Σ : Γ2, q ⊢ ∆2, s

Σ : Γ1,Γ2, p ⊃ q, r ⊢ ∆1,∆2, s
⊃L

Σ : Γ1,Γ2, p ⊃ q ⊢ ∆1,∆2, r ⊃ s
⊸R

Σ : Γ1, r ⊢ ∆1, p

Σ : Γ1, r ⊢ ∆1, p, s
wR

Σ : Γ1 ⊢ ∆1, p, r ⊃ s
⊸R

Σ : Γ2, q ⊢ ∆2, s

Σ : Γ2, q, r ⊢ ∆2, s
wL

Σ : Γ2, q ⊢ ∆2, r ⊃ s
⊸R

Σ : Γ1,Γ2, p ⊃ q ⊢ ∆1,∆2, r ⊃ s, r ⊃ s
⊃L

Σ : Γ1,Γ2, p ⊃ q ⊢ ∆1,∆2, r ⊃ s
cR

Figure 3.5: Two derivations that illustrate the permutation of inference

rules supported by structural rules.

all the premises are provable—does not always hold. In the event that this

converse does hold for an inference rule, we say that that rule is invertible.

From the point of view of searching for a proof, whenever invertible introduc-

tion rules are available to prove a given sequent, they can be applied in any

order and without considering any other order of applying them. One way

to show that an inference rule is invertible is to show that for every pair of

inference rules for which the rule in question appears above another inference

rule, the order of that pair of rules can be switched.

As we shall see, sequent calculus proofs are composed of tiny rules. Also,

given a sequent calculus proof of an endsequent, many trivial variants of that

proof also exist: permuting inference rules can generate some of them. Also,

nothing prevents irrelevant steps to be inserted at almost any point. The

unstructured nature of sequent calculus proofs is useful for proving results such

as the cut-elimination theorem. But when one wants to apply sequent calculus

proof systems to various computer science projects (one of our goals here), we

must first attempt to find more structure within such proofs. Ultimately, we

shall describe such additional structure by introducing uniform proofs: these

are greatly constrained cut-free proofs where proof construction is divided into

34 Chapter 3. Sequents calculus proofs rules

two alternating phases that capture goal reduction and backward chaining,

two operations familiar to those working with logic programs. The notion

of uniform proofs will naturally lead to the closely related notion of focused

proofs: both of these style proofs are introduced in Chapter 5.

3.6 Cut-elimination and its consequences

In the construction of proofs in mathematics, discovering useful lemmas is a

key activity. For example, consider again the example from Section 3.1 where

the focus was on proving that the product n(n + 1) is even for all natural

numbers n. The part of the proof of this theorem that we illustrated was

particularly simple since we employed the three lemmas L1, L2, and L3. Of

course, these three lemmas needed to be discovered and proved. The inference

rule called cut in Figure 3.2 is used to formally allow lemmas to be proved

and used in a proof. For example, assume that L1, L2, and L3 have sequent

calculus proofs Ξ1, Ξ2, and Ξ3, respectively. The following derivation injects

those lemmas into the proof of our original theorem, (∀n, p.(times n (s n) p) ⊃
(even p)), which we abbreviate as the formula G.

Ξ1

·; · ⊢ L1

Ξ2

·; · ⊢ L2

Ξ3

·; · ⊢ L3

...
·;L1, L2, L3 ⊢ G

·;L1, L2 ⊢ G
cut

·;L1 ⊢ G
cut

·; · ⊢ G
cut

Thus, these instances of the cut-rule allow us to move from searching for a

proof of G to searching for a proof of G using L1, L2, and L3.

For all of the sequent calculus proof systems we consider in this book,

the cut-elimination theorem holds: that is, a sequent has a proof if and only

if it has a cut-free proof (a proof with no occurrences of the cut rule). We

shall prove two cut-elimination theorems in subsequent chapters: Section 5.5

provides one for intuitionistic logic, and Section 6.8 presents one for linear

logic. This central theorem of sequent calculus proof systems has several

consequences, some of which we describe below.

The consistency of a logic is usually a simple consequence of cut-elimina-

tion. For example, if a formula B and its negation B ⊃ f are provable, then

the sequents · ⊢ B and · ⊢ B ⊃ f are provable. Since the rule for introducing

implication on the right is invertible (as we shall see in Section 4.4), it must

be the case that the sequent B ⊢ f is provable. By applying the cut inference

rule to proofs of the two sequents · ⊢ B and B ⊢ f yields a proof of · ⊢ f . By

the cut-elimination theorem, however, the sequent · ⊢ f has a proof without

cuts. Thus, the last inference rule of this proof must be either an introduction

3.6 Cut-elimination and its consequences 35

rule or a structural rule. Generally, there is no introduction rule for f on the

right. Also, the structural rules will not yield a provable sequent either. Thus,

there can be no cut-free proof of · ⊢ f , and hence a formula and its negation

cannot both be provable.

The success of proving the cut-elimination theorem also signals that certain

aspects of the logic’s proof system were well designed. For example, in two-

sided sequents, logical connectives generally have left-introduction and right-

introduction rules. If we think of a sequent as describing a sheet of paper

with the assumptions listed at the top of the page and the conclusion at the

bottom of the page, then the left and right introduction rules yield two senses

to how connectives are used within a proof. In particular, the left-introduction

rules describe how we argue from formulas while the right-introduction rules

describe how we argue to formulas. For example, the ⊸R rule in Figure 3.3

describes how one uses hypothetical reasoning to prove the formula B ⊃ C

while the ⊃L rule shows that we use B ⊃ C as an assumption by attempting

a proof of B and by attempting the original sequent again, but this time with

the additional assumption C added to the set of hypotheses. Of course, if we

consider the model-theoretic semantics of the connectives, they usually have

only one sense: for example, B ∧ C is true if and only if B and C are true.

The cut-elimination theorem implies that the two senses attributed to a logical

connective work together to define one logical connective. We return to this

aspect of cut-elimination in Sections 4.2 and 5.6.

When formulas involve only first-order quantification, a formula occurring

in a sequent in a cut-free proof is always a subformula of some formula of

the endsequent. This invariant is the so-called subformula property of cut-free

proofs. When searching for a proof, one needs only to choose and rearrange

subformulas of the endsequent: of course, instantiations of quantified expres-

sions must also be considered as subformulas. In the first-order setting, all

proper subformulas of a given formula have fewer occurrences of logical con-

nectives and quantifiers. Thus, having proofs restricted to arrangements of

subformulas is an interesting and powerful restriction. However, in the higher-

order setting, instantiating a predicate variable can result in larger formulas

with many more occurrences of logical connectives and quantifiers. In that

setting, the subformula property fails, even for cut-free proofs.

When one attempts to use the sequent calculus to formalize proofs of math-

ematically interesting theorems, one discovers that the cut rule is used a great

deal. Eliminating cut in such a proof would necessarily yield a huge and low-

level proof where all lemmas are “in-lined” and reproved at every instance of

their use. Cut-free proofs can thus be very big objects. For example, if one

uses the number of nodes in a proof as a measure of its size, there are cases

where cut-free proofs are hyperexponentially bigger than proofs allowing cut

(see Exercise 2.3 for a similar explosive growth). Thus, sequents with proofs

36 Chapter 3. Sequents calculus proofs rules

of rather small size can have cut-free proofs that require more inference rules

than the number of sub-atomic particles in the universe. If a cut-free proof

is actually computed and stored in some computer memory, the theorem that

that proof proves is likely to be mathematically uninteresting. This observa-

tion does not disturb us here since we are interested in cut-free proofs as tools

for describing computation only. For us, cut-free proofs are not illuminating

and readable proofs but structures more akin to the classic notion of Tur-

ing machines configurations: they provide a low-level and detailed trace of a

computation.

Recording a computation as a cut-free proof can be superior to recording

Turing machine configurations, since there are several deep ways to reason

with actual proof structures. For example, assume that we have a cut-free

proof of the two-sided sequent P ⊢ G for some logic, say, X . As we shall

see, in many approaches to proof search, it is natural to identify the left-hand

context P to the specification of a (logic) program and G as the goal or query

to be established. A cut-free proof of such a sequent is then a trace that this

goal can be established from this program. Now assume that we can prove

P ′ ⊢+ P where P ′ is some other logic program and ⊢+ is provability in X+

which is some strengthening of X in which, say, induction principles are added

(as well as cut). If the stronger logic satisfies cut elimination, then we know

that P ′ ⊢ G has a cut-free proof in the stronger logic X+. If things have been

organized well, it can then become a simple matter to see that cut-free proofs

of such sequents do not make use of the stronger proof principles, and, hence,

P ′ ⊢ G has a cut-free proof in X . Thus, using cut-elimination, we have been

able to move from a formal proof about programs P and P ′ immediately to the

conclusion that whatever goals can be established for P can be established for

P ′. Clearly, the ability to do such direct, logically principled reasoning about

programs and computations should be an interesting aspect of the proof search

paradigm to explore.

3.7 Bibliographic notes

In this chapter, we have presented a broad overview of sequent calculus proof

systems. In subsequent chapters, starting with the next one, we will present

specific sequent calculus proof systems. These proof systems will have a cut-

elimination theorem: we shall prove the cut-elimination theorem for a couple of

them using techniques that are not standard. There are several good references

for the more standard approaches that cover such results for logics other than

classical, intuitionistic, and linear logics. Gentzen’s original proof [1935] is

a good place to read about proving this result for classical and intuitionistic

logics. For more modern presentations, see [Gallier, 1986; Girard et al., 1989;

Negri and von Plato, 2001; Bimbó, 2015]. Mechanized approaches to proving

3.7 Bibliographic notes 37

cut-elimination can be found in [Pfenning, 2000; Miller and Pimentel, 2013].

Kleene [1952] presents a detailed analysis of permutability of inference rules

for classical and intuitionistic sequent systems.

Statman [1978] showed that there exist a sequence H0, H1, H2, . . . of

theorems of first-order classical logic such that the size of Hn and of a sequent

calculus proof (with cut) of Hn is linear in n, while the size of the shortest cut-

free proof of Hn is hyperexponential in n. Here, the hyperexponential function

can be defined as h(0) = 1 and h(n+ 1) = 2h(n).

38 Chapter 3. Sequents calculus proofs rules

Chapter4
Classical and intuitionistic

logics

Classical and intuitionistic logics provide foundations to many formal sys-

tems used in computational logic, including interactive and automatic theo-

rem proving, logic programming, model checking, programming language type

systems, and formalized versions of mathematics. We shall assume that the

reader has some elementary familiarity with these two logics.

There are several formal ways to describe the difference between these two

logics. Two well-known ways to characterize their differences are the following.

1. Intuitionistic logic results from admitting only those proofs that can

be seen as providing constructive evidence of what is proved. Classical

logic admits these proofs as well as many others that do not need to

be constructive. For example, the axiom of the excluded middle is an

accepted proof principle in classical logic.

2. The semantics of intuitionistic logic is based on possible world semantics

or Kripke models [Kripke, 1965; Troelstra and van Dalen, 1988], in which

classical logic models are arranged to a tree structure and where the

truth value of implication at a given world relies on truth values in all

reachable worlds.

Gentzen provided a different characterization entirely, and it involves the

role of structural inference rules within the sequent calculus. This charac-

terization plays an essential role in this book: in fact, a careful reading of

Gentzen’s characterization will help us motivate the introduction of linear

logic in Chapter 6.

This chapter presents sequent calculus proofs for classical and intuition-

istic logics that are small variations on Gentzen’s LK and LJ proof systems

40 Chapter 4. Classical and intuitionistic logics

[Gentzen, 1935]. After presenting some basic properties of those proof sys-

tems, we highlight some issues that arise when systematically searching for

proofs in those proof systems.

Exercise 4.1.(‡) Prove that there are irrational numbers, a and b such that

ab is rational. An easy, non-constructive proof starts with the observation

that
√
2
√
2
is either rational or irrational (an instance of the excluded middle).

Complete that proof. Can you provide a constructive proof of this statement?

4.1 Classical and intuitionistic inference rules

Both intuitionistic and classical logics will use the same connectives: in par-

ticular, the signature of logical connectives, Σ−1, for both of these logics is

{f : o, t : o,∧ : o → o → o,∨ : o → o → o,⊃ :o → o → o} ∪
{∀τ : (τ → o) → o,∃τ : (τ → o) → o}τ∈S\{o}

Here, the set of primitive types S is assumed to be fixed and to contain the

type o. Note that if we use {o} for S, then this signature does not contain any

quantifiers and is, therefore, the signature for a propositional logic.

To provide a proof system for provability in classical and intuitionistic

logics, we use sequents of the form Σ : Γ ⊢ ∆, where both Γ and ∆ are

multisets of Σ-formulas. The introduction, identity, and the structural rules

for this proof system are given in Figure 4.1, 4.2, and 4.3, respectively. Of

the four inference rules with two premises, ⊃L and cut are multiplicative rules

while ∧R and ∨L are additive.

The left and right introduction rules for t and f can be derived from the

binary connective for which they are the unit. In particular, the ∧R has two

premises for the binary connective. The n-ary generalization of the ∧R will

have n premises. Since t is the unit for ∧, we can interpret it as the 0-ary

conjunction. Thus, the tR rule has 0 premises. Furthermore, the n-ary version

of the ∧L rule has n instances, one for each of its n conjuncts. Thus, there is

no left-introduction rule for t since it is the 0-ary version of ∧. A similar but

dual argument illustrates how to derive the introduction rules for f from the

rules for ∨.
Provability in classical logic is given using the notion of a C-proof, which

is any proof using inference rules in Figure 4.1, Figure 4.2, and Figure 4.3.

Provability in intuitionistic logic is given using the notion of an I-proof, which

is any C-proof in which the right-hand side of all sequents contain exactly one

formula. A proof system that can only use such restricted sequents is called

a single-conclusion proof system. When no such restriction is imposed on

sequents (as in C-proofs), such a proof system is called a multiple-conclusion

proof system.

4.1 Classical and intuitionistic inference rules 41

Σ :B,Γ ⊢ ∆

Σ :B ∧ C,Γ ⊢ ∆
∧L

Σ : C,Γ ⊢ ∆

Σ :B ∧ C,Γ ⊢ ∆
∧L

Σ : Γ ⊢ ∆, t
tR

Σ :B,Γ ⊢ ∆ Σ : C,Γ ⊢ ∆

Σ :B ∨ C,Γ ⊢ ∆
∨L

Σ : Γ ⊢ ∆, B Σ : Γ ⊢ ∆, C

Σ : Γ ⊢ ∆, B ∧ C
∧R

Σ : Γ, f ⊢ ∆
f L

Σ : Γ ⊢ ∆, B

Σ : Γ ⊢ ∆, B ∨ C
∨R

Σ : Γ ⊢ ∆, C

Σ : Γ ⊢ ∆, B ∨ C
∨R

Σ ⊩ t : τ Σ : Γ, B[t/x] ⊢ ∆

Σ : Γ, ∀τx B ⊢ ∆
∀L

Σ, c : τ : Γ ⊢ ∆, B[c/x]

Σ : Γ ⊢ ∆, ∀τx B
∀R

Σ, c : τ : Γ, B[c/x] ⊢ ∆

Σ : Γ,∃τx B ⊢ ∆
∃L

Σ ⊩ t : τ Σ : Γ ⊢ ∆, B[t/x]

Σ : Γ ⊢ ∆,∃τx B
∃R

Σ : Γ1 ⊢ ∆1, B Σ : C,Γ2 ⊢ ∆2

Σ :B ⊃ C,Γ1,Γ2 ⊢ ∆1,∆2
⊃L

Σ :B,Γ ⊢ ∆, C

Σ : Γ ⊢ ∆, B ⊃ C
⊸R

Figure 4.1: Introduction rules.

Σ :B ⊢ B
init

Σ : Γ1 ⊢ ∆1, B Σ :B,Γ2 ⊢ ∆2

Σ : Γ1,Γ2 ⊢ ∆1,∆2
cut

Figure 4.2: Identity rules.

Σ : Γ ⊢ ∆

Σ : Γ, B ⊢ ∆
wL

Σ : Γ ⊢ ∆

Σ : Γ ⊢ ∆, B
wR

Σ : Γ, B,B ⊢ ∆

Σ : Γ, B ⊢ ∆
cL

Σ : Γ ⊢ ∆, B,B

Σ : Γ ⊢ ∆, B
cR

Figure 4.3: Structural rules: contraction and weakening.

42 Chapter 4. Classical and intuitionistic logics

Let Σ be a given first-order signature over the primitive types in S, let ∆

and Γ be a finite multisets of Σ-formulas, and let B be a Σ-formula. We write

Σ;∆ ⊢C Γ if the sequent Σ : ∆ ⊢ Γ has a C-proof. We write Σ;∆ ⊢I B if the

sequent Σ : ∆ ⊢ B has an I-proof.

The restriction on I-proofs (that all sequents in the proof have singleton

right-hand sides) implies that I-proofs do not contain occurrences of structural

rules on the right (i.e., no occurrences of cR and wR) and that every occurrence

of the ⊃L rule and the cut rule are instances of the following two inference

rules.

Σ : Γ1 ⊢ B Σ : C,Γ2 ⊢ E

Σ :B ⊃ C,Γ1,Γ2 ⊢ E
⊃L

Σ : Γ1 ⊢ B Σ :B,Γ2 ⊢ E

Σ : Γ1,Γ2 ⊢ E
cut

(That is, the formula on the right-hand side of the conclusion must move to

the right premise and not to the left premise.) These observations can give an

alternative characterization of I-proofs.

The following proposition is easily proved by induction on the structure of

sequent calculus proofs.

Proposition 4.2. Let Ξ be a C-proof of Σ : Γ ⊢ B. Then Ξ is an I-proof

if and only if Ξ contains no occurrences of either cR or wR and, in every

occurrence in Ξ of an ⊃L and a cut rule, the right-hand side of the conclusion

is the same as the right-hand side of the right premise.

Proof. The forward direction is immediate. Thus, assume that the C-proof

Ξ of Σ : Γ ⊢ B satisfies the two conditions of the converse. We proceed by

induction on the structure of proofs. Consider the last inference rule of Ξ. If

that rule is an instance of either the init, tR, or f L rule, the conclusion is

immediate. Otherwise, if that last inference rule is an instance of either ⊃L

or cut then, given the inductive restrictions, the premises have proofs satisfy-

ing the same restrictions, namely that the two premises are single-conclusion

sequents. Thus, by the inductive assumption, the proofs of the premises must

be I-proofs. If the last rule of Ξ is any other inference rule (the wR and cR

rules are not possible), the inductive argument holds trivially.

This alternative characterization of I-proofs as restricted C-proofs prefig-

ures two important features of linear logic (Chapter 6). The first condition

(on the absence of wR and cR) means that the contexts used to describe intu-

itionistic logic are hybrid : the left-hand-side of sequents allow the structural

rules while right-hand-side of sequents do not allow structural rules. This kind

of hybrid use of contexts will be exploited in richer ways in linear logic. The

second condition means that there is something special hidden in the intu-

itionistic implication and, as we shall see in Section 6.5, that special feature

is captured by the ! exponential of linear logic.

4.1 Classical and intuitionistic inference rules 43

B ⊢ B
init

B ⊢ B, f
wR

⊢ B,B ⊃ f
⊸R

⊢ B,B ∨ (B ⊃ f)
∨R

⊢ B ∨ (B ⊃ f), B ∨ (B ⊃ f)
∨R

⊢ B ∨ (B ⊃ f)
cR

Figure 4.4: A C-proof of the excluded middle.

One difference we have with Gentzen’s formulation of sequent calculus is

that he had negation as a logical connective. Here, when we write the negation

of a formula, ¬B, we shall mean B ⊃ f . In Section 4.5, we return to these

two different treatments of negation.

A formula of the form B ∨ ¬B is an example of an excluded middle: in

terms of truth values, B is either true or false, and there is no third possibility.

Figure 4.4 contains a C-proof for this formula. A slight variation of this proof

yields a C-proof of B ∨ (B ⊃ C) for any formulas B and C.

Exercise 4.3. (‡) Provide proofs for each of the following sequents. If an

I-proof exists, present that proof. Assume that the signature for non-logical

constants is Σ0 = {p : o, q : o, r : i → o, s : i → i → o, a : i, b : i}.

1. (p ∧ (p ⊃ q) ∧ (p ∧ q ⊃ r)) ⊃ r

2. (p ⊃ q) ⊃ (¬q ⊃ ¬p)

3. (¬q ⊃ ¬p) ⊃ (p ⊃ q)

4. p ∨ (p ⊃ q)

5. ((p ⊃ q) ⊃ p) ⊃ p

6. (r a ∧ r b ⊃ q) ⊃ ∃x(r x ⊃ q)

7. ∃y∀x(r x ⊃ r y)

8. ∀x∀y(s x y) ⊃ ∀z(s z z)

Exercise 4.4. Take the formulas in Exercise 4.3 which have C-proofs but no

I-proof and reorganize them into I-proofs in which appropriate instances of

the excluded middle are added to the left-hand context. For example, give an

I-proof of the sequent

Σ : r a ∨ ¬r a ⊢ (r a ∧ r b ⊃ q) ⊃ ∃x(r x ⊃ q).

44 Chapter 4. Classical and intuitionistic logics

Exercise 4.5.(‡) Let A be an atomic formula. Describe all pairs of formulas

⟨B,C⟩ where B and C are different members of the set

{A,¬A,¬¬A,¬¬¬A}

such that B ⊢ C has a C-proof. Make the same list such that B ⊢ C has an

I-proof.

Exercise 4.6. The multiplicative version of ∧R is the inference rule

Σ : Γ1 ⊢ B,∆1 Σ : Γ2 ⊢ C,∆2

Σ : Γ1,Γ2 ⊢ B ∧ C,∆1,∆2

.

Show that a sequent has a C-proof (resp. I-proof) if and only if it has one

in the proof system that results from replacing ∧R with the multiplicative

version. Similarly, consider the multiplicative version of the ∨L rule, namely,

Σ : B,Γ1 ⊢ ∆1 Σ : C,Γ2 ⊢ ∆2

Σ : B ∨ C,Γ1,Γ2 ⊢ ∆1,∆2

.

Show that a sequent has a C-proof if and only if it has a C-proof where the

additive ∨L is replaced with this multiplicative rule.

The notion of provability based on sequents given in this section is not

equivalent to the more usual presentations of classical and intuitionistic logic

[Fitting, 1969; Gentzen, 1935; Prawitz, 1965; Troelstra, 1973] in which sig-

natures are not made explicit, and substitution terms (the terms used in ∀L
and ∃R) are not constrained to be built from such signatures. The following

example illustrates the main reason they are not equivalent. Let S be the set

{i, o} of two sorts and let Σ0, the signature of non-logical constants, be just

{p : i → o}. Now consider the sequent

· : ∀ix (p x) ⊢ ∃ix (p x).

This sequent has no proof even though ∃ix (p x) follows from ∀ix (p x) in

the traditional presentations of classical and intuitionistic logics. The reason

for this difference is that there are no {p : i → o}-terms of type i: that is,

the type i is empty in this signature. Thus we need the following additional

definition. The signature Σ inhabits the set of primitive types S if for every

τ ∈ S different than o, there is a Σ-term of type τ . When Σ inhabits S,

the notion of provability defined above coincides with the more traditional

presentations.

Exercise 4.7.(‡) Assume that the set of sorts S contains the two tokens i and

j and that the only non-logical constant is f : i → j. In particular, assume

4.2 The identity rules and their elimination 45

that there are no constants of type i declared in the non-logical signature. Is

there an I-proof of

(∃jx t) ∨ (∀iy∃jx t).

Under the same assumption, does the formula

(∃jx t) ∨ (∀ix f)

have a C-proof? An I-proof? What comparison can you draw between proving

this formula and the formula in Exercise 4.3(4)?

The structural rule of weakening allows for adding a formula into the left or

right side of sequents (reading the inference rule from premise to conclusion).

A strengthening rule is an inference rule that allows for deleting a formula

from either the left or right side of a sequent. In general, strengthening is not

an admissible rule. The following exercise provides a simple instance of when

strengthening is possible.

Exercise 4.8. Show that if there is a C-proof (resp., an I-proof) of Σ:Γ, t ⊢ ∆

then there is a C-proof (an I-proof) of Σ : Γ ⊢ ∆.

As we noted at the beginning of this chapter, there are many ways to

describe the difference between classical and intuitionistic logic. The following

exercise contains yet another way to present this difference.

Exercise 4.9. (‡) Consider adding the following rule (taken from [Gabbay,

1985])
Σ : Γ ⊢ B

Σ : Γ ⊢ C
restart

to I-proofs. This rules has the proviso that on the path from the occurrence

of this rule to the root of the proof, there is a sequent with B as its succedent.

The spirit of this rules is that during the search for a proof of single-conclusion

sequents, one can ignore the right-hand side of a sequent (here, C) and restart

an attempt to prove a previous right-hand side (here, B). Such a restart would

be useful during proof search if the previous occurrence of B was in a sequent

whose left-hand side was different from Γ. Prove that a formula has a C-proof

if and only if it has an I-proof with the restart rule added.

4.2 The identity rules and their elimination

As it turns out, almost all forms of the identity rules can be eliminated from

proofs without losing completeness in both classical and intuitionistic logics. In

particular, all cuts can be eliminated and all initial rule involving non-atomic

formulas can be eliminated.

46 Chapter 4. Classical and intuitionistic logics

An occurrence of the initial rule of the form Σ :B ⊢ B is an atomic initial

rule if B is an atomic formula. A proof is atomically closed if every occurrence

of the initial rule in it is an atomic initial rule. In classical and intuitionistic

logic, we can restrict the initial rule to be atomic initial rules only.

Proposition 4.10. If a sequent has a C-proof (resp, an I-proof) then it has

a C-proof (resp, an I-proof) in which all occurrence of the init rule are atomic

initial rules.

Proof. The theorem follows if we prove that every sequent of the form B ⊢ B

has a proof containing only atomic initial rules. We proceed by induction on

the structure of B. Consider the cases where B is of the form B1 ⊃ B2 and of

the form ∀xτ .Bx and consider the following two derivations.

B1 ⊢ B1 B2 ⊢ B2

B1, B1 ⊃ B2 ⊢ B2
⊃L

B1 ⊃ B2 ⊢ B1 ⊃ B2
⊸R

Σ, y : τ :By ⊢ By

Σ, y : τ : ∀xτ .Bx ⊢ By
∀L

Σ : ∀xτ .Bx ⊢ ∀xτ .Bx
∀R

Clearly, in these two cases, one instance of an initial rule can be replaced by

other instances of the initial rule involving smaller formulas. By applying the

inductive hypothesis on the premises of these derivations completes the proof

for these cases. We leave the remaining cases to the reader to complete.

The fact that the initial rules involving non-atomic formulas can be re-

placed by introduction rules and initial rules on subformulas is an important

and desirable property of a proof system. In general, however, atomic ini-

tial rules cannot be removed from proofs. Atoms are built from non-logical

constants, such as predicates and function systems, and their meaning comes

from outside logic. In particular, it is via non-logical symbols and atomic for-

mulas that we shall eventually specify logic programs to sort lists, represent

transition systems, etc. Atoms are the plugs for programmers to impact the

development of proofs (we turn our attention to logic programs in the next

chapter).

The following inference rule resembles the cut rule but at the level of terms.

Σ ⊩ t : τ Σ, x : τ : ∆ ⊢ Γ

Σ : ∆[t/x] ⊢ Γ[t/x]
subst

The following exercise states that this rule is admissible.

Exercise 4.11. Let Ξ be a C-proof (resp., I-proof) of Σ, x : τ : Γ ⊢ ∆ and let

t be a Σ-term. The result of substituting t for the bound variable x in this

sequent and the corresponding bound variables to x is all other sequents in

Ξ yields a C-proof (resp., I-proof) Ξ′ of the sequent Σ : Γ[t/x] ⊢ ∆[t/x]. The

arrangement of inference rules in Ξ and in Ξ′ are the same.

4.2 The identity rules and their elimination 47

The cut rule can also be restricted to atomic formulas, although it is more

complex to prove that restriction. For example, consider the follow occurrence

of the cut rule.
Ξ1

Σ : Γ1 ⊢ B,∆1

Ξ2

Σ : Γ2, B ⊢ ∆2

Σ : Γ1,Γ2 ⊢ ∆1,∆2
cut

To argue that this cut can be eliminated, we need to consider the many cases

that might arise when examining the last inference rule in both the Ξ1 and

Ξ2 subproofs. Ultimately, we hope to rewrite the proof displayed above into

another proof of the same endsequent in which the last inference rule is no

longer the cut rule. We highlight here only those cases where the last inference

rule in Ξ1 is the right-introduction rule for B and Ξ2 is the left-introduction

rule for B.

Consider a proof that contains the following cut with a conjunctive formula

in which the two occurrences of that conjunction are immediately introduced

in the two subproofs to cut.

Ξ1

Σ : Γ1 ⊢ A1,∆1

Ξ2

Σ : Γ1 ⊢ A2,∆1

Σ : Γ1 ⊢ A1 ∧A2,∆1
∧R

Ξ3

Σ : Γ2, Ai ⊢ ∆2

Σ : Γ2, A1 ∧A2 ⊢ ∆2
∧L

Σ : Γ1,Γ2 ⊢ ∆1,∆2
cut

Here, i is either 1 or 2. This derivation can be rewritten to

Ξi

Σ : Γ1 ⊢ Ai,∆1

Ξ3

Σ : Γ2, Ai ⊢ ∆2

Σ : Γ1,Γ2 ⊢ ∆1,∆2
cut.

In the process of reorganizing the proof in this manner, either Ξ1 or Ξ2 is

discarded, and the new occurrence of cut is on a subformula of A1 ∧A2.

Consider a proof which contains the following cut on an implicational for-

mula and where the two occurrences of that implication are immediately in-

troduced in the two premises of the cut.

Ξ1

Σ : Γ1, A1 ⊢ A2,∆1

Σ : Γ1 ⊢ A1 ⊃ A2,∆1
⊸R

Ξ2

Σ : Γ2 ⊢ A1,∆2

Ξ3

Σ : Γ3, A2 ⊢ ∆3

Σ : Γ2,Γ3, A1 ⊃ A2 ⊢ ∆2,∆3
⊃L

Σ : Γ1,Γ2,Γ3 ⊢ ∆1,∆2,∆3
cut

This derivation can be rewritten to

Ξ2

Σ : Γ2 ⊢ A1,∆2

Ξ1

Σ : Γ1, A1 ⊢ A2,∆1

Σ : Γ1,Γ2 ⊢ ∆1,∆2, A2
cut Ξ3

Σ : Γ3, A2 ⊢ ∆3

Σ : Γ1,Γ2,Γ3 ⊢ ∆1,∆2,∆3
cut

48 Chapter 4. Classical and intuitionistic logics

In the process of reorganizing the proof in this manner, the cut on A1 ⊃ A2 is

replaced by two instances of cut, one on A1 and the other one A2.

Consider a proof that contains the following cut with t in which the premise

where t is on the right-hand side is proved with the tR.

Σ : Γ1 ⊢ t ,∆1
tR Ξ

Σ : Γ2, t ⊢ ∆2

Σ : Γ1,Γ2 ⊢ ∆1,∆2
cut

This proof can be changed to remove this occurrence of cut entirely as follows.

First, the proof Ξ of Σ:Γ2, t ⊢ ∆2 can be rewritten to the proof Ξ′ of Σ:Γ2 ⊢ ∆2

by removing the occurrence of t in the endsequent and, hence, all the other

occurrences of t that can be traced to that occurrence. (See Exercise 4.8.)

Furthermore, Ξ′ can be transformed to a proof Ξ′′ of Σ : Γ1,Γ2 ⊢ ∆1,∆2 by

simply adding weakening rules to it. The proof Ξ′′ contains one fewer instances

of the cut-rule than the original displayed proof above.

Consider a proof that contains the following cut with ∀ in which the two

occurrences of that quantifier are immediately introduced in the two subproofs

to cut.
Ξ1

Σ, x : Γ1 ⊢ Bx,∆1

Σ : Γ1 ⊢ ∀x.Bx,∆1
∀R

Ξ2

Σ : Γ2, Bt ⊢ ∆2

Σ : Γ2, ∀x.Bx ⊢ ∆2
∀L

Σ : Γ1,Γ2 ⊢ ∆1,∆2
cut

Here, t is a Σ-term. By Exercise 4.11, the proof Ξ1 of Σ, x : Γ1 ⊢ Bx,∆1 can

be transformed into a proof Ξ′
1 of Σ : Γ1 ⊢ Bt,∆1 (notice that x is not free in

any formula of Γ1 and ∆1 nor in the abstraction B). The above instance of

cut can now be rewritten as

Ξ′
1

Σ : Γ1 ⊢ Bt,∆1

Ξ2

Σ : Γ2, Bt ⊢ ∆2

Σ : Γ1,Γ2 ⊢ ∆1,∆2
cut

Exercise 4.12. Repeat the above rewriting of cut inference rules when the

cut formula is f , a disjunction, or an existential quantifier.

The above rewriting of cut rules suggests that each of the logical connec-

tives, in isolation, have been given the appropriate left and right introduction

rules. As mentioned in Section 3.6, each logical connective is given two senses:

introduction on the right provides the means to prove a logical connective;

introduction on the left provides the means to argue from a logical connective

as an assumption. The cut-elimination procedure (partially described above)

and the non-atomic-initial-sequent elimination procedure provide some of the

justification that these two senses are describing the same connective.

4.2 The identity rules and their elimination 49

Exercise 4.13. Define a new binary logical connective, written ⋄, giving it

the left introduction rules for ∧ but the right introduction rules for ∨. Can cut

be eliminated from proofs involving ⋄? Can init be restricted to only atomic

formulas? This connective is the “tonk” connective of Prior [1960].

Theorem 4.14 (Cut-elimination). If a sequent has a C-proof (respectively,

I-proof) then it has a cut-free C-proof (respectively, I-proof).

While we will not prove this theorem here, we will prove cut-elimination

theorems for focused versions of sequent calculi: see the proofs of cut-elimination

for a fragment of intuitionistic logic (Theorem 5.26) and for all of linear logic

(Theorem 6.42). For now, we point out some issues related to proving such

cut-elimination results as Theorem 4.14.

Sometimes cuts can be permuted locally although they cannot be elimi-

nated globally. Consider adding to sequent calculus a definition mechanism

for propositional formulas (the restriction to propositional formulas is only

to simplify the presentation). Specifically, let D be a finite set of definitions

which are pairs A := B of a propositional letter A and a propositional formula

B. Also add to the proof system in Section 4.1 the following two introduction

rules for defined atoms (assuming that the definition A := B is a member of

D).
Γ, B ⊢ ∆

Γ, A ⊢ ∆
defL

Γ ⊢ ∆, B

Γ ⊢ ∆, A
defR

Note that locally, the cut rule interacts well with these two introduction rules.

For example, if the cut formulas in the premise of a cut rule are immediately

introduced by these definition rules, we can have the following derivation.

Γ1 ⊢ ∆1, B

Γ1 ⊢ ∆1, A
defR

Γ2, B ⊢ ∆2

Γ2, A ⊢ ∆2
defL

Γ1,Γ2 ⊢ ∆1,∆2
cut

The cut rule can be applied to the premises of defR and defL as follows.

Γ1 ⊢ ∆1, B Γ2, B ⊢ ∆2

Γ1,Γ2 ⊢ ∆1,∆2
cut

In this case, one instance of cut on the atomic formula A is replaced by another

instance of cut on the possibly larger formula B. Without further restrictions

on the class of formulas allowed in definitions, cuts cannot be eliminated. A

logic extended with definitions can be inconsistent, as the following exercise

illustrates.

Exercise 4.15.(‡) Let p be a non-logical constant of type o (a propositional

constant). Let D contain just the definition p := (p ⊃ f). Show how it is

50 Chapter 4. Classical and intuitionistic logics

possible to write a cut-free proof for both p ⊢ f and ⊢ p. [Hint: the cR rule

is needed.] As a consequence, there is a proof with cut of ⊢ f . Describe what

happens when one attempts to eliminate the cut in this proof of f .

We mentioned in Section 3.2.2 that the initial and cut rules can be seen as

expressing dual aspects of ⊢. To illustrate that, let Σ be some signature and

let T be the set of formula {B ⊃ B | B is a Σ-term}. The init rule can be

used to prove all members of T . On the other hand, the cut rule can be seen

as using members of this set as an assumption. In particular, a cut-inference

rule can be replaced with an ⊃L rule as follows.

Σ : Γ ⊢ ∆, B Σ :B,Γ′ ⊢ ∆′

Σ : Γ,Γ′ ⊢ ∆,∆′ cut
Σ : Γ ⊢ ∆, B Σ :B,Γ′ ⊢ ∆′

Σ :B ⊃ B,Γ,Γ′ ⊢ ∆,∆′ ⊃L

As a result of this observation, it is easy to see that a proof of Σ : Γ ⊢ ∆ can

easily be converted to a cut-free proof of Σ : T ′,Γ ⊢ ∆, where T ′ is a finite

subset of T .

The following example provides a simple illustration that shows that a

proof with cuts can be small while a cut-free proof of the same endsequent must

be much larger. Fix the non-logical signature to be {a : i, f : i → i, p : i → o}.
The notation (fn t) denotes the term that result from n applications of f

to the term t: i.e., (f (f . . . (f t) . . .)), where there are n occurrences of f

applied to t. Clearly, the sequent p a, ∀x(p x ⊃ p (f x)) ⊢ p(fna) is provable

for all n ≥ 0. Let P be the multiset {p a,∀x(p x ⊃ p (f x))}. For example,

the following cut-free proof proves that p(f(f(f a))) is a consequence of P.

P ⊢ pa P, p(fa) ⊢ p(fa)

P, pa ⊃ p(fa) ⊢ p(fa)

P ⊢ p(fa)
†

P, p(f2a) ⊢ p(f2a)

P, p(fa) ⊃ p(f2a) ⊢ p(f2a)

P ⊢ p(f2a)
†

P, p(f3a) ⊢ p(f3a)

P, p(f2a) ⊃ p(f3a) ⊢ p(f3a)

P ⊢ p(f3a)
†

The key inference steps in this proof, marked with † involve cL and ∀L. This
style of proof could be generalized so that proving p(fna) involves n instances

of this combination of rules.

Exercise 4.16. Show that the shortest cut-free I-proof of P ⊢ p(fna) has

height that is linear in n.

Exercise 4.17.(‡) Show that it is possible to have proofs with cut of p(f2na)

from P whose height is linear in n instead of in 2n (as in the style of proof

above). Do this by proving a series of lemmas in the construction of that

proof.

4.3 Logical equivalence 51

A consequence of these two exercises is the fact that cut can yield (at least)

exponentially shorter proofs.

4.3 Logical equivalence

Two Σ-formulas B and C are equivalent, written as B ≡ C, in classical (resp.,

intuitionistic) logic if the two sequents Σ : B ⊢ C and Σ : C ⊢ B are provable

in classical (resp., intuitionistic) logic. Clearly, if two formulas are equivalent

in intuitionistic logic, they are equivalent in classical logic. The converse is,

however, not true. For example, p ∨ (p ⊃ q) is classically equivalence to

(p ⊃ p) ∨ q but these are not equivalence in intuitionistic logic. The same

holds for the pair of formulas ∀x.(rx ⊃ p) and (∃x.rx) ⊃ p.

Equivalences can be used to rewrite one logical formula to another logical

formula so that equivalence is maintained. Thus, algebraic-style reasoning can

be done on formulas. Sequences of rewritings provide a flexible way to prove

equivalences without the explicit need to use the sequent calculus.

A common way to define the replacement of a subformula occurrence within

a formula is to introduce a syntax such as C[A] and to think of C[□] as a formula

with possibly several occurrences of the hole □. In that setting, if the formulas

C and D can be written as C[A] and C[B], respectively, then we say that D

results from replacing zero or more occurrences of the subformula A in C with

D. A simple and more formal definition, however, is offered by the inductive

definition given by the proof system in Figure 4.5. Let C and D be Σ-formulas.

We say that D arises from replacing zero or more subformula occurrences of

A in C with the formula B if Σ : C ▷◁ D is provable. Note that we use Σ

as a binding mechanism for variables in the same style as we used Σ to bind

eigenvariables in sequents.

Proposition 4.18. Let A and B be Σ-formulas such that A ≡ B in classi-

cal (resp., intuitionistic) logic. If Σ : C ▷◁ D is provable using the rules in

Figure 4.5, then C ≡ D in classical (resp., intuitionistic) logic.

Proof. Let A and B be Σ-formulas and assume that assume that A ≡ B in,

say, intuitionistic logic. Hence both Σ : A ⊢ B and Σ : B ⊢ A have I-proofs.

Also assume that Σ :C ▷◁ D is provable using the inference rules in Figure 4.5.

The proof of this proposition follows from a straightforward induction on the

structure of such proofs. We illustrate with one case. Assume that the last

rule involved implications: thus, C is C ′ ⊃ C ′′ and D is D′ ⊃ D′′ and we know

that Σ : C ′ ▷◁ D′ and Σ : C ′′ ▷◁ D′′. The proof that Σ : C ′ ⊃ C ′′ ⊢ D′ ⊃ D′′ is

built with the following derivation

Σ :D′ ⊢ C ′ Σ : C ′′ ⊢ D′′

Σ : C ′ ⊃ C ′′, D′ ⊢ D′′ ⊃L

Σ : C ′ ⊃ C ′′ ⊢ D′ ⊃ D′′ ⊃R

52 Chapter 4. Classical and intuitionistic logics

Σ : C ▷◁ C

Σ : C ▷◁ E Σ :D ▷◁ F

Σ : C ∧D ▷◁ E ∧ F

Σ : C ▷◁ E Σ :D ▷◁ F

Σ : C ∨D ▷◁ E ∨ F

Σ : C ▷◁ E Σ :D ▷◁ F

Σ : C ⊃ D ▷◁ E ⊃ F

x : τ,Σ : C ▷◁ D

Σ : ∀τx.C ▷◁ ∀τx.D
x : τ,Σ : C ▷◁ D

Σ : ∃τx.C ▷◁ ∃τx.D

Σ :A ▷◁ B
†

Figure 4.5: The inductive definition of how to replace some occurrences

of A with B within a formula. The proviso † requires that A and B are

Σ-formulas. Note that C, D, E, and F are schematic variables quantified

per inference rule while A and B are given and fixed formulas.

and with the proofs that are guaranteed by the proofs of Σ : C ′ ▷◁ D′ and

Σ:C ′′ ▷◁ D′′. This case also holds for the other connectives and if we substitute

classical for intuitionistic provability.

We shall occasionally use such reasoning by logical equivalence, but we shall

not incorporate equivalences into inference rules within our sequent calculus

proof systems.

4.4 Invertible introduction rules

As defined in Section 3.5, an inference rule is invertible if whenever its con-

clusion is provable, all of its premises are provable.

Proposition 4.19. The inference rules tR, ∨L, ∧R, fL, ∀R, ∃L, and ⊸R

from Figure 4.1 are invertible.

Proof. The invertibility of tR and f L is immediate. We indicate how to prove

the invertibility of ⊸R here: the invertibility of the other inference rules is

proved similarly.

To show that the ⊸R rule is invertible, assume that Σ : Γ ⊢ ∆, B ⊃ C

has a C-proof Ξ. Given Proposition 4.10, we can assume that Ξ is atomically

closed. We now proceed by induction on the structure of Ξ by considering all

cases for its the last inference rule (which cannot be initial). In the case that

this last inference rule is ∨L, then Ξ is of the form

Ξ1

Σ : Γ, P ⊢ B ⊃ C,∆
Ξ2

Σ : Γ, Q ⊢ B ⊃ C,∆

Σ : Γ, P ∨Q ⊢ B ⊃ C,∆
∨L.

4.4 Invertible introduction rules 53

By the inductive hypothesis applied to Ξ1 and Ξ2, the sequents Σ : Γ, P ⊢
B ⊃ C,∆ and Σ : Γ, Q ⊢ B ⊃ C,∆ must have proofs that introduce the

corresponding occurrences of B ⊃ C: let Ξ′
1 and Ξ′

2, respectively, be the

proofs of the corresponding premises of these occurrences of ⊸R. The proof

Ξ′
1

Σ : Γ, P,B ⊢ C,∆
Ξ′
2

Σ : Γ, Q,B ⊢ C,∆

Σ : Γ, P ∨Q,B ⊢ C,∆
∨L

Σ : Γ, P ∨Q ⊢ B ⊃ C,∆
⊸R

is a proof of the same sequent above but with ⊸R as its last inference: in

other words, we have managed to permute an occurrence of ⊸R over ∨L into

an an occurrence of ∨L over ⊸R. In order to treat the case where the last

inference rule of Ξ is the cut rule, consider the following collection of inference

rules (in which the signature for sequents is dropped).

Ξ1

Γ1 ⊢ E,∆1

Ξ2

E,Γ2, B ⊢ ∆2, C

E,Γ2 ⊢ ∆2, B ⊃ C
⊸R

Γ1,Γ2 ⊢ B ⊃ C,∆1,∆2
cut

−→

Ξ1

Γ1 ⊢ E,∆1

Ξ2

E,Γ2, B ⊢ ∆2, C

Γ1,Γ2, B ⊢ C,∆1,∆2
cut

Γ1,Γ2 ⊢ B ⊃ C,∆1,∆2
⊸R

Ξ1

Γ1, B ⊢ E,∆1, C

Γ1 ⊢ E,∆1, B ⊃ C
⊸R Ξ2

E,Γ2 ⊢ ∆2

Γ1,Γ2 ⊢ B ⊃ C,∆1,∆2
cut

−→

Ξ1

E,Γ1, B ⊢ ∆1, C
Ξ2

Γ1 ⊢ E,∆2

Γ1,Γ2, B ⊢ C,∆1,∆2
cut

Γ1,Γ2 ⊢ B ⊃ C,∆1,∆2
⊸R

Thus, we can permute an instance of ⊸R above cut to an instance of cut

above ⊸R, no matter which premise the formula B ⊃ C was placed. All

other cases for the last inference rule in Ξ can be treated similarly.

By invoking uses of structural rules, it is sometimes possible to permute

additional instances of inference rules. For example, Figure 3.5 illustrates that

an occurrence of ⊃R above ⊃L can be permuted so that these two rules are

swapped. In order to perform that permutation, the structural rules of wL,

wR, and cR are used: thus, such a permutation might not generally be possible

within I-proofs.

It is possible to use cut-elimination to prove the invertibility of some in-

troduction rules within cut-free proofs. For example, let Ξ be a C-proof of

Γ ⊢ B ⊃ C,∆ and consider the following proof involving both Ξ and the cut

inference rule.

Ξ
Γ ⊢ B ⊃ C,∆

B ⊢ B
init

C ⊢ C
init

B,B ⊃ C ⊢ C
⊃L

Γ, B ⊢ C,∆
cut

Γ ⊢ B ⊃ C,∆
⊃R.

54 Chapter 4. Classical and intuitionistic logics

If we apply the cut-elimination procedure to this proof, only inference rules

above the cut are affected: in particular, the result of eliminating the cut will

yield a proof that ends with the introduction of B ⊃ C. In this way, we have

used cut elimination to transform Ξ into a proof that immediately introduces

an occurrence of ⊃, thereby proving the invertibility of ⊃R

Exercise 4.20. (‡) Repeat the argument above to prove the invertibility of

∨L, ∧R, ∀R, and ∃L.

4.5 Negation, false, and minimal logic

Our formalization of classical provability using C-proofs is essentially the

same as Gentzen’s use of the LK proof system. One important difference

between our presentation of classical logic here and that used by Gentzen is

that Gentzen chose not to use the units t and f within his sequent calculi.

In particular, Gentzen’s sequent system treats negation as a logical connec-

tive, meaning, of course, that he provided left and right introduction rules for

negation, namely,

Γ ⊢ B,∆

¬B,Γ ⊢ ∆
¬L and

Γ, B ⊢ ∆

Γ ⊢ ¬B,∆
¬R.

These inference rules cannot be added directly to I-proofs since the ¬L rule

is inconsistent with the requirement that there is exactly one formula on the

right-hand side. Gentzen’s intuitionistic proof system LJ is defined as a re-

striction on LK in which all sequents have at most one formula on the right.

With that restriction, ¬L can be used whenever the concluding sequent has an

empty right-hand side. Instances of wR can also appear in Gentzen’s version

of LJ proofs.

Exercise 4.21. Minimal logic is sometimes defined as intuitionistic logic with-

out the ex falso quodlibet rule: from false, anything follows. Formally, we

define an M-proof as an I-proof in which the f L rule does not appear. Since

f L is the only inference rule for f in Figure 4.1, f is not treated as a logical

connective within M-proofs. In particular, let B be a formula, and let q be a

non-logical symbol of type o that does not occur in B. Let B′ be the result

of replacing all occurrences of f in B with q. Show that B has an M-proof if

and only if B′ has an I-proof.

The following lemma shows that the ex falso quodlibet inference rule is

admissible in I-proofs.

Lemma 4.22. If Ξ is an I-proof of Σ : Γ ⊢ f then for any Σ-formula B, there

is an I-proof Ξ′ that has the same structure as Ξ but which proves Σ : Γ ⊢ B.

4.5 Negation, false, and minimal logic 55

Proof. The proof is by induction on the structure of Ξ. Essentially, a few

occurrences of f on the right of sequents are changed to B. Ultimately, an

occurrence of a leaf sequent of the form Γ′, f ⊢ f is converted to Γ′, f ⊢ B.

Another way to view this transformation of Ξ to Ξ′ is to consider permuting

the following cut up into the left premise.

Ξ

Γ ⊢ f f ⊢ B
f L

Γ ⊢ B
cut

We can now show that Gentzen’s original LJ proof system, in which nega-

tion is a logical connective and where wR can appear, can be emulated directly

by I-proofs. Formally, define a G-proof as a C-proof in which the rules for

negation above are allowed and where the right-hand side of sequents are re-

stricted to have at most one formula. We now show that every G-proof can

be directly translated to an I-proof in which negation is replaced by “implies

false”. To this end, define the mapping (B)◦ that replaces every occurrence

of ¬C in B with C ⊃ f . Similarly, we extend this function to multisets of

formulas: (Γ)◦ = {(B)◦ | B ∈ Γ}. Finally, we further extend this mapping to

work on sequents, as follows:

(Γ ⊢ ∆)◦ =

{
(Γ)◦ ⊢ (∆)◦ if ∆ is not empty

(Γ)◦ ⊢ f if ∆ is empty

Clearly, the image of a sequent in a G-proof is a sequent with exactly one

formula in the right-hand side.

Proposition 4.23. Every G-proof of the sequent Σ : Γ ⊢ ∆ can be converted

to an I-proof of the sequent Σ : (Γ)◦ ⊢ (∆)◦.

Proof. All identity and introduction rules other than those for negation trans-

late immediately from G-proofs to I-proofs. The case for negation rules is

simple as well:

Γ ⊢ B

¬B,Γ ⊢ · ¬L
−→ (Γ)◦ ⊢ (B)◦ f ⊢ f

f L

(B)◦ ⊃ f , (Γ)◦ ⊢ f
⊃L

Γ, B ⊢ ·
Γ ⊢ ¬B ¬R −→

(Γ)◦, (B)◦ ⊢ f

(Γ)◦ ⊢ (B)◦ ⊃ f
¬R

The only non-trivial change in proofs results when the G-proof ends with wR.

In that case, the G-proof inference rule

Γ ⊢ ·
Γ ⊢ B

wR

56 Chapter 4. Classical and intuitionistic logics

would allow us to conclude that the translation of the upper sequent, i.e.,

(Γ)◦ ⊢ f has an I-proof. By Lemma 4.22, we can conclude that (Γ)◦ ⊢ (B)◦

has an I-proof.

Thus, we can translate away Gentzen’s use of negation in such a way that

the role of wR in his LJ system can be absorbed into the f L rule. As a result,

we have a proof system—namely, I-proofs—for intuitionistic logic that has

neither weakening nor contraction on the right. This observation is helpful

for motivating the design of linear logic in Chapter 6. Thus, I-proofs (and

the proof system for linear logic) will have the ex falso quodlibet rule while

not having wR: the G-proof system, on the contrary, has both the ex falso

quodlibet rule and the wR rule.

4.6 Choices to consider during the search for proofs

While Gentzen’s original calculus is a good setting to prove the elimination

of the cut rule (and, hence, also prove consistency), the direct application of

that calculus to computational tasks is problematic for several reasons. Since

we will be considering the search for proofs as a computation model, we now

examine the many choices that are present when searching for a proof. We shall

look for possible means to reduce some choices even if such reductions make

proofs less amendable for mathematical (i.e., not automated) proof. The many

choices in how one searches for sequent calculus proofs can be characterized

as follows.

• It is always possible to apply the cut rule to any sequent. In that case,

we need to produce a cut-formula (lemma) to prove on one branch and

to use as an assumption on the other.

• The structural rules of contractions and weakening can always be applied

to make additional copies of a formula or to remove formulas.

• There may be many non-atomic formulas in a sequent, and we can gen-

erally apply an introduction rule for every one of these formulas.

• One can also make the choice to check if a given sequent is initial.

Some of these choices produce sub-choices. For example, choosing the cut

rule requires finding a cut-formula; choosing ∨R requires selecting a disjunct;

choosing ∧L requires selecting a conjunct; choosing ∀L or ∃R requires choosing

a term t to instantiate a quantifier, and using the ⊃L or cut rules require

splitting the surrounding multiset contexts into pairs (for which there can be

exponentially many splits).

4.7 Bibliographic notes 57

All this freedom in searching for proofs is not, however, needed, and greatly

reducing the sets of choices can still result in complete proof procedures. Most

of the choices above can be addressed as follows.

• Given the cut-elimination theorem, we do not need to consider the cut

rule and the problem of selecting a cut-formula. Such a choice forces us to

move into a domain where proofs are more like computation traces than

witnesses of mathematical arguments (see the discussion in Section 3.6).

But since our goal here is the specification of computation, we shall

generally live with this choice.

• Often, structural rules can be built into inference rules. For example,

weakening can be delayed until the leaves of a proof and it can be built

into the init rule. Also, instead of attempting to split the contexts when

applying the ⊃L rule, we can use the contraction rule to duplicate all

the formulas and then place one copy on the left branch and one copy

on the right branch.

• The problem of determining appropriate substitution terms in the ∀L
and ∃R rules is a serious problem whose solution falls outside our inves-

tigations here. When systems based on proof search are implemented,

they generally make use of various techniques, such as employing so-

called logic variables and unification to determine instantiation terms

lazily. Although such techniques are completely standard, we shall not

discuss them here.

• While there is be significant nondeterminism involved in choosing among

many possible introduction rules, that nondeterminism can generally

be classified as either don’t-know nondeterminism—where choices might

need to be undone in order to find a complete proof and don’t-care non-

determinism—where choices do not need to be undone.

Examples of don’t-care nondeterminism are invertible rules (as defined in

Section 3.5). Applying such invertible introduction rules does not lose com-

pleteness. While non-invertible introduction rules represent genuine choices

(i.e., don’t-know nondeterminism) in the search for proofs, we will provide in

the next chapter some structure to those choices as well.

4.7 Bibliographic notes

In his 1935 paper, Gentzen introduced natural deduction. His plan in that

paper was to use natural deduction to show that proofs in intuitionistic and

classical logics can be analytic, i.e., that they can be limited to being free of

58 Chapter 4. Classical and intuitionistic logics

lemmas. Although it seems clear that Gentzen knew how to use natural de-

duction to prove this result for intuitionistic logic [Plato and Gentzen, 2008],

he did not see how to use natural deduction to prove this same result for clas-

sical logic. As a result, Gentzen invented the sequent calculus, and, in that

setting, he was able to provide a single cut-elimination procedure that worked

for both logics. From what we have illustrated in this chapter, it is not surpris-

ing that natural deduction has not served as a unifying framework for these

two logics since (1) an important difference between sequent calculus proofs

for classical and intuitionistic logics is the presence or absence of contraction

and weakening on the right, and (2) natural deduction does not support those

structural rules since the conclusion of a natural deduction proof is always a

single formula (even when applied to classical logic).

There are many well-known proofs for cut-elimination for proof systems

such as the one given by Figures 4.1, 4.2, and 4.3. For the detailed proofs of

such cut-elimination theorems, see Gentzen’s original paper [1935] as well as

more modern treatments available in [Gallier, 1986, Chapter 6], [Girard et al.,

1989, Chapter 13], [Negri and von Plato, 2001], and [Bimbó, 2015].

In [Girard et al., 1989, Chapter 5], Girard points out that the initial rule

(recall Figure 4.2) implies that the left occurrence of B is stronger than the

right occurrence of B, whereas the meaning of the cut rule is the opposite: a

right occurrence of B is stronger than the left occurrence of B. This duality

is also apparent in other presentations of these inference rules, such as in the

Calculus of Structures [Guglielmi, 2007] and in uses of linear logic as a meta-

logic for the sequent calculus (see Section 7.7 and Miller and Pimentel [2004,

2013]).

As was mentioned in Section 4.2, logic programs will be viewed in this

book as theories that attribute meaning to programmer-supplied non-logical

symbols. For example, suppose we wish to specify how to sort a list of num-

bers. In that case, we introduce a binary predicate, say, sort, to denote the

relationship between lists of numbers and sorted lists of numbers. The logic

program that describes how to compute this sort predicate is, in fact, a theory

(collection of assumptions). (See Figure 5.6 for an explicit presentation of a

logic program for specifying sorting.) Different proof-theoretic approaches to

logic programming are available that do not use non-logical symbols in this

way. For example, Hallnäs and Schroeder-Heister [1991] encode logic pro-

grams as definitions (which are given left and right introduction rules, as in

Section 4.2). Horn clause logic programs also have rather direct and elegant

encodings using fixed point expressions [McDowell and Miller, 2002; Tiu and

Miller, 2005].

Chapter5
Two abstract logic

programming languages

We now apply the C and I proof systems to the description of logic program-

ming languages in a high-level and implementation-independent fashion.

5.1 Goal-directed search

One approach to modeling logic programming is to view logic programs as

assumptions, goals as queries to ask of a logic program, and computation as

the process of attempting to prove a goal from a program. The state of an

idealized interpreter can be represented as the two-sided sequent Σ : P ⊢ G,

where Σ is the signature that declares a set of eigenvariables, P is a set of

Σ-formulas denoting a program, and G is a Σ-formula denoting the goal we

wish to prove from P.

Central to viewing computation in logic programming seems to require the

following restriction on the search for proofs. If G is not atomic, then its top-

level logical connective should determine which inference rules should be used

in an attempt to prove Σ :P ⊢ G: in particular, a right-introduction rule must

be attempted. Thus, the search semantics for a logical connective at the head

of a goal is fixed by the logic and is independent of the program. It is only

when the goal is atomic, i.e., when its top-level symbol is non-logical, that the

program P is consulted: the program is available to provide meaning for the

non-logical, predicate constant at the head of atoms.

If we instantiate the above view of computation using the introduction

rules given in Figure 4.1, we derive the following natural set of strategies.

• Reduce an attempt to prove Σ : P ⊢ B1 ∧ B2 to the attempts to prove

the two sequents Σ : P ⊢ B1 and Σ : P ⊢ B2.

60 Chapter 5. Two abstract logic programming languages

• Reduce an attempt to prove Σ : P ⊢ B1 ∨ B2 to an attempt to prove

either Σ : P ⊢ B1 or Σ : P ⊢ B2.

• Reduce an attempt to prove Σ : P ⊢ ∃τx.B to an attempt to prove

Σ : P ⊢ B[t/x], for some Σ-term t of type τ .

• Reduce an attempt to prove Σ : P ⊢ B1 ⊃ B2 to an attempt to prove

Σ : P, B1 ⊢ B2.

• Reduce an attempt to prove Σ : P ⊢ ∀τx.B to an attempt to prove

Σ, c : τ : P ⊢ B[c/x], where c is a token not in Σ.

• Attempting to prove Σ : P ⊢ t yields an immediate success.

These strategies suggest the following technical definition to formalize the

notion of goal-directed proof search: a cut-free I-proof Ξ is a uniform proof

if every occurrence of a sequent in Ξ that has a non-atomic right-hand side

is the conclusion of a right-introduction rule. Searching for uniform proofs

is now greatly restricted since building a uniform proof means applying right

rules when the succedent has a logical connective. No left-introduction rules,

no identity rules, and no structural rules can be considered when the right-

hand side is a non-atomic formula. The definition of uniform proof provides

no guidance for proof search when the right-hand side of a sequent is atomic.

Such guidance will, however, soon appear.

Exercise 5.1. Show that uniform proofs are always atomically closed.

There are provable sequents for which no uniform proof exists. For exam-

ple, let the non-logical constants be Σ0 = {p : o, q : o, r : i → o, a : i, b : i} and

let Σ be an signature. The sequents

Σ : (r a ∧ r b) ⊃ q ⊢ ∃ix(r x ⊃ q) and Σ : · ⊢ p ∨ (p ⊃ q)

have C-proofs but no I-proofs (see Exercise 4.3), so clearly, they have no

uniform proofs. The two sequents

Σ : p ∨ q ⊢ q ∨ p and Σ : ∃ix. r x ⊢ ∃ix. r x

have I-proofs but no uniform proofs.

One high-level way to define logic programming is to consider those collec-

tions of programs and goals for which uniform proofs are, in fact, complete.

An abstract logic programming language is a triple ⟨D,G,⊢⟩ such that for all

first-order signatures Σ0, for all finite sets P of Σ0-formulas from D, and all

Σ0-formulas G of G, we have Σ0 :P ⊢ G if and only if Σ0 :P ⊢ G has a uniform

proof. Here, ⊢ is the provability relation associated to some particular logic,

say, first-order classical or intuitionistic logic.

5.2 Horn clauses 61

Both the definitions of uniform proof and abstract logic programming lan-

guage are restricted to I-proofs. We shall refer to this as the single-conclusion

version of these notions. After we introduce linear logic, we will present, in

Section 6.7, a generalization of uniform proofs to multiple conclusion proof

systems.

A theory ∆ is said to satisfy the disjunction property if the provability of

Σ:∆ ⊢ B∨C implies the provability of either Σ:∆ ⊢ B or Σ:∆ ⊢ C. A theory

∆ is said to satisfy the existence property if the provability of Σ : ∆ ⊢ ∃τx. B
implies the existence of a Σ-term t of type τ such that Σ:∆ ⊢ B[t/x] is provable.

Clearly, if uniform proofs are complete for a given theory and a notion of

provability, that theory has both the disjunction and existence properties. In

a sense, when uniform proofs are complete, these properties are satisfied at all

points in building a cut-free proof.

5.2 Horn clauses

The first attempts to describe the provability of logic programs took place in

the setting of performing resolution refutations: the choice of refuting over

proving lead to a peculiar presentation of first-order Horn clauses. In that

setting, Horn clauses were generally defined as the universal closure of dis-

junctions of literals (atomic formulas or their negation) that contain at most

one positive literal (an atomic formula). That is, a clause is a closed formula

for the form

∀x1 . . . ∀xn[¬A1 ∨ · · · ∨ ¬Am ∨B1 ∨ · · · ∨Bp],

where A1, . . . , Am, B1, . . . , Bp are atomic formulas, n,m, p ≥ 0, and p ≤ 1. If

n = 0 then the quantifier prefix is not written and if m = p = 0 then the body

of the clause is considered to be f . If the clause contained exactly one positive

literal (p = 1), it is a positive Horn clause. If it contained no positive literal

(p = 0), it is a negative Horn clause.

When we shift from the search for refutations to the search for sequent

calculus proofs, it is natural to shift the presentation of Horn clauses to one

of the following. Let τ be a syntactic variable that ranges over S\{o} (i.e.,

primitive types other than the type of formulas) and let A be a syntactic

variable ranging over atomic formulas. Consider the following three, recursive

definitions of the two syntactic categories of program clauses (definite clause),

given by the syntactic variable D, and goals, given by the syntactic variable G.

G ::= A | G ∧G

D ::= A | G ⊃ A | ∀τx D. (5.1)

Program clauses using this presentation are of the form

∀x1 . . . ∀xn(A1 ∧ · · · ∧Am ⊃ A0),

62 Chapter 5. Two abstract logic programming languages

where we adopt the convention that if m = 0 then the implication is not

written. A second, richer definition of these syntactic classes is the following.

G ::= t | A | G ∧G | G ∨G | ∃τx G

D ::= t | A | G ⊃ D | D ∧D | ∀τx D. (5.2)

Finally, a compact presentation of program clauses and goals is possible using

only implication and universal quantification.

G ::= A

D ::= A | A ⊃ D | ∀τx D. (5.3)

This last definition describes a program clause as a formula built from impli-

cations and universals such that there are no occurrences of logical connectives

to the left of an implication. Program clauses using this presentation are of

the form

∀x̄1(A1 ⊃ ∀x̄2(A2 ⊃ · · · ⊃ ∀x̄m(Am ⊃ ∀x̄0A0) . . .)),

where x̄0, . . . , x̄m are (possibly empty) lists of variables.

We use the symbol fohc to informally refer to the logic programming lan-

guages based on one of these three descriptions of first-order Horn clauses.

Definition (5.1) above corresponds closely to the definition of Horn clauses

given using disjunction of literals. In this case, positive clauses correspond to

the D-formulas and the negation of G-formulas would all be negative clauses.

Let D1 be the set of D-formulas and G1 be the set of G-formulas satisfying the

recursion (5.2).

Exercise 5.2. For each of the three presentations of Horn clauses and goals

above, show that the clausal order (see Section 2.4) of a formulas in G1 is 0

and of formulas in D1 is 0 or 1.

The following intuitionistic logic equivalences are sometimes called the cur-

ry/uncurry equivalences.

1. t ⊃ E ≡ E

2. (B ∧ C) ⊃ E ≡ (B ⊃ C ⊃ E)

3. (B ∨ C) ⊃ E ≡ (B ⊃ E) ∧ (C ⊃ E)

4. (∃x.B) ⊃ E ≡ ∀x.(B ⊃ E)

They can be used (in part) to prove the following exercise.

Exercise 5.3. Let D be a Horn clause using (5.2). Show that there is a set

∆ of Horn clauses using description (5.1) or (5.3) (your pick) such that D

5.2 Horn clauses 63

is equivalent to the conjunction of formulas in ∆. Show that this rewriting

might make the resulting conjunction exponentially larger than the original

clause. (Take as the measure of a formula the number of occurrences of logical

connectives it contains.)

Exercise 5.4. Let Σ be a signature, let P be a set of Σ-formulas in D1, and

let G be a Σ-formula in G1. Let Ξ be a cut-free C-proof of Σ : P ⊢ G. Show

that every sequent in Ξ is of the form Σ : P ′ ⊢ ∆ such that P ′ is a subset of

D1 and ∆ is a subset of G1. Show also that the only introduction rules that

can appear in Ξ are ∀L, ∧L, ⊃L, ∧R, ∨R, ∃R, and tR.

Exercise 5.5. Prove that Horn clause programs are always consistent by

proving that for any signature Σ and any finite set of Horn clauses P, the

sequent Σ : P ⊢ f is not provable. Show that an I-proof of Σ : P ⊢ G for a

Horn goal G is also an M-proof.

We first show that in the Horn clause setting, classical provability is con-

servative over intuitionistic logic.

Proposition 5.6. Let Σ be a signature, let P be a set of Σ-formulas in D1,

and let G be a Σ-formula in G1. If Σ : P ⊢ G has a C-proof then it has an

I-proof.

Proof. We show the following stronger result: if ∆ is a multiset of G-formulas

and Σ:P ⊢ ∆ has a cut-free C-proof then there is a G ∈ ∆ such that Σ:P ⊢ G

has an I-proof. We prove this by induction on the structure of a cut-free C-

proof Ξ for Σ : P ⊢ ∆.

There are three base cases for Ξ: f L is not possible since f is not a member

of P and the two other cases of tR and init are immediate.

If the last inference rule in Ξ is a structural rule, the proof is straightfor-

ward again. For example, suppose the last inference in Ξ is a cR. In that case,

this proof is of the form

Σ : P ⊢ G,G,∆

Σ : P ⊢ G,∆
cR .

By the inductive hypothesis, there is an H in the multiset G,G,∆ such that

Σ : P ⊢ H has an I-proof: clearly, H is also a member of the multiset G,∆.

Now consider all possible introduction rules that might be the last inference

rule of Ξ (see Exercise 5.4). If that last rule is ⊃L, then the proof has the

form
Σ : P1 ⊢ ∆1, G Σ :D,P2 ⊢ ∆2

Σ :G ⊃ D,P1,P2 ⊢ ∆1,∆2
⊃L .

By the induction assumption, there is a formula H1 ∈ ∆1 ∪ {G} for which

Σ:P1 ⊢ H1 has an I-proof and a formula H2 ∈ ∆2 for which Σ:D,P2 ⊢ H2 has

64 Chapter 5. Two abstract logic programming languages

an I-proof. In the case thatH1 ∈ ∆1, the I-proof of the sequent Σ:P1 ⊢ H1 can

be extended with a series of wL rules to yield a proof of Σ:G ⊃ D,P1,P2 ⊢ H1.

On the other hand, if H1 = G, then we build an I-proof using the following

instance of an inference rule

Σ : P1 ⊢ G Σ :D,P2 ⊢ H2

Σ :G ⊃ D,P1,P2 ⊢ H2
⊃L ,

and the two promised I-proofs of the premises.

All the remaining cases of introduction rules can be treated similarly.

Exercise 5.7.(‡) Assume that the Σ-formulas D0, . . . , Dn (n ≥ 0) are Horn

clauses using description (5.3). Prove that if the sequent Σ :D1, . . . , Dn ⊢ D0

has a C-proof then it has an I-proof.

It is the case that ⟨D1,G1,⊢⟩ is an abstract logic programming language if

⊢ is taken to be ⊢C , ⊢I , or ⊢M .

Note that uniform proofs in fohc are very constrained. In particular, if we

use the (5.2) presentation of Horn clauses, then it is only atoms or conjunctions

of atoms that are both goals and program clauses. All the other connectives are

either dismissed (such as f) or are restricted to just half their “meaning:” when

a disjunction and existential quantifier is encountered in proof search, only its

right introduction rule is needed, and when an implication and a universal

quantification is encountered, only its left-introduction rule is needed.

Exercise 5.8. (‡) Let I be the set of formulas using only implications and

atomic formulas that are classical theorems but do not have uniform proofs.

For example, Peirce’s formula ((p ⊃ q) ⊃ p) ⊃ p is a member of I. Prove that

the smallest formula in I has three occurrences of implications.

Readers unfamiliar with specifying computations using Horn clauses might

want to read Section 5.10 now to see examples of such specifications.

5.3 Hereditary Harrop formulas

A natural extension to Horn clauses, called the first-order hereditary Harrop

formulas, allows implications and universal quantifiers in goals (and, thus, in

the body of program clauses). Whereas cut-free proofs involving Horn clauses

contain left-introduction rules for implications and universal quantifiers, proofs

involving this extended set of formulas can contain also right-introduction rules

for implications and universal quantifiers. Parallel to the three presentations

of fohc in Section 5.2, the following three presentations of goals and program

clauses describe first-order hereditary Harrop formulas.

G ::= A | G ∧G | D ⊃ G | ∀x.G
D ::= A | G ⊃ A | ∀x.D (5.4)

5.3 Hereditary Harrop formulas 65

The definitions of G- and D-formulas are mutually recursive. Note that a neg-

ative (resp, positive) subformula of a G-formula is a D-formula (G-formula),

and that a negative (positive) subformula of a D-formula is a G-formula (D-

formula). A richer formulation is given by

G ::= t | A | G ∧G | G ∨G | ∃x.G | D ⊃ G | ∀x.G
D ::= A | G ⊃ D | D ∧D | ∀x.D (5.5)

When referring to first-order hereditary Harrop formulas and goals, we shall

assume this definition of formulas. We use D2 to denote the set of all such

D-formulas and G2 for the set of all G-formulas.

A completely symmetric presentation can be given as

G ::= t | A | D ⊃ G | G ∧G | ∀x.G
D ::= t | A | G ⊃ D | D ∧D | ∀x.D (5.6)

In this presentation, D and G formulas are the same set of formulas, and there

is no need for a definition that allows for mutual recursion. In Section 5.5,

these formulas—which are generated from the set of connectives {t ,∧,⊃, ∀}—
will be called L0-formulas.

We use the name fohh to denote first-order hereditary Harrop formulas:

this name will refer to one of the presentations above. If the text is not explicit

about which presentation is implied, we will assume the second presentation.

He shall also use fohh to denote, in particular, the corresponding D-formulas:

this is justified by the fact that the associated G-formulas are uniquely deter-

mined by the negative subformulas of D-formulas. The same comment also

applies to our use of the term fohc.

Exercise 5.9. Let D ∈ D2. Then D is a Horn clause (using definition (5.2))

if and only if order(D) < 2.

We shall use the term clause not just for Horn clauses but for any formula,

especially any formula that can be used as part of a logic program. Thus, for

example, we often refer to hereditary Harrop formulas also by this term.

The following proposition shows that identifying the right-hand side with

goals and the left-hand side with programs is maintained within cut-free I-

proofs.

Proposition 5.10. Let P be an fohh logic program and G an fohh goal and

let Ξ be a cut-free I-proof of Σ : P ⊢ G. If Σ′ : Γ′ ⊢ B is a sequent in Ξ then

Γ′ is a fohh logic program and B is an fohh goal formula.

This proposition is proved by a simple induction of the structure of cut-free

I-proofs.

66 Chapter 5. Two abstract logic programming languages

The triple ⟨D2,G2,⊢C⟩ is not an abstract logic programming language. For

example, the formulas numbered 4, 5, 6, and 7 in Exercise 4.3 are hereditary

Harrop goals that have classical proofs but no uniform proof.

We shall informally refer to the logic programming languages based on

intuitionistic logic and one of these three descriptions of first-order hereditary

Harrop formulas by simply fohh or as ⟨D2,G2,⊢I⟩.

Lemma 5.11. Let G ∈ G2 be a non-atomic Σ-formula and let P be a finite

multiset, all of whose members are Σ-formulas in D2. Assume that Σ : P ⊢ G

has an I-proof in which the last inference rule is not a right-introduction rule,

and all premise sequents are proved by a uniform proof. There is a uniform

proof of Σ : P ⊢ G.

Proof. Let Ξ be a proof of P ⊢ G satisfying the assumptions of this lemma.

(For readability, we suppress explicitly writing the signature of a sequent.)

The last inference rule of this proof is either one of two structural rules (cL

or wL) or one of three left-introduction rules (∧L, ∀L, ⊃L). In every case,

the proof of the premises must be uniform proofs and, as a result, at least

one premise must be proved by one of five right-introduction rules (∧R, ∨R,
∀R, ∃R, ⊸R). We proceed by induction on the height of the uniform proof

of the right-most premise of this inference rule. All possible cases of left-rules

occurring below a right-introduction rule must be considered.

Consider the case when an implication-left rule is applied when the right-

hand side is a conjunction.

Ξ0

P1 ⊢ G

Ξ1

D,P2 ⊢ G1

Ξ2

D,P2 ⊢ G2

D,P2 ⊢ G1 ∧G2
∧R

G ⊃ D,P1,P2 ⊢ G1 ∧G2
⊃L

These rules can be permuted to form the following proof.

Ξ0

P1 ⊢ G
Ξ1

P2, D ⊢ G1

G ⊃ D,P1,P2 ⊢ G1
⊃L

Ξ0

P1 ⊢ G
Ξ2

P2, D ⊢ G2

G ⊃ D,P1,P2 ⊢ G2
⊃L

G ⊃ D,P1,P2 ⊢ G1 ∧G2
∧R

If this proof is not uniform, apply the inductive assumption to the two sub-

proofs with ⊃L as their last rule. That induction returns a uniform proof for

both G ⊃ D,P1,P2 ⊢ G1 and G ⊃ D,P1,P2 ⊢ G2 and a uniform proof for the

end-sequent comes from applying ∧R to those uniform proofs.

For another case, assume that ⊃L is applied to a sequent with an implica-

5.3 Hereditary Harrop formulas 67

tion on the right-hand side.

Ξ1

P1 ⊢ G

Ξ2

D′, D,P2 ⊢ G′

D,P2 ⊢ D′ ⊃ G′ ⊸R

G ⊃ D,P1,P2 ⊢ D′ ⊃ G′ ⊃L

These rules can be permuted to form the following proof.

Ξ1

P1 ⊢ G
Ξ2

D,D′,P2 ⊢ G′

G ⊃ D,D′,P1,P2 ⊢ G′ ⊃L

G ⊃ D,P1,P2 ⊢ D′ ⊃ G′ ⊸R

If this proof is not uniform, then apply the inductive hypothesis to the right

premise of the ⊸R rule.

All other cases can be proved similarly: permute a left-rule up over a

right-introduction rule and invoke the inductive hypothesis.

Proposition 5.12. Let Σ be a signature, let P be a finite multiset of Σ-

formulas in D2, and let G be a Σ-formula in G2. If Σ : P ⊢ G has a cut-free

I-proof then Σ : P ⊢ G has a uniform proof.

Proof. Assume that Σ : P ⊢ G has a cut-free I-proof Ξ. By Proposition 4.10,

we can also assume that Ξ is an atomically closed I-proof. If Ξ is not uniform,

then there must be occurrences of left-rules (either left-introduction rules or

left-structural rule) in Ξ whose conclusion is a sequent with a non-atomic right-

hand side. Pick one of these occurrences so that the subproofs of its premises

do not have other such occurrences. Thus, the premises of this inference

rule occurrence are uniform. By Lemma 5.11, we can replace the subproof

determined by this left rule with a uniform proof. In this way, we can continue

to replace non-uniform subproofs with uniform proofs until such rewriting

yields a uniform proof.

This proposition formally asserts that the intuitionistic version of fohh is

an abstract logic programming language.

Consider the following class of first-order formulas given by

H := A | B ⊃ H | ∀x H | H1 ∧H2.

Here A ranges over atomic formulas and B over arbitrary first-order formulas.

These H-formulas are known as Harrop formulas. Clearly, hereditary Harrop

formulas are Harrop formulas.

Exercise 5.13. Consider the sequent Σ:P ⊢ B where P is a set of Harrop for-

mulas and B is an arbitrary formula. Show that Harrop formulas are “uniform

68 Chapter 5. Two abstract logic programming languages

at the root;” that is, if B is non-atomic, then this sequent is intuitionistically

provable if and only if it has a I-proof that ends in a right-introduction rule.

Are uniform proofs complete for such sequents?

Finally, note that since hereditary Harrop formulas do not have occurrences

of f in them, the triple ⟨D2,G2,⊢M⟩ describes essentially the same abstract logic

programming language as fohh.

The reader, who wishes to see examples of logic programs in fohh before

considering more about their proof theory, can find some in Section 5.12.

5.4 Backchaining as focused rule application

The restriction to uniform proofs provides some information on how to struc-

ture proofs: in the bottom-up search for proofs, right-introduction rules are

attempted whenever the antecedent is non-atomic, and left-rules are attempted

only when the succedent is atomic. We now present a restriction on the appli-

cation of left side rules, and we will eventually show that that restriction on

proofs does not result in the loss of completeness.

To better structure the rules on the left, we first make two simple changes

to the proof system for I-proofs. While wL can be applied at any point in the

search for a uniform proof, it is also possible to delay applications of that rule

until just before applying the init rule. This delay suggests that we can fold

weakening into the init rule, yielding the derived inference rule

Σ : Γ, B ⊢ B
.

Another use of a structural rule on the left can improve the complexity of

the ⊃L rule when searching for a proof. As we mentioned in Section 3.3,

performing proof search with a multiplicative inference rule can be expensive

since there can be an exponential number of ways to split the side contexts

of the conclusion for use among the premises. The only multiplicative left-

introduction rule is ⊃L. Since contraction and weakening are available on the

left (but not the right), the following variant of that inference rule is easily

proved to be admissible (see Section 3.3).

Σ : Γ ⊢ ∆1, B Σ : C,Γ ⊢ ∆2

Σ :B ⊃ C,Γ ⊢ ∆1,∆2

Here, the cL rule is used to double the Γ context before splitting the left

context. In this rule, the left context is treated additively, and the right

context is treated multiplicatively. Given that we are speaking of I-proofs

here, this rule can be simplified even further since the single formula on the

5.4 Backchaining as focused rule application 69

right of the concluding sequent must move to the right of the right premise.

Thus, we can rewrite this rule as

Σ : Γ ⊢ B Σ : C,Γ ⊢ E

Σ :B ⊃ C,Γ ⊢ E

Now consider refining this last version of the left introduction of implication

in the setting of uniform proofs. That is, consider the derivation

Σ : P ⊢ G Σ :D,P ⊢ A

Σ :G ⊃ D,P ⊢ A
⊃L

Σ : P ⊢ A
cL

where A is atomic and where G ⊃ D is a member of the multiset P. Thus, to

employ G ⊃ D in backchaining, we first use cL to make a copy of it and then

apply ⊃L. Thus, we have reduced an attempt to prove the atomic formula A

from program P to attempting to prove two things, one of which is still an

attempt to prove A but this time from the larger multiset P ∪ {D}. It would
seem natural to expect these inference rules are used only because this new

instance of D is directly helpful in proving A. For example, D could itself be

A, or some sequence of additional left-rules applied to D might reduce it to

an occurrence of A.

We can formalize a proof system where left-introduction rules are used in

such a direct or focused fashion by introducing a new style of sequent, namely,

Σ : P ⇓ D ⊢ A. While provability of this sequent will imply provable of the

sequent Σ : P, D ⊢ A, the formula between the ⇓ and the ⊢, called the focus

of this sequent, is the only formula on which left-introduction rules can be

applied. The sequents Σ : P ⊢ G and Σ : P ⇓ D ⊢ A have ⇓ fohh-proofs if

they have proofs using the ⇓ fohh-proof system in Figure 5.1. This new proof

system is an example of a focused proof system: we shall see two more such

focused proof systems when we introduce linear logic in Chapter 6.

All ⇓ fohh-proofs are composed of two phases. A right-introduction phase

is a derivation composed of only right-introduction rules and where all open

premises are sequents with atomic formulas on their right-hand sides. Such

phases can be identified with the goal-reduction phase of proof search. A

right-introduction phase for Σ : P ⊢ G is empty (i.e., contain no inference

rules) if and only if G is an atomic formula. A left-introduction phase is a

derivation composed of left-introduction rules as well as the init and decide

rules (see Figure 5.1) and where all open premises are sequents without the ⇓.
A left-introduction phase for Σ : Γ ⇓ B ⊢ A can never be empty: that is, such

a phase must contain an inference rule (in particular, the decide rule). This

phase can be identified with the backchaining phase of proof search that we

have described earlier.

70 Chapter 5. Two abstract logic programming languages

Σ : P ⊢ t
tR

Σ : P ⊢ G1 Σ : P ⊢ G2

Σ : P ⊢ G1 ∧G2
∧R

y : τ,Σ : P ⊢ G[y/x]

Σ : P ⊢ ∀τx G
∀R

Σ :D,P ⊢ G

Σ : P ⊢ D ⊃ G
⊸R

Σ : P ⊢ G1

Σ : P ⊢ G1 ∨G2
∨R

Σ : P ⊢ G2

Σ : P ⊢ G1 ∨G2
∨R

Σ ⊩ t : τ Σ : P ⊢ G[t/x]

Σ : P ⊢ ∃τx G
∃R

Σ : P ⇓ D ⊢ A

Σ : P ⊢ A
decide

Σ : P ⇓ A ⊢ A
init

Σ : P ⇓ D1 ⊢ A

Σ : P ⇓ D1 ∧D2 ⊢ A
∧L

Σ : P ⇓ D2 ⊢ A

Σ : P ⇓ D1 ∧D2 ⊢ A
∧L

Σ : P ⊢ G Σ : P ⇓ D ⊢ A

Σ : P ⇓ G ⊃ D ⊢ A
⊃L

Σ ⊩ t : τ Σ : P ⇓ D[t/x] ⊢ A

Σ : P ⇓ ∀τx.D ⊢ A
∀L

Figure 5.1: The ⇓ fohh proof system. In the decide rule, D is a member

of P. In all these rules, A is atomic.

It is important to note the following relationship between determinism and

right-introduction phases and between nondeterminism and left-introduction

phases. Let Σ be a signature and let P and G be a logic program and a goal

formula, respectively, in fohh (all Σ-formulas). There always exists a right-

introduction phase that ends in Σ : P ⊢ G, and that phase is unique up to

the change of names of the eigenvariables. Thus, a right-introduction phase

can be seen as a function that takes the endsequent Σ : P ⊢ G as input and

returns the unique multiset of sequents of the form Σ′ : P ′ ⊢ A (where A is

an atomic formulas) that are the premises of that right-introduction phase.

On the other hand, the left-introduction phase determines a nondeterministic

relation between its endsequent, say, Σ : P ⇓ D ⊢ A, and the multiset of

sequents of the form Σ : P ⊢ G that are the premises of a left-introduction

phase.

Exercise 5.14. Given a sequence a0, a1, . . . , an of atomic (propositional) for-

mulas (n ≥ 0), define the sequence of propositional Horn clauses

Dn = a0 ⊃ · · · ⊃ an−1 ⊃ an (n ≥ 0).

For example, D0 is a0, D1 is a0 ⊃ a1, and D2 is a0 ⊃ a1 ⊃ a2. For a given

n ≥ 0, there are a great many uniform proofs of the sequent D0, . . . , Dn ⊢

5.5 Formal properties of focused proofs 71

an. Among these, consider those in which the left premise of the ⊃L rule

is trivial (proved by the initial rule). Those proofs use the formulas Di in

forwardchaining manner. How do such proofs differ in size to proofs based

only on backchaining, i.e., ⇓ fohh-proofs?

5.5 Formal properties of focused proofs

The proof system in Figure 5.1 is different from the original proof systems of

Gentzen in that there is a lot of control over the application of introduction

rules. In particular, the only way to prove a sequent that does not contain ⇓
is to perform a right-introduction rule or the decide rule. If a sequent contains

the ⇓ then that sequent must be the conclusion of a left-introduction rule or

the init rule. Furthermore, contraction and weakening are not separate rules

but are built into other rules.

The preceding sections in this chapter present various theorems about the

unfocused proof systems I and C and their relationship with Horn clauses

and hereditary Harrop formulas. In general, the focused proof system is much

more useful than those unfocused proof systems for our purposes here. Once

we have proved the main theorems about the focused proof system ⇓ fohh,

most of the results in the previous sections can be reproved immediately using

those theorems.

The following proposition states that whatever is provable using ⇓ fohh-

proofs is also provable in intuitionistic proofs.

Proposition 5.15 (Soundness of ⇓ fohh-proofs). Let Σ be a signature and let

Γ be a multiset of definite Σ-formulas and let G be a goal Σ-formula. If the

sequent Σ : Γ ⊢ G has a ⇓ fohh-proof then it has an I-proof.

Proof. This is proved by a simple induction of the structure of ⇓ fohh-proofs.
In that induction, sequents of the form Γ ⇓ D ⊢ A are mapped to standard

sequents of the form Γ, D ⊢ A.

We will eventually prove that, for hereditary Harrop formulas, ⇓ fohh-

proofs are complete for intuitionistic logic (Proposition 5.37). Before proving

that theorem, we first develop some results about the inference rules in Fig-

ure 5.1. In particular, we note that the ⇓ fohh-proof system does not have

a cut rule, and its init rule is restricted to atomic formulas. It is natural to

ask if the cut rule and the general form of the init rule are admissible for

⇓ fohh-proofs. However, just to ask that question requires us to restrict our

attention to those formulas that are both goal formulas and definite clauses.

Within fohh, these are the only formulas that can appear on the left and the

right of the sequent arrow. Let L0 be the set of connectives {t ,∧,⊃, ∀} and let

an L0-formula be any first-order formula all of whose logical connectives come

72 Chapter 5. Two abstract logic programming languages

from L0. In particular, such formulas do not contain occurrences of disjunc-

tions and existential quantifiers. Until we return to the issue of dealing with

disjunctions and existential quantifiers in Section 5.9, we restrict our attention

to L0 formulas, which are also the same as fohh using definition (5.6).

Since L0 formulas have no occurrences of f , provability in intuitionistic and

minimal logics coincide (see Section 4.5). Thus, for most of the rest of this

chapter, we could replace references to intuitionistic logic with minimal logic

when discussing the properties of ⇓ fohh-proofs. In addition, we emphasize

the role of L0 formulas in this section by using the name ⇓L0-proof system for

the proof system that results from removing the right-introduction rules for ∃
and ∨ from the ⇓ fohh-proof system.

Let B be an L0 formula. The paths in B are those formulas P for which

the following two-place relation B ↑ P is provable (here, A denotes an atomic

formula).

A ↑ A

B ↑ P

B ∧ C ↑ P

C ↑ P

B ∧ C ↑ P

C ↑ P

B ⊃ C ↑ B ⊃ P

B ↑ P

∀τx.B ↑ ∀τx.P

A formula which is a path has the form

∀x̄1.(G1 ⊃ ∀x̄2.(G2 ⊃ . . . ⊃ ∀x̄n.(Gn ⊃ A) . . .)),

where n ≥ 0, A is an atomic formula, G1, . . . , Gn is a list of L0 of formulas,

and where for each i such that 0 < i ≤ n, x̄i is a list of variables. The formula

A is the target of this path, the formulas G1, . . . , Gn are the arguments of

this path, and the list that results from concatenating the lists of variables

x̄1, . . . , x̄n is the list of bound variables of this path. (We assume that all

these bound variables are distinct.) We shall also present such a path using

an associated sequent, namely, x̄1, . . . , x̄n :G1, . . . , Gn ⊢ A.

For example, the paths in (p∧ q) ⊃ (r ∧ s) are (p∧ q) ⊃ r and (p∧ q) ⊃ s.

Similarly, the formula

∀x.p(x) ⊃ ((∀y.q(x, y) ⊃ (r(x, y) ∧ r(y, x))) ∧ p(x))

(where p, q, and r are predicates) has three paths, namely,

∀x.p(x) ⊃ ∀y.q(x, y) ⊃ r(x, y) x, y : p(x), q(x, y) ⊢ r(x, y)

∀x.p(x) ⊃ ∀y.q(x, y) ⊃ r(y, x) x, y : p(x), q(x, y) ⊢ r(y, x)

∀x.p(x) ⊃ p(x) x : p(x) ⊢ p(x).

5.5 Formal properties of focused proofs 73

Here, we also display the associated sequent representation of the path. Note

that the formula t has no paths, and if the formula B contains no occurrences

of t and ∧ then the only path in B is B itself.

Exercise 5.16. Let D be a hereditary Harrop formula defined using (5.4).

Prove that D has exactly one path and that path is D.

Given the intuitionistically valid equivalences

B1 ⊃ (B2 ∧B3) ≡ (B1 ⊃ B2) ∧ (B1 ⊃ B3)

∀x. (B1 ∧B2) ≡ (∀x. B1) ∧ (∀x. B2),

it is easy to show the intuitionistic equivalence

B ≡
∧
B↑P

P.

We can even state the following two much stronger relationships between B

and the conjunction of all paths in B.

1. The right-introduction phase that has endsequent Σ:Γ ⊢ B and the right-

introduction phase that has endsequent Σ :Γ ⊢
∧

B↑P P have exactly the

same premises (modulo the order in which the premises are listed and

modulo alphabetic changes in the names of eigenvariables).

2. The set of left-introduction phases with endsequent Σ : Γ ⇓ B ⊢ A

can be put in one-to-one correspondence with left-introduction phases

with endsequent Σ : Γ ⇓
∧

B↑P P ⊢ A in such a way that corresponding

premises are equal (modulo the order in which the premises are listed

and modulo alphabetic changes in the names of eigenvariables).

These observations are stated more formally in the next two propositions.

Proposition 5.17. Let B be an L0 formula and let the sequent Σ : Γ ⊢ B be

the endsequent of a right-introduction phase. The premises of that phase are

in one-to-one correspondence with paths in B such that the path P corresponds

to the premise Σ,X : Γ,B ⊢ A, where the sequent associated to P is X :B ⊢ A.

(The variables in X are chosen to be disjoint from Σ.)

Proof. We prove this proposition by induction on the structure of the L0

formula B. In the case that B is t , the set of paths in B is empty, and the set

of premises of the right-introduction phase is also empty. If B is atomic, the

end-sequent of the right-introduction phase is the same as its unique premise,

which corresponds to adding no bound variables and no argument formulas

74 Chapter 5. Two abstract logic programming languages

(this phase is empty). If B is B1 ∧B2 then the right-introduction phase ends

with
Σ : Γ ⊢ B1 Σ : Γ ⊢ B2

Σ : Γ ⊢ B1 ∧B2

.

The premises of this phase are divided into those which are premises of the

right-introduction phase with endsequent Σ : Γ ⊢ B1 and the premises of the

right-introduction phase with endsequent Σ : Γ ⊢ B2. Since the paths in P are

either paths in B1 or in B2, the inductive hypothesis immediately yields the

required correspondence. If B is B1 ⊃ B2 then the right-introduction phase

ends with
Σ : Γ, B1 ⊢ B2

Σ : Γ ⊢ B1 ⊃ B2

.

The premises of this phase are also premises of the right-introduction phase

with endsequent Σ : Γ, B1 ⊢ B2. By the inductive hypothesis, a path P ′ in B2

correspond to the premise Σ,X : Γ, B1,B ⊢ A, where X : B ⊢ A is the sequent

associated to P ′. By the definition of paths, the only difference between the

path P and P ′ is that the former has B1 as an additional argument. Thus,

the correspondence is satisfied. The case where B is ∀x.B′ is similar to the

previous case.

The proposition above states that an attempt to prove Σ : Γ ⊢ B leads to

an attempt to prove a series of sequents, one for each path in B. The structure

of the left-introduction phases is described in the following proposition.

Proposition 5.18. Let B be an L0 formula and A an atomic formula. The

sequent Σ : Γ ⇓ B ⊢ A is the endsequent of a left-introduction phase with

premises

Σ : Γ ⊢ G1 , . . . , Σ : Γ ⊢ Gn (n ≥ 0)

if and only if there is a path P in B with target A′, arguments B1, . . . , Bn,

and bound variables X , and a substitution θ that maps the variables in X to

Σ-terms such that A′θ = A and such that G1 = B1θ, . . . , Gn = Bnθ.

Proof. We prove this proposition by induction on the structure of the L0

formula B. The case that B is t is impossible since there is no left-introduction

rule for t . If B is atomic, then B and A are equal since we assume that

Σ : Γ ⇓ B ⊢ A is the endsequent of a left-introduction phase (and the set of

arguments of B is the empty set).

If B is B1 ∧ B2, we first assume that there is a left-introduction phase

ending in Σ : Γ ⇓ B1 ∧B2 ⊢ A. Thus, there is a left-introduction phase ending

in Σ : Γ ⇓ Bi ⊢ A, where i = 1 or i = 2. By the inductive assumption, there

is a path in Bi with target A′, arguments B, and bound variables X , and

a substitution θ that maps the variables in X to Σ-terms such that A′θ is

equal to A and such that every premise of that left-introduction phase can be

5.5 Formal properties of focused proofs 75

written as Σ : Γ ⊢ Gθ for each G ∈ B. That same path is also a path in B,

which completes this case. The converse is proved similarly.

If B is B1 ⊃ B2, we first assume that there is a left-introduction phase

that ends with Σ : Γ ⇓ B1 ⊃ B2 ⊢ A and the inference rule

Σ : Γ ⊢ B1 Σ : Γ ⇓ B2 ⊢ A

Σ : Γ ⇓ B1 ⊃ B2 ⊢ A
.

By the inductive hypothesis, there is a path in B2 with target A′, arguments

B, bound variables X , and a substitution θ that maps the variables in X to

Σ-terms such that A′θ is equal to A and such that every premise of that left-

introduction phase can be written as Σ : Γ ⊢ Gθ for each G ∈ B. If we add to

that path the argument B1 then that path satisfies the required condition for

a path in B. The converse is proved similarly.

Finally, assume that B is ∀τx.B′. First assume that there is a left-

introduction phase ending in ∀τx.B′. Thus, there is a left-introduction phase

ending in Σ : Γ ⇓ B′[t/x] ⊢ A and inference rule

Σ : Γ ⇓ B′[t/x] ⊢ A

Σ : Γ ⇓ ∀x.B′ ⊢ A
.

for some Σ-term t. By the inductive assumption, there is a path in B′[t/x]

with target A′, arguments B, and bound variables X , and a substitution θ that

maps the variables in X to Σ-terms such that A′θ is equal to A and such that

every premise of that left-introduction phase can be written as Σ : Γ ⊢ Gθ for

each G ∈ B. The required path through ∀x.B′ is then the same as for B′[t/x]

except that the required substitution is θ extended with the mapping of x to

t. The converse can be proved similarly.

Note the dual use of paths: all paths of B are used to describe the right-

introduction phase with endsequent Σ : Γ ⊢ B, while some path of B is used

to describe the left-introduction phase with endsequent Σ : Γ ⇓ B ⊢ A.

Exercise 5.19. Prove that if the sequent Σ : Γ, B ⊢ G has a proof Ξ in which

no occurrences of decide pick the formula B as its focus, then there is a proof

Ξ′ of Σ : Γ ⊢ G that has the same tree structure of inference rules: the only

difference is the sequents labeling those inference rules. This operation of

removing an assumption in a sequent is called strengthening .

We are now able to prove the three main theorems related to ⇓L0-proofs:

the admissibility of the (non-atomic) init rule, the admissibility of cut, and

the completeness of ⇓L0-proofs with respect to intuitionistic provability.

Theorem 5.20 (Admissibility of initial). Let Γ be a multiset of L0 Σ-formulas.

If B ∈ Γ then Σ : Γ ⊢ B has an ⇓L0-proof.

76 Chapter 5. Two abstract logic programming languages

Σ : Γ ⊢ B Σ : Γ, B ⊢ C

Σ : Γ ⊢ C
cut

Figure 5.2: The cut inference rule used in ⇓+L0-proofs. The cut-formula

B is restricted to be an L0-formula.

Proof. We describe how to build an ⇓L0-proof of Σ : Γ ⊢ B by induction on

the structure of the L0 formula B. We first consider the right-introduction

phase with the endsequent Σ : Γ ⊢ B. By Proposition 5.17, for every path P

in B, there is a premise sequent of that right-introduction phase of the form

Σ,X : Γ,B ⊢ A, where A, B, and X are, respectively, the target, arguments,

and bound variables of P . Now consider the premise that corresponds to P

and use the decide rule to select B ∈ Γ in order to initiate a left-introduction

phase. By Proposition 5.18, there is a left-introduction phase that corresponds

to P . By setting θ to the identity substitution on the variables in X , we

have A = Aθ and where the left-introduction phase has the premises (where,

B = {B1, . . . , Bn})

Σ,X : Γ,B ⊢ B1 , . . . , Σ,X : Γ,B ⊢ Bn (n ≥ 0).

We can conclude now by using the inductive hypotheses on each of these

premises.

We next turn our attention to proving the cut-elimination theorem for

⇓L0-proofs. Figure 5.2 introduces the cut rule for the focused proof system

for L0. The cut rule involves three sequents, none of which contains the ⇓.
The proof system that combines the inference rules in the ⇓L0-proof system

and in Figure 5.2 is called the ⇓+L0 proof system, and proofs in that system

will be called ⇓+L0-proofs.

We introduce the following two measures. The size of a formula B, written

as |B|, is the number of occurrences of logical connectives in B. The size of a

formula is 0 if and only if that formula is an atom. The height of an ⇓+L0-proof

Ξ, also written as |Ξ|, is the maximum number of inference rules on a path in

Ξ that does not go through a left premise of a cut rule: that is, the height of a

proof that ends in a cut rule is one more than the height of its right premise.

This height is always greater than or equal to 1.

The following two propositions can be proved by simple inductions on the

structure of ⇓L0-proofs.

Proposition 5.21 (Weakening ⇓+L0-proofs). Let Σ and Σ′ be signatures such

that Σ ⊆ Σ′ and let Γ and Γ′ be two multisets of L0 formulas such that Γ ⊆ Γ′.

5.5 Formal properties of focused proofs 77

If Σ : Γ ⊢ B has an ⇓+L0-proof of height h then Σ′ : Γ′ ⊢ B has an ⇓+L0-proof

of height h.

Proposition 5.22 (Substitution into ⇓L0-proofs). Let Σ be a signature, x be

a variable not declared in Σ, and τ a primitive type. If Σ, x : τ : Γ ⊢ B has an

⇓+L0-proof of height h and t is a Σ-term of type τ then Σ :Γ[t/x] ⊢ B[t/x] has

an ⇓+L0-proof of height h.

To prove the cut-elimination theorem for ⇓+L0 proofs, we introduce a sec-

ond cut rule, called the key cut rule (here, A is an atomic formula and B is

an L0 formula).
Σ : Γ ⊢ B Σ : Γ ⇓ B ⊢ A

Σ : Γ ⊢ A
cutk

This cut rule is only used as a technical device to help prove cut-elimination.

A cut-free proof is a proof that does not contain occurrences of either the cut

or cutk rule. Clearly, a cut-free ⇓+L0-proof is an ⇓L0-proof. The height of

a proof containing cutk is defined as above but this time cut and cutk are

treated the same: in particular, the height of a proof that ends in the cutk
rule is one more than the height of its right premise.

Lemma 5.23. Consider an occurrence of the cut rule of the form

Ξl

Σ : Γ ⊢ B

Ξr

Σ : Γ, B ⊢ C

Σ : Γ ⊢ C
cut,

where Ξl and Ξr are (cut-free) ⇓L0-proofs. We can transform this proof into

a proof of Σ : Γ ⊢ C of smaller height in which there are no occurrences of the

cut rule, but there might be several occurrences of the cutk rule, all of which

have cut-formula B.

Proof. Let Ξl be a ⇓ L0-proof of Σ : Γ ⊢ B and let Ξr be a ⇓ L0-proof of

Σ : Γ, B ⊢ C. We first convert Ξr to a new proof Ξ′
r also of Σ : Γ, B ⊢ C by

replacing every occurrence of the decide rule applied to the cut formula B

within Ξr, such as
Ξ0

Σ′ : Γ′, B ⇓ B ⊢ A

Σ′ : Γ′, B ⊢ A
decide

(where Σ ⊆ Σ′ and Γ ⊆ Γ′), with the following occurrence of a cutk rule

Ξ̂l

Σ′ : Γ′ ⊢ B
Ξ0

Σ′ : Γ′, B ⇓ B ⊢ A

Σ′ : Γ′, B ⊢ A
cutk.

78 Chapter 5. Two abstract logic programming languages

Here Ξ̂l is the result of weakening Ξl (Proposition 5.21). The resulting proof

Ξ′
r has no occurrences of decide on B but many have several occurrences of

cutk with cut-formula B in Ξ′
r. Note that the height of Ξr and Ξ′

r is the

same and that Ξ′
r is a proof of Σ : Γ, B ⊢ C. Furthermore, since there are no

occurrences of decide on B in Ξ′
r, we can strengthen Ξ′

r to get a proof Ξs of

Σ : Γ ⊢ C with the same height as Ξr (proved by a simple induction on the

structure of proofs, see Exercise 5.19). As a result, we can replace the original

proof of Σ : Γ ⊢ C with the new proof Ξs with smaller height than Ξr.

Lemma 5.24. Consider an occurrence of the cutk rule of the form

Ξl

Σ : Γ ⊢ B

Ξr

Σ : Γ ⇓ B ⊢ C

Σ : Γ ⊢ C
cutk,

where Ξl and Ξr are ⇓+L0 proofs. We can transform this proof into a proof of

Σ : Γ ⊢ C where this occurrence of cutk is replaced with occurrences of the cut

rule in which the cut-formulas are strictly smaller than B.

Proof. Consider an occurrence of the cutk rule

Ξl

Σ : Γ ⊢ B

Ξr

Γ ⇓ B ⊢ A

Σ : Γ ⊢ A
cutk,

where Ξl and Ξr are ⇓+L0 proofs. If B is atomic, then B and A are equal and

the result of eliminating this cutk is Ξl. Thus, assume that B is not atomic.

In that case, Ξl ends in a non-empty right-introduction phase and Ξr ends in

a left-introduction phase. By Proposition 5.18, there is a path P in B with

associated sequent X : B1, . . . , Bn ⊢ A′ such that the premises and subproofs

of that left-introduction phase are

Ξ1

Σ : Γ ⊢ B1θ, . . . ,
Ξn

Σ : Γ ⊢ Bnθ (n ≥ 0)

and where A′θ is A, for some substitution θ. By Proposition 5.17, there is a

premise in the right-introduction phase that corresponds to path P and is the

sequent Σ,X :Γ, B1, . . . , Bn ⊢ A′ with its subproof Ξ0. By repeated application

of Proposition 5.22, we know that the sequent Σ : Γ, B1θ, . . . , Bnθ ⊢ A′θ has a

⇓L0-proof, say, Ξ0θ. If we take these various ⇓+L0-proofs and arrange them as

follows, we have a proof in which the cut rule has n occurrences (remembering

5.5 Formal properties of focused proofs 79

that A is equal to A′θ).

Ξn

Σ : Γ ⊢ Bnθ

Ξ1

Σ : Γ ⊢ B1θ
Ξ0θ

Σ : Γ, B1θ, . . . , Bnθ ⊢ A

Σ : Γ, B2θ, . . . , Bnθ ⊢ A
cut

...

Σ : Γ, Bnθ ⊢ A

Σ : Γ ⊢ A
cut

Note that the size of each of the cut formulas B1θ, . . . , Bnθ is strictly less than

the size of the original cut formula B.

Thus, Lemma 5.23 describes how one occurrence of cut on B can be re-

placed with several occurrences of cutk on B, and Lemma 5.24 describes how

an occurrence of cutk on B can be replaced by several occurrences of cut on

strictly smaller formulas than B.

Lemma 5.25. An ⇓+L0 proof that ends with a cut rule in which both premises

have cut-free proofs can be replaced with a cut-free proof of the same endse-

quent.

Proof. Consider the following occurrence of the cut inference rule

Ξl

Σ : Γ ⊢ B

Ξr

Σ : Γ, B ⊢ C

Σ : Γ ⊢ C
cut

in which Ξl and Ξr are (cut-free) ⇓L0-proofs. We will show that the sequent

Σ : Γ ⊢ C has a cut-free ⇓L0-proof by induction of the size of the cut formula

B. First, apply Lemma 5.23 to conclude that there is a proof Ξ′ of Σ : Γ ⊢ C

that contains no occurrences of cut but which might have several instances

of the cutk rule with cut formula B. We can now do a second induction

on the number of occurrences of cutk in Ξ′. If that number is 0, then the

proof Ξ′ is the desired cut-free proof. Otherwise, assume that there is at

least one occurrence of cutk on B in Ξ′. If we pick an upper-most occurrence

of cutk and apply Lemma 5.24, we can convert that occurrence of cutk to

several occurrences of cut on strictly smaller formulas than B. By applying

the inductive assumption, all of these occurrences of cut can be eliminated.

We have now reduced the number of cutk inference rules, and, hence, we have

completed our proof.

We can bring these lemmas together to prove the main cut-elimination

theorem for ⇓+L0 proofs.

Theorem 5.26 (Elimination of cuts). Let Γ ∪ {G} be a multiset of L0 Σ-

formulas. If the sequent Σ:Γ ⊢ G has an ⇓+L0-proof then it has an ⇓L0-proof.

80 Chapter 5. Two abstract logic programming languages

Proof. The proof is now a simple induction on the number of occurrences of

the cut inference rules in a proof. In particular, pick an occurrence of the

cut rule, which is the endsequent of a subproof in which both premises have

cut-free proofs. By applying Lemma 5.25 to that occurrence of cut, we can

replace it for a cut-free proof of the same sequent. The proof now follows from

the inductive assumption.

A consequence of the cut-elimination theorem for ⇓+L0 proofs is the com-

pleteness of ⇓L0-proofs with respect of I-proofs (when all formulas are re-

stricted to L0).

Theorem 5.27 (Completeness of ⇓L0-proofs for L0 formulas). Let Γ ∪ {G}
be a multiset of L0 formulas. If the sequent Σ : Γ ⊢ G has a cut-free I-proof

then it has an ⇓L0-proof.

For convenience, we use the notation Σ :P ⊢⇓ G to denote the proposition

that the sequent Σ : P ⊢ G has a ⇓L0-proof.

Proof. We prove this by showing that the inference rules of the intuitionis-

tic proof system I are admissible in the ⇓L0-proof system. Since the right-

introduction rules of I are the same as those in ⇓ L0, these rules are triv-

ially admissible. The admissibility of the init rule for I follows immediately

from Proposition 5.20. The admissibility of the wL rule follows from Propo-

sition 5.21. The admissibility of the cL rule is easily argued as follows. In an

⇓L0-proof of Σ : Γ, B,B ⊢ ∆, the decide rule may have been used on the two

different occurrences of B. By changing all those decide rules to use the same

occurrence of B and then deleting the other occurrence of B, we obtain an

⇓L0-proof of Σ:Γ, B ⊢ ∆. All that remains to show is that the left-introduction

rules for the L0 connectives ∧, ⊃, and ∀ are admissible.

Admissibility of ∧L. Assume that B1 ∧ B2 is an L0 Σ-formula. By

Proposition 5.20, we have Σ : B1 ∧ B2 ⊢⇓ B1 ∧ B2. An ⇓ L0-proof of that

sequent has immediate subproofs that yield both Σ : B1 ∧ B2 ⊢⇓ B1 and

Σ : B1 ∧ B2 ⊢⇓ B2. In order to prove that ∧L is admissible, assume that

Σ : B1,Γ ⊢⇓ E. Using cut-admissibility (Theorem 5.26) with this sequent and

the sequent Σ :B1 ∧B2 ⊢⇓ B1, we conclude that Σ :B1 ∧B2,Γ ⊢⇓ E. A similar

argument also concludes that if Σ:B2,Γ ⊢⇓ E, then Σ:B1∧B2,Γ ⊢⇓ E. Hence,

both ∧L rules in I are admissible.

Admissibility of ⊃L. Assume that B1 ⊃ B2 is an L0 Σ-formula. By

Proposition 5.20, we have Σ : B1 ⊃ B2 ⊢⇓ B1 ⊃ B2. An ⇓L0-proof of that

sequent has an immediate subproof that proves Σ : B1, B1 ⊃ B2 ⊢⇓ B2. In

order to prove that ⊃L is admissible, assume that both Σ : Γ1 ⊢⇓ B1 and

Σ : B2,Γ2 ⊢⇓ E. Using the Proposition 5.21, we have Σ : Γ1,Γ2 ⊢⇓ B1 and

Σ :B2,Γ1,Γ2 ⊢⇓ E. Using cut-admissibility (Theorem 5.26), we conclude that

5.5 Formal properties of focused proofs 81

Σ : Γ1,Γ2, B1 ⊃ B2 ⊢⇓ B2 and Σ :B1 ⊃ B2,Γ1,Γ2 ⊢⇓ E. Hence, the ⊃L rule in

I is admissible.

Admissibility of ∀L. Assume that ∀τx.B is an L0 Σ-formula and that

τ is a primitive type. By Proposition 5.20, we have Σ : ∀τx.B ⊢⇓ ∀τx.B.

An ⇓L0-proof of that sequent has an immediate subproof that proves Σ, y :

τ : ∀x.B ⊢⇓ B[y/x], for a variable y not present in Σ. By Proposition 5.22,

we have Σ : ∀x.B ⊢⇓ B[t/x], for any Σ-term t. In order to prove that ∀L is

admissible, assume that Σ : B[t/x],Γ ⊢ E has an ⇓L0-proof. Then using cut

elimination (Theorem 5.26), we can conclude that Σ : ∀x.B,Γ ⊢ E has an

⇓L0-proof. Hence, the ∀L rule in I is admissible.

Another simple consequence of proving the cut-elimination for ⇓+L0-proofs

is the admissibility of cut for I-proofs when restricted to L0 formulas.

Theorem 5.28 (Admissibility of cut for I-proofs restricted to L0 formulas).

The cut rule for I-proofs (Figure 4.2) is admissible for cut-free I-proofs when

restricted to L0 formulas.

Proof. We wish to prove that the single-conclusion version of the cut rule from

Figure 4.2, namely,

Σ : Γ1 ⊢ B Σ :B,Γ2 ⊢ E

Σ : Γ1,Γ2 ⊢ E
cut

is admissible in the cut-free I-proof system. Thus, assume that Σ : Γ1 ⊢ B

and Σ : B,Γ2 ⊢ E have (cut-free) I-proofs. By Theorem 5.27, Σ : Γ1 ⊢ B and

Σ : B,Γ2 ⊢ E have ⇓L0-proofs. Using Proposition 5.21, both Σ : Γ1,Γ2 ⊢ B

and Σ :B,Γ1,Γ2 ⊢ E have ⇓L0-proofs. Using the admissibility of the cut rule

(Proposition 5.26), we know that Σ : Γ1,Γ2 ⊢ E has an ⇓L0-proof. Using the

soundness of ⇓L0-proofs (Proposition 5.15), we conclude that Σ : Γ1,Γ2 ⊢ E

has an I-proof.

The inference rule (where all formulas are L0 formulas)

Σ ⊩ t : τ Σ, x : τ : Γ ⊢ B

Σ : Γ[t/x] ⊢ B[t/x]
instan

is similar to the cut rule: the instan rule instantiates an eigenvariable while

the cut rule instantiates a hypothesis. The following theorem shows that this

inference rule is admissible for I-proofs. The proof of this theorem is similar

and more straightforward than the one for cut-elimination. This theorem is a

direct consequence of Proposition 5.22.

Theorem 5.29 (Substitution into I-proofs of L0 formulas). Let Σ be a sig-

nature, y be a variable not in Σ, τ be a primitive type, and Γ ∪ {B} are L0

formulas. If Σ, y : τ : Γ ⊢ B has an I-proof and if Σ-term t of type τ , then

Σ : Γ[t/x] ⊢ B[t/x] has an I-proof.

82 Chapter 5. Two abstract logic programming languages

5.6 Kripke model semantics

In this book, we do not generally deal with model theory. There is, however,

a nice connection between a specific Kripke model and the proof theory of

intuitionistic logic. In this section, we recast the cut-elimination result for

⇓+L0 proofs in terms of truth in a canonical Kripke model for L0. This model

is canonical in the sense that whenever this model makes a given L0-formula

true, that formula is true in all Kripke models for L0.

A dependent pair is a pair ⟨Σ,P⟩ where Σ is a (finite) signature and P
is a (finite) set of L0 Σ-formulas. A dependent pair is also called a world.

The order relation on worlds ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩ is defined to hold whenever

Σ ⊆ Σ′ and P ⊆ P ′. A Kripke model is a pair, ⟨W, I⟩, where W is a (possibly

infinite) set of worlds and I is a function, called an interpretation, that maps

the worlds in W to sets of atomic formulas in such a way that I(⟨Σ,P⟩) is a

set of atomic Σ-formulas. The mapping I must also be order preserving: that

is, for all w,w′ ∈ W, if w ⪯ w′ then I(w) ⊆ I(w′).

Let the pair ⟨W, I⟩ be a Kripke model, let ⟨Σ,P⟩ ∈ W, and let B be a L0

Σ-formula. The three place satisfaction relation I, ⟨Σ,P⟩ ⊢ B is defined by

induction on the structure of B as follows.

• I, ⟨Σ,P⟩ ⊢ B if B is atomic and B ∈ I(⟨Σ,P⟩).

• I, w ⊢ B ∧B′ if I, w ⊢ B and I, w ⊢ B′.

• I, w ⊢ B ⊃ B′ if for every w′ ∈ W such that w ⪯ w′ and I, w′ ⊢ B then

I, w′ ⊢ B′.

• I, ⟨Σ,P⟩ ⊢ ∀τx.B if for every ⟨Σ′,P ′⟩ ∈ W such that ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩
and for every Σ′-term t of type τ , the relation I, ⟨Σ′,P ′⟩ ⊢ B[t/x] holds.

Let ⟨Σ,P⟩ be a dependent pair. The canonical model for ⟨Σ,P⟩ is defined
as the Kripke model with the set of worlds {⟨Σ′,P ′⟩ | ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩}
and the interpretation I defined so that I(⟨Σ′,P ′⟩) is the set of all atomic

Σ′-formulas A such that Σ′ : P ′ ⊢ A has a cut-free I-proof.

Note the rather different way provability and satisfaction treat an impli-

cational formula. In order to prove the formula B1 ⊃ B2 in the world ⟨Σ,P⟩
(i.e., that the sequent Σ:P ⊢ B1 ⊃ B2 is provable), we need to move to a single

new world ⟨Σ,P ∪ {B1}⟩ and try to prove B2. In contrast, in order to show

that B1 ⊃ B2 is true in the world ⟨Σ,P⟩ we need to examine all extensions to

that world and check that B2 is true in that world if B1 is true in that world.

As we mentioned in Section 3.6, sequent calculus inference rules provide

logical connectives with two senses within a proof: namely, there are different

inference rules for introducing a given logical connective on the left and the

right of a sequent. On the other hand, in the model-theoretic setting, logical

5.6 Kripke model semantics 83

connectives are given meaning in only one sense: there is only one clause defin-

ing the satisfiability of a given logical connective. The following lemma shows

how the cut-admissibility result allows us to relate these different approaches

to providing meaning to logical connectives.

Lemma 5.30. The cut rule (Figure 5.2) and the instan rule (defined at the end

of Section 5.5) are admissible for cut-free I-proofs if and only if the following

holds: For every dependent pair ⟨Σ,P⟩ and every Σ-formula B, it is the case

that Σ : P ⊢ B has a cut-free I-proof if and only if I, ⟨Σ,P⟩ ⊢ B, where I is

the canonical model for ⟨Σ,P⟩.

In other words, the admissibility of cut and instan is equivalent to the fact

that provability coincides with truth in the canonical model.

Proof. To prove the forward direction, assume that both the cut and instan

rules are admissible for I-proofs. We now prove by induction on the structure

of B that Σ : P ⊢I B if and only if I, ⟨Σ,P⟩ ⊢ B.

Case: B is atomic. The equivalence is immediate.

Case: B is B1 ∧B2. This case is simple and immediate.

Case: B is B1 ⊃ B2. Assume first that Σ : P ⊢I B1 ⊃ B2. Hence, Σ :

P, B1 ⊢I B2 (using the soundness and completeness of ⇓L0-proofs). To show

I, ⟨Σ,P⟩ ⊢ B1 ⊃ B2, assume that ⟨Σ′,P ′⟩ ∈ W is such that ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩
and I, ⟨Σ′,P ′⟩ ⊢ B1. By the inductive hypothesis, Σ′ : P ′ ⊢I B1 and by cut

admissibility, Σ′ :P ′ ⊢I B2. By induction again, we have I, ⟨Σ′,P ′⟩ ⊢ B2. Thus,

I, ⟨Σ,P⟩ ⊢ B1 ⊃ B2. For the converse, assume I, ⟨Σ,P⟩ ⊢ B1 ⊃ B2. Since

Σ :P, B1 ⊢I B1, the inductive hypothesis yields I, ⟨Σ,P ∪ {B1}⟩ ⊢ B1. By the

definition of satisfaction of implication we must have I, ⟨Σ,P ∪ {B1}⟩ ⊢ B2.

Using the inductive hypothesis again, Σ : P, B1 ⊢I B2, and Σ : P ⊢I B1 ⊃ B2.

Case: B is ∀τx.B1. Assume first that Σ : P ⊢I ∀τx.B1 and, hence, Σ, d :

τ :P ⊢I B1[d/x] for any variable d not in Σ. To show that I, ⟨Σ,P⟩ ⊢ ∀τx.B1,

let ⟨Σ′,P ′⟩ ∈ W be such that ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩ and t be a Σ′-term of type

τ . By the admissibility of the instan rule, we have Σ′;P ′ ⊢I B1[t/x]. By

induction we have I, ⟨Σ′,P ′⟩ ⊢ B1[t/x]. Thus, I, ⟨Σ,P⟩ ⊢ ∀τxB1. For the

converse, assume I, ⟨Σ,P⟩ ⊢ ∀τxB1. Let d be a variable not a member of

Σ. Since d is a Σ ∪ {d}-term, I, ⟨Σ ∪ {d},P⟩ ⊢ B1[d/x] by the definition of

satisfaction of universal quantification. But by the inductive hypothesis again,

Σ, d : τ ;P ⊢I B1[d/x] and Σ : P ⊢I ∀τxB1.

We now show the converse by assuming the equivalence: for every depen-

dent pair ⟨Σ,P⟩ and every Σ-formula B,

Σ : P ⊢I B if and only if I, ⟨Σ,P⟩ ⊢ B,

84 Chapter 5. Two abstract logic programming languages

where I is the canonical model for ⟨Σ,P⟩. We now show that any sequent

that can be proved using occurrences of the cut and instan rules can be proved

without such rules. In particular, we claim that if ⟨Σ,P⟩ ⪯ ⟨Σ′,P ′⟩ then each

of the following holds.

1. If Σ′;P ′ ⊢I B and Σ : P, B ⊢I C then Σ′;P ′ ⊢I C.

2. If t is a Σ′-term of type τ and Σ, x : τ : P ⊢I B then Σ′ : P ′ ⊢I B[t/x] (of

course, x does not occur in Σ).

To prove the first claim, assume that Σ′ :P ′ ⊢I B and Σ :P, B ⊢I C. Thus,

Σ : P ⊢I B ⊃ C. By the assumed equivalence, I, ⟨Σ′,P ′⟩ ⊢ B and I, ⟨Σ,P⟩ ⊢
B ⊃ C. By the definition of satisfaction for implication, I, ⟨Σ′,P ′⟩ ⊢ C. By

the assumed equivalence again, this yields Σ′ : P ′ ⊢I C.

To prove the second claim above, assume that t is a Σ′-term of type τ and

that Σ, x : τ : P ⊢I C. Thus, Σ : P ⊢I ∀τx.B. By the assumed equivalence,

I, ⟨Σ,P⟩ ⊢ ∀τx.B. By the definition of satisfaction for universal quantification,

we have I, ⟨Σ′,P ′⟩ ⊢ B[t/x]. By the assumed equivalence again, this yields

Σ′ : P ′ ⊢I B[t/x].

Given Theorems 5.26 and 5.29, this lemma provides an immediate proof

of the following theorem.

Theorem 5.31. Let ⟨Σ,P⟩ be a dependent pair and let I be the canonical

model for ⟨Σ,P⟩. For all Σ-formulas B, Σ : P ⊢I B if and only if I ⊢ B. In

particular, for every B ∈ P, I ⊢ B.

The following simple argument supports our use of the term “canonical

model”. While we have not given a general definition of Kripke models (i.e., a

notion of model that is not built from formulas and terms), whatever definition

is used, they need to be sound: that is, if ⊢I B then B is true in every

generalized Kripke model. Thus, if the L0 Σ-formula B is true in the canonical

model for ⟨Σ, ∅⟩ then Σ:· ⊢I B and, hence, B is true in every generalized Kripke

model.

5.7 Backchaining as a single left rule

We can use the ⇓L0-proof system to define backchaining as a single inference

rule instead of as a sequence of inference rules. In particular, let Σ be a

signature and let ∆ be a finite set of Σ-formulas. Define |∆|Σ to be the

smallest set of pairs ⟨Γ, D⟩, where Γ is a multiset of formulas and D is a

formula, such that

• if D ∈ ∆ then ⟨∅, D⟩ ∈ |∆|Σ,

5.7 Backchaining as a single left rule 85

• if ⟨Γ, D1 ∧D2⟩ ∈ |∆|Σ then ⟨Γ, D1⟩ ∈ |∆|Σ and ⟨Γ, D2⟩ ∈ |∆|Σ,

• if ⟨Γ, G ⊃ D⟩ ∈ |∆|Σ then ⟨Γ ∪ {G}, D⟩ ∈ |∆|Σ, and

• if ⟨Γ, ∀τxD⟩ ∈ |∆|Σ and t is a Σ-term of type τ then ⟨Γ, D[t/x]⟩ ∈ |∆|Σ.

Backchaining is now defined as the single inference rule

{Σ : ∆ ⊢ G | G ∈ Γ}
Σ : ∆ ⊢ A

BC, provided A is atomic and ⟨Γ, A⟩ ∈ |∆|Σ.

If Γ is empty, then this rule has no premises. Let the ⇓L′
0-proof system contain

the right-introduction rules in Figure 4.1 and the BC rule.

Straightforward inductive arguments prove the following two lemmas and

proposition.

Lemma 5.32. If P is a path in D (i.e., D ↑ P holds), and θ is a substitution,

then Pθ is a path in Dθ.

Lemma 5.33. Let Σ be an eigenvariable signature, let Γ be a multiset of Σ-

formulas, and let D ∈ Γ. Then ⟨Γ, A⟩ ∈ |{D}|Σ if and only if there is a path

in D with bound variables x̄, arguments G1, . . . , Gn (n ≥ 0), and target A′ and

there is a substitution θ mapping the variables x̄ to Σ-terms such that Γ and

{G1θ, . . . , Gnθ} are equal and A and A′θ are equal.

Proposition 5.34. Let Σ be a signature, let P be a multiset of L0 Σ-formulas

program and G be a Σ-formula. The sequent Σ : P ⊢ G has an ⇓L′
0-proof if

and only if it has an I-proof.

Proposition 5.35. Let B be a propositional L0 formula: i.e., that is B con-

tains only the logical connectives {⊤,∧,⊃}. Show that it is decidable whether

or not ⊢I B holds.

Proof. Given the completeness of ⇓ L′
0-proofs (Proposition 5.34), we only

need to find a decision procedure for ⇓L′
0-proofs restricted to the connectives

{⊤,∧,⊃}. A systematic search for a such proofs can be described as follows.

First, the provability of a non-border sequent can be reduced uniquely to the

provability of border sequents. Second, the only inference rule in ⇓L′
0 that has

a border sequent as a conclusion is an instance of the backchaining rule BC

and there are at most a finite number of such instances of BC that might be

applicable. Finally, the only thing left to show is that the search space for this

naive search procedure is finite. To show this, note that all border sequents

Σ : Γ ⊢ A in an ⇓L′
0-proof of ⊢ B are such that A is an atomic subformula of

B and Γ is a finite multiset of subformulas of B. While there are an infinite

number of finite multisets of subformulas of B there are only a finite number

of finite sets of such subformulas. Also note that if Γ and Γ′ are two multisets

86 Chapter 5. Two abstract logic programming languages

of formulas that are equal as sets (i.e., they differ only in the multiplicity of

their members) then the border sequent Σ:Γ ⊢ A has an ⇓L′
0-proof if and only

if Σ : Γ′ ⊢ A has an ⇓L′
0-proof. As a result, the search space for determining

whether or not ⊢ B has an ⇓L′
0-proof can be described as the finite set of pairs

⟨∆, A⟩ where ∆ is a set of subformulas of B and A is an atomic subformula of

B. Thus, the naive search procedure can use this observation to ensure that

it never loops and, in fact, always terminates.

5.8 Synthetic inference rules

One use of the two-phase ⇓L0-proof system is to justify replacing program

clauses with inference rules. For example, consider a logic program P that

consists of the two first-order Horn clauses

∀x∀y [adj x y ⊃ path x y] and ∀x∀y∀z [adj x y ∧ path y z ⊃ path x z].

Here, we are assuming that the two predicates adj and path have type i → i →
o. Using the decide rule on the second of these formulas leads to an attempt

to prove the sequent Σ : Γ,P ⊢ path s t with the following derivation.

Γ,P ⊢ adj s u Γ,P ⊢ path u t

Γ,P ⊢ adj s u ∧ path u t
∧L

Γ,P ⇓ path s t ⊢ path s t
init

Γ,P ⇓ (adj s u ∧ path u t ⊃ path s t) ⊢ path s t
⊃ L

Γ,P ⇓ ∀x∀y∀z (adj x y ∧ path y z ⊃ path x z) ⊢ path s t
∀L× 3

Γ,P ⊢ path s t
decide

(We suppressed the signatures associated with sequents for readability). If we

ignore the seven inference rules within this derivation, we have the inference

rule
Σ : Γ,P ⊢ adj s u Σ : Γ,P ⊢ path u t

Σ : Γ,P ⊢ path s t
.

Similarly, deciding to use the first of these two formulas results in the inference

rule
Σ : Γ,P ⊢ adj s t

Σ : Γ,P ⊢ path s t
.

These latter inference rules are rather appealing since they do not mention

any logical constants. Instead, they describe how an attempt to prove one

atomic formula can lead to the attempt to prove one or two additional atomic

formulas. Given this observation, we can remove these two Horn clauses from

the logic program (assumptions on the left-hand side) and insert in the I-proof

system the synthetic inference rules

Σ : Γ ⊢ adj s t

Σ : Γ ⊢ path s t
and

Σ : Γ ⊢ adj s u Σ : Γ ⊢ path u t

Σ : Γ ⊢ path s t
.

5.9 Disjunctive and existential goals 87

If we are using only Horn clauses, then it is possible to replace all program

clauses in the left-hand context with synthetic inference rules that mention

only atomic formulas.

More formally, we say that a sequent of the form Σ : Γ ⊢ A, where A is an

atomic formula, is a border sequent since such sequents appear at the border

between a right-introduction phase (on the bottom) and a left-introduction

phase (at the top). A synthetic inference rule is the inference rule that results

from moving from a border sequent upwards through a decide rule and the

left-introduction phase to the right-introduction phases: any open sequents

will be border sequents.

While focusing on Horn clauses yields synthetic inference rules that only

mention atoms, focusing on formulas of higher clause order leads to synthetic

rules that contain logical connectives. For example, focusing on the proposi-

tional formula ((p ⊃ q) ⊃ r) ⊃ s, which we assume is a member of Γ, would

yield the synthetic inference rule

Γ, p ⊃ q ⊢ r

Γ ⊢ s
.

We say that a synthetic inference rule in L0 is a bipole if that rule contains

only atomic formulas in its conclusion and premises.

Exercise 5.36. Show that the synthetic inference rules that result from de-

ciding on an L0 formula of clausal order at most 2 are bipoles.

It can be shown that the proof system that results from adding on top of

the I-proof systems all the synthetic inference rules arising from a multiset of

formulas of order two or less satisfies the cut admissibility property.

5.9 Disjunctive and existential goals

Now that we have addressed the soundness and completeness of ⇓L0-proofs

for L0 formulas, we return to considering allowing disjunctions and existential

quantifiers into formulas in the restricted setting of definition (5.5) of fohh.

With this definition, I-proofs can have disjunctions and existential introduc-

tion rules on the right but not the left of its sequents. It turns out that we can

capture the right-hand side proof-search behavior of these logical constants

using non-logical constants as followings. Let ∨̂ be a non-logical constant of

type o → o → o and ∃̂τ be a non-logical constant of type (τ → o) → o for

every type τ . Consider the (infinite) set C of formulas that contains the two

clauses

∀oP ∀oQ [P ⊃ (P ∨̂Q)] ∀oP ∀oQ [Q ⊃ (P ∨̂Q)]

88 Chapter 5. Two abstract logic programming languages

and, for every type τ , the clause

∀τ→oB ∀τ t [(B t) ⊃ (∃̂τ B)].

The members of C are Horn clauses, but they are not first-order Horn clauses

since they contain quantifiers that are not of first-order type (since that type

contains the type o). Such clauses are studied in more detail in Chapter 9

where we present higher-order Horn clauses. In that chapter, we will see that

these higher-order clauses yield the following synthetic inference rules

Σ : P, C ⊢ P

Σ : P, C ⊢ P ∨̂Q
, Σ : P, C ⊢ Q

Σ : P, C ⊢ P ∨̂Q
, and

Σ : P, C ⊢ B t

Σ : P, C ⊢ ∃̂τB
.

Note that these rules exactly correspond to the ∨R and ∃R rules. Given this

observation, we can now prove the following completeness theorem.

Proposition 5.37 (Completeness of ⇓ fohh-proofs for fohh). Let Γ be an fohh

logic program and G an fohh goal. If the sequent Σ:Γ ⊢ G has an I-proof then

it has an ⇓ fohh-proof.

Proof. Assume that Σ : Γ ⊢ G has an I-proof Ξ. Let C(Ξ) be the smallest set

of clauses such that the following holds. (When we write ∀Σ′ we mean a string

of universal quantifiers, one for each variable in Γ′.)

1. If Ξ contains the inference rule

Σ,Σ′ : Γ′ ⊢ Bi

Σ,Σ′ : Γ′ ⊢ B1 ∨B2
∨R

then C(Ξ) contains the clause ∀Σ′[Bi ⊃ (B1 ∨̂B2)].

2. If Ξ contains the inference rule

Σ,Σ′ ⊩ t : τ Σ,Σ′ : Γ′ ⊢ B[t/x]

Σ,Σ′ : Γ′ ⊢ ∃τx.B
∃R

then C(Ξ) contains the clause ∀Σ′[B[t/x] ⊃ (∃̂τx.B)].

The set C(Ξ) is a set of essentially first-order Horn clauses: the only reason

that they are not exactly members of fohc is that they can contain atomic

formulas that might contain logical connectives (such atomic formulas have

top-level symbols ∨̂ and ∃̂). Otherwise, only first-order quantification is used

within these clauses. We shall assume here that this mild extension to fohc

does not effect the proof theory results that we have already established for

them. Chapter 9 will formally justify this assumption.

5.10 Examples of fohc logic programs 89

Let Γ̂ and Ĝ be the result of replacing all occurrences of ∨ with ∨̂ and of

∃τ with ∃̂τ . It is now straightforward to convert the I-proof Ξ of Σ : Γ ⊢ G

into an I-proof of Σ : C(Ξ), Γ̂ ⊢ Ĝ. This conversion takes the rule

Σ,Σ′ : Γ′ ⊢ Bi

Σ,Σ′ : Γ′ ⊢ B1 ∨B2
∨R

and rewrites it into

Σ : C(Ξ), Γ̂ ⊢ B̂i Σ : B̂1 ∨̂ B̂2 ⊢ B̂1 ∨̂ B̂2

init

Σ : C(Ξ), Γ̂, B̂i ⊃ B̂1 ∨̂ B̂2 ⊢ B̂1 ∨̂ B̂2

⊃L

Σ,Σ′ : C(Ξ), ∀Σ′[Bi ⊃ (B1 ∨̂B2)], Γ̂
′ ⊢ B̂1 ∨̂ B̂2

∀L

Σ,Σ′ : C(Ξ), Γ̂′ ⊢ B̂1 ∨̂ B̂2

cL

A similar conversion must also be done with the ∃R inference rule. Thus, the

original proof can be converted into an I-proof involving only L0 formulas. By

Theorem 5.27, we know that the sequent Σ : C(Ξ), Γ̂ ⊢ Ĝ also has an ⇓L0-

proof. Given that ∨ and ∃ cannot be top-level connectives of fohh program

clauses, the left-hand context Γ̂ will never get additional assumptions with

target atoms containing ∨̂ or ∃̂ as their predicate symbol. This ⇓L0-proof can

then be converted directly into an ⇓L0-proof of Σ :Γ ⊢ B1∨B2 by noting that

the only times a decide rule is used with a formula from C(Ξ) occurs when we

are emulating either a ∨R or ∃R rule. The conversion of the proof is complete

by replacing such decide rules and the phase above them with the right rule

they are emulating.

5.10 Examples of fohc logic programs

Figure 5.3 presents some examples of Horn clauses, along with two kinds of

declarations. The syntax here is quite natural and follows the λProlog con-

ventions. The kind declaration is used to declare members of the set of sorts

S. In particular, the expression declares that tok is a token that is to be used

as a primitive type. The expressions

type tok <type expression >.

declares that the non-logical signature should contain the declaration of tok

at the associated type expression. Logic program clauses are the remaining

entries. In those entries, the infix symbol :- denotes the converse of ⊃, a

semicolon denotes a disjunction, a comma (which binds tighter than :- and the

semicolon) denotes a conjunction of G-formulas while & denotes a conjunction

of D-formulas. (In our current setting, both symbols denote the same logical

connective ∧. When we move to linear logic, these two conjunctions will

be mapped to different linear logic connectives: see Section 6.5.) Tokens with

90 Chapter 5. Two abstract logic programming languages

kind nat type.

type z nat.

type s nat -> nat.

type sum nat -> nat -> nat -> o.

type leq , greater nat -> nat -> o.

sum z N N.

sum (s N) M (s P) :- sum N M P.

leq z N.

leq (s N) (s M) :- leq N M.

greater N M :- leq (s M) N.

Figure 5.3: fohc programs specifying relations over natural numbers.

initial capital letters are universally quantified with scope around an individual

clause (which is terminated by a period).

In Figure 5.3, the symbol nat is declared to be a primitive type and z

and s are used to construct natural numbers via zero and successor. The

symbol sum is declared to be a relation of three natural numbers while the

two symbols symbols leq and greater are declared to be binary relations on

natural numbers. The following lines describe the meaning for these three

predicates. For example, if the sum predicate holds for the triple M , N , and

P then N +M = P : this relation is described recursively using the facts that

0+N = N and if N+M = P then (N+1)+M = (P +1). Similarly, relations

describing N ≤ M and N > M are also specified.

Similarly, Figure 5.4 introduces a primitive type for lists (of natural num-

bers) and two constructors for lists, namely, the empty list constructor nil

and the non-empty list constructor, the infix symbol ::. The binary predicate

sumup relates a list of natural numbers with the sum of those numbers. The

binary predicate max relates a list of numbers with the largest number in that

list. The predicate maxx is an auxiliary predicate used to help compute the

max relation.

Exercise 5.38. Informally describe the predicates specified by the clauses in

Figures 5.5 and 5.6.

Exercise 5.39. Take a standard definition of Turing machine and show how

to define an interpreter for a Turing machine in fohc. The specification should

encode the fact that a given machine accepts a given word if and only if some

atomic formula is provable.

5.10 Examples of fohc logic programs 91

kind nlist type.

type nil nlist.

type :: nat -> nlist -> nlist.

infixr :: 5.

type sumup , max nlist -> nat -> o.

type maxx nlist -> nat -> nat -> o.

sumup nil z.

sumup (N::L) S :- sumup L T, sum N T S.

max L M :- maxx L z M.

maxx nil A A.

maxx (X::L) A M :- leq X A, maxx L A M.

maxx (X::L) A M :- greater X A, maxx L X M.

Figure 5.4: Some relations between natural numbers and lists

kind node type.

type a, b, c, d, e, f node.

type adj , path node -> node -> o.

adj a b & adj b c & adj c d & adj a c & adj e f.

path X X.

path X Z :- adj X Y, path Y Z.

Figure 5.5: Encoding a directed graph

type memb nat -> nlist -> o.

type append nlist -> nlist -> nlist -> o.

type sort nlist -> nlist -> o.

type split nat -> nlist -> nlist -> nlist -> o.

memb X (X::L).

memb X (Y::L) :- memb X L.

append nil L L.

append (X::L) K (X::M) :- append L K M.

split X nil nil nil.

split X (A::L) (A::S) B :- leq A X, split X L S B.

split X (A::L) S (A::B) :- greater A X, split X L S B.

sort nil nil.

sort (X::L) S :- split X L Sm Big , sort Sm SmS ,

sort Big BigS , append SmS (X::BigS) S.

Figure 5.6: More examples of Horn clause programs

92 Chapter 5. Two abstract logic programming languages

5.11 Dynamics of proof search for fohc

Let Γ be a fohc program and G is an fohc goal, and let Ξ be a ⇓L0-proof of

Σ : Γ ⊢ G. Since there are no occurrences of ⊸R or ∀R in Ξ, every sequent

occurring in Ξ has Σ as its signature and Γ as its left-hand side. Thus, if a

program clause is ever needed (via the decide rule) during the search for a

proof, it must be present at the beginning of that computation, along with all

other clauses that might be needed during the computation. Thus, the logic

of fohc does not directly support hierarchical programming in which certain

program clauses are meant to be local within a particular scope. Similarly, all

data structures built using first-order terms are built from a non-logical, fixed

signature. Since signatures do not change during the search for proofs using

first-order Horn clauses, all the constructors for data structures that need to

be built during proof search must be available globally. In other words, fohc

does not directly support hiding the internal details of data structures, an

abstraction mechanism available in many programming languages via abstract

data types.

If we only look at border sequents in ⇓L0-proofs in fohc, the only thing that

changes when moving from border to border is the atomic right-hand sides.

Given that we allow first-order terms (which can encode structures such as

natural numbers, lists, trees, Turing machine tapes, etc.), it is easy to see that

proof search in fohc has sufficient dynamics to encode general computation.

Unfortunately, all of that dynamics takes place within non-logical contents,

namely, within atomic formulas. As a result, logical techniques for analyzing

computation via proof search have limited impact on what can be said di-

rectly about non-logical contexts. Thus, reasoning about properties of Horn

clause programs will benefit little from logical and proof-theoretic analysis:

most reasoning about Horn clause programs will almost always be based on

viewing such programs as defining inductive structures. Chapter 10 provides

an exception in which a static analysis of Horn clauses is given entirely rely-

ing on structural proof-theory instead of reducing Horn clause provability to

inductive reasoning.

5.12 Examples of fohh logic programs

McCarthy [1989] described the problem of specifying the notion that a jar

is sterile if every bacterium in it is dead. Consider proving that if a given

jar j is heated, then that jar is sterile (given the fact that heating a jar kills

all germs in that jar). Consider the fohh specification of this problem given

in Figure 5.7. The expression pi x\ denotes universal quantification of the

variable x with a scope that extends as far to the right as consistent with

parentheses or the end of the expression. The first of the clauses above can be

5.12 Examples of fohh logic programs 93

kind jar , bacterium type.

type j jar.

type sterile , heated jar -> o.

type dead bacterium -> o.

type in bacterium -> jar -> o.

sterile X :- pi y\ in y X => dead y.

dead X :- heated Y, in X Y.

heated j.

Figure 5.7: Heating a jar makes it sterile.

written as

∀x(∀y(in y x ⊃ dead y) ⊃ sterile x).

Note that no constructors for type germ are provided in Figure 5.7 and no

explicit assumptions about the binary predicate in is given. The synthetic

inference rule associate with this clause is

y : bacterium,Σ : P, in y x ⊢ dead y

Σ : P ⊢ sterile x
.

Exercise 5.40. Construct the ⇓L0-proof of the goal formula sterile j from

the logic program in Figure 5.7.

Another way to prove that a jar is sterile would be to use a microscope

and search out every bacterium in the jar and confirm that they are dead.

Unfortunately, this style of proof is not available in fohh. However, such proof

strategies are possible in the stronger setting of model checking.

A specification for the binary predicate that relates a list with the reverse

of that list can be given in fohc using the following program clauses.

reverse L K :- rev L nil K.

rev nil L L.

rev (X::M) N L :- rev M (X::N) L.

Here, reverse is a binary relation on lists and the auxiliary predicate rev

is a ternary relation on lists. By moving to fohh, it is possible to write the

following specification instead.

reverse L K :- rv nil K => rv L nil.

rv (X::M) N :- rv M (X::N).

Here, the auxiliary predicate rv is also a binary predicate on lists. With this

second specification, the use of non-logical context is slightly reduced in the

94 Chapter 5. Two abstract logic programming languages

sense that the atomic formula (rev M K L) in the first specification is encoded

using the logical formula (rv [] L => rv M K) in the second specification.

Note that the definition of reverse above has clausal order 2. It is possible to

specify reverse with a clause of order 3 as follows.

reverse L K :-

(pi X\ pi M\ pi N\ rv (X::M) N :- rv M (X::N)) =>

rv nil K => rv L nil.

Here, not only the base case for rv is assumed in the body of reverse but also

the recursive case. Given this encoding of reverse, no other program clauses

can access either of these two clauses for rv.

Exercise 5.41. Reversing a pile of papers can informally be describing as:

start by allocating an additional empty pile and then systematically move

the top member of the original pile to the top of the newly allocated pile.

When the original pile is empty, the other list is the reverse. Using the last

specification of reverse above, show where, in the construction of a proof of

the reverse relation, this informal computation takes place.

Note that fohh allows for a simple notion of modular logic programming.

For example, let classify, scanner, and misc name (possibly large) collections

of program clauses that have some specific role within a larger programming

task: for example, scanner might contain code to convert a list of characters

into a list of tokens prior to parsing, etc. Consider the following goal formula.

misc ⊃ ((classify ⊃ G1) ∧ (scanner ⊃ G2) ∧G3)

Attempting a proof of this goal will cause attempts of the three goals G1, G2,

and G3 with respect to different programs: misc and classify are used to prove

G1; misc and scanner are used to prove G2; and misc is used to prove G3.

Thus, implicational goals can be used to structure the run-time environment

of a program. For example, the code present in classify is not available during

the proof attempt of G2.

It is worth noting what it means to accumulating clauses from two different

sources. For example, assume that the predicate aux is described by two

different sets of clauses in misc and scanner, respectively. The description of

aux in the accumulation of misc and scanner is given by mixing the clauses in

these two separate sources. The resulting description of aux might not have a

simple relationship to its descriptions in misc and scanner separately.

Classical logic does not support this discipline for the scoping of clauses.

For example, the three goal formulas

D ⊃ (G1 ∨G2), (D ⊃ G1) ∨G2, and G1 ∨ (D ⊃ G2)

all provide different scopes for the clause D. However, in classical logic, the

scoping of D is the same for all of these goals: given the classical equivalence

5.13 Dynamics of proof search for fohh 95

B ⊃ C ≡ ¬B ∨C, all three of these formulas are equivalent to ¬D ∨G1 ∨G2.

In other words, classical logic allows for scope extrusion: while the scope of D

in (D ⊃ G1) ∨ G2 appears to be limited to G1, that scope actually extrudes

over the disjunction G1 ∨G2. Thus classical logic does not support the notion

of scope that one usually wants from a module system.

5.13 Dynamics of proof search for fohh

Proof search using fohh programs and goals is a bit more dynamic than for

fohc. In particular, both logic programs and signatures can grow. In this

setting, every sequent in an ⇓L0-proof of the sequent Σ : Γ ⊢ G is either of the

form

Σ,Σ′ : Γ,Γ′ ⊢ G′ or Σ,Σ′ : Γ,Γ′ ⇓ D ⊢ A.

Thus, the signature can grow by the addition of Σ′ and the logic program can

grown by the addition of Γ′ (a fohh program over Σ ∪ Σ′). More generally, it

is the case that if the clausal order of Γ is n ≥ 1 and the clausal order of G is

at most n− 1, then the clausal order of Γ′ is at most n− 2.

Since the terms used to instantiate quantifiers in the concluding sequent

of the ∃R and ∀L inference rules range over the signature of that sequent,

more terms are available for instantiation as proof search progresses. These

additional terms include the eigenvariables of the proof that are introduced

by ∀R inference rules. Note that once an eigenvariable is introduced, it is not

instantiated by the proof search process. As a result, eigenvariables do not

actually vary and, hence, act as locally scoped constants.

5.14 Limitations to fohc and fohh logic programs

Both fohc and fohh have certain limitations in how they can be used to rep-

resent computations. These limitations can be compared to the pumping

lemmas for finite state machines and regular languages, which help to circum-

scribe the expressive power of those machines and languages. An immediate

consequence of Proposition 5.21 is the following monotoncity property of in-

tuitionistic provability: if Σ : Γ ⊢I G and if Γ′ is a set of Σ-formulas containing

Γ, then Σ : Γ′ ⊢I G. This proposition can be applied to solve the following two

exercises.

Exercise 5.42.(‡) Consider the collection of declarations that accumulates the

primitive types and non-logicals constants in Figure 5.3 along with declarations

for a and maxa which make them into predicates of one argument with sort

nat. Show that there is no fohh logic program Γ that satisfies the following

specification: For every nonempty set of natural numbers N = {n1, . . . , nk},

96 Chapter 5. Two abstract logic programming languages

let A be the set of atomic formulas {a n1, . . . , a nk}. Then we require that Γ

is such that A,Γ ⊢ maxa m has an I-proof if and only if m is the maximum

of the set N .

As was illustrated in Figure 5.4, the maximum of a set of numbers can

be computed in fohc if that set of numbers is stored as a list within the non-

logical context of an atomic formula and not in the logical context as require

by the exercise above.

Exercise 5.43.(‡) Given the encoding of directed graphs as is illustrated in

Figure 5.5, show that it is not possible to specify in fohh a predicate that is

true of two nodes if and only if there is no path between them. Similarly, show

that there is no specification in fohh of a predicate that holds of a node if and

only if that node is not adjacent to another node.

As this exercise illustrates, it is possible to capture reachability within a

graph but not, in general, non-reachability, at least when the adjacency graph

is encoded as a set of atomic formulas as is the case in Figure 5.5.

There is a second class of weaknesses of fohh specifications that the follow-

ing example illustrates. Consider the problem of specifying the removal of an

element from a list. In particular, assume that we have the following signature

Σ, written concretely as follows.

kind i type.

type a, b, c i.

kind list type.

type nil list.

type :: i -> list -> list.

type remove i -> list -> list -> o.

Here, list is the type of lists of elements of type i and that type i contains

three elements. It is easy to show that it is impossible to find a specification,

say P in fohh for the predicate remove such that

1. (remove X L K) is provable from Σ and P if and only if the list K is the

result of removing all occurrences of X from L, and

2. the specification P does not contain occurrences of a, b, or c.

The last of these restrictions essentially says that remove should work no

matter what terms of the type i exist. The proof of impossibility is immedi-

ate. If such a specification P existed, then P would must necessarily prove

(remove a [a,b,a] [b]). Since a and b are not free in P, then the universal

quantification of such a goal is also provable: that is, P must also prove

pi a\ pi b\ remove a (a::b::a::nil) (b::nil)).

5.14 Limitations to fohc and fohh logic programs 97

But since that goal is provable, any instance of these quantifiers is also prov-

able. Thus, (remove a [a,a,a] [a]) is provable, which should not be the

case.

This weakness results from the inability to specify the inequality of terms

within the logic without explicitly referring to the constructor of terms. Sup-

pose we allow the specification of remove to use the specific information about

the structure of type i. In that case, it is possible to write the following spec-

ification of remove, which first specifies inequality on the three terms of type

i.

type notequal i -> i -> o.

notequal a b & notequal b a.

notequal a c & notequal a c.

notequal b c & notequal c b.

remove X nil nil.

remove X (X::L) K :- remove X L K.

remove X (Y::L) (Y::K) :- notequal X Y, remove L K.

The following proposition is an immediate consequence of Exercise 4.11.

Proposition 5.44. Let τ be a primitive type and let t be a Σ-term of type τ .

If x : τ,Σ : Γ ⊢I G then Σ : Γ[t/x] ⊢I G[t/x].

Note that this proposition can be applied to non-logical constants of prim-

itive types in the following sense. Consider a non-logical signature, Σ0, that

contains the declaration that c : τ . Let Σ′
0 be the result of removing c : τ from

Σ. Then the sequent Σ:Γ ⊢ G is provable when the non-logical signature is Σ0

if and only if the sequent c : τ,Σ : Γ ⊢ G is provable when the non-logical sig-

nature is Σ′
0, which (by the above proposition) implies that Σ : Γ[t/c] ⊢ G[t/c]

holds for t a Σ ∪ Σ′
0-term of type τ .

To illustrate applying Proposition 5.44, consider the type declarations in

Figure 5.8: here i and j are primitive types. Note that terms of type i exist only

in contexts where constants or variables of type j are declared. Figure 5.8 con-

tains a specification of predicate subSome such that the goal (subSome x s t r)

is provable if and only if r is the result of substituting some occurrences of x

(actually, of (c x)) in t with s.

Exercise 5.45.(‡) Prove that it is not possible in fohh to write a specification

of subAll such that (subAll x s t r) is provable if and only if r is the result

of substituting all occurrences of x in t with s. Note that this specification

would need to work in any extension of the non-logical signature (in particu-

lar, for extensions that contain constants of type j that do not occur in the

specification of subAll).

98 Chapter 5. Two abstract logic programming languages

type c j -> i.

type f i -> i.

type g i -> i -> i.

type subSome j -> i -> i -> i -> o.

subSome X T (c X) T.

subSome X T (c Y) (c Y).

subSome X T (f U) (f W) :- subSome X T U W.

subSome X T (g U V) (g W Y) :- subSome X T U W,

subSome X T V Y.

Figure 5.8: Substitution of some occurrences.

Exercise 5.46. Write a fohh specification of subOne such that the goal

(subOne x s t r)

is provable if and only if r is the result of substituting exactly one occurrence

of x in t with s. One might think that subAll can be specified using repeated

calls to subOne. Given the previous exercise, this is not possible. Explain why.

5.15 Bibliographic notes

The early literature on logic programming did not use sequent calculus to

encode proofs using Horn clauses: in fact, that literature used refutations

instead of proof. For example, the papers by Emden and Kowalski [1976]

and by Apt and Emden [1982] described logic programming using a restricted

form of resolution refutation called SLD-resolution. The textbooks by Gallier

[1986] and Lloyd [1987] provide more details about this approach to logic

programming in classical logic.

A central design choice in our description of logic programming is the

use of goal-directed proof search and the identification of the right-hand side

of sequents with the goal and left-hand side of sequents with logic programs.

This design choice goes back to 1986 [Miller and Nadathur, 1986; Miller, 1986].

A more general treatment of goal-directed proof search is given in the book

by Gabbay and Olivetti [2000]. The book by Miller and Nadathur [2012]

focuses on λProlog and presents several examples of logic programs written

using first-order (and higher-order) hereditary Harrop formulas.

The focused proof system ⇓L0 takes the use of the ⇓ and the term “focus”

from [Andreoli, 1992]. The first proofs of cut-elimination for focused proof

5.15 Bibliographic notes 99

system were done with linear logic: see Section 6.9 for such references. The

proof theory of ⇓L0-proofs given in Section 5.5 uses techniques take from those

references.

Harrop formulas were defined and shown to have the disjunction and ex-

istence properties in [Harrop, 1960].

Kripke models for intuitionistic logic were first introduced by Kripke in

1965, some years after he proposed such models for various modal logics in

[Kripke, 1959]. The canonical Kripke model described in Section 5.6 is a sim-

plified version of a model construction given in [Miller, 1992]. The Kripke

lambda models built by Mitchell and Moggi [1991] are similar but more ab-

stract and much more general than the model presented here.

Gentzen [1935] used the cut-elimination theorem for intuitionistic proof to

help prove the decidability of propositional intuitionistic logic. His proof also

required showing that contractions can be constrained in a certain way. The

proof of decidability of intuitionistic provability over the connectives {⊤,∧,⊃}
(Proposition 5.35) follows a similar outline since using focused proof systems

greatly constrained the use of contraction.

One of the applications of hereditary Harrop formulas for logic program-

ming is to help design modular programming abstractions for logic program-

ming. Miller [1989b] proposed an early approach to modular programming in

logic programming which later developed into the module system for λProlog

[Kwon et al., 1993; Miller, 1994]. Numerous logic-based module designs for

logic programming are surveyed in [Bugliesi et al., 1994].

The notion that synthetic inference rules (Section 5.8) can systematically

be derived from formulas was an early project of Negri (see [Negri and von

Plato, 2001]). A more general form of that early work is given in [Marin et al.,

2022], where focused proof systems for both intuitionistic and classical logics

are used to build various kinds of synthetic inference rules for those two logics.

As pointed out in Section 5.14, many important queries about graphs can-

not be encoded using logic programs in fohh. The addition of fixed points to the

logic and proof theory of this section has been proposed by Girard [1992] and

Schroeder-Heister [1993]. That extension to logic permits capturing impor-

tant forms of negation-as-failure as well as properties such as non-reachability

and simulation [McDowell et al., 2003] as well as various other model checking

problems [Heath and Miller, 2019].

As a result of Exercise 5.45, the implementation of substitution, typically

needed when specifying theorem provers or operations that transform pro-

grams, must be signature dependent. That is, the constructors of certain

types must be explicit in the specification. The notion of copy-clauses were

proposed in [Miller, 1991; Miller and Nadathur, 2012] as a flexible and general

avenue for making items in a signature available to a logic specification.

100 Chapter 5. Two abstract logic programming languages

Chapter6
Linear logic

The analysis of goal-directed proof search for classical and intuitionistic logics

provided in Chapter 5 has at least the following three problems.

First, that analysis does not extend to all of classical logic nor intuitionistic

logic. As we have seen, uniform provability, along with backchaining, provides

an analysis of proof search for the L0 = {t ,∧,⊃, ∀} fragment of intuitionistic

logic, which is not a complete set of connectives for intuitionistic logic when

quantification is restricted to be first-order.

Second, that analysis did not extend to multiple-conclusion sequents which

is unfortunate since that setting allowed for a unified view of classical and

intuitionistic proofs. Limiting proof search to single-conclusion sequents will

limit our ability to use negation and De Morgan dualities to reason about logic

programs.

Third, the proof search dynamics for our richest logic programming lan-

guage so far, fohh, is rather weak: the left-hand side can only increase during

proof search and, while the right-hand side can change, those changes occur

essentially within atomic formulas (i.e., non-logical contexts). If sequents were

able to change in more complex ways during proof search, logic programming

could be more expressive and allow more direct uses of logic to reason about

the computations specified.

As we shall see in this chapter, linear logic allows us to expand our analysis

of proof search in such a way that we can address all three of these limitations.

6.1 Reflections on the structural inference rules

Before we present linear logic, we present several issues related to the role of

contraction and weakening in C-proofs and I-proofs.

102 Chapter 6. Linear logic

Controlling contractions improves proof search If the contraction rules

are deleted from the classical and intuitionistic (unfocused) proof systems in

Section 4.1, then the number of inference rules in a path in a proof can be

bounded by the number of occurrences of logical connectives in the endse-

quent. Thus the search for cut-free proofs with such a modified proof system

can be shown to be decidable. Using a more clever set of observations, Gentzen

[1935] derived a decision procedure for propositional intuitionistic logic by see-

ing a way to limit the applications of contraction in that setting. The focused

proof system ⇓L0 is a significant improvement over unfocused I-proofs in part

because the structural rules are tightly regulated within ⇓L0 proofs: in par-

ticular, wL is built into the init rule and cL is built into the decide rule as

well as the ⊃L rule (in order to turn the usual multiplicative treatment of the

left context into an additive treatment).

Invertible rules and contraction There is an interplay between structural

rules and invertible introduction rules. Consider, for example, the following

two introduction rules taken from the C-proof system (Section 4.1).

Σ :B,∆ ⊢ Γ Σ : C,∆ ⊢ Γ

Σ :B ∨ C,∆ ⊢ Γ
∨L

Σ :Bi,∆ ⊢ Γ

Σ :B1 ∧B2,∆ ⊢ Γ
∧L

The ∨L rule is invertible, meaning that if the conclusion is provable its two

premises are provable. In this case, cL never needs to be applied to the formula

B ∨C. On the other hand, the ∧L rule is clearly not invertible and one might

need to apply cL on this conjunction in order to access both conjunctions. For

example, the proof of the formula (p ∧ q) ⊃ (p ⊃ q ⊃ r) ⊃ r requires applying

cL to p ∧ q. Since controlling contraction can help one design proof-search

procedures, it is valuable to know that the applicability of contraction can be

limited to those formula occurrences with non-invertible introduction rules.

Selecting between multiplicative and additive connectives If one of

the introduction rules for a connective is multiplicative, we say that that con-

nective is multiplicative. If one of the introduction rules for a connective is

additive, we say that that connective is additive. In typical proof systems,

such as our I and C proof systems (as well as Gentzen’s LJ and LK), one

must select an additive or a multiplicative version of each connectives: in the

case of our proof system here, ∧ and ∨ are additive while ⊃ is multiplicative.

In a fuller picture of proof theory, it seems unfortunate that we need to pick

just one of these variants. While it is the case that the presence of weakening

and contraction allows one to move interchangeably between the additive and

multiplicative versions, we are considering proof systems where there are var-

ious restrictions on weakening and contraction. Thus, these different variants

might be expected to behave differently within such proofs.

6.1 Reflections on the structural inference rules 103

The collision of cut and the structural rules The interaction between

cut and the structural rules can lead to undesirable dynamics in the usual way

to perform cut-elimination. For example, consider the following instance of

the cut rule.
∆ ⊢ C ∆′, C ⊢ B

∆,∆′ ⊢ B
cut (∗)

If the right premise is proved by a left-contraction rule from the sequent

∆′, C, C ⊢ B, then cut-elimination proceeds by permuting the cut rule to

the right premises, yielding the derivation

∆ ⊢ C

∆ ⊢ C ∆′, C, C ⊢ B

∆,∆′, C ⊢ B
cut

∆,∆,∆′ ⊢ B
cut

∆,∆′ ⊢ B
cL.

In the intuitionistic variant of the sequent calculus, it is not possible for the

occurrence of C in the left premise of (∗) to be contracted. If the cut inference

in (∗) takes place in the classical proof system LK, it is possible that the left

premise is the conclusion of a contraction applied to ∆ ⊢ C,C. In that case,

cut-elimination can also proceed by permuting the cut rule to the left premise.

∆ ⊢ C,C ∆′, C ⊢ B

∆,∆′ ⊢ C,B
cut

∆′, C ⊢ B

∆,∆′,∆′ ⊢ B,B
cut

∆,∆′ ⊢ B
cL, cR

Thus, in LK, it is possible for both occurrences of C in (∗) to be contracted and,

hence, the elimination of cut is nondeterministic since the cut rule can move

to both the left and right premises. Such nondeterminism in cut-elimination

is even more pronounced when we consider the collision of the cut rule with

weakening in the following derivation.

Ξ1

⊢ B

⊢ C,B
wR

Ξ2

⊢ B

C ⊢ B
wL

⊢ B,B
cut

⊢ B
cR

Cut-elimination here can yield either Ξ1 or Ξ2: thus, nondeterminism arising

from weakening can lead to completely different proofs of B. This kind of ex-

ample does not occur in the intuitionistic (single-sided) version of the sequent

calculus.

Linear logic will make it possible to address these various issues, especially

once we present focused proof systems for all of linear logic in Sections 6.7.

104 Chapter 6. Linear logic

6.2 LK vs LJ: An origin story for linear logic

Gentzen restricted his LJ proof system for intuitionistic logic to be LK proofs

in which there is at most one formula on the right. As we argued in Section 4.5,

this restriction translates to the restriction that I-proofs are C-proofs in which

the right-hand side of all sequents have exactly one formula. As we proved in

Proposition 4.2, the following two restrictions guarantee that all sequents in

a C-proof of the endsequent ⊢ B have exactly one formula in the right-hand

context.

1. No structural rules are permitted on the right: i.e., proofs do not contain

occurrences of wR and cR.

2. The two multiplicative rules, ⊃L and cut, are restricted so that the

formula on the right-hand side of the conclusion must also be the formula

on the right-hand side of the rightmost premise.

To illustrate again this second restriction, recall the form of the ⊃L rule.

Σ : ∆1 ⊢ Γ1, B Σ : C,∆2 ⊢ Γ2

Σ :B ⊃ C,∆1,∆2 ⊢ Γ1,Γ2
⊃L

If the right-hand side of the conclusion contains one formula, that formula

can move to the right-hand side of either the left or right premise. This ex-

tra condition, however, forces that formula to move only to the right premise

and not to the left. Thus, the ⊃L rule is doing two things: it introduces

a connective and moves a side formula to a particular place. In this sense,

implication within intuitionistic logic is different from all other logic connec-

tives: the introduction rules of these other connectives are only involved in

introducing a connective (in either an additive or multiplicative fashion). In

Section 4.2, we noted that the cut rule can be emulated using the ⊃L rule and

a trivial implication: using this observation, the restriction on ⊃L can explain

the similar restriction on cut. In summary, the restriction on I-proofs can be

used to say that (1) structural rules are only allowed on the left of the sequent

and (2) implication seems to have more internal structure than is immediately

apparent.

These two restrictions can be used to motivate a central and novel fea-

ture of linear logic. In particular, the fact that in intuitionistic proofs, some

occurrences of formulas in a proof can be contracted while some cannot be con-

tracted, will be captured in linear logic by the use of the two operators ! and

?. In particular, a formula of the form !B on the left-hand side and a formula

of the form ?B on the right-hand side can have weakening and contraction

applied to them. In linear logic, these structural rules will not be applicable

to any other occurrences of formulas. Thus, sequents in C-proofs can be en-

coded in linear logic using sequents of the form !B1, . . . , !Bn ⊢ ?C1, . . . , ?Cm

6.3 Sequent calculus proof systems for linear logic 105

(n,m ≥ 0) and sequents in I-proofs can be encoded in linear logic using se-

quents of the form !B1, . . . , !Bn ⊢ B0, where B0 does not have ? as its top-level

connective.

The ! operator can also be used to explain the behavior of the intuitionistic

implication. Since the ⊃R rule applied to the formula B ⊃ C moves B to

the left-hand side, it seems necessary to encode such an implication as, say,

(!B) ⊸ C, where ⊸ is the linear implication. Such an encoding ensures that

! is affixed to B as a new member of the left-hand side. This decomposition of

the intuitionistic implication also explains the second restriction listed above.

In particular, consider the following inference rule in which the conclusion is

a single-conclusion sequent encoded as described above.

Σ : ∆1 ⊢ Γ1, !B Σ : C,∆2 ⊢ Γ2

Σ : (!B) ⊸ C,∆1,∆2 ⊢ Γ1,Γ2
⊸L

As is described in more detail in Section 6.3.2, the right-introduction rule for

! when applied to the premise ∆1 ⊢ Γ1, !B is only permitted if ∆1 contains

only !’ed formulas and Γ1 contains only ?’ed formulas. Given our encoding,

the right-hand side will have one formula that is not a top-level ?: thus, Γ1

must be empty and Γ2 must be that single formula. In this way, the second

restriction on the structure of ⊃L in I-proofs can be explained.

6.3 Sequent calculus proof systems for linear logic

The two-side proof system for linear logic is formed by putting together all of

the inference rules in Figure 6.1, 6.2, 6.3, and 6.4. Before considering this full

system, we first consider the following interesting subset of linear logic.

6.3.1 Multiplicative additive linear logic

Multiplicative additive linear logic or MALL for short is the subset of linear

logic that results from collecting together the inference rules in Figure 6.1 and

6.2. MALL contains the additive and multiplicative versions of the classi-

cal disjunction, conjunction, and their units. Since MALL does not contain

weakening or contraction, the additive and multiplicative versions of these con-

nections are not inter-admissible within proofs (see Exercise 4.6). The eight

logical connectives of MALL are listed in the following table by showing which

is the additive or multiplicative variant of the associated classical connective.

Classical Linear Additive Linear Multiplicative

t ⊤ 1

f 0 ⊥
∧ & ⊗
∨ ⊕ `

106 Chapter 6. Linear logic

Σ : Γ ⊢ ∆

Σ : Γ,1 ⊢ ∆
1L

Σ : · ⊢ 1
1R

Σ : Γ ⊢ ⊤,∆
⊤R

Σ : Γ,0 ⊢ ∆
0L

Σ :⊥ ⊢ · ⊥L
Σ : Γ ⊢ ∆

Σ : Γ ⊢ ⊥,∆
⊥R

Σ : Γ, Bi ⊢ ∆

Σ : Γ, B1 &B2 ⊢ ∆
&L (i = 1, 2)

Σ : Γ ⊢ B,∆ Σ : Γ ⊢ C,∆

Σ : Γ ⊢ B & C,∆
&R

Σ : Γ, B ⊢ ∆ Σ : Γ, C ⊢ ∆

Σ : Γ, B ⊕ C ⊢ ∆
⊕L

Σ : Γ ⊢ Bi,∆

Σ : Γ ⊢ B1 ⊕B2,∆
⊕R (i = 1, 2)

Σ : Γ, B1, B2 ⊢ ∆

Σ : Γ, B1 ⊗B2 ⊢ ∆
⊗L

Σ : Γ1 ⊢ B,∆1 Σ : Γ2 ⊢ C,∆2

Σ : Γ1,Γ2 ⊢ B ⊗ C,∆1,∆2
⊗R

Σ : Γ1, B ⊢ ∆1 Σ : Γ2, C ⊢ ∆2

Σ : Γ1,Γ2, B ` C ⊢ ∆1,∆2
`L

Σ : Γ ⊢ B,C,∆

Σ : Γ ⊢ B ` C,∆
`R

Σ : Γ ⊢ B,∆

Σ : Γ, B⊥ ⊢ ∆
(·)⊥L

Σ : Γ, B ⊢ ∆

Σ : Γ ⊢ B⊥,∆
(·)⊥R

Figure 6.1: The introduction rules for L

Σ :B ⊢ B
init

Σ : Γ ⊢ B,∆ Σ : Γ′, B ⊢ ∆′

Σ : Γ,Γ′ ⊢ ∆,∆′ cut

Figure 6.2: The two identity rules for L

Σ : Γ, B[t/x] ⊢ ∆

Σ : Γ, ∀x.B ⊢ ∆
∀L

y : τ,Σ : Γ ⊢ B[y/x],∆

Σ : Γ ⊢ ∀xτ .B,∆
∀R

y : τ,Σ : Γ, B[y/x] ⊢ ∆

Σ : Γ,∃xτ .B ⊢ ∆
∃L

Σ : Γ ⊢ B[t/x],∆

Σ : Γ ⊢ ∃x.B,∆
∃R

Figure 6.3: The introduction rules for quantifiers in L

Σ : Γ ⊢ ∆

Σ : Γ, !B ⊢ ∆
!W

Σ : Γ, !B, !B ⊢ ∆

Σ : Γ, !B ⊢ ∆
!C

Σ : Γ, B ⊢ ∆

Σ : Γ, !B ⊢ ∆
!D

Σ : Γ ⊢ ∆

Σ : Γ ⊢ ?B,∆
?W

Σ : Γ ⊢ ?B, ?B,∆

Σ : Γ ⊢ ?B,∆
?C

Σ : Γ ⊢ B,∆

Σ : Γ ⊢ ?B,∆
?D

Σ : ! Γ, B ⊢ ?∆

Σ : ! Γ, ?B ⊢ ?∆
?L

Σ : ! Γ ⊢ B, ?∆

Σ : ! Γ ⊢ !B, ?∆
!R

Figure 6.4: The rules for the exponentials in L

6.3 Sequent calculus proof systems for linear logic 107

Here, 1 is the unit for ⊗, ⊤ is the unit for &, ⊥ is the unit for `, and 0

is the unit for ⊕. Our presentation of linear logic will also accept negation

as a first-class connective, written as (·)⊥: the inference rules for negation in

Figure 6.1 are the same as used by Gentzen (see Section 4.5). Keeping with

the conventions described in Section 2.4, all binary logical connectives of linear

logic have the type o → o → o, the units have the type o, and negation has

the type o → o.

Exercise 6.1. Let p, q, and r be propositional constants (constants of type

o). Provide MALL proofs of the following sequents.

1. ⊢ p ` p⊥

2. (p⊗ q)⊗ r ⊢ (r ⊗ q)⊗ p

3. (p ` q) ` r ⊢ (r ` q) ` p

4. p⊗ (q ` r) ⊢ (p⊗ q) ` r

5. p⊗ (q ` r) ⊢ (p⊗ r) ` q

6. r ⊢ p ` (p⊥ ⊗ q) ` (q⊥ ⊗ r)

7. p⊥ ⊗ q⊥ ⊢ (p ` q)⊥

8. (p ` q)⊥ ⊢ p⊥ ⊗ q⊥

Exercise 6.2. (‡) In the sequent ⊢ p ⊗ q, p⊥ ⊗ q, p ⊗ q⊥, p⊥ ⊗ q⊥, every

occurrence of the propositional constants p and q can be matched with an

occurrence of its negation. Show, however, that this sequent is not provable

in L.

Although MALL is a propositional logic, it is an expressive and interesting

logic on its own right. Deciding provability of MALL formulas is PSPACE-

complete [Lincoln et al., 1992]. However, MALL is too weak to serve as the

basis of a logic programming language since it is decidable and since it does not

involve quantification, which is central to most views on logic programming.

Adding the first-order quantifiers in Figure 6.3 to MALL does increase the

expressiveness of the logic but the decidability of the resulting logic remains

PSPACE-complete.

6.3.2 Linear logic as MALL plus exponentials

Full linear logic is the strengthening of MALL with the addition of the quanti-

fiers ∀ and ∃ (whose inference rules in Figure 6.3 are essentially the same as the

rules in classical and intuitionistic logics) and the addition of the two opera-

tors ! and ?, collectively called the exponentials. The exponentials reintroduce

108 Chapter 6. Linear logic

weakening and contraction into linear logic but only for formulas marked with

these exponentials. In particular, there are four rules for each of these expo-

nentials. Of those four, two permit weakening and contraction for the formulas

they mark. The other two rules are essentially introduction rules. The dere-

liction rules !D and ?D can be understood (reading rules from conclusion to

premise) as saying that formulas that can be weakened and contracted can

drop this privilege. The promotion rules !R and ?L can similarly be read as

saying that one way to show that a formula can gain the privilege of being

weakened and contracted is to show that that formula can be proved in a

context where every other formula has that privilege.

The proof system that arises from collecting together all the inference rules

in Figures 6.1, 6.2, 6.3, and 6.4 is called the L proof system. Formulas that

are built from the connectives explicitly mentioned in the L proof system are

called L-formulas.

We extend the notion of logical equivalence B ≡ C (see Section 4.3) to

linear logic. In particular, two formulas B and C are equivalent in linear logic

if the two sequents B ⊢ C and C ⊢ B are provable in L, which is the same as

asserting that the sequent · ⊢ (B ⊸ C) & (C ⊸ B) in provable in L.

Exercise 6.3. Show the following equivalences between the exponential, addi-

tive, and multiplicative connectives holds in linear logic. (These equivalences

are inspired by the algebraic equation xm+n = xm × xn.)

!⊤ ≡ 1 !(B & C) ≡ !B ⊗ !C ?0 ≡ ⊥ ?(B ⊕ C) ≡ ?B ` ?C

Exercise 6.4. Let p be a propositional constant and let B be the formula

p⊗ !(p ⊸ (p⊗ p))⊗ !(p ⊸ 1). Show that the sequents B ⊢ B ⊗B and B ⊢ 1

are provable in L.

Exercise 6.5. (‡) An exponential prefix is a finite sequence of zero or more

occurrences of ! and ?. Let π be an exponential prefix. Prove that ππB ≡
πB for all formulas B. Use that result to show that there are only seven

exponential prefixes in linear logic up to equivalence: the empty prefix, !, ?,

! ?, ? !, ! ? !, and ? ! ?.

Exercise 6.6. Consider adding to linear logic a second tensor, say, ⊗̂, that has

the same inference rules as the original tensor. Prove that B ⊗ C is logically

equivalent to B ⊗̂ C. In this sense, the inference rules for tensor define it

uniquely. Show that this is true for all logical connectives and quantifiers of

linear logic except for the exponentials ! and ?.

6.3 Sequent calculus proof systems for linear logic 109

6.3.3 Duality and polarity

The familiar De Morgan dualities of classical logic hold in a comprehensive

fashion in linear logic. Not only do the binary connectives, units, and quanti-

fiers have De Morgan duals, the exponentials do as well. We list here the De

Morgan duals for all the logical connectives in linear logic.

connective ⊤ & 1 ⊗ ⊥ ` 0 ⊕ ! ? ∀ ∃
De Morgan dual 0 ⊕ ⊥ ` 1 ⊗ ⊤ & ? ! ∃ ∀

This table encodes several equivalences, of which we lists below a few.

(B ` C)⊥ ≡ B⊥ ⊗ C⊥ (B & C)⊥ ≡ B⊥ ⊕ C⊥ ⊤⊥ ≡ 0

(∃x.B)⊥ ≡ ∀x.(B⊥) (?B)⊥ ≡ !(B⊥)

As a result of equivalences of this form, it is possible to rewrite every formula

in linear logic into an equivalent formula in which negation has atomic scope.

Such formulas are said to be in negation normal form. If we restrict our atten-

tion to only formulas in such normal forms, it is possible to give a one-sided

sequent calculus proof system for linear logic, such as the one in Figure 6.5. By

exploiting dualities, this proof system has about half the number of inference

as the two-sided inference system for linear logic. Note that in Figure 6.5, the

negation symbol that appears in init and cut is no longer a logical connective

(since it has no introduction rules) but should be understood as the operator

that negates its argument and then puts the result into negation normal form.

We shall, however, make only limited use of this one-sided sequent system

for linear logic. Instead, we shall continue to use two-sided sequents in what

follows.

A important and exciting aspect of linear logic is the following. It is easy

to confirm that in MALL, the right-introduction rule of a logical connective

is invertible if and only if the left-introduction rule of that connective (or

the right-introduction rule of its De Morgan dual) is not invertible. This

observation leads to attributing a polarity to connectives. In particular, we

say that a connective is negative if its right-introduction rule is invertible, and

it is positive if its left-introduction rule is invertible. The negative connectives

are ⊥, ⊤, `, &, and ∀. The positive connectives are 1, 0, ⊗, ⊕, and ∃.
Another perspective on the polarity of linear logic connectives is the fol-

lowing. If the right-introduction rule for a connective requires information

from an oracle or its context, then that rule introduces a positive connective.

For example, the ⊕R rule requires knowing which disjunct should be selected;

the ⊗R rule needs to know how to split a context, the 1R rule needs to know

if its surrounding context is empty, and the ∃R rule needs to be given a term.

Dually, the right-introduction rules for negative connectives do not need any

110 Chapter 6. Linear logic

Σ : ⊢ ⊤,∆
⊤R

Σ : ⊢ B,∆ Σ : ⊢ C,∆

Σ : ⊢ B & C,∆
&R

Σ : ⊢ 1
1R

Σ : ⊢ B,∆1 Σ : ⊢ C,∆2

Σ : ⊢ B ⊗ C,∆1,∆2
⊗R

Σ : ⊢ ∆
Σ : ⊢ ⊥,∆

⊥R
Σ : ⊢ B,C,∆

Σ : ⊢ B ` C,∆
` R

Σ : ⊢ Bi,∆

Σ : ⊢ B1 ⊕B2,∆
⊕R (i = 1, 2)

y : τ,Σ : ⊢ B[y/x],∆

Σ : ⊢ ∀xτ .B,∆
∀R

Σ : ⊢ B[t/x],∆

Σ : ⊢ ∃x.B,∆
∃R

Σ : ⊢ ∆
Σ : ⊢ ?B,∆

?W
Σ : ⊢ ?B, ?B,∆

Σ : ⊢ ?B,∆
?C

Σ : ⊢ B,∆

Σ : ⊢ ?B,∆
?D

Σ : ⊢ B, ?∆

Σ : ⊢ !B, ?∆
!R

Σ : ⊢ B,B⊥ init
Σ : ⊢ B,∆ Σ : ⊢ B⊥,∆′

Σ : ⊢ ∆,∆′ cut

Figure 6.5: A one-sided sequent calculus proof system for linear logic

additional information for their successful application. (Note that the eigen-

variable condition for the ∀R rule requires that the eigenvariable is not cur-

rently free in the sequent: however, it is a simple matter to organize things so

that new names are always selected independently from the context.) In this

latter sense, it is possible to then classify ! as a positive connective since its

right rule (the promotion rule !R), requires the information from the context

that all formulas in the context are marked appropriately with an exponential.

As a result, we also consider ? (the De Morgan dual of !) as negative.

We say that the polarity of a non-atomic formula is negative or positive

depending only on the polarity of its top-most connective. In order to extend

the notion of polarity to all linear logic formulas, we adopt the convention that

atoms have negative polarity.

Exercise 6.7. Let B be a linear logic formula. Prove that if the only occur-

rences of atomic formulas and negative connectives in B are in the scopes of

occurrences of !, then B ≡ !B. Dually, prove that if the only occurrences of

atomic formulas and positive connectives are in the scope of occurrences of ?,

B ≡ ?B.

Exercise 6.8. Let B and C be two formulas for which B ≡ !B and C ≡ !C.

6.3 Sequent calculus proof systems for linear logic 111

Show that the following equivalences hold for the positive connectives.

1 ≡ !1 0 ≡ !0 B ⊗ C ≡ !(B ⊗ C) ∃x.B ≡ !∃x.B B ⊕ C ≡ !(B ⊕ C)

Alternatively, let B and C be two formulas such that B ≡ ?B and C ≡ ?C.

Show that the following equivalences hold for the negative connectives.

⊥ ≡ ?⊥ ⊤ ≡ ?⊤ B ` C ≡ ?(B ` C) B&C ≡ ?(B&C) ∀x.B ≡ ?∀x.B

Exercise 6.9. Eventually, we will prove the cut-elimination theorem for the

L proof system for linear logic. A simple consequence of that cut-elimination

theorem is the proof that some introduction rules in L are invertible. For

example, assume that the linear logic sequent Σ : ∆ ⊢ Γ, B ` C has a proof,

say Ξ. We want to prove that it has a cut-free proof in which the last inference

rule is an introduction rule for this occurrence of B ` C. This is proved by

considering the result of eliminating cut from the following:

Ξ

Σ : ∆ ⊢ Γ, B ` C

Ξ′

Σ :B ` C ⊢ B,C

Σ : ∆ ⊢ Γ, B,C
cut

Σ : ∆ ⊢ Γ, B ` C
` R.

Here, Ξ′ is the obvious proof of Σ :B ` C ⊢ B,C. Using an argument of this

style, prove the invertibility of &R, ∀R, ⊗L, ⊕L, and ∃L.

Exercise 6.10. Prove that if Σ:⊤ ⊢ B is provable in L then, for every multiset

of Σ-formulas ∆, the sequent Σ : ∆ ⊢ B in provable in L.

Exercise 6.11. The following three entailments hold in classical logic.

Mix: A ∧B ⊢ A ∨B

Switch: (A ∨B) ∧ C ⊢ A ∨ (B ∧ C)

Medial: (A ∧ C) ∨ (B ∧D) ⊢ (A ∨B) ∧ (C ∨D)

(The names for these entailments are taken from [Guglielmi, 2007].) Consider

mapping the pair of classical logic connectives ⟨∧,∨⟩ into one of the following

four pairs of linear logic connectives

⟨⊗,`⟩, ⟨⊗,⊕⟩, ⟨&,`⟩, ⟨&,⊕⟩.

For each of the above three classical logic entailments, find which of these

mappings of connectives yields an entailment provable in linear logic. For

example, applying the first of these mappings to the Mix entailment yields

A⊗B ⊢ A ` B, which is not generally provable in linear logic.

112 Chapter 6. Linear logic

Exercise 6.12. We define a new attribute, called junctiveness, of a MALL

connectives as follows. The junctiveness of the connectives ⊤, &, 1, or ⊗ is

conjunctive while the junctiveness of the connectives ⊥, `, 0, ⊕ is disjunctive.

Thus, each connective has four attributes, namely, arity (0 for unit or 2 for

binary connective), additive/multiplicative, polarity (positive/negative), and

junctiveness (conjunctive/disjunctive). Show that if we fix the arity, then,

given any two of the remaining three attributes, the third can be determined

uniquely. For example, there is a unique binary connective that is conjunctive

and positive (the multiplicative ⊗) and a unique unit that is disjunctive and

additive (the positive 0). Show also that the De Morgan dual of a connective

(see the beginning of Section 6.3.3) flips the junctiveness and polarity while

leaving unchanged the other two attributes.

6.3.4 Introducing implications

Since implication plays a large role in the design of the logic programming

languages we have seen in earlier chapters, we add implication as a logical

connective into linear logic. In fact, there are two implications, namely the

linear implication ⊸ and the intuitionistic implication ⇒. The linear impli-

cation B ⊸ C can be defined as B⊥ ` C and the intuitionistic implication

B ⇒ C can be defined as (!B) ⊸ C. Since both of these implications are

based on the multiplicative disjunction `, these connectives are considered

multiplicative and they have negative polarity.

The left and right-introduction rules for ⊸ are the following.

Σ : Γ1 ⊢ B,∆1 Σ : Γ2, C ⊢ ∆2

Σ : Γ1,Γ2, B ⊸ C ⊢ ∆1,∆2
⊸ L

Σ : Γ, B ⊢ C,∆

Σ : Γ ⊢ B ⊸ C,∆
⊸R

Exercise 6.13. Prove the following curry/uncurry equivalences.

1 ⊸ H ≡ H (B ⊗ C) ⊸ H ≡ B ⊸ C ⊸ H

0 ⊸ H ≡ ⊤ (B ⊕ C) ⊸ H ≡ (B ⊸ H) & (C ⊸ H)

(∃x.B x) ⊸ H ≡ ∀x.(B x ⊸ H)

Many presentations of linear logic make little or no use of implications

since they often focus on the rich symmetries allowed by the negation of linear

logic. In particular, every logical connective of linear logic, except for the

implications⊸ and⇒, have other logical connectives that are their De Morgan

duals. Another, more serious, problems with the intuitionistic implication is

the nature of its left and right-introduction rules. For example, it is tempting

to write the following candidate introduction rules for ⇒.

∆, C ⊢ !B,Γ ∆, C ⊢ Γ

∆, B ⇒ C ⊢ Γ

∆, !B ⊢ C,Γ

∆ ⊢ B ⇒ C,Γ

6.4 Single conclusion sequents with two zones 113

These rules, however, break the usual pattern for introduction rules in sequent

calculus: exactly one occurrence of a logical connective appears in the conclu-

sion while no new occurrences of a logical connective appears in a premise. In

both of these rules, the occurrence of ! in the premise violates this pattern.

This pattern has already been violated, in principle, by the rules for the ex-

ponentials. In particular, the contraction rule !C inserts two occurrences of !

into a premise while !R requires possibly many occurrences of ! and ? to be

present in the conclusion. We address these issues around the implications and

the exponentials by introducing a new style of sequent calculus proof system

in the next section.

6.4 Single conclusion sequents with two zones

One of our hopes with introducing linear logic is to provide a means to enrich

the logic programming languages described in Chapter 5. Thus we will analyze

goal-directed proofs, backchaining, and focused proof systems within linear

logic. This analysis will lead to showing that all of linear logic can be presented

as an abstract logic programming language. Before showing that result, we

show how to relate proofs in linear logic with I-proofs and C-proofs.

If linear logic does serve as a more refined and low-level setting for both

classical and intuitionistic logic, then we might expect that simply replacing

the logical connectives in ⇓ L0, namely {t ,∧,⊃,∀} (see Section 5.5), with

the corresponding linear logic connectives {⊤,&,⇒, ∀} should allow us to re-

produce intuitionistic proofs within linear logic. If that is indeed the case,

then adding ⊸ to this last set of connectives might well provide us with an

extension to fohh. We will soon show to what extent that expectation is true.

Let L1 be the set of logical connectives {⊤,&,⊸,⇒,∀}. An L1-formula

is any first-order formula all of whose logical connectives come from L1. Fig-

ure 6.6 presents an (unfocused) proof system P for the formulas taken from

L1. In order to deal with the problem of specifying an introduction rule for ⇒
mentioned at the end of the previous section, the P proof system features one

new innovation: the left-hand context in sequents is divided into two zones.

In particular, this proof system uses sequents of the form Σ : ∆; Γ ⊢ B. Here,

both ∆ and Γ are multisets of L1 formulas, and B is an L1 formula. We say

that ∆ is the unbounded context context while Γ is the bounded context of this

sequent. The informal reading of the sequent B1, . . . , Bn;C1, . . . , Cm ⊢ E is

given by the linear logic sequent

!B1, . . . , !Bn, C1, . . . , Cm ⊢ E.

The &R rule is additive, meaning that the bounded and unbounded con-

texts are the same in the conclusion and in the sequents in the premises.

114 Chapter 6. Linear logic

Σ : ∆;A ⊢ A
init

Σ : ∆, B; Γ, B ⊢ C

Σ : ∆, B; Γ ⊢ C
absorb

Σ : ∆; Γ ⊢ ⊤ ⊤R

Σ : ∆; Γ, Bi ⊢ C

Σ : ∆; Γ, B1 &B2 ⊢ C
&L

Σ : ∆; Γ ⊢ B Σ : ∆; Γ ⊢ C

Σ : ∆; Γ ⊢ B & C
&R

Σ : ∆; Γ1 ⊢ B Σ : ∆; Γ2, C ⊢ E

Σ : ∆; Γ1,Γ2, B ⊸ C ⊢ E
⊸ L

Σ : ∆; Γ, B ⊢ C

Σ : ∆; Γ ⊢ B ⊸ C
⊸R

Σ : ∆; · ⊢ B Σ : ∆; Γ, C ⊢ E

Σ : ∆; Γ, B ⇒ C ⊢ E
⇒L

Σ : ∆, B; Γ ⊢ C

Σ : ∆; Γ ⊢ B ⇒ C
⇒ R

Σ : ∆; Γ, B[t/x] ⊢ C

Σ : ∆; Γ,∀x.B ⊢ C
∀L

y : τ,Σ : ∆; Γ ⊢ B[y/x]

Σ : ∆; Γ ⊢ ∀xτ .B
∀R

Σ : ∆; Γ1 ⊢ B Σ : ∆; Γ2, B ⊢ C

Σ : ∆; Γ1,Γ2 ⊢ C
cut

Σ : ∆; · ⊢ B Σ : ∆, B; Γ ⊢ C

Σ : ∆; Γ ⊢ C
cut !

Figure 6.6: The single-conclusion, two-zone proof system P for L1.

However, the other rules with two premises treat their unbounded contexts

additively while treating their bounded contexts multiplicatively: i.e., every

formula occurrence in the bounded context of the conclusion occurs in the

bounded context of exactly one premise. This hybrid behavior for the mul-

tiplicative inference rules is possible because contraction is available for the

unbounded contexts. For example, as the following derivation illustrates, the

multiplicative ⊸ L rule plus contraction (!L) can be used to justify the hybrid

rule.
∆; Γ1 ⊢ B ∆;Γ2 ⊢ C

∆,∆;Γ1,Γ2, B ⊸ C ⊢ E

∆;Γ1,Γ2, B ⊸ C ⊢ E
!C

There are two inference rules in Figure 6.6, namely ⇒L and cut!, that

require the bounded part of one of its premises to be empty. When that

context is empty, as in B1, . . . , Bn; · ⊢ E, the corresponding linear logic sequent

is !B1, . . . , !Bn ⊢ E. When that sequent is provable in linear logic, then

!B1, . . . , !Bn ⊢ !E is also provable (using the !R rule in Figure 6.4). Thus,

requiring a premise to have an empty bounded context can also guarantee that

a (hidden) ! formula is proved from the unbounded context.

The following function translates formulas that may involve implications

into formulas where those implications are replaced by their definitions. Let

B⋄ be the result of repeatedly replacing within B all occurrences of C1 ⇒ C2

with (!C1)
⊥ ` C2 and all occurrences of C1 ⊸ C2 with C1

⊥ ` C2. We also

6.4 Single conclusion sequents with two zones 115

allow ⋄ to be applied to a multiset of formulas which results in the multiset of
⋄ applied to each member.

The following proposition relates the connection between the P and L

proof systems.

Proposition 6.14. Let B be a formula, ∆ and Γ be multisets of formulas for

linear logic with possible occurrences of ⊸ and ⇒. The sequent ∆;Γ ⊢ B has

a P-proof if and only if the sequent !(∆⋄),Γ⋄ ⊢ B⋄ has a linear logic proof.

Proving the forward direction is a straightforward induction on the struc-

ture of proofs. Proving the converse is slightly more challenging but it can be

more easily proved using the completeness of a focused proof system for linear

logic given in Section 6.8. We shall not provide a proof of this proposition since

we will consider a more general proof system in Section 6.7 and prove various

properties of that proof system in Section 6.8. The proof of this proposition

will follow immediately from those more general results.

Exercise 6.15. Let ∆; Γ ⊢ B be an P-sequent in which there is no occurrence

of ⊸. Assume also that Ξ is P proof of that sequent that does not have

occurrences of the cut rule but may have occurrences of cut ! rule. Then Γ is

either empty or a singleton.

Although several properties of the P proof system could be stated and

proved, this unfocused proof system is not the best for our needs to study

generalizations of goal-directed search and backchaining. We now motivate a

new, focused version of the P proof system.

As we did in Section 5.4, we organize the left-hand rules using the back-

chaining discipline. As we have done before, we illustrate this by presenting

two different proof systems: the first using a focused formula using the ⇓
to denote the focus of the backchain rule, and a second proof system where

backchaining is described as a single inference rule BC.

Figure 6.7 contains a proof system in which the application of the left-

introduction rules is on a designated formula from the left (compare these rules

to those in Figure 5.1). The new sequent, written as Σ :P; Γ ⇓ D ⊢ A, is used

to display that designated formula between the ⇓ and the ⊢. That displayed

formula is the only one on which left-introduction rules may be applied. The

two decide rules are used to turn the attempt to prove an atomic formula into

an attempt to use a focused formula. The sequent Σ :P; Γ ⊢ G or the sequent

Σ:P; ∆ ⇓ D ⊢ A has a ⇓L1-proof if it has a proof using the rules in Figure 6.7.

Note that the rule for ⊸ L requires splitting the bounded context Γ1,Γ2

into two parts (when reading the rule bottom up). There are, of course, 2n

such splittings if that context has n ≥ 0 distinct formulas.

The soundness and completeness of the ⇓L1 proof system for sequents

using formulas only from L1 will following from a stronger result that we shall

prove in some detail in Section 6.8.

116 Chapter 6. Linear logic

Σ : P; Γ ⊢ ⊤ ⊤R
Σ : P; Γ ⊢ B Σ : P; Γ ⊢ C

Σ : P; Γ ⊢ B & C
&R

Σ : P; Γ, B ⊢ C

Σ : P; Γ ⊢ B ⊸ C
⊸R

Σ : P, B; Γ ⊢ C

Σ : P; Γ ⊢ B ⇒ C
⇒ R

y : τ,Σ : P; Γ ⊢ B[y/x]

Σ : P; Γ ⊢ ∀xτ .B
∀R

Σ : P, D; Γ ⇓ D ⊢ A

Σ : P, D; Γ ⊢ A
decide !

Σ : P; Γ ⇓ D ⊢ A

Σ : P; Γ, D ⊢ A
decide

Σ : P; · ⇓ A ⊢ A
init

Σ ⊩ t : τ Σ : P; Γ ⇓ D[t/x] ⊢ A

Σ : P; Γ ⇓ ∀τx.D ⊢ A
∀L

Σ : P; Γ ⇓ Di ⊢ A

Σ : P; Γ ⇓ D1 &D2 ⊢ A
&L (i ∈ {1, 2})

Σ : P; Γ1 ⊢ G Σ : P; Γ2 ⇓ D ⊢ A

Σ : P; Γ1,Γ2 ⇓ G ⊸ D ⊢ A
⊸ L

Σ : P; · ⊢ G Σ : P; Γ ⇓ D ⊢ A

Σ : P; Γ ⇓ G ⇒ D ⊢ A
⇒L

Figure 6.7: The focused proof system ⇓L1. In the ∀L rule, t is a Σ-term

of type τ .

For a second (less proof-theoretic) description of backchaining, consider

the following definition. Let the syntactic variable B range over L1-formulas.

Then ∥B∥Σ is the smallest set of triples of the form ⟨P,Γ, B′⟩, where P and

Γ are multisets of formulas, such that

1. ⟨∅, ∅, B⟩ ∈ ∥B∥Σ;

2. if ⟨P,Γ, B1&B2⟩ ∈ ∥B∥Σ then ⟨P,Γ, B1⟩ ∈ ∥B∥Σ and ⟨P,Γ, B2⟩ ∈ ∥B∥Σ;

3. if ⟨P,Γ, B1 ⇒ B2⟩ ∈ ∥B∥Σ then ⟨P ∪ {B1},Γ, B2⟩ ∈ ∥B∥Σ;

4. if ⟨P,Γ, B1 ⊸ B2⟩ ∈ ∥B∥Σ then ⟨P,Γ ⊎ {B1}, B2⟩ ∈ ∥B∥Σ; and

5. if ⟨P,Γ,∀xτ .B′⟩ ∈ ∥B∥Σ and t is a Σ-term of type τ , then

⟨P,Γ, B′[t/x]⟩ ∈ ∥B∥Σ.

Let ⇓L′
1 be the proof system that results from replacing init and the four

left-introduction rules in Figure 6.7 with the backchaining inference rule in

Figure 6.8.

6.4 Single conclusion sequents with two zones 117

Σ : P; · ⊢ B1 . . . Σ : P; · ⊢ Bn Σ : P; Γ1 ⊢ C1 . . . Σ : P; Γm ⊢ Cm

Σ : P; Γ1, . . . ,Γm, B ⊢ A
BC

provided n,m ≥ 0, ⟨{B1, . . . , Bn}, {C1, . . . , Cm}, A⟩ ∈ ∥B∥Σ, and A is

atomic.

Figure 6.8: Backchaining for the linear logic fragment L1.

Proposition 6.16. Let B be a formula and let ∆ and Γ be multisets of formu-

las, all over the logical constants ⊤,&,⊸,⇒, and ∀. The sequent Σ:∆; Γ ⊢ B

has a proof in ⇓L1 if and only if it has a proof in ⇓L′
1.

This proposition follows directly from the completeness of the ⇓L1 proof

system, following the same lines used to prove the analogous results in Sec-

tion 5.7.

It is now clear from the ⇓L1-proof system that the dynamics of proof search

in this setting has improved beyond that described for fohh (Section 5.13). In

particular, every sequent in a ⇓L1 proof of the sequent Σ : P; Γ ⊢ G is either

of the form

Σ,Σ′ : P,P ′; Γ′ ⊢ G′ or Σ,Σ′ : P,P ′; Γ′ ⇓ D ⊢ A.

Just as with fohh, the signature can grown by the addition of Σ′ and the

unbounded context can grown by the addition of P ′. The bounded context,

Γ′, however, can change in much more general and arbitrary ways. Formulas

in the bounded context that were present at the root of a proof may not

necessarily be present later (higher) in the proof. As we shall see later, we

can use formulas in the bounded context to represent, say, the state of a

computation or a switch that is off but later on.

Exercise 6.17. Consider the set L1 ∪ {⊥} of linear logic connectives. Show

that this set of connectives is complete in the sense that all other logical

connectives can be written in terms of these. In particular, describe how to

encode

B⊥ 0 1 !B B ⊕ C B ⊗ C ∃x.B ?B B ` C

using only the connectives in L1 ∪ {⊥}. Use the P proof system to present

the required proofs. Can you argue why it is the case that if L′ is a proper

subset of L1 then L′ ∪ {⊥} does not yield a complete set of connectives for

linear logic.

118 Chapter 6. Linear logic

6.5 Embedding fohh into linear logic

The abstract logic programming language ⟨L1,L1,⊢L⟩ has been also called

Lolli (after the lollipop shape of the ⊸). As a programming language, Lolli

appears to be L0 with ⊸ added. To make this connection more precise, we

should show how L0 can be embedded into Lolli (since, technically, they use

different sets of connectives). Girard has presented a mapping of intuitionistic

logic into linear logic that preserves not only provability but also proofs [Gi-

rard, 1987]. On the fragment of intuitionistic logic containing t , ∧, ⊃, and ∀,
his translation is given by:

(A)0 = A, where A is atomic,

(t)0 = ⊤,

(B1 ∧B2)
0 = (B1)

0 & (B2)
0,

(B1 ⊃ B2)
0 = (B1)

0 ⇒ (B2)
0,

(∀x.B)0 = ∀x.(B)0.

However, if we are willing to focus attention on only cut-free proofs in intu-

itionistic logic and in linear logic, it is possible to define a “tighter” translation.

Consider the following two translation functions.

(A)+ = (A)− = A, where A is atomic

(t)+ = 1 (t)− = ⊤
(B1 ∧B2)

+ = (B1)
+ ⊗ (B2)

+

(B1 ∧B2)
− = (B1)

− & (B2)
−

(B1 ⊃ B2)
+ = (B1)

− ⇒ (B2)
+

(B1 ⊃ B2)
− = (B1)

+ ⊸ (B2)
−

(∀x.B)+ = ∀x.(B)+

(∀x.B)− = ∀x.(B)−

If we allow positive occurrences of ∨ and ∃ within cut-free proofs, as in proofs

involving the hereditary Harrop formulas, we would also need the following

two clauses.

(B1 ∨B2)
+ = (B1)

+ ⊕ (B2)
+

(∃x.B)+ = ∃x.(B)+

Proposition 6.18. Let Σ be a signature, B be a Σ-formula and ∆ a set of

Σ-formulas, all over the logical constants t,∧,⊃, and ∀. Define ∆− to be the

multiset {C− | C ∈ ∆}. Then, the sequent Σ : ∆ ⊢ B has an I-proof if and

only if the sequent Σ : ∆−; · ⊢ B+ has a cut-free proof in ⇓L1.

This proposition is a consequence of the more general Proposition 6.45.

In fact, if one considers ⇓L0-proofs instead of I-proofs, then ⇓L0-proofs of

Σ : ∆ ⊢ B are essentially ⇓L1-proofs of Σ : ∆−; · ⊢ B+. This suggests how

6.5 Embedding fohh into linear logic 119

to design the concrete syntax of a linear logic programming language so that

the interpretation of Prolog and λProlog programs remains unchanged when

embedded into this new setting. In particular, the Prolog syntax

A0 : − A1, . . . , An

is traditionally intended to denote (the universal closure of) the formula

(A1 ∧ . . . ∧An) ⊃ A0.

Given the negative translation above, such a Horn clause would then be trans-

lated to the linear logic formula

(A1 ⊗ . . .⊗An) ⊸ A0.

Thus, the comma in Prolog denotes ⊗ and : − denotes the converse of ⊸.

For another example, the natural deduction rule for the introduction of

implication, often expressed using the diagram

(A)
...

B

A ⊃ B ’

can be written as the following first-order formula for axiomatizing a provabil-

ity predicate:

∀A∀B((prov(A) ⊃ prov(B)) ⊃ prov(A imp B)),

where the domain of quantification is over propositional formulas of the object-

language and imp is the object-level implication. This formula is written in

λProlog using the syntax

prov (A imp B) :- prov A => prov B.

Given the above proposition, this formula can be translated to the formula

∀A∀B((prov A ⇒ prov B) ⊸ prov (A imp B)),

which means that the λProlog symbol => should denote ⇒. Thus, in the

implication introduction rule displayed above, the meta-level implication rep-

resented as three vertical dots can be interpreted as an intuitionistic implica-

tion while the meta-level implication represented as the horizontal bar can be

interpreted as a linear implication.

In the next chapter, we will present numerous example of logic programs

using L1 formulas that illustrate features of linear logic. We give a simple

example here. Assume that we would like to move from, say, step1 to step2

120 Chapter 6. Linear logic

in a computation (proof search) and in the process of making that change, we

wish to flip a switch. In other words, we would like to write a logic specification

that makes the following synthetic inference rules possible.

∆; Γ, on ⊢ step2

∆;Γ, off ⊢ step1

∆;Γ, off ⊢ step2

∆;Γ, on ⊢ step1

Using the Prolog-style syntax described above, the following two clauses im-

plement these synthetic rules.

step1 :- off , on -o step2.

step1 :- on , off -o step2.

To illustrate this, assume that the two (equivalent) formulas

off ⊸ (on ⊸ step2) ⊸ step1, on ⊸ (off ⊸ step2) ⊸ step1

are members of ∆. We have the following partial derivation in ⇓L1 to justify

the second of the synthetic rules above.

∆; · ⇓ on ⊢ on
init

∆; on ⊢ on
decide

∆;Γ, off ⊢ step2

∆;Γ ⊢ off ⊸ step2
⊸R

∆; · ⇓ step1 ⊢ step1
init

∆;Γ ⇓ (off ⊸ step2) ⊸ step1 ⊢ step1
⊸L

∆;Γ, on ⇓ on ⊸ (off ⊸ step2) ⊸ step1 ⊢ step1
⊸L

∆;Γ, on ⊢ step1
decide !

The two occurrences of ⊸L require splitting the bounded context in their con-

clusion. There can be many possible splittings of these multisets, depending

on the size of Γ. However, in this particular setting, the bound context can

only be split one way: all other splitting would not have allowed for complet-

ing the phase and, thus, forming the synthetic rule. If ⇒ replaced ⊸ in this

example, the resulting synthetic rules would be

∆, off, on; · ⊢ step2

∆, off; · ⊢ step1

∆, on, off; · ⊢ step2

∆, on; · ⊢ step1

Clearly, this would be a poor implementation of a switch.

6.6 A model of resource consumption

This text does not present many details about the implementation of proof

search, but the following considerations seem high-level and useful to mention.

As we mentioned in Section 6.4, attempt to apply the multiplicative inference

rule ⊸L from either Figure 6.6 or Figure 6.7 requires splitting a multiset

of formulas into two multisets: in general, an exponential number of such

splittings is possible. A better strategy than trying each possible splitting is

6.6 A model of resource consumption 121

subcontext O I
Σ : P; [I ∥O] ⊢ ⊤ ⊤R

Σ : P; [I ∥O] ⊢ B Σ : P; [I ∥O] ⊢ C

Σ : P; [I ∥O] ⊢ B & C
&R

Σ : P; [⟨B⟩ :: I ∥ ◦ :: O] ⊢ C

Σ : P; [I ∥O] ⊢ B ⊸ C
⊸R

Σ : P, B; [I ∥O] ⊢ C

Σ : P; [I ∥O] ⊢ B ⇒ C
⇒ R

y : τ,Σ : P; [I ∥O] ⊢ B[y/x]

Σ : P; [I ∥O] ⊢ ∀xτ .B
∀R

Σ : P, D; [I ∥O] ⇓ D ⊢ A

Σ : P, D; [I ∥O] ⊢ A
decide !

pick I D M Σ : P; [M ∥O] ⇓ D ⊢ A

Σ : P; [I ∥O] ⊢ A
decide

Σ : P; [I ∥ I] ⇓ A ⊢ A
init

Σ ⊩ t : τ Σ : P; [I ∥O] ⇓ D[t/x] ⊢ A

Σ : P; [I ∥O] ⇓ ∀τx.D ⊢ A
∀L

Σ : P; [I ∥O] ⇓ Di ⊢ A

Σ : P; [I ∥O] ⇓ D1 &D2 ⊢ A
&L (i ∈ {1, 2})

Σ : P; [I ∥M] ⊢ G Σ : P; [M ∥O] ⇓ D ⊢ A

Σ : P; [I ∥O] ⇓ G ⊸ D ⊢ A
⊸L

Σ : P; [I ∥ I] ⊢ G Σ : P; [I ∥O] ⇓ D ⊢ A

Σ : P; [I ∥O] ⇓ G ⇒ D ⊢ A
⇒L

Figure 6.9: The IO proof system.

needed if the logic L1 is to be the foundations of a usable logic programming

language. Such a strategy is possible and rests on two observations. First,

instead of splitting the formulas in the bounded left context at the moment of

applying the ⊸L rule, we can send all the formulas in the bounded context

to the process searching for a proof of the left premise. If a proof of that

premise is found, some of those bounded formulas are consumed. The remain-

ing, unconsumed, bounded formulas can then be sent to the right premise to

be consumed there. Second, the decide inference rule in Figure 6.7 actually

consumes a bounded formula.

Figure 6.9 contains the IO proof system, which is a modification of the

⇓L1 proof system in Figure 6.7 in which the bounded context (written using

the schematic variable Γ) is replaced by the pairing [I ∥O], where I and O

denote, respectively, collections of input and output formulas. Since we need

to support the process of deleting formulas from an input inorder to arrive at

122 Chapter 6. Linear logic

kind opt type -> type.

type none opt A.

type some A -> opt A.

type pick list (opt A) -> A -> list (opt A) -> o.

type subcontext list (opt A) -> list (opt A) -> o.

pick (some B::I) B (none::I).

pick (C::I) B (C::O) :- pick I B O.

subcontext nil nil.

subcontext (C::O) (C::I) :- subcontext O I.

subcontext (none::O) (some B::I) :- subcontext O I.

Figure 6.10: The formal definition of the two predicates used in Figure 6.9.

an output, the structures encoding I and O will be lists of option-formulas and

not just of formulas. By an option-formula we mean a term of the form ⟨B⟩, for
B a formula, or ◦, which denotes that a formula has been deleted. The pick

relation used in the decide rule in Figure 6.9 is used to select an occurrence of a

formula from an input list and return the result of deleting that occurrence in

the output list. The formal definition of the pick and subcontext predicates

is given using the Horn clauses displayed in Figure 6.10.

There are several observations to make about the rules in Figure 6.9.

1. Most rules are such that when the pair [I ∥O] appears in the conclusion,

it also appears in all its premises. The exceptions are described next.

2. When reading inference rules from conclusion to premises, the ⊸R rule

can be seen as taking the pair [I ∥O] and giving to the premise the input

⟨B⟩. At the same time, the corresponding output structure contains ◦
which denotes the deletion of B. As a result, this modified rule indicates

that the formula B must be consumed in the proof of the premise.

3. The decide rule employs the pick predicate to nondeterministically se-

lect a formula D from the input structure while making it deleted in the

output structure.

4. The left premise of the ⇒L rule contains the pairing [I ∥ I]. Such a

pairing means that all formulas in the input are also in the output: that

is, no formulas have been deleted. The init rule uses a similar pairing.

5. The condition subcontext O I appearing in the premise of the ⊤R is

true if O results from deleting some formulas occurring in I.

6.6 A model of resource consumption 123

Exercise 6.19. The predicate subcontext can be removed from the proof

system in Figure 6.9 by making use of the pick predicate instead. In partic-

ular, show that the one rule in Figure 6.9 that references subcontext can be

replaced by the following two rules.

Σ : P; [I ∥ I] ⊢ ⊤ ⊤R
pick I D M Σ : P; [M ∥O] ⊢ ⊤

Σ : P; [I ∥O] ⊢ ⊤ ⊤R

In order to prove the correctness of the proof system in Figure 6.9, we

define the formal difference, I −O whenever it the case that subcontext O I

holds: in particular, I −O is the multiset of formulas D such that ⟨D⟩ occurs
in I and the corresponding position in O is the symbol ◦.

Lemma 6.20. Given a list of option-formulas I, the difference I − I is the

empty multiset. Whenever subcontext I M and subcontext M O hold then

subcontext I O holds and I − O is the multiset union of I − M and M −
O. Finally, if pick I D O holds then I − O is the multiset containing one

occurrence of D.

The following lemma is proved by a simple induction on the structure of

IO-proofs.

Lemma 6.21. If Σ : P; [I ∥O] ⊢ G has an IO-proof then subcontext O I

holds. Similiarly, if Σ:P; [I ∥O] ⇓ D ⊢ G has an IO-proof then subcontext O I

holds.

The following proposition shows that this approach to the lazy splitting of

contexts is sound.

Proposition 6.22. If Σ:P; [I ∥O] ⊢ G has an IO-proof then Σ:P; I−O ⊢ G

has a ⇓L1-proof. Similiarly, if Σ : P; [I ∥O] ⇓ D ⊢ G has an IO-proof then

Σ : P; I −O ⇓ D ⊢ G has a ⇓L1-proof.

Proof. Let Ξ be an IO-proof of Σ : P; [I ∥O] ⊢ G. We can convert Ξ to an

⇓L1-proof by simply replacing every occurrence of the pairing [I ∥O] in Ξ

with the multiset I −O. For example, consider the IO inference rule

Σ : P; [I ∥M] ⊢ G Σ : P; [M ∥O] ⇓ D ⊢ A

Σ : P; [I ∥O] ⇓ G ⊸ D ⊢ A
⊸L

If we set Γ1 and Γ2 to be, respectively, I−M and M−O, then by Lemma 6.20,

I − O is the multiset union of Γ1 and Γ2. Thus, the rule above is converted

to the ⇓L1 inference rule

Σ : P; Γ1 ⊢ G Σ : P; Γ2 ⇓ D ⊢ A

Σ : P; Γ1,Γ2 ⇓ G ⊸ D ⊢ A
⊸L

The remaining cases all follow as simply as this case.

124 Chapter 6. Linear logic

I should also prove the following completeness theorem eventhough it

seems to be rather technical. The fact that I/O contexts are ordered

seems to be the main catch.

Proposition 6.23. If Σ : P; Γ ⊢ G has a ⇓L1-proof then there are lists of

option-formulas I and O such that subcontext O I holds and Σ:P; [I ∥O] ⊢
G has an IO-proof. Similiarly, if Σ : P; I − O ⇓ D ⊢ G has a ⇓L1-proof then

there are lists of option-formulas I and O such that subcontext O I holds

and Σ : P; [I ∥O] ⇓ D ⊢ G has an IO-proof then

6.7 Multiple conclusion uniform proofs

Our treatment of linear logic proof theory via goal directed search and back-

chaining is only able to capture a part of linear logic. As we saw in Exer-

cise 6.17, if we extend the L1 collection of connectives with ⊥, we can encode

all of linear logic’s connectives. This suggests adding the 0-ary, multiplicative

disjunction might be interesting to consider, especially since it has negative

polarity, like the other connectives in L1. In fact, it would seem sensible to

add not just ⊥ but also ` and ? since they are all negative polarity connectives

and they represent the 0-ary, 2-ary, and “∞-ary” multiplicative disjunction.

To that end, we define L2 to be the set of connectives

L2 = {⊤,&,⊸,⇒,∀,⊥,`, ?}

and we say that an L2-formula is any first-order formula built using the L2

connectives. Of course, sequent calculus proofs involving these additional

connectives forces us to consider multiple conclusion sequent calculus. This

presentation of linear logic using the logical connectives in L2 is called the

Forum presentation of linear logic.

The set of connectives L2 is redundant since we can remove ` and ? and

still have a set of connectives that is complete for linear logic, as the following

linear logic equivalences validate.

?B ≡ (B ⊸ ⊥) ⇒ ⊥ B ` C ≡ (B ⊸ ⊥) ⊸ C

While the addition of ` and ? is not strictly necessary, their presences will

allow us to write natural specifications later one. Also, their presence does

not seem to complicate the proof theory analysis we consider in the following

section.

What should it mean to do goal-directed search when there are possibly

several formulas on the right of a sequent? The key aspect of goal-directed

search that we wish to maintain is that goal formulas (right-hand side for-

mulas) are able to be introduced without any restriction, no matter what

6.7 Multiple conclusion uniform proofs 125

other formulas are on the left or right of the sequent arrow. Thus, it seems

natural to expect that we should be able to simultaneously introduce all the

logical connectives on the right of the sequent arrow. Although the sequent

calculus cannot deal directly with simultaneous rule application, reference to

permutabilities of inference rules can indirectly address simultaneity. That

is, we can require that if two or more right-introduction rules can be used

to derive a given sequent, then all possible orders of applying those right-

introduction rules can, in fact, be done and the resulting proofs are all equal

modulo permutations of introduction rules.

More precisely: A cut-free sequent proof Ξ is uniform if for every subproof

Ξ′ of Ξ and for every non-atomic formula occurrence B in the right-hand

side of the end-sequent of Ξ′, there is a proof Ξ′′ that is equal to Ξ′ up to a

permutation of inference rules and is such that the last inference rule in Ξ′′

introduces the top-level logical connective of B. Clearly this notion of uniform

proof extends the one given in Section 5.1. We similarly extend the notion of

abstract logic programming language to be a triple ⟨D,G,⊢⟩ such that for all

sequents with formulas from D on the left and formulas from G on the right,

that sequent has a proof if and only if it has a uniform proof.

The ⇓L2 proof system for the Forum presentation of linear logic, given in

Figure 6.11, contains sequents having the form

Σ : Ψ; Γ ⊢ ∆;Υ and Σ : Ψ; Γ ⇓ B ⊢ ∆;Υ,

where Σ is a signature, and Γ, ∆, Ψ and Υ are multiset of Σ-formulas from

L2. The intended meanings of these two sequents in linear logic are

Σ : !Ψ,Γ ⊢ ∆, ?Υ and Σ : !Ψ,Γ, B ⊢ ∆, ?Υ,

respectively. The ⇓L2 proof system contains right rules only for sequents of

the form Σ:Ψ; Γ ⊢ ∆;Υ. The syntactic variableA used in Figure 6.11 denotes a

multiset of atomic formulas. As we have seen before, left-introduction rules are

applied only to the formula that is next to the ⇓ in its conclusion. Given that

the L2 connectives have negative polarity, all occurrences of right-introduction

rules in proofs involving them are invertible. This observation makes it an easy

matter to prove that uniform proofs are complete.

The L proof system can serve as an (unfocused) proof system for L2: we

simply need to replace the implications in L2-formulas with their definitions,

using the (·)⋄ function given with the statement of Proposition 6.14. Given the

intended interpretation of sequents in ⇓L2, the following soundness theorem

can be proved by simple induction on the structure of ⇓L2 proofs.

Theorem 6.24 (Soundness). If the sequent Σ : Ψ; Γ ⊢ ∆;Υ has a ⇓L2 proof

then ! Ψ⋄,Γ⋄ ⊢ ∆⋄, ?Υ⋄ has a linear logic proof. If the sequent Σ : Ψ; Γ ⇓ B ⊢
A; Υ has a ⇓L2 proof then ! Ψ⋄,Γ⋄, B⋄ ⊢ ∆⋄, ?Υ⋄.

126 Chapter 6. Linear logic

Σ : Ψ; Γ ⊢ ⊤,∆;Υ
⊤R

Σ : Ψ; Γ ⊢ B,∆;Υ Σ : Ψ; Γ ⊢ C,∆;Υ

Σ : Ψ; Γ ⊢ B & C,∆;Υ
&R

Σ : Ψ; Γ ⊢ ∆;Υ

Σ : Ψ; Γ ⊢ ⊥,∆;Υ
⊥R

Σ : Ψ; Γ ⊢ B,C,∆;Υ

Σ : Ψ; Γ ⊢ B ` C,∆;Υ
` R

Σ : Ψ;B,Γ ⊢ C,∆;Υ

Σ : Ψ; Γ ⊢ B ⊸ C,∆;Υ
⊸ R

Σ :B,Ψ;Γ ⊢ C,∆;Υ

Σ : Ψ; Γ ⊢ B ⇒ C,∆;Υ
⇒ R

y : τ,Σ : Ψ; Γ ⊢ B[y/x],∆;Υ

Σ : Ψ; Γ ⊢ ∀τx.B,∆;Υ
∀R

Σ : Ψ; Γ ⊢ ∆;B,Υ

Σ : Ψ; Γ ⊢ ?B,∆;Υ
?R

Σ : Ψ; Γ ⇓ B ⊢ A; Υ

Σ : Ψ;B,Γ ⊢ A; Υ
decide

Σ :B,Ψ;Γ ⇓ B ⊢ A; Υ

Σ :B,Ψ;Γ ⊢ A; Υ
decide !

Σ : Ψ; Γ ⊢ A, B;B,Υ

Σ : Ψ; Γ ⊢ A;B,Υ
decide ?

Σ : Ψ; · ⇓ A ⊢ A; Υ
init

Σ : Ψ; · ⇓ A ⊢ ·;A,Υ init ?

Σ : Ψ; · ⇓ ⊥ ⊢ ·; Υ ⊥L
Σ : Ψ;B ⊢ ·; Υ

Σ : Ψ; · ⇓ ?B ⊢ ·; Υ ?L

Σ : Ψ; Γ ⇓ Bi ⊢ A; Υ

Σ : Ψ; Γ ⇓ B1 &B2 ⊢ A; Υ
&Li

Σ : Ψ; Γ ⇓ B[t/x] ⊢ A; Υ

Σ : Ψ; Γ ⇓ ∀τx.B ⊢ A; Υ
∀L

Σ : Ψ; Γ1 ⇓ B ⊢ A1; Υ Σ : Ψ; Γ2 ⇓ C ⊢ A2; Υ

Σ : Ψ; Γ1,Γ2 ⇓ B ` C ⊢ A1,A2; Υ
` L

Σ : Ψ; Γ1 ⊢ A1, B; Υ Σ : Ψ; Γ2 ⇓ C ⊢ A2; Υ

Σ : Ψ; Γ1,Γ2 ⇓ B ⊸ C ⊢ A1,A2; Υ
⊸L

Σ : Ψ; · ⊢ B; Υ Σ : Ψ; Γ ⇓ C ⊢ A; Υ

Σ : Ψ; Γ ⇓ B ⇒ C ⊢ A; Υ
⇒L

Figure 6.11: The ⇓L2 proof system. The rule ∀R has the proviso that y is

not in the signature Σ, and the rule ∀L has the proviso that t is a Σ-term

of type τ . In &Li, i = 1 or i = 2. Cut rules for ⇓L2 will be considered in

Figure 6.12.

6.7 Multiple conclusion uniform proofs 127

As a presentation of linear logic, Forum and its proof system ⇓L2 are rather

odd. First, Forum’s proof system does not contain the cut-rule whereas most

presentation of linear logic are concerned with the dynamics of cut-elimination.

Since we are interested in proof search instead of proof normalization, this

dispensing with the cut-rule is understandable. Second, negation is not a

primitive and the De Morgan dual of a logical connective in L2 is not, in

fact, present in L2. Again, most proof systems for linear logic (even the one

in Figure 6.4) are more symmetric in that if they contain a connective, they

also contain its dual. Instead, Forum gives the two implications, ⊸ and ⇒,

a central role and this contributes to the asymmetric nature of Forum. On

the other hand, the decision to use implications makes it easy for Forum

to generalize logic programming based on Horn clauses, hereditary Harrop

formulas, and Lolli. Although cut is not an inference rule and duality is not a

feature of the logical connectives used in Forum, cut-elimination and duality

will play a significant role in how one reasons about Forum specifications.

Exercise 6.25. Assume that a, b, c, d are all propositional constants (i.e., they

have type o). Prove the following formulas using the ⇓L2 proof system. Note

that proving B using ⇓L2 means to prove the sequent · : ·; · ⊢ B; ·.

• ((a ⊸ ⊥) ⊸ ⊥) ⊸ a,

• (d ⊸ (a ` b)) ⊸ (1 ⊸ (c ` d)) ⊸ (a ` b ` c)

• ? b ⊸ (b ⊸ ⊥) ⇒ ⊥ and ((b ⊸ ⊥) ⇒ ⊥) ⊸ ? b

• b ` c ⊸ (b ⊸ ⊥) ⊸ c and ((b ⊸ ⊥) ⊸ c) ⊸ (b ` c)

Exercise 6.26. The proof rule in ⇓L2 for ?L is unlike the other left rules in

that it does not maintain focus as one moves from the conclusion to a premise.

Consider the following variation to that inference rule.

Σ : Ψ; · ⇓ B ⊢ ·; Υ
Σ : Ψ; · ⇓ ?B ⊢ ·; Υ ?L′

Show that if we replace ?L with ?L′ then the resulting proof system is no

longer complete. In particular, the formula ?(a ⊸ b) ⊸ ?(a ⊸ b) does not

have a proof.

Exercise 6.27. The L2 presentation of linear uses the 8 logical connec-

tives {⊤,&,⊸,⇒, ∀,⊥,`, ?}. Show that all the 64 pairings of the right-

introduction rules for these 8 connectives permutes over each other.

128 Chapter 6. Linear logic

6.8 Formal properties of Forum proofs

We shall now establish the main proof theory results regarding the Forum

presentation of linear logic. This section follows roughly the outline of results

that are given in Section 5.5 for the L0 subset of intuitionistic logic. The

outline for this section is the following.

1. Define the notion of path in formulas and their associated sequent.

2. Use paths to describe the right-introduction and left-introduction phases.

3. Prove the admissibility of the non-atomic initial rule in ⇓L2.

4. Add three cut rules to ⇓L2 and then prove that they can be eliminated.

5. Prove the completeness of ⇓L2 with respect of the unfocused L.

6. Prove the cut-elimination theorem for the L proof system.

6.8.1 Paths and synthetic inference rules

We move the notion of path given in Section 5.5 from L0-formulas to L2-

formulas. In particular, we define the relationship · ↑ · on L2-formulas as

follows (here, A ranges over atomic formulas).

A ↑ A

B1 ↑ P

B1 &B2 ↑ P

B2 ↑ P

B1 &B2 ↑ P

B ↑ P

C ⇒ B ↑ C ⇒ P

B ↑ P

∀τx.B ↑ ∀τx.P

⊥ ↑ ⊥ ?B ↑ ?B

B ↑ P

C ⊸ B ↑ C ⊸ P

B1 ↑ P1 B2 ↑ P2

B1 ` B2 ↑ P1 ` P2

The elimination of & from paths can be seen as justified using the following

equivalences.

B ` (C1 & C2) ≡ (B ` C1) & (B ` C2) (6.1)

B ⊸ (C1 & C2) ≡ (B ⊸ C1) & (B ⊸ C2) (6.2)

Using these equivalences (and other equivalences related to ⇒ and ∀), it is

possible to pull all occurrences of & within a formula to the outside of the

formula. That is, we have B ≡
˘

B↑P P .

In general, paths have a more complex structure in this setting than we

saw in Section 5.5. Fortunately, paths have a reasonably simple normal form.

6.8 Formal properties of Forum proofs 129

Using the equivalences

B ` (∀x.C) ≡ (∀x.B ` C) (6.3)

B ⊸ (∀x.C) ≡ (∀x.B ⊸ C) (6.4)

B ⇒ (∀x.C) ≡ (∀x.B ⇒ C), (6.5)

a path can be written in the form ∀x1 . . . ∀nn.P
′ where n ≥ 0 and every

occurrence of ∀ in P ′ occurs in the scope of a ? or to the left of either ⊸ or

⇒. Similarly, using the equivalences

(B ⊸ C1) ` C2 ≡ B ⊸ (C1 ` C2) (6.6)

(B ⇒ C1) ` C2 ≡ B ⇒ (C1 ` C2) (6.7)

B ⊸ C ⇒ D ≡ C ⇒ B ⊸ D (6.8)

and the unit rules ⊥ ` B ≡ B ` ⊥ ≡ B and the commutativity of `, all

paths have the following normal form.

∀x̄[C1 ⇒ . . . ⇒ Cn ⇒ B1 ⊸ . . . ⊸ Bm ⊸ A1 ` . . . ` Ap ` ?E1 . . . ` ?Eq]

where n,m, p, q are non-negative integers, A1, . . . , Ap are atomic formulas,

B1, . . . , Bm, C1, . . . , Cn, E1, . . . , Eq are L2 formulas, and ∀x̄ is a list of univer-

sally quantified variables. If a path P has the normal form above, then we

say that the multiset {C1, . . . , Cn} is its intuitionistic arguments, the multiset

{B1, . . . , Bm} is its linear arguments, the multiset {A1, . . . , Ap} is its atomic

targets, and the multiset {E1, . . . , Eq} is its ?-targets. Finally, x̄ is the list of

bound variables of P (we assume that all these bound variables are distinct).

Since these various components to the normal form of a path are multisets,

this decomposition of a path is unique. We shall also display this normal form

as the sequent

Σ : C1, . . . , Cn;B1, . . . , Bm ⊢ A1, . . . , Ap;E1, . . . , Eq.

Consider what the right-introduction phase and the left-introduction phase

are when applied to the following formula

∀x̄(C ⇒ B1 ⊸ B2 ⊸ A1 ` A2 ` ?E),

which is its own path formula since it has no occurrences of &. The right-

introduction phase can be written schematically as follows.

x̄ : C;B1, B2 ⊢ A1, A2;E

· : ·; · ⊢ ∀x̄(C ⇒ B1 ⊸ B2 ⊸ A1 ` A2 ` ?E); ·

Note that the unique premise to this phase ends with the sequent represen-

tation associate to that path. Of course, if we place any items in any of the

130 Chapter 6. Linear logic

zones in the conclusion, they should also be placed into the same zone in the

premise. Focusing on this example formula leads to the following derivation.

Ψ; · ⊢ Ĉ; Υ Ψ; Γ1 ⊢ B̂1,A1; Υ Ψ; Γ2 ⊢ B̂2,A2; Υ Ψ; Ê ⊢ ·; Υ
Ψ; Γ1,Γ2 ⇓ ∀x̄(C ⇒ B1 ⊸ B2 ⊸ A1 ` A2 ` ?E) ⊢ Â1, Â2,A1,A2; Υ

Here, Â1, Â2, B̂1, B̂2, Ĉ, Ê are the result of applying θ to the formulas in

A1, A2, B1, B2, C,E, and θ is the substitution for the variables x̄ that tab-

ulates the substitutions used in the ∀R rules.

To improve readability of sequents and derivations, we shall often not

display signatures (such as Σ in the previous example). Furthermore, we shall

often place a " in a particular zone of an occurrence of a sequent to means that

the contents of that zone is taken from the sequent below it in a derivation.

We generalize the following two notions introduced in Section 5.8. A border

sequent is a sequent of the form Σ : Ψ; Γ ⊢ A; Υ: that is, they are four-zone

sequents in which the right bounded context contains only atoms. (Since

occurrences of Σ in sequent denoting binders, we shall not refer to it as a zone.)

A synthetic inference rule is then the inference rule that results from moving

from a border sequent upwards through a decide or decide ! rule, followed by

a left-introduction phase and then a right-introduction phase: if the latter

has any open premises, these are necessarily border phases. Schematically, a

synthetic inference rule can be seen as composed of focused inference rules as

follows.

. . . Σ,Σ′ : Ψ,Ψ′; Γ′ ⊢ A′; Υ,Υ′ . . .

... · · ·
...

right-intro phase

...
...

...

left-intro phase

Σ : Ψ; Γ ⊢ A; Υ
decide or decide !

The decide ? rule can also generate synthetic inferences rule but the internal

structure of such a rule has an empty left-introduction phase.

We can view the construction of the right-introduction phase as a rewriting

process. The objects that we rewrite are multisets of sequents all of the form

Σ :Ψ; Γ ⊢ ∆;Υ. One-step rewriting is given as following. Select some member

of this multiset: i.e., write the given multiset of sequents as M∪ {S}. Next,

consider any right-introduction rule that has conclusion S and the multiset

of premises M′ (this multiset will contain 0, 1, or 2 elements). The multiset

union M∪M′ is the result of this rewrite. When this relation holds, we write

M∪ {S} → M∪M′

The following observations are easy to make about this notion of rewriting.

6.8 Formal properties of Forum proofs 131

1. A multiset of border sequents does not rewrite. In this sense, collections

of border sequents are normal forms.

2. Define the size of sequents of the form Σ:Ψ; Γ ⊢ ∆;Υ to be the number of

occurrences of logical connectives in ∆, and define the size of a multiset

M to be the sum of the sizes of all sequents in M. The length of a series

of rewritings starting with M is bounded by the size of M. Thus, this

rewriting system is always terminating.

What we really wish to prove is that every right-introduction phase with

a fixed endsequent has the same multiset of premises. In terms of rewriting,

we want to prove that our rewriting system is confluent. As is well-known, we

only need to prove that our system is locally confluence in order to conclude

that our terminating rewrite system is confluence. In our situation, proving

local confluence means proving that if M rewrites in one step to M1 and to

M2, then there exists M0 such that both M1 and M2 rewrite to M0.

Proposition 6.28. The rewriting systems encoding the right-introduction phase

is confluent.

Proof. As we commented above, we only need to show local confluence. Thus,

assume that M rewrites in one step to M1 and to M2. We now need to prove

that there exists M0 such that both M1 and M2 rewrite to M0. In the event

that the two rewrites M → M1 and M → M2 select two different sequents

to apply introduction rules, then M0 is just the result of rewriting those two

sequents in parallel. Otherwise, these two rewrite work on the same sequent

in M, say, Σ:Ψ; Γ ⊢ ∆;Υ. Thus, there are two non-atomic formulas in ∆ that

are introduced. For example, the multiset

M∪ {Σ : Ψ; Γ ⊢ B ` C,D & E,∆′; Υ}

can be rewritten to both

M∪ {Σ : Ψ; Γ ⊢ B,C,D & E,∆′; Υ}

and to

M∪ {Σ : Ψ; Γ ⊢ B ` C,D,∆′; Υ, Σ : Ψ; Γ ⊢ B ` C,E,∆′; Υ}

Since the right-introduction rules for ` and & permute over each other, the

desired common redex M0 is simply

M∪ {Σ : Ψ; Γ ⊢ B,C,D,∆′; Υ, Σ : Ψ; Γ ⊢ B,C,E,∆′; Υ}

Thus, local confluence is guaranteed by the permutation of inference rules.

All other cases to consider can be proved similarly since we know that all

right-introduction rules for the ⇓L2 connectives permute over each other (Ex-

ercise 6.27).

132 Chapter 6. Linear logic

The following propositions follows from the rewriting argument just given:

the right-introduction phase can select one particular formula to decompose

entirely before considering other formulas in the endsequent.

Proposition 6.29. Consider the sequent Σ :Ψ; Γ ⊢ G,∆;Υ. There is a right-

introduction phase with this endsequent such that the formula G is decomposed

first. More specially, that right-introduction phase can be written as{
Ξi

Σ,Σi : Ψ,Ψi; Γ,Γi ⊢ Ai,∆;Υ,Υi

}
G↑Pi

Σ : Ψ; Γ ⊢ G,∆;Υ

where we assume that the path Pi is associated with the sequent Σi : Ψi; Γi ⊢
Ai; Υi and where Ξi is the right-introduction phase of the ith premise.

As regards left-introduction phases, we note that every premise of a left-

introduction rule with endsequent Σ : Ψ; Γ ⇓ B ⊢ A; Υ is such that the first

two zones and the last zone are identical to the corresponding zones in the

endsequent: that is, these sequents are of the form Σ : Ψ; Γ′ ⊢ ∆′; Υ, for some

multisets Γ′ and ∆′. Thus, it is only the zones immediately adjacent to the ⊢
that vary during the construction of the left-introduction phase.

Proposition 6.30. Let B be an L2 formula. The sequent Σ :Ψ; Γ ⇓ B ⊢ A; Υ

is the endsequent of a left-introduction phase with a multiset of premises P if

and only if

1. there is a path P in B for which

Σ′ : C1, . . . , Cn;B1, . . . , Bm ⊢ A1, . . . , Ap;E1, . . . , Eq

is the associated sequent;

2. there is a substitution θ that maps the variables in Σ′ to Σ-terms;

3. A is equal to the multiset union {A1θ, . . . , Apθ} ∪ A1 ∪ · · · ∪ Am;

4. Γ is the multiset union Γ1 ∪ · · · ∪ Γm; and

5. P is the multiset union of the following three multisets,

{" : " ; · ⊢ Ciθ; " }ni=1 ∪ {" : " ; Γi ⊢ Biθ,Ai; " }mi=1

∪ {" : " ;Eiθ ⊢ ·; " }qi=1.

Proof. This equivalence is proved by induction on the structure of the L2

formula B in a fashion similar to that given in Proposition 5.18.

6.8 Formal properties of Forum proofs 133

6.8.2 Admissibility of the general initial rule

We can now prove the admissibility of generalized initial rules for Forum for-

mulas.

Theorem 6.31 (Initial admissibility). Let Ψ and Υ be multisets of L2 Σ-

formulas. Let B be a L2 Σ-formulas. The following general forms of the init

and init ? rules are admissible in ⇓L2.

1. The sequent Σ : Ψ;B ⊢ B; Υ is provable.

2. If B is a member of Ψ then Σ : Ψ; · ⊢ B; Υ is provable.

3. If B is a member of Υ then Σ : Ψ;B ⊢ ·; Υ is provable.

4. If B is a member of both Ψ and Υ then Σ : Ψ; · ⊢ ·; Υ is provable.

Proof. We describe how to build a ⇓L2-proof of Σ : Ψ;B ⊢ B; Υ by induction

on the structure of the formula B. We first consider the right-introduction

phase with the endsequent Σ : Ψ;B ⊢ B; Υ. By Proposition 5.17, for every

path P in B, there is a premise sequent of that right-introduction phase of

the form Σ,Σ′ :Ψ,Ψ′;B,Γ′ ⊢ A′; Υ,Υ′, where Σ′ :Ψ′; Γ′ ⊢ A′; Υ′ is the sequent

associated to P . (The bound variables in Σ′ are chosen to be disjoint from Σ.)

In order to complete the proof of all of these premises, use the decide rule to

select the occurrence of B in the left-bounded context. By Proposition 6.30,

there is a left-introduction phase that corresponds to P . By setting θ to the

identity substitution on the variables in Σ′, we have A = A′θ and Ai is empty

for i = 1, . . . ,m and the sequents

{Σ,Σ′ : Ψ,Ψ′; · ⊢Ci; Υ,Υ′}ni=1∪
{Σ,Σ′ : Ψ,Ψ′;Bi ⊢Bi; Υ,Υ′}mi=1∪
{Σ,Σ′ : Ψ,Ψ′;Ei ⊢ · ; Υ,Υ′}qi=1.

must all be provable. The middle group of sequents are proved by the inductive

assumption. The first group is proved by first using the decide ! rule, choosing

Ci ∈ Ψ′, and then applying the inductive assumption. Similarly, the third

group is proved by first using the decide ? rule, choosing Ei ∈ Υ′, and then

applying the inductive assumption.

The remaining three claims of this proposition are proved exactly the same

way except that for the second claim, one uses the decide ! rule instead of the

decide rule and for the third and fourth claims, one uses the decide ? rule first

to reduce their provability to the previous two cases.

Exercise 6.32. Prove that the following pairs of sequents are provable in the

⇓L2 proof system for all Σ-formulas B.

134 Chapter 6. Linear logic

Σ : Ψ; · ⊢ B; Υ Σ : Ψ, B; Γ ⊢ ∆;Υ

Σ : Ψ; Γ ⊢ ∆;Υ
cut !

Σ : Ψ; Γ ⊢ ∆;B,Υ Σ : Ψ;B ⊢ ·; Υ
Σ : Ψ; Γ ⊢ ∆;Υ

cut?

Σ : Ψ; Γ1 ⊢ B,∆1; Υ Σ : Ψ; Γ2, B ⊢ ∆2; Υ

Σ : Ψ; Γ1,Γ2 ⊢ ∆1,∆2; Υ
cut

Figure 6.12: The two exponential cut rules and the non-exponential cut

rule. The syntactic variable ∆ denotes a multiset of formulas.

1. Σ : ·; (B ⊸ ⊥) ⊸ ⊥ ⊢ B; · and Σ : ·;B ⊢ (B ⊸ ⊥) ⊸ ⊥; ·.

2. Σ : ·; (B ⇒ ⊥) ⊸ ⊥ ⊢ B; · and Σ :B; · ⊢ (B ⇒ ⊥) ⊸ ⊥; ·.

3. Σ : ·; ?B ⊢ ·;B and Σ : ·;B ⊢ ?B; ·

[Hint: Theorem 6.31 is needed to prove some of these. A couple other sequents

require a bit more work to prove.]

6.8.3 Cut rules and cut elimination

We next turn our attention to proving the cut-admissibility theorem for ⇓L2-

proofs. Figure 6.12 introduces three cut rules for the ⇓L2 proof system. The

first two inference rules are the exponential cut rules (cut !, cut?) and the

remaining inference rule is (the non-exponential) cut rule. The formula B is

the cut-formula in each of these rules. In all of these cut inference rules, the

bounded contexts are treated multiplicatively while the unbounded contexts

are treated additively. We call the proof system that combines the inference

rules in Figure 6.11 and Figure 6.12 the ⇓+L2 proof system and proofs in that

system will be called ⇓+L2-proofs.

The height of a ⇓+L2-proof Ξ is the maximum number of inference rules

on a path in Ξ: this number is greater than or equal to 1. The following

two propositions can be proved by simple inductions on the structure of ⇓L2-

proofs.

Proposition 6.33 (Weakening ⇓+L2-proofs). If Σ : Ψ; Γ ⊢ A; Υ has a ⇓+L2-

proof of height h then Σ,Σ′ : Ψ,Ψ′; Γ ⊢ A; Υ,Υ′ has a ⇓+L2-proof of height h.

Proposition 6.34 (Substitution into ⇓+L2-proofs). Let Σ be a signature, x be

a variable not declared in Σ, τ be a primitive type, and t be a Σ-term of type

τ . If Σ, x : τ :Ψ; Γ ⊢ A; Υ has a ⇓+L2-proof of height h then Σ:Ψ[t/x]; Γ[t/x] ⊢
A[t/x]; Υ[t/x] has a ⇓+L2-proof of height h.

6.8 Formal properties of Forum proofs 135

The following lemma states that if a formula occurrence in the unbounded

zones of a sequent is never decided on within a proof of that sequent, then

that occurrence can be removed from its zone and the result will still be a

proof of the same height.

Lemma 6.35 (Strengthening ⇓+L2-proofs). Assume that we have a ⇓+L2 proof

of height h of either

Σ : Ψ, B; Γ ⊢ ∆;Υ or Σ : Ψ, B; Γ ⇓ D ⊢ ∆;Υ

in which there is no occurrence of decide ! used with the formula B. Then

there is a ⇓+L2 proof of height h or less of either (respectively)

Σ : Ψ; Γ ⊢ ∆;Υ or Σ : Ψ; Γ ⇓ D ⊢ ∆;Υ,

Similarly, assume that we have a ⇓+L2 proof of height h of either

Σ : Ψ; Γ ⊢ ∆;B,Υ or Σ : Ψ; Γ ⇓ D ⊢ ∆;B,Υ

in which there is no occurrence of decide ? used with the formula B. Then

there is a ⇓+L2 proof of height h or less of either (respectively)

Σ : Ψ; Γ ⊢ ∆;Υ or Σ : Ψ; Γ ⇓ D ⊢ ∆;Υ.

Proof. Add some discussion, especially for the case where the cut formula is

the B in the left storage zone. In the cut ! case, we have

Σ : Ψ; · ⊢ B; Υ Σ : Ψ, B; Γ ⊢ ∆;Υ

Σ : Ψ; Γ ⊢ ∆;Υ
cut !

By induction, the right premise yield directly a proof of the conclusion and

the left premise can be discarded. In this case, however, the height has gotten

smaller (the only time that can happen, I think).

The following lemma allow us to replace an occurrence of cut? on B with

possibly several occurrences of cut onB. The proof of this lemma is immediate.

Lemma 6.36 (Replacing decide ? with cut). If the sequent Σ:Ψ;B ⊢ ·; Υ has

a ⇓+L2-proof, say, Ξ, then every derivation of the form

Ξ′

Σ,Σ′ : Ψ,Ψ′; Γ ⊢ A, B;B,Υ,Υ′

Σ,Σ′ : Ψ,Ψ′; Γ ⊢ A;B,Υ,Υ′ decide ?,

where the variables bound in Σ′ are not bound in Σ and where Ψ′ and Υ′ are

multisets, can be converted to the derivation

Ξ′

Σ,Σ′ : Ψ,Ψ′; Γ ⊢ A, B;B,Υ,Υ′
Ξ′′

Σ,Σ′ : Ψ,Ψ′;B ⊢ ·; Υ,Υ′

Σ,Σ′ : Ψ,Ψ′; Γ ⊢ A;B,Υ,Υ′ cut.

Here, Ξ′′ is the result of weakening Ξ using Proposition 6.33.

136 Chapter 6. Linear logic

This lemma means that we are getting rid of all occurrences of decide ?

rules applied to the B formula occurrence. There may still be many occurrence

of the decide ? rule applied to other formulas since both Ξ and Ξ′′ might have

many such occurrences of that rule.

Lemma 6.37 (Replacing cut? with cut). Let Ξ be a ⇓+L2-proof. This proof

can be transformed into a proof of the same sequent that does not contain any

occurrences of the cut? rule.

Proof. We do a simple, double induction. The outer induction involves the

number of occurrences of cut? rule in Ξ. If there is such a cut rule, take one

that is of minimal height. Now the inner induction transforms that exponential

cut into a non-exponential cut as follows. Consider the following occurrence

of the cut? rule.

Ξ1
Σ : Ψ; Γ ⊢ ∆;B,Υ

Ξ2
Σ : Ψ;B ⊢ ·; Υ

Σ : Ψ; Γ ⊢ ∆;Υ
cut?

By repeatedly applying Lemma 6.36, all occurrences of the decide ? rule on B

in Ξ1 can be replaced by applications of cut. This yields a proof of Σ : Ψ; Γ ⊢
∆;B,Υ in which no applications of decide ? are applied to B. By Lemma 6.35,

we have a ⇓+L2 proof of Σ : Ψ; Γ ⊢ ∆;Υ. Thus, we have replaced the above

occurrence of cut? on B with possibly several instances of cut on B. Note

that the height of the resulting proof is smaller than the height of the original

proof.

At this point in proving the cut-elimination theorem for ⇓L2-proofs, we

introduce a second cut-like rule, called the key cut (compare this rule to the

rule by the same name in Section 5.5).

Σ : Ψ; Γ1 ⊢ B,∆;Υ Σ : Ψ; Γ2 ⇓ B ⊢ A; Υ

Σ : Ψ; Γ1,Γ2 ⊢ ∆,A; Υ
cutk

When there is an occurrence of the key cut on a non-atomic formula B, we

know that the right-introduction phase that has the left premise as its endse-

quent and the left introduction phase that has the right premise as its endse-

quent both decompose B. We generalize the definition of the height of a proof

to also include this inference rule. We will now show (i) how to replace occur-

rences of cut and cut ! on the cut formula B with occurrences of cutk on B,

and (ii) how to replace cutk on B with instances of cut on strict subformulas of

B. Furthermore, we say that a proof is cut-free if it has no occurrences of any

of the three cut rules in Figure 6.12 as well as cutk. Obviously, a ⇓+L2-proof

that has no occurrences of a cut rule is a ⇓L2-proof.

6.8 Formal properties of Forum proofs 137

Lemma 6.38 (Replace cut ! with cutk). Consider the following occurrence of

the cut ! rule
Ξl

Σ : Ψ; · ⊢ B; Υ
Ξr

Σ : Ψ, B; Γ ⊢ ∆;Υ

Σ : Ψ; Γ ⊢ ∆;Υ
cut !,

where Ξl and Ξr are cut-free proofs. We can replace this occurrence of cut !

on B with a proof of the same endsequent that may contain possibly many

occurrences of cutk on B.

Proof. Consider a subderivation in Ξr of the form

Ξ0

Σ,Σ′ : Ψ,Ψ′, B; Γ ⇓ B ⊢ A; Υ,Υ′

Σ,Σ′ : Ψ,Ψ′, B; Γ ⊢ A; Υ,Υ′ decide !,

where the variables bound in Σ′ are not bound in Σ and where Ψ′ and Υ′ are

multisets. This inference rule can be converted to the derivation

Ξ′
l

Σ′ : Ψ′; · ⊢ B; Υ′
Ξ0

Σ′ : Ψ′, B; Γ ⇓ B ⊢ A; Υ′

Σ′ : Ψ′, B; Γ ⊢ A; Υ′ cutk.

Here, Ξ′
l is the result of weakening Ξl using Proposition 6.33. We can thus

removed all occurrences of decide ! on B in Ξr to obtain the proof Ξ′
r of

Σ : Ψ, B; Γ ⊢ ∆;Υ. Using Proposition 6.35, we can strengthen Ξ′
r to get a

proof of Σ :Ψ; Γ ⊢ ∆;Υ in which we have replaced one occurrence of cut ! with

possibly many occurrences of cutk.

Lemma 6.39 (Replace cut with cutk). Consider the following occurrence of

the cut rule

Ξl
Σ : Ψ; Γ1 ⊢ B,∆1; Υ

Ξr
Σ : Ψ; Γ2, B ⊢ ∆2; Υ

Σ : Ψ; Γ1,Γ2 ⊢ ∆1,∆2; Υ
cut,

where Ξl and Ξr are cut-free proofs. We can replace this occurrence of cut on

B with possibly many occurrences of cutk on B.

Proof. We proceed by induction on the structure of Ξr. If the endsequent

of Ξr is not a border sequent, then Ξr ends with a right-introduction phase.

This instance of cut can be permuted up through that entire right-introduction

phase, leaving instances of cut with only border sequents. Since all of these

occurrences of cut have shorter proofs of their rightmost premise, the inductive

assumption can be applied.

Assume instead that the endsequent of Ξr is a border sequent: hence, the

last inference rule of Ξr is an occurrence of either decide, decide !, or decide ?.

138 Chapter 6. Linear logic

Assume the case that the first of these three choices is made. If that occurrence

of decide selects B, then Ξr has the form

Ξ′
r

Σ : Ψ; Γ2 ⇓ B ⊢ ∆2; Υ

Σ : Ψ; Γ2, B ⊢ ∆2; Υ
decide.

In this case, the cut rule above can be changed directly to the following

Ξl
Σ : Ψ; Γ1 ⊢ B,∆1; Υ

Ξ′
r

Σ : Ψ; Γ2 ⇓ B ⊢ ∆2; Υ

Σ : Ψ; Γ1,Γ2 ⊢ ∆1,∆2; Υ
cutk.

The other case we need to consider is when the last inference rule of Ξr is an

instance of the decide rule on a formula occurring in Γ2: that is, Ξr has the

form
Ξ′
r

Σ : Ψ; Γ3, B ⇓ F ⊢ ∆2; Υ

Σ : Ψ; Γ3, F,B ⊢ ∆2; Υ
decide,

where Γ2 decomposes to Γ3 ∪ {F} and where ∆2 contains only atomic formu-

las. By Proposition 6.30, since the sequent Σ : Ψ; Γ3, B ⇓ F ⊢ ∆2; Υ is the

endsequent of a left-introduction phase with a multiset of premises P there is

a path P in F for which

Σ′ : C1, . . . , Cn;B1, . . . , Bm ⊢ A1, . . . , Ap;E1, . . . , Eq

is the associated sequent; there is a substitution θ that maps the variables in

Σ′ to Σ-terms; ∆2 is equal to the multiset union {A1θ, . . . , Apθ}∪A1∪· · ·∪Am;

Γ3 ∪ {B} is the multiset union Γ̂1 ∪ · · · ∪ Γ̂m; and P is the following multiset

union of three multisets,

{" : " ; · ⊢ Ciθ; " }ni=1 ∪ {" : " ; Γ̂i ⊢ Biθ,Ai; " }mi=1

∪ {" : " ;Eiθ ⊢ ·; " }qi=1.

The formula B occurs in at least one of the multisets Γ̂1, . . . , Γ̂m: without loss

of generality, we can assume that Γ̂1 is equal to Γ̂′
1 ∪ {B}. We can now build

the same left-introduction phase from these premises except that the one that

corresponds to Σ : Ψ; Γ̂′
1, B ⊢ B1θ,A1; Υ is replaced by

Σ : Ψ; Γ1 ⊢ B,∆1; Υ Σ : Ψ; Γ̂′
1, B ⊢ B1θ,A1; Υ

Σ : Ψ; Γ1, Γ̂
′
1 ⊢ ∆1, B1θ,A1; Υ

cut.

When this left-introduction phase is assembled, the result is a proof of Σ :

Ψ; Γ3,Γ1 ⇓ F ⊢ ∆1,∆2; Υ. By applying the decide rule and remembering that

Γ3 ∪ {F} is Γ2, we now have a proof of Σ : Ψ; Γ2,Γ1 ⊢ ∆1,∆2; Υ in which the

height of the cut has been reduced.

6.8 Formal properties of Forum proofs 139

The remaining cases to consider is then the last inference rule of Ξr is either

decide ! or decide ?. If that rule is decide ? then Ξr ends in a right-introduction

phase and, as we have argued above, the cut rule can be permuted up through

this phase. If that rule is decide ! then Ξr has the form

Ξ′
r

Σ : Ψ′, C; Γ2, B ⇓ C ⊢ ∆2; Υ

Σ : Ψ′, C; Γ2, B ⊢ ∆2; Υ
decide ! .

where Γ2 can be written as Ψ′ ∪ {C}. It is also the case that the cut rule can

be permuted up through the resulting left-introduction phase in Ξr.

Lemma 6.40 (Replacing cutk with other cuts). Consider an occurrence of

the cutk rule of the form

Ξl
Σ : Ψ; Γ1 ⊢ B,∆;Υ

Ξr
Σ : Ψ; Γ2 ⇓ B ⊢ A; Υ

Σ : Ψ; Γ1,Γ2 ⊢ ∆,A; Υ
cutk,

where Ξl and Ξr are (cut-free) ⇓L2-proofs. We can transform this proof into

a proof of the same endsequent in which there are no occurrences of cutk and

the only occurrences of the cut, cut !, and cut? rules have cut-formulas that

are strictly smaller than B.

Proof. Consider the instance of the cutk rule given in the assumptions of this

lemma. If B is atomic, then A is the multiset containing exactly B and the

result of eliminating cutk is Ξl.

Now assume that B is not atomic. Thus, Ξl ends in a right-introduction

phase and Ξr ends in a left-introduction phase. By Proposition 6.30, there is

a path P in B that has the associated sequent representation

X : C1, . . . , Cn;B1, . . . , Bm ⊢ A1, . . . , Ap;E1, . . . , Eq

and there is a substitution θ that maps the variables in X to Σ-terms such

that A′ is the multiset union {A1θ, . . . , Apθ}∪A1∪ · · ·∪Am, Γ is the multiset

union Γ1 ∪ · · · ∪ Γm, and this phase has n+m+ q premises

{" : " ; · ⊢ Ciθ; " }ni=1 ∪ {" : " ; Γi ⊢ Biθ,Ai; " }mi=1

∪ {" : " ;Eiθ ⊢ ·; " }qi=1.

By Proposition 6.29, Ξl ends with a right-introduction phase that contains a

premise of the form

Ξ0.
Σ,X : Ψ, C1, . . . , Cn; Γ, B1, . . . , Bm ⊢ A, A1, . . . , Ap;E1, . . . , Eq,Υ

140 Chapter 6. Linear logic

By repeated application of Proposition 6.34, we know that the sequent

Ξ′
0

Σ,X : Ψ, C1θ, . . . , Cnθ; Γ, B1θ, . . . , Bmθ ⊢ A, A1θ, . . . , Apθ;E1θ, . . . , Eqθ,Υ

has a ⇓+L2 proof. We can take Ξ′
0 and use cut, cut !, and cut? with the

proofs of the n + m + q premises above to yield a proof with n + m + q

occurrences of these cut rules to provide a proof without occurrences of cutk
of the endsequent Σ : Ψ; Γ,Γ′ ⊢ ∆,A; Υ. Note that the size of each of the cut

formulas C1θ, . . . , Cnθ,Γ, B1θ, . . . , Bmθ,E1θ, . . . , Eqθ are strictly smaller than

the size of the original cut formula B.

Lemma 6.41. An occurrence of either the cut or cut ! rule with premises

proved by cut-free proofs can be eliminated to yield a cut-free proof of the same

sequent.

Proof. Consider an occurrence of the cut inference rule

Σ : Ψ; Γ1 ⊢ B,∆1; Υ Σ : Ψ; Γ2, B ⊢ ∆2; Υ

Σ : Ψ; Γ1,Γ2 ⊢ ∆1,∆2; Υ
cut,

where the premises have cut-free ⇓L2-proofs. By applying Lemma 6.39, there

is a proof Ξ of Σ : Ψ; Γ1,Γ2 ⊢ ∆1,∆2; Υ that contains no occurrences of cut

but it might have several instances of the cutk rule applied to the B formula.

Similarly, consider an occurrence of the cut ! inference rule

Σ : Ψ; · ⊢ B; Υ Σ : Ψ, B; Γ ⊢ ∆;Υ

Σ : Ψ; Γ ⊢ ∆;Υ
cut !,

where the premises have cut-free ⇓L2-proofs. By applying Lemma 6.38, there

is a proof Ξ of Σ : Ψ; Γ1,Γ2 ⊢ ∆1,∆2; Υ that contains no occurrences of cut !

but it might have several instances of the cutk rule applied to the B formula.

Thus, in either case, the proof Ξ contains no occurrences of cut or cut ! while

it may contain several occurrences of cutk.

We now proceed by induction on the structure of the formula B. Assume

that B is an atomic formula. The occurrences of cutk can be eliminated by

repeatedly replacing an upper occurrence of cutk with its left premise. On the

other hand, assume that B is not atomic. We can now do a second induction

on the number of occurrence of cutk in Ξ. If that number is 0 then the proof Ξ

is the desired cut-free proof. Otherwise, there exists at least one occurrence of

cutk on B. If we pick an upper-most occurrence of cutk and apply Lemma 6.40,

we can convert that occurrence of cutk to several occurrences of cut, cut !, and

cut? on strictly smaller formulas than B. By applying Lemma 6.37, this proof

can be converted to a proof without occurrences of the cut? rule. By applying

Lemma 6.40, there is a proof of the same endsequent where the occurrences

6.8 Formal properties of Forum proofs 141

of cut and cut ! are on strictly smaller formulas than B. By applying the

inductive assumption, all of these occurrences of cut can be eliminated. We

have now reduced the number of cutk inference rules and, hence, we have

completed our proof by the outer induction.

We can bring these lemmas together to prove the main cut-elimination

theorem for ⇓+L2 proofs.

Theorem 6.42 (Elimination of cuts). If a sequent has a ⇓+L2-proof then it

has a (cut-free) ⇓L2-proof.

Proof. Take a ⇓+L2-proof of a sequent, say, S. By applying Lemma 6.37, we

can assume that all occurrences of cut? have been replaced. Thus, let Ξ be a

proof of S that may contain occurrences of cut and cut !.

Our proof proceeds by a simple induction on the number of occurrences

of cut and cut ! inference rules in a proof. In particular, we first take an

occurrence of a cut or cut ! rule which is the endsequent of a subproof of

minimal height: by Lemma 6.41, such a subproof has cut-free proofs of its

conclusion. Thus, we have eliminated one occurrence of the cut or cut ! rules

and, hence, by the inductive argument, we can eliminate all cut rules.

At the end of Section 6.1, we described an interaction between the rules of

contraction and the cut rule in LK that would allow cut elimination to produce

completely unrelated proofs of a given endsequent. In that example, the cut

formula was weakened on both the left and right side of the premises of the

cut rule. In the focused proof system ⇓+L2, such a situation cannot happen.

For example, consider the cut ! inference rule.

Σ : Ψ; · ⊢ B; Υ Σ : Ψ, B; Γ ⊢ ∆;Υ

Σ : Ψ; Γ ⊢ ∆;Υ
cut !

The occurrence of the cut-formula B in the left premise cannot be weakened

since it will be the subject of a right-introduction rule. The occurrence of B

in the right premise can, however, be weakened (by an application of an initial

rule). A similar statement holds for the cut? rule while for the cut rule, the

occurrences of the cut formula in the premises cannot be weakened in either

premise. As a result, the kind of problem arising from weakening and cut that

can appear in LK is avoided in ⇓+L2.

6.8.4 Soundness and completeness of the focused proof system

We now wish to show that the ⇓L2 proof system is not just some contrived

proof system but that it can prove all the same theorems that the L proof

system can prove. We would also like to go one more step and show that some

of the proof theory of L can be inferred from the proof theory of ⇓L2. Since

142 Chapter 6. Linear logic

these two proof systems use different sets of logical connectives, we must first

define a mapping from formulas used in the L proof system into L2-formulas.

Recall that the negatively polarized logical connectives of L are ⊥, ⊤, `,

&, and ∀ while the positively polarized logical connectives are 1, 0, ⊗, ⊕,

and ∃. We consider a formula that is a top-level negation as being neither

positively or negatively polarized: one does not know the intended polarity of

a negated formula until one considers the formula that is negated.

We define two functions, namely, (·)▽ that maps L formulas into L2 for-

mulas and (·)▼ that maps those formulas with a positively polarized top-level

logical connective into L2 formulas. If A is an atomic formula, then A▽ = A.

These functions are defined for other formulas as follows.

⊤▽ = ⊤ 0▼ = ⊤
⊥▽ = ⊥ 1▼ = ⊥

(B ` C)▽ = B▽ ` C▽ (B ⊗ C)▼ = B▽ ⊸ C▽ ⊸ ⊥
(B & C)▽ = B▽ & C▽ (B ⊕ C)▼ = (B▽ ⊸ ⊥) & (C▽ ⊸ ⊥)

(∀x.B)▽ = ∀x.(B)▽ (∃x.B)▼ = ∀x.(B▽ ⊸ ⊥)

(?B)▽ = ?(B▽) (!B)▼ = (B▽) ⇒ ⊥

For formulas P with a positively polarized top-level logical connective, set

(P)▽ = (P)▼ ⊸ ⊥. If the top-level connective is negation, then (B⊥)▽ =

B▽ ⊸ ⊥. If Γ is a multiset of L formulas then we write Γ▽ to denote the

multiset of L2 formulas {B▽ | B ∈ Γ}: assume a similar definition for Γ▼

whenever all formulas in Γ have a positive polarity connective as their top-

level connective.

For convenience, we use the notation Σ :Ψ; Γ ⊢⇓ ∆;Υ to denote the propo-

sition that the sequent Σ : Ψ; Γ ⊢⇓ ∆;Υ has a ⇓L2-proof.

As one expects, the following soundness property for the (·)▽ translation

has a straightforward proof, even if there are many simple cases to consider.

Proposition 6.43 (Soundness of ⇓L2-proofs). Let Γ and ∆ be Σ-formulas

in linear logic such that Σ : ·; Γ▽ ⊢ ∆▽; · has a (cut-free) ⇓L2-proof. Then

Σ : Γ ⊢ ∆ has a cut-free proof in L.

Proof. We prove the following strengthening of this proposition. Let Θ be a

multiset of Σ-formulas all of which have a top-level positive connective and let

Γ, ∆, Ψ, and Υ be multisets of Σ-formulas in linear logic.

1. If Σ : Ψ▽; Γ▽,Θ▼ ⊢ ∆▽; Υ▽ has a ⇓L2-proof then Σ : !Ψ,Γ ⊢ Θ,∆, ?Υ

has a cut-free proof in L.

2. If B is an L Σ-formula and Σ : Ψ▽; Γ▽,Θ▼ ⇓ B▽ ⊢ ∆▽; Υ▽ has a ⇓L2-

proof then Σ : !Ψ,Γ, B ⊢ Θ,∆, ?Υ has a cut-free proof in L.

6.8 Formal properties of Forum proofs 143

3. If B is an L Σ-formula with a top-level positive connective and Σ :

Ψ▽; Γ▽,Θ▼ ⇓ B▼ ⊢ ∆▽; Υ▽ has a ⇓L2-proof then Σ:!Ψ,Γ ⊢ B,Θ,∆, ?Υ

has a cut-free proof in L.

We shall also assume that we only consider ⇓L2-proofs that satisfy the fol-

lowing invariant: every sequent in a ⇓L2-proof that has an occurrence of ⊥ in

the right-linear context is the conclusion of the ⊥R inference rule. Given that

all right-introduction rules permute over each other, this restriction on proofs

is easily satisfied.

We proceed by mutual induction on the structure of ⇓L2-proofs of these

three kind of sequents. First, let Ξ be ⇓L2-proof of Σ : Ψ▽; Γ▽,Θ▼ ⊢ ∆▽; Υ▽.

The last inference rule in Ξ is either a right-introduction rule or one of the

three decide rules. We consider the following cases.

• Assume that this last inference rule introduced a negative polarity L

connective. For example, if that rule is ` R then ∆ can be written as

B ` C,∆′ and that last inference rule is of the form

Σ : Ψ▽; Γ▽,Θ▼ ⊢ B▽, C▽,∆▽; Υ▽

Σ : Ψ▽; Γ▽,Θ▼ ⊢ (B ` C)▽,∆▽; Υ▽ ` R

By the inductive hypothesis, Σ : !Ψ,Γ ⊢ B,C,Θ,∆, ?Υ has an L proof

and, by the ` R rule in L, we have an L proof of Σ : !Ψ,Γ ⊢ B `
C,Θ,∆, ?Υ. The remaining negative polarity connectives are handled

in such a simple and direct fashion.

• Assume that the last inference rule of Ξ is ⊸ R. (Notice that ⇒ R is

not possible here.) Thus, ∆ can be written as B,∆′ where B is either

a negation or a top-level positive polarity connective. In the first case,

write B as C⊥ and the last two inference rules in Ξ are

Σ : Ψ▽; Γ▽, C▽,Θ▼ ⊢ ∆▽; Υ▽

Σ : Ψ▽; Γ▽, C▽,Θ▼ ⊢ ⊥,∆▽; Υ▽ ⊥R

Σ : Ψ▽; Γ▽,Θ▼ ⊢ C▽ ⊸ ⊥,∆▽; Υ▽ ⊸R

By the inductive hypothesis, Σ : !Ψ,Γ, C ⊢ Θ,∆, ?Υ has an L proof and,

by the (·)⊥R rule in L, we have an L proof of Σ : !Ψ,Γ ⊢ C⊥,Θ,∆, ?Υ.

The other case to consider is when B is a top-level positive polarity

connective, in which case, the last two inference rules of Ξ are

Σ : Ψ▽; Γ▽, B▼,Θ▼ ⊢ ∆▽; Υ▽

Σ : Ψ▽; Γ▽, B▼,Θ▼ ⊢ ⊥,∆▽; Υ▽ ⊥R

Σ : Ψ▽; Γ▽,Θ▼ ⊢ B▼ ⊸ ⊥,∆▽; Υ▽ ⊸ R

By the inductive hypothesis, Σ : !Ψ,Γ ⊢ B,Θ,∆, ?Υ has an L proof,

which also serves as the desired proof for this case.

144 Chapter 6. Linear logic

• Assume that the last inference rule of Ξ is one of the decide rules. In

the case of the decide ? inference rule, that rule translates directly to the

uses of the contraction and dereliction rules (?C and ?D) for ?. In the

case of the decide rule, the desired L proof follows immediate from the

mutual inductive hypothesis. Finally, in the case of the decide ! rule, the

desired L proof follows from the mutual inductive hypothesis as well as

the contraction and dereliction rules (!C and !D) for !.

Now consider the second mutually inductive statement. Assume that Ξ is

a ⇓L2-proof of Σ :Ψ▽; Γ▽,Θ▼ ⇓ B▽ ⊢ ∆▽; Υ▽. Again, there are three cases to

consider for B. If B has a top-level negative polarity logical connective then

the corresponding inference rule to use with the inductive assumption is the

L left introduction rule for that connective. If B is the negation C⊥, then the

last two inference rules of Ξ are

Σ : Ψ▽; Γ▽,Θ▼ ⊢ C▽,∆▽; Υ▽ Σ : Ψ▽;⇓ ⊥ ⊢; Υ▽ ⊥L

Σ : Ψ▽; Γ▽,Θ▼ ⇓ C▽ ⊃ ⊥ ⊢ ∆▽; Υ▽ ⊸ L

By the inductive assumption, Σ: !Ψ,Γ ⊢ C,Θ,∆, ?Υ has a cut-free proof in L.

The desired final proof is built using the (·)⊥L rule. The final case to consider

for B is when it has a top-level positive logical connective. In this case, Ξ is

of the form

Ξ′

Σ : Ψ▽; Γ▽,Θ▼ ⊢ B▼,∆▽; Υ▽ Σ : Ψ▽;⇓ ⊥ ⊢; Υ▽ ⊥L

Σ : Ψ▽; Γ▽,Θ▼ ⇓ B▼ ⊃ ⊥ ⊢ ∆▽; Υ▽ ⊸ L

It is here that the definition of (·)▼ matters. We illustrate this with B being

B1 ⊗B2 (the other cases are similar). In this case, Ξ′ must be of the form

Σ : Ψ▽; Γ▽, B▽
1 , B

▽
2 ,Θ

▼ ⊢ ∆▽; Υ▽

Σ : Ψ▽; Γ▽, B▽
1 , B

▽
2 ,Θ

▼ ⊢ ⊥,∆▽; Υ▽ ⊥L

Σ : Ψ▽; Γ▽, B▽
1 ,Θ

▼ ⊢ B▽
2 ⊸ ⊥,∆▽; Υ▽ ⊸ L

Σ : Ψ▽; Γ▽,Θ▼ ⊢ B▽
1 ⊸ B▽

2 ⊸ ⊥,∆▽; Υ▽ ⊸ L

By the inductive hypothesis, we know that the sequent Σ : !Ψ,Γ, B1, B2 ⊢
Θ,∆, ?Υ has a cut-free L proof. The desired L proof for this case follows

from applying the ⊗L rule of L.

Now consider the third and final mutually inductive statement. Assume

that Ξ is a ⇓L2-proof of Σ : Ψ▽; Γ▽,Θ▼ ⇓ B▼ ⊢ ∆▽; Υ▽. Again, the definition

of (·)▼ matters and we illustrate it for ⊗: the other cases are done similarly.

Let B be B1 ⊗B2. Thus, Ξ be of the form

Ψ▽; Γ▽
1 ,Θ

▼
1 ⊢ B▽

1 ,∆
▽
1 ; Υ

▽

Ψ▽; Γ▽
2 ,Θ

▼
2 ⊢ B▽

2 ,∆
▽
2 ; Υ

▽ Ψ▽; · ⇓ ⊥ ⊢ ·; Υ▽

Ψ▽; Γ▽
2 ,Θ

▼
2 ⇓ B▽

2 ⊸ ⊥ ⊢ ∆▽
2 ; Υ

▽

Ψ▽; Γ▽
1 ,Γ

▽
2 ,Θ

▼
1 ,Θ

▼
2 ⇓ B▽

1 ⊸ B▽
2 ⊸ ⊥ ⊢ ∆▽

1 ,∆
▽
2 ; Υ

▽

6.8 Formal properties of Forum proofs 145

where Γ, ∆, and Θ are split into their respective pairs of multisets (the

signature binder is dropped for readability). By the inductive hypothesis,

there are cut-free L proofs for Σ : !Ψ,Γ1 ⊢ B1,Θ1,∆1, ?Υ and Σ : !Ψ,Γ2 ⊢
B2,Θ2,∆2, ?Υ. The ⊗R rule of L provides the final, desired L proof of

Σ : !Ψ,Γ2 ⊢ B1 ⊗B2,Θ2,∆2, ?Υ.

Recalling from Section 6.1, an inference rule is invertible if whenever its

conclusion is provable, its premises are provable. We state an inversion lemma

for ⇓L2-proofs.

Lemma 6.44. All the right-introduction rules of ⇓L2 are invertible. Further-

more, the following equivalences hold.

Σ : Ψ; Γ, (B ⇒ ⊥) ⊸ ⊥ ⊢⇓ ∆;Υ if and only if Σ : Ψ, B; Γ ⊢⇓ ∆;Υ.

Σ : Ψ; Γ ⊢⇓ ?B,∆;Υ if and only if Σ : Ψ; Γ ⊢⇓ ∆;Υ, B.

Proof. The proofs that the eight right rules are invertible all follow the same

pattern (see Exercise 6.9). We illustrate that pattern with two examples.

Consider the ?R rule. Assume that Σ : Ψ; Γ ⊢⇓ ∆, ?B; Υ. Since the sequent

Σ: ·; ?B ⊢ ·;B has a ⇓L2-proof, then the cut rule and cut elimination theorem

yields a ⇓L2-proof of Σ : Ψ; Γ ⊢⇓ ∆;B,Υ. For a second example, consider

the &R rule. Assume that Σ : Ψ; Γ ⊢⇓ ∆, B1 & B2; Υ. Since the sequents

Σ : ·;B1 & B2 ⊢ Bi; · have ⇓L2-proofs (for i = 1 and i = 2), then the cut

rule and cut elimination theorem yields ⇓L2-proofs of Σ :Ψ; Γ ⊢ ∆;B1,Υ and

Σ : Ψ; Γ ⊢ ∆;B2,Υ.

Now consider the first equivalence. If we assume that Σ :Ψ; Γ, (B ⇒ ⊥) ⊸
⊥ ⊢⇓ ∆;Υ then, using the cut rule with a proof of Σ : B; · ⊢ (B ⇒ ⊥) ⊸ ⊥; ·
(see also Exercise 6.32), we have (after apply cut-elimination) a ⇓L2-proof of

Σ : Ψ, B; Γ ⊢ ∆;Υ. Conversely, assume that Σ : Ψ, B; Γ ⊢ ∆;Υ has a ⇓L2-

proof Ξ. This proof ends with a right-introduction phase and we list the

n ≥ 0 premises of that phase as the sequents Σ,Σi : Ψ,Ψi, B; Γi ⊢ Ai; Υ,Υi,

for 1 ≤ i ≤ n. Given all of these ⇓L2-proofs, we can build the following n

additional proofs (for 1 ≤ i ≤ n).

Σ,Σi : Ψ,Ψi, B; Γi ⊢ Ai; Υ,Υi

Σ,Σi : Ψ,Ψi, B; Γi ⊢ ⊥,Ai; Υ,Υi
⊥R

Σ,Σi : Ψ,Ψi; Γi ⊢ B ⇒ ⊥,Ai; Υ,Υi
⇒ R

Σ,Σi : ·;⊥ ⇓ · ⊢ ·; ⊥L

Σ,Σi : Ψ,Ψi; Γi ⇓ (B ⇒ ⊥) ⊸ ⊥ ⊢ Ai; Υ,Υi
⊸ L

Σ,Σi : Ψ,Ψi; Γi, (B ⇒ ⊥) ⊸ ⊥ ⊢ Ai; Υ,Υi
decide

We can now build a proof of Σ : Ψ; Γ, (B ⇒ ⊥) ⊸ ⊥ ⊢ ∆;Υ by attaching the

right phase at the end of Ξ to these other premises.

Now consider the second equivalence. From Σ : Ψ; Γ ⊢⇓ ∆;Υ, B we imme-

diate conclude Σ : Ψ; Γ ⊢⇓ ∆, ?B; Υ by using the ?R rule. Conversely, assume

146 Chapter 6. Linear logic

Σ : Ψ; Γ ⊢⇓ ∆, ?B; Υ. Since all right-introduction rules permute over each

other, we can assume that the ?R has been applied first (reading the proof

bottom-up) which has the premise Σ : Ψ; Γ ⊢ ∆;Υ, B.

Theorem 6.45 (Completeness of ⇓L2-proofs). Let ∆ and Γ be multisets of

L formulas. If Σ : Γ ⊢ ∆ has a L proof then Σ : ·; Γ▽ ⊢ ∆▽; · has a ⇓L2-proof.

Proof. We prove completeness by showing that the inference rules of the L

proof system are all admissible (via the (·)▽ mapping) in the ⇓L2-proof system.

Assume that Σ : ∆ ⊢ Γ has a L proof Ξ. We proceed by induction on the

structure of Ξ.

In the case that Ξ is an instance of the initial rule, ∆ and Γ are equal and

contain the single element B. By Proposition 6.31, Σ : ·;B▽ ⊢⇓ B▽; ·. In the

case that the last inference rule is an instance of the cut rule

Σ : Γ1 ⊢ B,∆1 Σ : Γ2, B ⊢ ∆2

Σ : Γ1,Γ2 ⊢ ∆1,∆2
cut,

we are allowed to assume that Σ : ·; Γ▽
1 ⊢⇓ B▽,∆▽

1 ; · and Σ : ·; Γ▽
2 , B

▽ ⊢⇓ ∆▽
2 ; ·.

Using the cut rule of ⇓+L2 and the cut elimination theorem (Theorem 6.42),

we know that Σ : ·; Γ▽
1 ,Γ

▽
2 ⊢⇓ ∆▽

1 ,∆
▽
2 ; ·.

Since the right-introduction rules for the connectives {⊤,&, ∀,⊥,`} are

essentially the same in L and ⇓L2 proof systems, it is immediate to treat the

case where the proof Ξ is a right-introduction rule for one of these connectives.

On the other hand, the left introduction rules for these connectives can be

applied even when the right is not a collection of atomic formulas. In these

cases, we proceed by using the cut elimination result for ⇓+L2 proofs. For

example, assume that the last inference rule for Ξ is

Σ : Γ, Bi ⊢ ∆

Σ : Γ, B1 &B2 ⊢ ∆
&L (i = 1, 2).

By the inductive hypothesis, we know that Σ : ·; Γ▽, B▽
i ⊢⇓ ∆▽; ·. By Proposi-

tion 6.31 we know that Σ : ·;B▽
1 &B▽

2 ⊢ B▽
1 &B▽

2 ; · has a ⇓L2-proof. Immedi-

ate subproofs of that proof are proofs of Σ : ·;B▽
1 & B▽

2 ⊢ B▽
i ; · for i = 1 and

i = 2. Using the cut elimination result (Theorem 6.42), we can conclude that

Σ : ·; Γ▽, B▽
1 &B▽

2 ⊢⇓ ∆▽; ·. The left-introduction rules for {⊤,∀,⊥,`} can be

done similarly, invoking an application of the cut elimination theorem.

To illustrate how to show that the introduction rules for the positive con-

nectives {0,⊕,∃,1,⊗} are treated, we illustrate the cases where the last in-

ference rule of Ξ is ⊕R and ⊕L.

Σ : Γ ⊢ Bi,∆

Σ : Γ ⊢ B1 ⊕B2,∆
⊕R (i = 1, 2)

6.8 Formal properties of Forum proofs 147

By the inductive hypothesis, we can assume that Σ : ·; Γ▽ ⊢⇓ B▽
i ,∆

▽; ·. Also

note that the sequent Σ : ·;B▽
i , (B

▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥) ⊢ ·; · has a ⇓L2-

proof (an observation that requires the use of Theorem 6.31). These ⇓L2-

proofs can be brought together to prove the (·)▽ translation of the sequent

Σ : Γ ⊢ B1 ⊕B2,∆.

Σ : ·; Γ▽ ⊢ B▽
i ,∆

▽; · Σ : ·;B▽
i , (B

▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥) ⊢ ·; ·
Σ : ·; Γ▽, (B▽

1 ⊸ ⊥) & (B▽
2 ⊸ ⊥) ⊢ ∆▽; · cut

Σ : ·; Γ▽, (B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥) ⊢ ⊥,∆▽; · ⊥R

Σ : ·; Γ▽ ⊢ ((B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥)) ⊸ ⊥,∆▽; · ⊸R

Next, consider the case in which the final inference rule of Ξ is

Σ : Γ, B ⊢ ∆ Σ : Γ, C ⊢ ∆

Σ : Γ, B ⊕ C ⊢ ∆
⊕L.

By the inductive assumption, we have both Σ : ·; Γ▽, B▽ ⊢⇓ ∆▽; · and Σ :

·; Γ▽, C▽ ⊢⇓ ∆▽; ·. Attaching the ⇓L2-proofs of these two sequents to the

following derivation finishes the proof for the ⊕L introduction rule.

Σ : ·; Γ▽, B▽
1 ⊢ ∆▽; ·

Σ : ·; Γ▽, B▽
1 ⊢ ⊥,∆▽; ·

Σ : ·; Γ▽ ⊢ B▽
1 ⊸ ⊥,∆▽; ·

Σ : ·; Γ▽, B▽
2 ⊢ ∆▽; ·

Σ : ·; Γ▽, B▽
2 ⊢ ⊥,∆▽; ·

Σ : ·; Γ▽ ⊢ B▽
2 ⊸ ⊥,∆▽; ·

Σ : ·; Γ▽ ⊢ (B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥),∆▽; ·

Since the sequent

Σ : ·; (B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥), ((B▽
1 ⊸ ⊥) & (B▽

2 ⊸ ⊥)) ⊸ ⊥ ⊢ ·; ·

has a ⇓L2-proof, we can use the cut-elimination theorem to obtain a proof of

the (·)▽ translation of Σ : Γ, B1 ⊕B2 ⊢ ∆.

The introduction rules for 0, 1, ⊗, and ∃, can be done similarly, invoking

an application of the cut elimination theorem. Thus, the remaining rules in

L that need to be considered are the exponentials. We consider the four rules

for ! in the ⇓L2 proof systems.

Assume that the last inference rule of Ξ is

Σ : Γ ⊢ ∆

Σ : Γ, !B ⊢ ∆
!W

By the inductive hypothesis, we know that Σ : ·; Γ▽ ⊢⇓ ∆▽; ·. By Proposi-

tion 6.33, we can weaken this sequent and conclude that Σ : B▽; Γ▽ ⊢⇓ ∆▽; ·.
By applying Lemma 6.44, we have Σ : ·; Γ▽, (B▽ ⇒ ⊥) ⊸ ⊥ ⊢⇓ ∆▽; ·, which
completes this case.

148 Chapter 6. Linear logic

Assume that the last inference rule of Ξ is

Σ : Γ, !B, !B ⊢ ∆

Σ : Γ, !B ⊢ ∆
!C

By the inductive hypothesis, we know that Σ : ·; Γ▽, (!B)▽, (!B)▽ ⊢⇓ ∆▽; ·.
Using cut-elimination on the following proof (where the proofs of the two left

premises is guaranteed by Exercise 6.32),

Σ :B▽; · ⊢ (!B)▽; ·
Σ :B▽; · ⊢ (!B)▽; · Σ : ·; Γ▽, (!B)▽, (!B)▽ ⊢ ∆▽; ·

Σ :B▽; Γ▽, (!B)▽ ⊢ ∆▽; · cut

Σ :B▽; Γ▽ ⊢ ∆▽; · cut

we have Σ : B▽; Γ▽ ⊢⇓ ∆▽; ·. Using Lemma 6.44, we can conclude that Σ :

·; Γ▽, (B▽ ⇒ ⊥) ⊸ ⊥ ⊢⇓ ∆▽; ·.
The case when the last inference rule of Ξ is

Σ : Γ, B ⊢ ∆

Σ : Γ, !B ⊢ ∆
!D

follows simply from a use of the cut rule and a proof of Σ : ·; (!B)▽ ⊢ B; ·
(Exercise 6.32).

Assume that the last rule of Ξ is

Σ : ! Γ ⊢ B, ?∆

Σ : ! Γ ⊢ !B, ?∆
!R

By the inductive hypothesis, we know that Σ : ·; (! Γ)▽ ⊢⇓ B▽, (?∆)▽; ·. By

repeatedly applying Lemma 6.44, we can conclude that Σ:Γ▽; · ⊢⇓ B▽, (?∆)▽; ·.
Since all the right rules permute over each other, we can assume that the ?R

rule are applied below the rules related to B, leading us to Σ :Γ▽; · ⊢⇓ B▽; ∆▽.

With a proof of that sequent, we now build the following proof.

Σ : Γ▽; · ⊢ B▽; ∆▽ Σ : Γ▽; · ⇓ ⊥ ⊢ ·; ∆▽ ⊥L

Σ : Γ▽; · ⇓ B▽ ⇒ ⊥ ⊢ ·; ∆▽ ⇒L

Σ : Γ▽;B▽ ⇒ ⊥ ⊢ ·; ∆▽ decide

Σ : Γ▽;B▽ ⇒ ⊥ ⊢ ⊥; ∆▽ ⊥R

Σ : Γ▽; · ⊢ (B▽ ⇒ ⊥) ⊸ ⊥; ∆▽ ⊸R

By repeated application of Lemma 6.44, we can conclude

Σ : ·; (! Γ)▽ ⊢⇓ (B▽ ⇒ ⊥) ⊸ ⊥; ∆▽

and by repeated application of the ?R rule, we have

Σ : ·; (! Γ)▽ ⊢⇓ (B▽ ⇒ ⊥) ⊸ ⊥, (?∆)▽; ·,

6.9 Bibliographic notes 149

which provides a proof of our desired sequent.

The only remaining L rules to consider are the four rules for the ?-exponential.

Since ? is translated directly to ? by (·)▽, the proofs involving ? are similar but

simpler than for the !-exponential. We do not include these cases here.

A simple consequence of cut-elimination for ⇓+L2-proofs is that cut can be

eliminated from the L system.

Theorem 6.46. A sequent provable in L can be proved without the cut rule.

Proof. We first show that a sequent in L that is the conclusion of the cut

rule applied to two cut-free proofs can be proved by a cut-free proof. Once

this is done, a simply induction can remove all instances of the cut rule from

a proof. Thus, assume that Σ : B,∆1 ⊢ Γ1 and Σ : ∆2 ⊢ Γ2, B have cut-

free L proofs. By the completeness of ⇓L2-proofs (Theorem 6.45), we know

that Σ : ·;B▽,∆▽
1 ⊢ Γ▽

1 ; · and Σ : ·; ∆▽
2 ⊢ B▽,Γ▽

2 ; · have ⇓L2-proofs. Using

the cut inference rule of ⇓L2, we know that Σ : ·; ∆▽
1 ,∆

▽
2 ⊢⇓ Γ▽

1 ,Γ
▽
2 ; · has

⇓+L2-proof. By the cut-elimination theorem for ⇓+L2-proofs (Theorem 6.42),

we know that this sequent also has a (cut-free) ⇓L2-proof. By the soundness

theorem of ⇓L2-proofs (Theorem 6.43) we finally know that Σ:∆1,∆2 ⊢ Γ1,Γ2

has a cut-free proof.

6.9 Bibliographic notes

More observations about interactions between the structural rules and cut-

elimination are given by Danos et al. [1997] and Lafont in [Girard et al.,

1989].

The notion of the polarity of logical connectives that we have used here is

due to Andreoli [1992] and Girard [1991a]. Those two papers also introduced

the notion of multi-zone sequents for the treatment of bounded and unbounded

contexts in sequents for linear logic.

A one-sided sequent calculus proof system for linear logic is given in Fig-

ure 6.5. The focused variant of that proof system is given in Figure 6.13. This

proof system is due to Andreoli [1992]. The main difference between Andreoli’s

original system and the one given here is that the zone between ⊢ and ⇑ is a

list in his system while it is a multiset in Figure 6.13. The D1 rule corresponds

to the decide rule while the D2 rule corresponds to the decide ! rule. Similarly,

the I1 rule corresponds to the init rule while the I2 rule corresponds to the

init ? rule. The rules [R ⇑] and [R ⇓] are not needed in ⇓L2-proofs given our

use of two-sided sequents and implications.

The first major result that one usually attempts to prove about focused

proof systems is that they are complete with respect to their unfocused version.

Andreoli proved this result using a permutation argument in which unfocused

150 Chapter 6. Linear logic

Σ ⊢ Γ ⇑ ∆;Υ

Σ ⊢ ⊥,Γ ⇑ ∆;Υ
[⊥]

Σ ⊢ F,G,Γ ⇑ ∆;Υ

Σ ⊢ F ` G,Γ ⇑ ∆;Υ
[`]

Σ ⊢ Γ ⇑ ∆;Υ, F

Σ ⊢ ?F,Γ ⇑ ∆;Υ
[?]

Σ ⊢ ⊤,Γ ⇑ ∆;Υ
[⊤]

Σ ⊢ F,Γ ⇑ ∆;Υ Σ ⊢ G,Γ ⇑ ∆;Υ

Σ ⊢ F &G,Γ ⇑ ∆;Υ
[&]

y : τ,Σ ⊢ B[y/x],Γ ⇑ ∆;Υ

Σ ⊢ ∀τx.B,Γ ⇑ ∆;Υ
[∀]

Σ ⊢ 1 ⇓ ·; Υ [1]

Σ ⊢ F ⇓ ∆1; Υ Σ ⊢ G ⇓ ∆2; Υ

Σ ⊢ F ⊗G ⇓ ∆1,∆2; Υ
[⊗]

Σ ⊢ F ⇑ ·; Υ
Σ ⊢ !F ⇓ ·; Υ [!]

Σ ⊢ Fi ⇓ ∆;Υ

Σ ⊢ F1 ⊕ F2 ⇓ ∆;Υ
[⊕i]

Σ ⊩ t : τ Σ ⊢ B[t/x] ⇓ ∆;Υ

Σ ⊢ ∃τx.B ⇓ ∆;Υ
[∃]

Σ ⊢ Γ ⇑ ∆, F ; Υ

Σ ⊢ F,Γ ⇑ ∆;Υ
[R ⇑]

provided that F is a literal or a positive formula

Σ ⊢ F ⇑ ∆;Υ

Σ ⊢ F ⇓ ∆;Υ
[R ⇓]

provided that F is a negative formula

Σ ⊢ A⊥ ⇓ A; Υ
[I1]

Σ ⊢ A⊥ ⇓ ·; Υ, A
[I2]

Σ ⊢ F ⇓ ∆;Υ

Σ ⊢ · ⇑ ∆, F ; Υ
[D1]

Σ ⊢ F ⇓ ∆;Υ, F

Σ ⊢ · ⇑ ∆;Υ, F
[D2]

Figure 6.13: The J proof system. The rule [∀] has the usual proviso that

y is not in Σ. In [⊕i], i = 1 or i = 2.

proofs could be made progressively more focused. The proof of the complete-

ness of ⇓L2-proofs given in [Miller, 1996] directly relied on Andreoli’s proof

of completeness.

A direct proof of cut-elimination for a focused proof system for linear logic

was given by Bruscoli and Guglielmi [2006] and Guglielmi [1996] for the subset

of Forum that does not include the (redundant) ? exponential and in which

formulas were limited to what we call paths here. Their proof described cut-

elimination at the level of synthetic inference rules.

The style of completeness proof given here first proves that the generalized

initial rule and the cut rule are admissible in the focused proof system. Given

those results, it is then a simple matter to conclude completeness of focusing.

This approach to proving properties about focused proof systems was given

in [Chaudhuri, 2006; Chaudhuri et al., 2008b] for intuitionistic linear logic

and was later extended by Liang and Miller [2011, 2022] to intuitionistic and

classical logics. Further developments of this style of proof, along with a formal

6.9 Bibliographic notes 151

verification, is given by Simmons [2014] for propositional intuitionistic logic.

As Exercise 6.6 shows, it is possible for linear logic to have a collection

of different exponentials in linear logic. A presentation of such additional

operators, including a cut-elimination theorem, was first given in [Danos et al.,

1993]. Since these additional operators do not necessarily need to permit

weakening and contraction, these additional operators do not necessarily allow

one to prove the exponential laws (as described in Exercise 6.3). For these

reasons, such additional operators have been called subexponentials in [Nigam

and Miller, 2009]: that paper also illustrates how subexponentials can be used

to enhance the expressiveness of proof search specifications based on linear

logic (see also [Chaudhuri, 2018; Liang and Miller, 2015; Olarte et al., 2015]).

When Girard [1987] introduced linear logic, he also introduced proof-nets

as a proof system specifically designed to capture the parallelism in proofs

better than sequent calculus proofs. Here we have stressed using focused

proof system as an improvement to sequent calculus. Focused proof systems

can be extended with the notion of multi-focusing in which focusing can be

made on more than one formula within the left-introduction phase [Delande

and Miller, 2008]. Such an extension provides another method for capturing

parallel actions within a proof structure [Chaudhuri et al., 2008a, 2016].

Exercise 6.8 illustrated a property of formulas B for which B ≡ !B holds. If

we restrict B to come from MALL, then very few formulas have this property.

In full linear logic, any formula of the form !C has this property since !C ≡
! !C. If one extends MALL with least fixed points and term equality (thus

moving linear logic closer to model checking and arithmetic), then there are

many other formulas that satisfy that equivalence: see [Baelde, 2012; Baelde

and Miller, 2007; Heath and Miller, 2019].

An implementation of programming language based on L1 was described

in [Hodas and Tamura, 2001]. Forum has been given a couple of implemen-

tations: see [López and Pimentel, 1998; Urban, 1997]. An important part of

these implementation is the lazy splitting of multisets during proof search, a

technique that is described in Section 6.6. This technique was first presented

in [Hodas and Miller, 1991, 1994] and extended in [Cervesato et al., 2000b,

1996; Hodas et al., 1998].

152 Chapter 6. Linear logic

Chapter7
Linear logic programming

In this chapter, we present several, small logic programs: the first examples

use only the Lolli fragment and later example use the full Forum presentation

of linear logic.

7.1 Encoding multisets as formulas

Consider the following encoding of multisets of terms as formulas in linear

logic. Let token item be a predicate of one argument: the linear logic atomic

formula item x will denote the multiset containing just the one element x

occurring once. There are two natural encoding of multisets into formulas

using this predicate. The conjunctive encoding uses 1 for the empty multiset

and ⊗ to combine two multisets. For example, the multiset {1, 2, 2} is encoded

by the linear logic formula item 1⊗ item 2⊗ item 2. Proofs search using this

style encoding places multiset on the left of the sequent arrow. This approach

is favored when an intuitionistic subset of linear logic is used, such as in the

L1 subset of linear logic (Section 6.4). The dual encoding, the disjunctive

encoding, uses ⊥ for the empty multiset and ` to combine two multisets.

Proofs search using this style encoding places multisets on the right of the

sequent arrow and multiple conclusion sequents are now required, such as in

the L2 presentation of linear logic (Section 6.7).

Exercise 7.1.(‡) Let M1 and M2 be two multisets of natural numbers and let

P1 and P2 be their conjunctive encoding, respectively. Show that ⊢ P1 ⊸ P2

implies ⊢ P2 ⊸ P1.

Exercise 7.2. Redo Exercise 7.1 but this time assuming that P1 and P2 are

the disjunctive encoding M1 and M2.

Let S and T be the two formulas item s1 ` · · · ` item sn and item t1 `
· · · ` item tm, respectively (n,m ≥ 0). Exercise 7.2 allows us to conclude that

154 Chapter 7. Linear logic programming

⊢ S ⊸ T if and only if ⊢ T ⊸ S if and only if the two multisets {s1, . . . , sn}
and {t1, . . . , tm} are equal. Consider now the following two ways for encoding

the multiset inclusion S ⊑ T .

• S ` 0 ⊸ T . This formula mixes multiplicative connectives with the ad-

ditive connective 0: the latter allows items that are not matched between

S and T to be deleted.

• ∃q(S ` q ⊸ T). This formula mixes multiplicative connectives with a

higher-order quantifier. Intuitively, we would like to consider the instan-

tiation for q to be the multiset difference of S from T , such a restriction

on p is not part of this formula: specifically, q could be instantiate with

any linear logic formula.

As it turns out, these two approaches are equivalent in linear logic, in the

sense that

∀S∀T [(S ` 0 ⊸ T) ≡ ∃q(S ` q ⊸ T)].

holds in L. Recall from Section 6.3.2 that the equivalence B ≡ C is defined to

hold when the formula (B ⊸ C) & (C ⊸ B) is provable in linear logic.

7.2 A syntax for Lolli programs

In order to present several examples in this chapter, we extend Prolog and

λProlog syntax to accommodate Lolli logic programs. As we have already

indicated in Section 6.5, the symbols => and :- of Prolog and λProlog are

used to represent ⇒, and the converse of ⊸, respectively. We shall also write

-o and <= to represent the ⊸ and the converse of ⇒. Given these connectives

we can define (in the sense described in Section 5.9) the symbols true, ,

(comma), ; (semicolon), exists, and bang which represent the linear logic

connectives 1, ⊗, ⊕, ∃, and !, respectively. These definitions can be written

as follows.

type true o.

type , o -> o -> o.

type ; o -> o -> o.

type exists (A -> o) -> o.

type bang o -> o.

true.

(P , Q) :- P :- Q.

(P ; Q) :- P.

(P ; Q) :- Q.

exists B :- (B T).

bang G <= G.

7.3 Permuting a list 155

These clause encode only the right-introduction rules for their respective logi-

cal connective. We also allow the symbols & and erase to denote, respectively,

& and ⊤.

7.3 Permuting a list

Since the bounded part of contexts in L-proofs are multisets, it is a simple

matter to permute a list of items by first loading the list’s members into the

bounded part of a context and then unloading them. The latter operation is

nondeterministic and can succeed once for each permutation of the loaded list.

Consider the following simple program:

kind list type -> type.

type nil list A.

type :: A -> list A -> list A.

type load , unload list A -> list A -> o.

load nil K :- unload K.

load (X::L) K :- (item X -o load L K).

unload nil.

unload (X::L) :- item X, unload L.

Here, nil denotes the empty list and :: the list constructor. The meaning

of load and unload is dependent on the contents of the bounded part of the

context, so the correctness of these clauses must be stated relative to a context.

Let Γ be a set of formulas containing the four formulas displayed above and

any other formulas that do not contain either item, load, or unload as their

head symbol. (The head symbol of a clause of the form A or G ⊸ A is the

predicate symbol that is the head of the atom A.) Let ∆ be the multiset

containing exactly the atomic formulas

item a1, . . ., item an.

We shall say that such a context encodes the multiset {a1, . . . , an}. It is now
an easy matter to prove the following two assertions about load and unload:

• The goal (unload K) is provable from Γ;∆ if and only if K is a list

containing the same elements with the same multiplicity as the multiset

encoded in ∆.

• The goal (load L K) is provable from Γ;∆ if and only if K is a list

containing the same elements with the same multiplicity as in the list L

together with the multiset encoded in the context ∆.

In order for load and unload to correctly permute the elements of a list, we

must guarantee two things about the context: first, the predicates item, load,

156 Chapter 7. Linear logic programming

and unload cannot be used as head symbols in any part of the context except

as specified above and, second, the bounded part of a context must be empty

at the start of the computation of a permutation. It is possible to handle

the first condition by making use of appropriate quantifiers over the predicate

names item, load, and unload (we discuss such “higher-order quantification”

elsewhere). The second condition — that the unbounded part of a context is

empty — can be managed by making use of the modal nature of !, which we

now discuss in more detail.

Consider proving the sequent Γ;∆ −→ !G1 ⊗ G2, where Γ and ∆ are

program clauses and G1 and G2 are goal formulas. Given the completeness

of uniform proofs for the system L′, this is provable if and only if the two

sequents Γ; ∅ −→ G1 and Γ;∆ −→ G2 are provable. In other words, the use

of the “of-course” operator forces G1 to be proved with an empty bounded

context. In a sense, since bounded resources can come and go within contexts

during a computation, they can be viewed as “contingent” resources, whereas

unbounded resources are “necessary”. The “of-course” operator attached to

a goal ensures that the provability of the goal depends only on the necessary

and not the contingent resources of the context.

It is now clear how to define the permutation of two lists given the example

program above: add either the formula

perm L K :- bang(load L K).

or, equivalently, the formula

perm L K <= load L K.

to those defining load and unload. Thus attempting to prove (perm L K) will

result in an attempt to prove (load L K) with an empty bounded context.

From the description of load above, L and K must be permutations of each

other.

Exercise 7.3. Let Γ0 be the collection of L1-formulas given in Section 7.2 for

defining various symbols denoting logical connectives, and let Γ be a collection

of L1-formulas that do not define those same symbols. Prove the following

about provability in ⇓L1. The sequent Γ0,Γ;∆ ⊢ bang G is provable if and

only if Γ0,Γ;∆ ⊢ one &G is provable if and only if ∆ is empty and Γ0,Γ; · ⊢ G

is provable.

7.4 Multiset rewriting

The ideas presented in the permutation example can easily be expanded upon

to show how the bounded part of a context can be employed to do multiset

rewriting. Let H be the multiset rewriting system {⟨Li, Ri⟩ | i ∈ I} where

for each i ∈ I (a finite index set), Li and Ri are finite multisets. Define the

7.4 Multiset rewriting 157

relation M =⇒H N on finite multisets to hold if there is some i ∈ I and some

multiset C such that M is C ⊎Li and N is C ⊎Ri. Let =⇒∗
H be the reflexive

and transitive closure of =⇒H .

Given a rewriting system H, we wish to specify a binary predicate rewrite

such that (rewrite L K) is provable if and only if the multisets encoded by

L and K stand in the =⇒∗
H relation. Let Γ0 be the following set of formulas

(these are independent of H):

rewrite L K <= load L K.

load (X::L) K :- (item X -o load L K).

load nil K :- rew K

rew K :- unload K.

unload (X::L) :- item X, unload L.

unload nil.

Taken alone, these clauses give a slightly different version of the permute

program of the last example. The only addition is the binary predicate rew,

which will be used as a socket into which we can plug a particular rewrite

system.

In order to encode a rewrite system H, each rewrite rule in H is given by a

formula specifying an additional clause for the rew predicate as follows: If H

contains the pair ⟨{a1, . . . , an}, {b1, . . . , bm}⟩ then this pair is encoded as the

clause:

rew K :- item a1 , ..., item an ,

(item b1 -o ... -o item bm -o rew K).

If either n or m is zero, the appropriate portion of the formula is deleted.

Operationally, this clause reads the ai’s out of the bounded context, loads the

bi’s, and then attempts another rewrite. Let ΓH be the set resulting from

encoding each pair in H. For example, if H = {⟨{a, b}, {b, c}⟩, ⟨{a, a}, {a}⟩}
then ΓH is the set of clauses:

rew K :- item a, item b, (item b -o (item c -o rew K)).

rew K :- item a, item a, (item a -o rew K).

The following claim is easy to prove about this specification: if M and N

are multisets represented as the lists L and K, respectively, then M =⇒∗
H N if

and only if the goal (rewrite L K) is provable from the context Γ0,ΓH ; ∅.
One drawback of this example is that rewrite is a predicate on lists,

though its arguments are intended to represent multi-sets. Therefore, for each

M , N pair this program generates a factor of at least n! more proofs than the

corresponding rewriting proofs, where n is the cardinality of the multiset N .

This redundancy could be addressed either by implementing a data type for

158 Chapter 7. Linear logic programming

multi-sets or, perhaps, by investigating a non-commutative variant of linear

logic.

Exercise 7.4 (maxa revisited).(‡) Consider again Exercise 5.42 in which it was

argued that computing the maximum of a multiset of natural numbers was

not possible if that multiset was encoded as atomic formulas in the left-side

of sequents in I-proofs. It is possible to write such a program when using L1

formulas: in fact, the bounded sequents of ⇓L1-proofs can be used to start

and compute with such a multiset. Write a logic program P using L1-formula

such the following holds. If N is a set of natural numbers {n1, . . . , nk} and

k ≥ 1 then the ⇓L1-sequent P; a n1, . . . , a nk ⊢ maxa m is provable if and

only if m is the maximum of {n1, . . . , nk}.

Exercise 7.5.(‡) As in Exercise 7.4, let k ≥ 1 and let N be a set of natural

numbers {n1, . . . , nk}. Write a logic program P that computes the sum n1 +

· · ·+nk. More precisely, the ⇓L1-sequent P; a n1, . . . , a nk ⊢ sumup m should

be provable if and only if m = n1 + · · · + nk. Contrast this exercise with the

predicate sumup in Figure 5.4.

Exercise 7.6. Represent the finite graph G = (N,E), with nodes N and

edges E ⊆ N ×N , as the two sets of atomic formulas

N = {node(x) | x ∈ N} and E = {edge(x, y) | ⟨x, y⟩ ∈ E}.

Consider the logic program P that consists of the following declarations and

clauses.

kind node type.

type connected , loop o.

type node , nd node -> o.

connected :- node u, (nd u => loop).

loop.

loop :- nd u, edge u v, node v, (nd v => loop).

Show that the sequent P, E ;N ⊢ connected is provable in ⇓L1 if and only if

the graph G is connected.

Exercise 7.7 (No notconnected). Represent the finite graph G = (N,E),

with nodes N and edges E ⊆ N ×N , as the set of atomic formulas

G = {node(x) | x ∈ N} ∪ {edge(x, y) | ⟨x, y⟩ ∈ E}.

Argue why it is impossible to write a logic program P in first-order hereditary

Harrop formulas that specifies the predicate nc(x, y) such that for all x, y ∈ N ,

x and y are not connected by a path in the graph G if and only if the sequent

G,P ⊢ nc(x, y) is provable.

7.5 Context management in a theorem prover 159

pv (A and B) :- pv A & pv B.

pv (A imp B) :- hyp A -o pv B.

pv (A or B) :- pv A.

pv (A or B) :- pv B.

pv G :- hyp (A and B), (hyp A -o hyp B -o pv G).

pv G :- hyp (A or B),

((hyp A -o pv G) & (hyp B -o pv G)).

pv G :- hyp (C imp B),

((hyp (C imp B) -o pv C) & (hyp B -o pv G)).

pv G :- hyp false , erase.

pv G :- hyp G, erase.

Figure 7.1: A specification of an intuitionistic propositional object-logic

7.5 Context management in a theorem prover

Intuitionistic logic is a useful meta-logic for the specification of provability

in various object-logics. For example, consider axiomatizing provability in

propositional, intuitionistic logic over the logical symbols imp, and, or, and

false (denoting object-level implication, conjunction, disjunction, and absur-

dity). A reasonable specification of the natural deduction inference rule for

implication introduction is:

pv (A imp B) :- hyp A => pv B.

where pv and hyp are meta-level predicates denoting provability and hypoth-

esis. Operationally, this formula states that one way to prove A imp B is to

add the object-level hypothesis A to the context and attempt a proof of B. In

the same setting, conjunction elimination can be expressed by the formula

pv G :- hyp (A and B), (hyp A => hyp B => pv G).

This formula states that in order to prove some object-level formula G, first

check to see if there is a conjunctive hypothesis, say (A and B), in the context

and, if so, attempt a proof of G from the context extended with the two

hypotheses A and B. Other introduction and elimination rules can be specified

similarly. Finally, the formula

pv G :- hyp G.

is needed to actually complete a proof. With the complete specification, it is

easy to prove that there is a proof of (pv G) from the assumptions (hyp H1),

. . ., (hyp Hi) in the meta-logic if and only if there is a proof of G from the

assumptions H1, . . ., Hi in the object-logic.

160 Chapter 7. Linear logic programming

Γ, A,B ⊢ G

Γ, A,A ⊃ B ⊢ G
⊃L1, A atomic

Γ, C ⊃ D ⊃ B ⊢ G

Γ, (C ∧D) ⊃ B ⊢ G
⊃L2

Γ, C ⊃ B,D ⊃ B ⊢ G

Γ, (C ∨D) ⊃ B ⊢ G
⊃L3

Γ ⊢ G

Γ,⊥ ⊃ B ⊢ G
⊃L5

Γ, D ⊃ B ⊢ C ⊃ D Γ, B ⊢ G

Γ, (C ⊃ D) ⊃ B ⊢ G
⊃L4

Figure 7.2: Replacements for the ⊃L Rule

Unfortunately, an intuitionistic meta-logic does not permit the natural

specification of provability in logics that have restricted contraction rules —

such as linear logic itself — because hypotheses are maintained in intuitionistic

logic contexts and hence can be used zero or more times. Even in describing

provability for propositional intuitionistic logic there are some drawbacks. For

instance, it is not possible to logically express the fact that a conjunctive

or disjunctive formula in the proof context needs to be eliminated at most

once. So, for example, in the specification of conjunction elimination, once

the context is augmented with the two conjuncts, the conjunction itself is no

longer needed in the context.

If, however, we replace the intuitionistic meta-logic with our refinement

based on linear logic, these observations about use and re-use in intuitionistic

logic can be specified elegantly, as is done in Figure 7.1. In that specification,

a hypothesis is both “read from” and “written into” a context during the

elimination of implications. All other elimination rules simply “read from”

the context; they do not “write back.” The formulas represented by the last

two clauses in Figure 7.1 use a ⊗ with ⊤: this allows for all unused hypotheses

to be erased, since the object logic has no restrictions on weakening.

It should be noted that this specification cannot be used effectively with a

depth-first interpreter because when the implication left rule can be used once,

it can be used any number of times: this can cause such an interpreter to loop.

Fortunately, an alternative presentation of the implication left-introduction

rule can solve this particular problem. For example, the proof system given

by Dyckhoff [1992] and Hudelmaier [1992] can be expressed directly in this set-

ting. In their papers, the left-introduction rule for implication can be replaced

by the five rules in Figure 7.2. Thus, consider modifying the specification

in Figure 7.1 by replacing its one formula specifying implication elimination

with the five clauses for implication elimination in Figure 7.3 (derived from

Figure 7.2), along with the (partial) axiomatization of object-level atomic for-

mulas. Executing this linear logic program in a depth-first interpreter can

7.6 Multiset rewriting in Forum 161

pv G :- hyp ((C imp D) imp B),

((hyp (D imp B) -o pv (C imp D)) &

(hyp B -o pv G)).

pv G :- hyp ((C and D) imp B),

(hyp (C imp (D imp B)) -o pv G).

pv G :- hyp ((C or D) imp B),

(hyp (C imp B) -o hyp (D imp B) -o pv G).

pv G :- hyp (false imp B), pv G.

pv G :- hyp (A imp B), isatom A, hyp A,

(hyp B -o hyp A -o pv G).

isatom p.

isatom q.

isatom r.

Figure 7.3: A contraction-free formulation of ⊃L.

yield a decision procedure for propositional intuitionistic logic.

7.6 Multiset rewriting in Forum

Since Forum contains Lolli, the techniques for rewriting multisets by using

the bounded left-side zone can be used in Forum as well. However, it is also

possible to use the bounded right-side zone as well. To illustrate that approach,

consider the clause

a ` b › c ` d ` e.

When presenting examples of Forum specification we continue the habit of

using› and⇐ as the converses of⊸ and⇒ since they provide a more natural

operational reading of clauses (similar to the use of :- in Prolog). Here, `
binds tighter than › and ⇐. Consider the ⇓L2 sequent Σ : Ψ;∆ ⊢ a, b,Γ;Υ

where the above clause is a member of Ψ. A proof for this sequent can proceed

as follows.

Σ : Ψ;∆ ⊢ c, d, e,Γ;Υ

Σ : Ψ;∆ ⊢ c, d ` e,Γ;Υ

Σ : Ψ;∆ ⊢ c ` d ` e,Γ;Υ

Σ : Ψ; · ⇓ a ⊢ a; Υ Σ : Ψ; · ⇓ b ⊢ b; Υ

Σ : Ψ; · ⇓ a ` b ⊢ a, b; Υ

Σ : Ψ;∆ ⇓ c ` d ` e ⊸ a ` b ⊢ a, b,Γ;Υ

Σ : Ψ;∆ ⊢ a, b,Γ;Υ

We can interpret this fragment of a proof as a reduction of the multiset a, b,Γ

to the multiset c, d, e,Γ by backchaining on the clause displayed above.

162 Chapter 7. Linear logic programming

Of course, a clause may have multiple, top-level implications. In this case,

the surrounding context must be manipulated properly to prove the sub-goals

that arise in backchaining. Consider using the decide rule on the formula

A1 ` A2 ⇐ G4 › G3 ⇐ G2 › G1

to prove the sequent Σ:Ψ;∆ ⊢ A1, A2,A; Υ. An attempt to prove this sequent

would then lead to the attempt to prove the four sequents

Σ : Ψ;∆1 ⊢ G1,A1; Υ Σ : Ψ; · ⊢ G2; Υ

Σ : Ψ;∆2 ⊢ G3,A2; Υ Σ : Ψ; · ⊢ G4; Υ

where ∆ is the multiset union of ∆1 and ∆2, and A is the multiset union of

A1 and A2. In other words, those subgoals immediately to the right of an ⇐
are attempted with empty bounded contexts: the bounded contexts, here ∆

and A, are divided up and used in attempts to prove those goals immediately

to the right of ›.

For an example of computing using multisets on the right of ⇓L2 sequents,

consider again computing the sum of a multiset of natural numbers. Assume

that we take the encoding of natural numbers and addition (sum) given in Fig-

ure 5.3, and make them available as L2 formulas. Now add to these formulas

the following two formulas.

sumall M :- acc M -o acc z.

acc N || a M :- sum N M S, acc S.

Exercise 7.8. Let Σ and Ψ be the signature and logic programs given above

for sumall and acc. Show that the sequent

Σ : Ψ; · ⊢ a n1 ` a n2 ` · · · ` a ni ` sumall m; ·

is provable if and only if m is the sum of n1, . . . , ni.

Many more examples of specifications written using the Forum presenta-

tion of linear logic appear in Chapters 10, 12, and 13.

7.7 Specification of sequent calculus proof systems

Given the proof-theoretic motivations of Forum and its inclusion of quantifi-

cation at higher-order types, it is not surprising that it can be used to specify

proof systems for various object-level logics. Below we illustrate how sequent

calculus proof systems can be specified using the multiple conclusion aspect of

Forum and show how properties of linear logic can be used to infer properties

of the object-level proof systems. We shall use the terms object-level logic and

7.7 Specification of sequent calculus proof systems 163

meta-level logic to distinguish between the logic whose proof system is being

specified and the logic of Forum.

Consider the well known, two-sided sequent proof systems for classical,

intuitionistic, and linear logic. As we have described in Section 4.1, the dis-

tinction between sequents in these logics can be described by where the struc-

tural rules of thinning and contraction can be applied. In classical logic, these

structural rules are allowed on both sides of the sequent arrow; in intuition-

istic logic, no structural rules are allowed on the right of the sequent arrow;

and in linear logic, they are not allowed on either side of the arrow. This

suggests the following representation of sequents in these three systems. Let

bool be the type of object-level propositional formulas and let ⌊·⌋ and ⌈·⌉ be

two meta-level predicates of type bool → o. Sequents in these four logics can

be specified as follows: object-logic sequents will be two-sided and the left and

right will be paired using −→ (following Gentzen’s original notation [1935]).

Linear: The sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥ 0) can be repre-

sented by the meta-level formula

⌊B1⌋ ` · · · ` ⌊Bn⌋ ` ⌈C1⌉ ` · · · ` ⌈Cm⌉.

Intuitionistic: The sequent B1, . . . , Bn −→ C (n ≥ 0) can be represented by

the meta-level formula

?⌊B1⌋ ` · · · ` ?⌊Bn⌋ ` ⌈C⌉.

Classical: The sequent B1, . . . , Bn −→ C1, . . . , Cm (n,m ≥ 0) can be repre-

sented by the meta-level formula

?⌊B1⌋ ` · · · ` ?⌊Bn⌋ ` ?⌈C1⌉ ` · · · ` ?⌈Cm⌉.

The ⌊·⌋ and ⌈·⌉ predicates are used to identify which object-level formulas

appear on which side of the sequent arrow, and the ? exponential is used to

mark the formulas to which weakening and contraction can be applied.

We shall limit our attention to dealing only with a propositional, intu-

itionistic object-level logic and proof system. To denote first-order object-

level formulas, we will reuse the binary, infix symbols ∧, ∨, and ⊃ at type

bool → bool → bool (although these were used in, for example, Chapter 4 at

a different type, there will be no confusion in this section since we use linear

logic connectives for the meta-logic).

Figure 7.4 is a specification of intuitionistic logic provability using the

above style of sequent encoding for just the connectives ∧ and ⊃. Expressions

displayed as they are in Figure 7.4 are abbreviations for closed formulas: the

intended formulas are those that result by applying ! to their universal closure.

164 Chapter 7. Linear logic programming

(⊃ R) ⌈A ⊃ B⌉ › ?⌊A⌋ ` ⌈B⌉.
(⊃ L) ⌊A ⊃ B⌋ ⇐ ⌈A⌉ › ?⌊B⌋.
(∧R) ⌈A ∧B⌉ › ⌈A⌉ › ⌈B⌉.
(∧L1) ⌊A ∧B⌋ › ?⌊A⌋.
(∧L2) ⌊A ∧B⌋ › ?⌊B⌋.
(Initial) ⌈B⌉ ` ⌊B⌋.
(cut) ⊥ › ?⌊B⌋ ⇐ ⌈B⌉.

Figure 7.4: The LJ specification of a sequent calculus for intuitionistic

logic.

Γ, A ⊃ B −→ B Γ, A ⊃ B,B −→ E

Γ, A ⊃ B −→ E
⊃ L

A,Γ −→ B

Γ −→ A ⊃ B
⊃ R

Γ, A −→ E

Γ, A ∧B −→ E
∧L

Γ, B −→ E

Γ, A ∧B −→ E
∧L Γ −→ A Γ −→ B

Γ −→ A ∧B
∧R

Γ, B −→ B
Initial

Γ −→ C C,Γ −→ B

Γ −→ B
cut

Figure 7.5: The inference rules encoded using LJ

Let LJ be the set of clauses displayed in Figure 7.4 and let Σ1 be the set of

constants containing object-logical connectives ⊃ and ∧ along with the two

predicates ⌊·⌋ and ⌈·⌉.
We now examine the synthetic inference rules that result from using the

decide ! rule with a formula in LJ. Let Γ be a multiset of object-level formulas

(terms of type bool) and let ⌊Γ⌋ be the multiset {⌊B⌋ | B ∈ Γ}. The synthetic
inference rule resulting from using decide ! with the (⊃ R) clause in LJ is

Σ1 : LJ; · ⊢ ⌈B⌉; ⌊A⌋, ⌊Γ⌋
Σ1 : LJ; · ⊢ ⌈A ⊃ B⌉; ⌊Γ⌋

.

Thus, this synthetic inference rule captures exactly the object-level inference:

that is, proving the object-level sequent Γ −→ A ⊃ B has been successfully

reduced to proving the sequent A,Γ −→ B (see the ⊃ R rule in Figure 7.5).

It is simple matter to compute the synthetic inference rule that arises from

using decide ! on the (cut) clause, namely,

Σ1 : LJ; · ⊢ ⌈C⌉;L Σ1 : LJ; · ⊢ ⌈B⌉; ⌊C⌋,L
Σ1 : LJ; · ⊢ ⌈B⌉;L

.

7.8 Bibliographic notes 165

This meta-level synthetic rule captures the object-level inference rule called

cut in Figure 7.5. Note that the occurrence of ⇐ in the specification of (cut)

is important here: consider the following modification of the specification of

the object-level cut inference rule.

(cut′) ⊥ › ?⌊B⌋ › ⌈B⌉.

There are two synthetic inference rules that result in using decide ! on this

formula, namely, the one display above as well as the following.

Σ1 : LJ; · ⊢ ⌈B⌉, ⌈C⌉;L Σ1 : LJ; · ⊢ ·; ⌊C⌋,L
Σ1 : LJ; · ⊢ ⌈B⌉;L

This additional synthetic rule correspond to the following object-level inference

rule.
Γ −→ B,C C,Γ −→ ·

Γ −→ B

In other words, the specification of (cut′) is not able to specify that the occur-

rence of B on the right in the conclusion should be moved only to the right

side of the right premise of the cut rule. It is possible to prove that if B moves

to the right-side of the left premise, then that left premise will not ultimately

be provable. None-the-less, we wish to have exactly one synthetic inference

rule arising from our meta-level specification of the cut rule. Hence, the (cut)

rule and the (⊃ L) rules both have occurrences of ⇐. Recall that the first

of the reflections in Section 6.1 points out that both (cut) and (⊃ L) are dif-

ferent from other sequent calculus rules: in LJ, that difference is captured in

by the use of ⇐ instead of › in the specification of these two rules (see also

Proposition 4.2).

7.8 Bibliographic notes

The example of Lolli logic programs in Sections 7.3, 7.4, and 7.5 are taken

from [Hodas and Miller, 1994]. The examples of Forum logic programs in

Sections 7.6 and 7.7 are taken from [Miller, 1996]. The analysis of object-

level sequent systems using linear logic as a meta-theory can be significantly

extended beyond what is in Section 7.7: see, for example, [Miller and Pimentel,

2004, 2013; Nigam et al., 2014].

It is not surprising that a programming language directly exploiting proof

theory ideas and techniques can be used to implement a sequent calculus (as

in Section 7.7) and a theorem prover (as in Section 7.5). We shall see in

subsequent chapters (starting with Chapter 12) several other application of

linear logic programming in domains that are not overtly connected with logic

and proof theory.

166 Chapter 7. Linear logic programming

Linear logic programming has found useful applications in the parsing of

natural language sentences. In particular, both Pareschi and Miller [1990] and

Hodas [1994, 1999] have shown how phenomena such as gap threading can be

captured, at least in part, by linear logic specifications such as those provided

by Lolli.

Chapter10
Collection analysis for Horn

clauses

In this chapter we use both proof theory and linear logic to provide a certain

kind of static checking—called collection analysis here—of Horn clause logic

programs.

10.1 Introduction

Static analysis of logic programs can provide useful information for program-

mers and compilers. Type checking, an example of a static analysis, is valuable

during the development of code since type errors often represent program er-

rors that are caught at compile time when they are easier to find and fix

than at runtime when they are much harder to locate. Static type informa-

tion also provides valuable documentation of code since it provides a concise

approximation to what the code does.

To illustrate an example of what is called collection analysis, consider a

Horn clause specification of list sorting that maintains duplicates of elements

(see, for example, Figure 5.6). Part of the correctness of a sort program in-

cludes the fact that if the atomic formula (sort t s) is provable, then s is

a permutation of t that is in-order. The proof of such a property is likely

to involve inductive arguments requiring the invention of invariants: in other

words, this is not likely to be a property that can be inferred statically during

compile time. On the other hand, if the lists t and s are approximated by

multisets (that is, if we forget the order of items in lists), then it might be

possible to establish that if the atomic formula (sort t s) is provable, then

the multiset associated to s is equal to the multiset associated to t. If that

is so, then it is immediate that the lists t and s are, in fact, permutations of

one another (in other words, no elements were dropped, duplicated, or created

202 Chapter 10. Collection analysis for Horn clauses

during sorting). As we shall see, such properties based on using multisets to

approximate lists can often be established statically. As a result, at least part

of the correctness of the sort specification can be established automatically.

Besides lists, other data structures, such as trees, can be approximated by

various kinds of collections of the items that they contain. Such approxima-

tions can be used to provide partial correctness properties of Horn clause logic

programs.

We present a scheme by which such collection analysis can be structured

and automated. Central to this scheme is the use of linear logic as a compu-

tational logic underlying the logic of Horn clauses.

10.2 The undercurrents

There are various themes that underlie our approach to inferring properties of

Horn clause programs. We list them explicitly below. The rest of this chapter

can be seen as a particular example of how these themes can be developed.

10.2.1 If typing is important, why use only one type system?

Types and other static properties of programming languages have proved im-

portant on several levels. Typing can be useful for programmers: they can

offer important invariants and document for code. Static analysis can also be

used by compilers to uncover useful structures that allow compilers to make

choices that can improve execution. While compilers might make use of multi-

ple static analysis regimes, programmers do not usually have convenient access

to multiple static analyzes for the code that they are composing. Sometimes, a

programming language provides no static analysis, as is the case with Lisp and

Prolog. Other programming languages offer exactly one typing discipline, such

as the polymorphic typing disciplines of Standard ML and λProlog (SML also

statically determines if a given function defined over concrete data structures

cover all possible input values). It seems clear, however, that such analysis

of code, if it can be done quickly and incrementally, might have significant

benefits for programmers during the process of writing code. For example,

a programmer might find it valuable to know that a recursive program that

she has just written has linear or quadratic runtime complexity, or that a

relation she just specified actually defines a function. Having an open set of

properties and analysis tools is an interesting direction for the design of a

programming language. The collection analysis we discuss here could be just

one such analysis tool.

10.2 The undercurrents 203

10.2.2 Viewing constants and variables as one

The inference rule of ∀-generalization states that if B is provable then ∀x.B is

provable (with appropriate provisos if the proof of B depends on hypotheses).

If we are in a first-order logic, then the free first-order variable x of B becomes

bound in ∀x.B by this inference rule.

Observe the following two things about this rule. First, if we are in an

untyped setting, then we can, in principle, quantify over any variable in any

expression, even those that play the role of predicates or functions. Mixing

such rich abstractions with logic is well known to be inconsistent so when

we propose such rich abstractions in logic, we must accompany it with some

discipline (such as typing) that will yield consistency.

Second, we need to observe that differences between constants and vari-

ables can be seen as one of “scope,” at least from a syntactic, proof theoretic,

and computational point of view. For example, variables are intended as syn-

tactic objects that can “vary.” During the computation of, say, the relation

of appending lists, universal quantified variables surrounding Horn clauses

change via substitution (via backchaining and unification) but the construc-

tors for the empty and non-empty lists as well as the symbol denoting the

append relation do not change and, hence, can be seen as constants. But

from a compiling and linking point-of-view, the append predicate might be

considered something that varies: if append is in a module of Prolog that is

separately compiled, the append symbol might denote a particular object in

the compiled code that is later changed when the code is loaded and linked.

In a similar fashion, we shall allow ourselves to instantiate constants with

expression during static analysis.

Substituting for constants allows us to “split the atom:” that is, by sub-

stituting for the predicate p in the atom p(t1, . . . , tn), we replace that atom

with a formula, which, in this chapter, will be a linear logic formula.

10.2.3 Linear logic underlies computational logic

Linear logic [Girard, 1987] is able to explain the proof theory of usual Horn

clause logic programming (and even richer logic programming languages [Ho-

das and Miller, 1994]). It is also able to provide means to reason about re-

sources, such as items in multisets and sets. Thus, linear logic will allow us

to sit within one declarative framework to describe both usual logic program-

ming as well as “sub-atomic” reasoning about the resources implicit in the

arguments of predicates.

204 Chapter 10. Collection analysis for Horn clauses

10.3 Abstraction and substitution in proof theory

A sequent is a triple of the form Σ : Γ ⊢ ∆ were Σ, the signature, is a list of

non-logical constants and eigenvariables paired with a simple type, and where

both Γ and ∆ are multisets of Σ-formulas (i.e., formulas all of whose non-

logical symbols are in Σ). The rules for linear logic are the standard ones

[Girard, 1987], except here signatures have been added to sequents. The rules

for quantifier introduction are the only rules that require the signature and

they are reproduced here:

Σ, y : τ ;B[y/x],Γ ⊢ ∆

Σ;∃xτ .B,Γ ⊢ ∆
∃L

Σ ⊢ t : τ Σ;Γ ⊢ B[t/x],∆

Σ;Γ ⊢ ∃xτ .B,∆
∃R

Σ ⊢ t : τ Σ;B[t/x],Γ ⊢ ∆

Σ; ∀xτ .B,Γ ⊢ ∆
∀L

Σ, y : τ ; Γ ⊢ B[y/x],∆

Σ;Γ ⊢ ∀xτ .B,∆
∀R

The premise Σ ⊢ t : τ is the judgment that the term t has the (simple) type τ

given the typing declaration contained in Σ.

We now outline three ways to instantiate items appearring within the se-

quent calculus.

10.3.1 Substituting for types

Although we think of formulas and proofs as untyped expressions, we shall use

simple typing within sequents to control the kind of formulas that are present.

A signature is used to bind and declare typing for (eigen)variables and non-

logical constants within a sequent. Simple types are, formally speaking, also

a simple class of untyped λ-terms: the type o is used to denote formulas

(following Church [Church, 1940]). In a sequent calculus proof, simple type

expressions are global and admit no bindings. As a result, it is an easy matter

to show that if one takes a proof with a type constant σ and replaces every-

where σ with some type, say, τ , one gets another valid proof. We shall do this

later when we replace a list by a multiset that approximates it: since we are

using linear logic, we shall use formulas to encode multisets and so we shall

replace the type constant list with o.

10.3.2 Substituting for non-logical constants

Consider the sequent

Σ, p : τ ; !D1, !D2, ! Γ ⊢ p(t1, . . . , tm)

where the type τ is a predicate type (that is, it is of the form τ1 → · · · →
τm → o) and where p appears in, say, D1 and D2 and in no formula of Γ.

The linear logic exponential ! is used here to encode the fact that the formulas

10.3 Abstraction and substitution in proof theory 205

D1 and D2 are available for arbitrary reuse within a proof (the usual case for

program clauses). Using the right introduction rules for implication and the

universal quantifier, it follows that the sequent

Σ; ! Γ ⊢ ∀p[D1 ⇒ D2 ⇒ p(t1, . . . , tm)]

is also provable. Since this is a universal quantifier, there must be proofs for

all instances of this quantifier. Let θ be the substitution [p 7→ λx1 . . . λxm.S],

where S is a term over the signature Σ∪{x1, . . . , xm} of type o. A consequence

of the proof theory of linear logic is that there is a proof also of

Σ; ! Γ ⊢ D1θ ⇒ D2θ ⇒ S[t1/x1, . . . , tm/xm]

and of the sequent

Σ; !D1θ, !D2θ, ! Γ ⊢ S[t1/x1, . . . , tm/xm].

As this example illustrates, it is possible to instantiate a predicate (here p)

with an abstraction of a formula (here, λx1 . . . λxm. S). Such instantiation

carries a provable sequent to a provable sequent.

10.3.3 Substituting for assumptions

An instance of the cut-rule (mentioned earlier) is the following:

Σ; Γ1 ⊢ B Σ;B,Γ2 ⊢ C

Σ;Γ1,Γ2 ⊢ C

This inference rule (especially when associated with the cut-elimination pro-

cedure) provides a way to merge (substitution) the proof of a formula (here,

B) with a use of that formula as an assumption. For example, consider the

following situation. Given the example in the Section 10.3.2, assume that we

can prove

Σ; ! Γ ⊢ !D1θ and Σ; ! Γ ⊢ !D2θ.

Using two instances of the cut rule and the proofs of these sequent, it is possible

to obtain a proof of the sequent

Σ; ! Γ ⊢ S[t1/x1, . . . , tm/xm]

(contraction on the left for !’ed formulas must be applied).

Thus, by a series of instantiations of proofs, it is possible to move from a

proof of, say,

Σ, p : τ ; !D1, !D2, ! Γ ⊢ p(t1, . . . , tm)

to a proof of

Σ; ! Γ ⊢ S[t1/x1, . . . , tm/xm].

206 Chapter 10. Collection analysis for Horn clauses

append nil K K.

append (X::L) K (X::M).

split X nil nil nil.

split X (A::R) (A::S) B :- leq A X, split X R S B.

split X (A::R) S (A::B) :- gr A X, split X R S B.

sort nil nil.

sort (F::R) S:- split F R Sm B, sort Sm SS , sort B BS ,

append SS (F::BS) S.

Figure 10.1: Some Horn clauses for specifying a sorting relation.

∀K(⊥ ` K ˛ K)

∀X,L,K,M(L ` K ˛ M) ⇒ (item X ` L ` K ˛ item X ` M)

∀X(⊥ ` ⊥ ˛ ⊥)

∀X,A,B,R, S.(S ` B ˛ R) ⇒ 1 ⇒ (item A ` S ` B ˛ item A ` R)

∀X,A,B,R, S.(S ` B ˛ R) ⇒ 1 ⇒ (S ` item A ` B ˛ item A ` R)

(⊥ ˛ ⊥)

∀F,R, S, Sm,Bg, SS,BS.(Sm ` B ˛ R) & (Sm ˛ SS) & (B ˛ BS) &

(SS ` item F ` BS ˛ S) ⇒ (item F ` R ˛ S)

Figure 10.2: The result of instantiating various non-logical constants in

the above Horn clauses.

We shall see this style of reasoning about proofs several times below. This

allows us to “split an atom” p(t1, . . . , tm) into a formula S[t1/x1, . . . , tm/xm]

and to transform proofs of the atom into proofs of that formula. In what

follows, the formula S will be a linear logic formula that provides an encoding

of some judgment about the data structures encoded in the terms t1, . . . , tm.

10.4 Multisets approximations

A multiset expression is a formula in linear logic built from the predicate

symbol item (denoting the singleton multiset), the linear logic multiplicative

disjunction ` (for multiset union), and the unit ⊥ for ` (used to denote the

empty multiset). We shall also allow a predicate variable (a variable of type

o) to be used to denote a (necessarily open) multiset expression. An example

of an open multiset expression is item f(X) ` ⊥ ` Y , where Y is a variable of

type o, X is a first-order variable, and f is some first-order term constructor.

10.4 Multisets approximations 207

Let S and T be two multiset expressions. The two multiset judgments

that we wish to capture are multiset inclusion, written as S ⊑ T , and equality,

written as S
m
= T . We shall use the syntactic variable ρ to range over these

two judgments, which are formally binary relations of type o → o → o. A

multiset statement is a formula of the form

∀x̄[S1 ρ1 T1 & · · ·& Sn ρn Tn ⇒ S0 ρ0 T0]

where the quantified variables x̄ are either first-order or of type o and formulas

S0, T0, . . . , Sn, Tn are possibly open multiset expressions.

If S and T are closed multiset expressions, then we write |=m S ⊑ T

whenever the multiset (of closed first-order terms) denoted by S is contained

in the multiset denoted by T , and we write |=m S
m
= T whenever the multisets

denoted by S and T are equal. Similarly, we write

|=m ∀x̄[S1 ρ1 T1 & · · ·& Sn ρn Tn ⇒ S0 ρ0 T0]

if for all closed substitutions θ such that |=m Siθ ρi Tiθ for all i = 1, . . . , n, it

is the case that |=m S0θ ρ0 T0θ.

The following Proposition is central to our use of linear logic to establish

multiset statements for Horn clause programs.

Proposition 10.1. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be multiset expressions all

of whose free variables are in the list of variables x̄. For each judgment s ρ t

we write s ρ̂ t to denote ∃q(s ` q ⊸ t) if ρ is ⊑ and t ˛ s if ρ is
m
=. If

∀x̄[S1 ρ̂1 T1 & . . .& Sn ρ̂n Tn ⇒ S0 ρ̂0 T0]

is provable in linear logic, then

|=ms ∀x̄[S1 ρ1 T1 & · · ·& Sn ρn Tn ⇒ S0 ρ0 T0]

This proposition shows that linear logic can be used in a sound way to infer

valid multiset statement. On the other hand, the converse (completeness) does

not hold: the statement

∀x∀y.(x ⊑ y) & (y ⊑ x) ⇒ (x
m
= y)

is valid but its translation into linear logic is not provable.

To illustrate how deduction in linear logic can be used to establish the

validity of a multiset statement, consider the first-order Horn clause program

in Figure 10.1. The signature for this collection of clauses can be given as

follows:

208 Chapter 10. Collection analysis for Horn clauses

split X nil nil nil.

split X (X::R) S B :- split X R S B.

split X (A::R) (A::S) B :- lt A X, split X R S B.

split X (A::R) S (A::B) :- gr A X, split X R S B.

Figure 10.3: A change in the specification of splitting lists to drop dupli-

cates.

∀X.(?0 ⊸ ?(item X ⊕ 0⊕ 0))

∀X,B,R, S. (?R ⊸ ?(item X ⊕ S ⊕B)) ⇒
(?(item X ⊕R) ⊸ ?(item X ⊕ S ⊕B))

∀X,A,B,R, S. 1& (?R ⊸ ?(item X ⊕ S ⊕B)) ⇒
(?(item A⊕R) ⊸ ?(item X ⊕ item A⊕ S ⊕B))

∀X,A,B,R, S. 1& (?R ⊸ ?(item X ⊕ S ⊕B)) ⇒
(?(item A⊕R) ⊸ ?(item X ⊕ S ⊕ item A⊕B))

Figure 10.4: The result of substituting set approximations into the split

program.

type nil list

type :: int -> list -> list

type append list -> list -> list -> o

type split int -> list -> list -> list -> o

type sort list -> list -> o

type leq int -> int -> o

type gr int -> int -> o

The first two declarations provide constructors for empty and non-empty lists,

the next three are predicates whose Horn clause definition is presented in

Figure 10.1, and the last two are order relations that are apparently defined

elsewhere.

If we think of lists as collections of items, then we might want to check that

the sort program as written does not drop, duplicate, or create any elements.

That is, if the atom (sort s t) is provable then the multiset of items in the

list denoted by s is equal to the multiset of items in the list denoted by t. If

this property holds then t and s are lists that are permutations of each other:

of course, this does not say that it is the correct permutation but this more

simple fact is one that, as we show, can be inferred automatically.

Computing this property of our example logic programming follows the

following three steps.

First, we provide an approximation of lists as being, in fact, multiset: more

10.5 Formalizing the method 209

precisely, as formulas denoting multisets. The first step, therefore, must be to

substitute o for list in the signature above. Now we can now interpret the

constructors for lists using the substitution

nil 7→ ⊥ :: 7→ λxλy. item x ` y.

Under such a mapping, the list (1::3::2::nil) is mapped to the multiset

expression item 1 ` item 3 ` item 2 ` ⊥.

Second, we associate with each predicate in Figure 10.1 a multiset judg-

ment that encodes an invariant concerning the multisets denoted by the pred-

icate’s arguments. For example, if (append r s t) or (split u t r s) is provable

then the multiset union of the items in r with those in s is equal to the multiset

of items in t, and if (sort s t) is provable then the multisets of items in lists

s and t are equal. This association of multiset judgments to atomic formulas

can be achieved formally using the following substitutions for constants:

append 7→ λxλyλz. (x ` y) ˛ z

split 7→ λuλxλyλz. (y ` z) ˛ x

sort 7→ λxλy. x ˛ y

The predicates leq and gr (for the least-than-or-equal-to and greater-than

relations) make no statement about collections of items, so that they can be

mapped to a trivial tautology via the substitution

leq 7→ λxλy. 1 gr 7→ λxλy. 1

Figure 10.2 presents the result of applying these mappings to Figure 10.1.

Third, we must now attempt to prove each of the resulting formulas. In

the case of Figure 10.2, all the displayed formulas are trivial theorems of linear

logic.

Having taken these three steps, we now claim that we have proved the in-

tended collection judgments associate to each of the logic programming predi-

cates above: in particular, we have now shown that our particular sort program

computes a permutation.

10.5 Formalizing the method

The formal correctness of this three stage approach is easily justified given the

substitution properties we presented in Section 10.3 for the sequent calculus

presentation of linear logic.

Let Γ denote a set of formulas that contains those in Figure 10.1. Let θ

denote the substitution described above for the type list, for the constructors

nil and cons, and for the predicates in Figure 10.1. If Σ is the signature for

Γ then split Σ into the two signatures Σ1 and Σ2 so that Σ1 is the domain of

210 Chapter 10. Collection analysis for Horn clauses

the substitution θ and let Σ3 be the signature of the range of θ (in this case, it

just contains the constant item). Thus, Γθ is the set of formula in Figure 10.2.

Assume now that Σ1,Σ2; Γ ⊢ sort(t, s) is provable. Given the discussion

in Sections 10.3.1 and 10.3.2, we know that

Σ1,Σ3; Γθ ⊢ tθ ˛ sθ

is provable. Since the formulas in Γθ are provable, we can use substitution

into proofs (Section 10.3.3) to conclude that Σ1,Σ3;⊢ tθ ˛ sθ. Given Propo-

sition 10.1, we can conclude that |=m tθ
m
= sθ: that is, that tθ and sθ encode

the same multiset.

Consider the following model theoretic argument for establishing similar

properties of Horn clauses. Let M be the Herbrand model that captures

the invariants that we have in mind. In particular, M contains the atoms

(append r s t) and (split u t r s) if the items in the list r added to the items

in list s are the same as the items in t. Furthermore, M contains all closed

atoms of the form (leq t s) and (gr t s), and closed atoms (sort s t) where

s and t are lists that are permutations of one another. One can now show

that M satisfies all the Horn clauses in Figure 10.1. As a consequence of the

soundness of first-order classical logic, any atom provable from the clauses in

Figure 10.1, must be true in M. By construction of M, this means that the

desired invariant holds for all atoms proved from the program.

The approach suggested here using linear logic and deduction remains

syntactic and proof theoretic: in particular, showing that a model satisfies a

Horn clause is replaced by a deduction within linear logic.

10.6 Sets approximations

It is rather easy to encode sets and the equality and subset judgments on sets

into linear logic. In fact, the transition to set from multiset is provided by the

use of the linear logic exponential: since we are using disjunctive encoding of

collections (see the discussion in Section 7.1), we use the ? exponential (if we

were using the conjunctive encoding, we would use the ! exponential).

The expression ? item t can be seen as describing the presence of an item

for which the exact multiplicity does not matter: this formula represents the

capacity to be used any number of times. Thus, the set {x1, . . . , nn} can be

encoded as ? item x1 ` · · · ` ? item xn. Using logical equivalences of linear

logic, this formula is also equivalent to the formula ?(item x1⊕ · · ·⊕ item xn).

This latter encoding is the one that we shall use for building our encoding of

sets.

A set expression is a formula in linear logic built from the predicate symbol

item (denoting the the singleton set), the linear logic additive disjunction ⊕

10.6 Sets approximations 211

(for set union), and the unit 0 for ⊕ (used to denote the empty set). We shall

also allow a predicate variable (a variable of type o) to be used to denote a

(necessarily open) set expression. An example of an open multiset expression

is (item f(X)) ⊕ 0 ⊕ Y , where Y is a variable of type o, X is a first-order

variable, and f is some first-order term constructor.

Let S and T be two set expressions. The two set judgments that we wish

to capture are set inclusion, written as S ⊆ T , and equality, written as S
s
= T .

We shall use the syntactic variable ρ to range over these two judgments, which

are formally binary relations of type o → o → o. A set statement is a formula

of the form

∀x̄[S1 ρ1 T1 & · · ·& Sn ρn Tn ⇒ S0 ρ0 T0]

where the quantified variables x̄ are either first-order or of type o and formulas

T0, S0, . . . , Tn, Sn are possibly open set expressions.

If S and T are closed set expressions, then we write |=s S ⊆ T whenever the

set (of closed first-order terms) denoted by S is contained in the set denoted

by T , and we write |=s S
s
= T whenever the sets denoted by S and T are

equal. Similarly, we write

|=s ∀x̄[S1 ρ1 T1 & · · ·& Sn ρn Tn ⇒ S0 ρ0 T0]

if for all closed substitutions θ such that |=s Siθ ρi Tiθ for all i = 1, . . . , n, it

is the case that |=s S0θ ρ0 T0θ.

The following Proposition is central to our use of linear logic to establish

set statements for Horn clause programs.

Proposition 10.2. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be set expressions all of

whose free variables are in the list of variables x̄. For each judgment s ρ t we

write s ρ̂ t to denote ? s ⊸ ? t if ρ is ⊆ and (? s ⊸ ? t) & (? t ⊸ ? s) if ρ is
s
=.

If

∀x̄[S1 ρ̂1 T1 & . . .& Sn ρ̂n Tn ⇒ S0 ρ̂0 T0]

is provable in linear logic, then

|=s ∀x̄[S1 ρ1 T1 & · · ·& Sn ρn Tn ⇒ S0 ρ0 T0]

Lists can be approximated by sets by using the following substitution:

nil 7→ 0 :: 7→ λxλy. item x⊕ y.

Under such a mapping, the list (1::2::2::nil) is mapped to the set expres-

sion item 1 ⊕ item 2 ⊕ item 2 ⊕ 0. This expression is equivalent (˛) to the

set expression item 1⊕ item 2.

For a simple example of using set approximates, consider modifying the

sorting program provided before so that duplicates are not kept in the sorted

212 Chapter 10. Collection analysis for Horn clauses

Γ;Ai ⊢ A1 ⊕ · · · ⊕An
⊕R

Γ;A1 ⊢ C . . . Γ;An ⊢ C

Γ;A1 ⊕ · · · ⊕An ⊢ C
⊕L

Γ;B1 ⊕ · · · ⊕Bm ⊢ C

Γ;A ⊢ C
BC

Here, n,m ≥ 0 and in the BC (backchaining) inference rule, the formula

?(A1 ⊕ · · · ⊕ An) ⊸ ?(B1 ⊕ · · · ⊕ Bm) must be a member of Γ and A ∈
{A1, . . . , An}.

Figure 10.5: Specialized proof rules for proving set statements.

list. Do this modification by replacing the previous definition for splitting a

list with the clauses in Figure 10.3. That figure contains a new definition of

splitting that contains three clauses for deciding whether or not the “pivot”

for the splitting X is equal to, less than (using the lt predicate), or greater

than the first member of the list being split. Using the following substitutions

for predicates

append 7→ λxλyλz. ?(x⊕ y) ˛ ? z

split 7→ λuλxλyλz. ?x ⊸ ?(item u⊕ y ⊕ z)

sort 7→ λxλy. ?x ˛ ? y

(as well as the trivial substitution for lt and ge), we can show that sort relates

two lists only if those lists are approximated by the same set.

In the case of determining the validity of a set statement, the use of linear

logic here appears to be rather weak when compared to the large body of

results for solving set-based constraint systems [Aiken, 1994; Pacholski and

Podelski, 1997].

10.7 Automation of deduction

We describe how automation of proof for the linear logic translations of set

and multiset statements given in Propositions 10.1 and 10.2 can be performed.

In order to understand how to automatically prove the required formulas,

we first provide a normal form theorem for the fragment of linear logic for

which we are interested. The key result of linear logic surrounding the search

for cut-free proofs is given by the completeness of focused proofs [Andreoli,

1992]. Focused proofs are a normal form that significantly generalizes standard

completeness results in logic programming, including the completeness of SLD-

10.7 Automation of deduction 213

resolution and uniform proofs as well as various forms of bottom-up and top-

down reasoning.

We first analyze the nature of proof search for the linear logic translation

of set statements. Note that when considering provability of set statements,

there is no loss of generality if the only set judgment it contains is the subset

judgment since set equality can be expressed as two inclusions. We now prove

that the proof system in Figure 10.5 is sound and complete for proving set

statements.

Proposition 10.3. Let S0, T0, . . . , Sn, Tn (n ≥ 0) be set expressions all of

whose free variables are in the list of variables x̄. The formula

∀x̄[(?S1 ⊸ ?T1) & . . .& (?Sn ⊸ ?Tn) ⇒ (?S0 ⊸ ?T0)]

is provable in linear logic if and only if the sequent

(?S1 ⊸ ?T1), . . . , (?Sn ⊸ ?Tn);S0 ⊢ T0

is provable using the proof system in Figure 10.5.

Proof. The soundness part of this proposition (“if”) is easy to show. For com-

pleteness (“only if”), we use the completeness of focused proofs in [Andreoli,

1992]. In order to use this result of focused proofs, we need to give a polarity

to all atomic formulas. We do this by assigning all atomic formulas (those of

the form item (·) and those symbols in x̄ of type o) negative polarity. Second,

we need to translation the two sided sequent Γ;S ⊢ T to Γ⊥;T ⇑ S⊥ when S is

not atomic (that is, its top-level logical connective is ⊕) and to Γ⊥, T ;S⊥ ⇑ ·
when S is a atom. Completeness then follows directly from the structure of

focused proofs.

Notice that the resulting proofs are essentially bottom-up: one reasons

from formulas on the left of the sequent arrow to formulas on the right.

We can now conclude that it is decidable to determine whether or not the

linear logic translation of a set statement is provable. Notice that in a proof

built using the inference rules in Figure 10.5, if the endsequent is Γ;S ⊢ T

then all sequents in the proof have the form Γ;S′ ⊢ T , for some S′. Thus, the

search for a proof either succeeds (proof search ends by placing ⊕ R on top),

or fails to find a proof, or it cycles, a case we can always detect since there is

only a finite number of atomic formulas that can be S′.

The proof system in Figure 10.6 can be used to characterize the structure

of proofs of the linear logic encoding of multiset statements. Let

∀x̄[S1 ρ̂1 T1 & . . .& Sn ρ̂n Tn ⇒ S0 ρ̂0 T0]

214 Chapter 10. Collection analysis for Horn clauses

Γ;A1 ` · · · ` An ⊢ A1, . . . , An ` L

Γ;S ⊢ T1, T2,∆

Γ;S ⊢ T1 ` T2,∆ ` R

Γ;S ⊢ A1, . . . , An,∆

Γ;S ⊢ B1, . . . , Bm,∆ BC

Here, n,m ≥ 0 and in the BC (backchaining) inference rule, it must be

the case that the formula

(A1 ` · · · ` An) ⊸ (B1 ` · · · ` Bm)

is a member of Γ.

Figure 10.6: Specialized proof rules for proving multiset statements.

be the translation of a multiset statement into linear logic. Provability of this

formula can be reduced to attempting to prove S0 ρ̂0 T0 from assumptions of

the form

(A1 ` · · · ` An) ⊸ (B1 ` · · · ` Bm),

where A1, . . . , An, B1, . . . , Bm are atomic formulas. Such formulas can be

called multiset rewriting clauses since backchaining on such clauses amounts

to rewriting the right-hand-side multiset of a sequent (see rule BC in Fig-

ure 10.6). Such rewriting clauses are particularly simple since they do not

involve quantification.

Proposition 10.4. Let S0 and T0 be multiset expressions all of whose free

variables are in the list of variables x̄ and let Γ be a set of multiset rewriting

rules. The formula S0 ⊸ T0 is a linear logic consequence of Γ if and only if

the sequent Γ;S0 ⊢ T0 is provable using the inference rules in Figure 10.6.

Proof. The soundness part of this proposition (“if”) is easy to show. Com-

pleteness (“only if”) is proved elsewhere, for example, in [Miller, 1993, Propo-

sition 2]. It is also an easy consequence of the the completeness of focused

proofs in [Andreoli, 1992]: fix the polarity to all atomic formulas to be posi-

tive.

Notice that the proofs using the rules in Figure 10.6 are straight line proofs

(no branching) and that they are top-down (or goal-directed). Given these

observation, it follows that determining if S0 ⊸ T0 is provable from a set of

multiset rewriting clauses is decidable, since this problem is contained within

the reachability problem of Petri Nets [Esparza and Nielsen, 1994]. Proving a

10.8 List approximations 215

multiset inclusion judgment ∃q(S0 ` q ⊸ T0) involves first instantiating this

higher-order quantifier. In principle, this instantiation can be delayed until

attempting to apply the sole instance of the ` L rule (Figure 10.6).

10.8 List approximations

We now consider using lists as approximations. Since lists have more structure

than sets and multisets, it is more involved to encode and reason with them.

We only illustrate their use and do not follow a full formal treatment for them.

Since the order of elements in a list is important, the encoding of lists

into linear logic must involve a connective that is not commutative. (Notice

that both ` and ⊕ are commutative.) Linear implication provides a good

candidate for encoding the order used in lists. For example, consider proof

search with the formula

item a › (p › (item b › (p › ⊥)))

on the right. (This formula is equivalent to item a ` (p⊥ ⊗ (item b ` p⊥)).)

Such a formula can be seen as describing a process that is willing to output the

item a then go into input mode waiting for the atomic formula p to appear.

If that formula appears, then item b is output and again it goes into input

waiting mode looking for p. If another occurrence of p appears, this process

becomes the inactive process. Clearly, a is output prior to when b is output:

this ordering is faithfully captured by proof search in linear logic.

The example above suggests that lists and list equality can be captured

directly in linear logic using the following encoding:

nil 7→ λl.⊥ cons 7→ λxλRλl. item x › (l › (R l))

The encoding of the list, say (cons a (cons b nil)), is given by the λ-

abstraction

λl.item a › (l › (item b › (l › ⊥))).

The following proposition can be proved by induction on the length of the

list t.

Proposition 10.5. Let s and t be two lists (built using nil and cons) and

let S and T be the translation of those lists into expressions of type o → o via

the substitution above. Then ∀l.(Sl) ˛ (T l) is provable in linear logic if and

only if s and t are the same list.

This presentation of lists can be “degraded” to multisets simply by ap-

plying the translation of a list to the formula ⊥. For example, applying the

translation of (cons a (cons b nil)) to ⊥ yields the formulas

item a › (⊥ › (item b › (⊥ › ⊥)))

216 Chapter 10. Collection analysis for Horn clauses

traverse emp null.

traverse (bt N emp R) (N::S) :- traverse R S.

traverse (bt N (bt M L1 L2) R) S :-

traverse (bt M L1 (bt N L2 R)) S.

Figure 10.7: Traversing a binary tree to produce a list.

∀W.∀w.Ww ˛ Ww

∀N∀R∀S∀W∀w.(item N › (w › R W w)) ˛
(item N › (w › S W w)) › (∀W∀w.R W w ˛ S W w)

∀N∀M∀L1∀L2∀R∀S∀W∀w
L1(λk.itemM › (k › L2(λl.itemN › (l › R W l))k))w ˛ S W w ›

∀W∀w.L1(λk.itemM › (k › L2(λl.itemN › (l › R W l))k))w ˛ S W w

Figure 10.8: Linear logic formulas arising from a difference list approxi-

mation.

which is linear logically equivalent to item a ` item b.

Given this presentation of lists, there appears to be no simple combinator

for, say, list concatenation and, as a result, there is no direct way to express

the judgments of prefix, suffix, sublist, etc. Thus, beyond equality of lists (by

virtual of Proposition 10.5) there are few natural judgments that can be stated

for list. More can be done, however, by considering difference lists.

10.9 Difference list approximations

Since our framework includes λ-abstractions, it is natural to represent differ-

ence lists as a particular kind of list abstraction over a list. For example, in

λProlog a difference list is naturally represented as a λ-term of the form

λL.cons x1 (cons x2 (. . . (cons xn L) . . .)).

Such abstracted lists are appealing since the simple operation of composition

encodes the concatenation of two lists. Given concatenation, it is then easy to

encode the judgments of prefix and suffix. To see other example of computing

on difference lists described in fashion, see [Brisset and Ridoux, 1991].

Lists can be encoded using the difference list notion with the following

mapping into linear logic formulas.

nil 7→ λLλl. L l

10.10 Future work 217

cons 7→ λxλRλLλl. item x › (l › (R L l))

The encoding of the list, say (cons a (cons b nil)), is given by the λ-

abstraction

λLλl.item a › (l › (item b › (l › L l))).

In Figure 10.7, a predicate for traversing a binary tree is given. Binary trees

are encoded using the type btree and are constructed using the constructors

emp, for the empty tree, and bt of type int → btree → btree → btree,

for building non-empty trees. A useful invariant of this program is that the

list of items approximating the binary tree structure in the first argument

of traverse is equal to the list of items in the second argument. Linear

logic formulas for computing that approximation can be generated using the

following approximating substitution.

btree 7→ o

emp 7→ λLλl. L l

bt 7→ λxλRλSλLλl.(R (λl.item x › (l › (S L l))) l))

The result of applying that substitution (as well as the one above for nil and

cons) is displayed in Figure 10.8. While these formulas appear rather complex,

they are all, rather simple theorems of higher-order linear logic: these theorems

are essentially trivial since the βη-conversions used to build the formulas from

the data structures has done all the essential work in organizing the items into

a list. Establishing these formulas proves that the order and multiplicity of

elements in the binary tree and in the list in a provable traverse computation

are the same.

10.10 Future work

Various extensions of the basic scheme described here are natural to consider.

In particular, it should be easy to consider approximating data structures

that contain items of differing types: each of these types could be mapped

into different itemα(·) predicates, one for each type α.

It should also be simple to construct approximating mappings given the

polymorphic typing of a given constructor’s type. For example, if we are given

the following declaration for binary tree (written here in λProlog syntax),

kind btree type -> type.

type emp btree A.

type bt A -> btree A -> btree A -> btree A.

it should be possible to automatically construct the mapping

btree 7→ λx.o

218 Chapter 10. Collection analysis for Horn clauses

emp 7→ ⊥
bt 7→ λxλyλz.itemA(x) ` x ` y

that can, for example, approximate a binary tree with the multiset of the

labels for internal nodes.

Abstract interpretation [Cousot and Cousot, 1977] can associate to a pro-

gram an approximation to its semantics. Such approximations can help to

determine various kinds of properties of programs. It will be interesting to

see how well the particular notions of collection analysis can be related to

abstract interpretation. More challenging would be to see to what extent

the general methodology described here – the substitution into proofs (com-

putation traces) and use of linear logic – can be related to the very general

methodology of abstract interpretation.

10.11 Bibliographic notes

Typing in λProlog is described in [Nadathur and Miller, 1988; Nadathur and

Pfenning, 1992].

The Ciao system preprocessor [Hermenegildo et al., 2005] provides for such

functionality by allowing a programmer to write various properties about code

that the preprocessor attempts to verify.

Encoding of asynchronous process calculi into linear logic has been explored

in several papers: see, for example, [Kobayashi and Yonezawa, 1995; Miller,

2003], as well as in Chapter 7.

Most of the material in this chapter are based the paper [Miller, 2006].

224 Chapter 10. Collection analysis for Horn clauses

Chapter12
Encoding security protocols

By extending the encoding of multiset rewriting in linear logic that was pre-

sented in Section 7.6, we find a natural setting to encode some features of

communicating processes that are communicating securely over a public com-

munication structure.

12.1 Communicating processes

The left side of Figure 12.1 represents a common view of a data structure

based on pointers. If I have access to the pointer on the top left then I have

access to the resource A and to the resource B (memory is a good example of a

resource). It is, of course, tempting to apply linear logic’s negation to diagram

and to the conjunction. To this end, consider the right side of this figure. Here,

arrows have been inverted and the static resource (something that is accessed)

is dualized into a process (the thing that does the accessing). The operational

interpretation of this right-hand diagram is that the two processes P and Q

meet (synchronize) around the ` and afterwards, they are replaced by a new

process. Such an interpretation is exactly the intended meaning of a clause of

the form

P ` Q › R,

where R is the result of P and Q meeting. Thus, the ` connective provides a

location, a forum, for processes to meet: it is this aspect of ` that gave the

Forum language in Chapter 6 its name.

To illustrate this approach to encoding processes using linear logic as a logic

programming language, we consider here briefly the π-calculus. The principle

computation mechanism of the π-calculus is the synchronization of two agents

during which there is a transfer of a name from one agent to another. The

expression x̄z.P describes an agent that is willing to transmit the name z on

226 Chapter 12. Encoding security protocols

⊗

A B

`

P Q

Figure 12.1: Illustrating how to interpret the operational reading of the

dual connectives ⊗ and `.

the wire with name x. The expression x(y).Q denotes an agent that is willing

to receive a name on wire x and formally bind that value to y. The bound

variable y in this expression is scoped over Q. The central computational step

of the π-calculus is the reduction of the parallel composition x̄z.P | x(y).Q to

the expression P |Q[z/y]. The agents P and Q[z/y] are now able to continue

their interactions with their environment independently.

Another important aspect of the π-calculus is the notion of scope restric-

tion: in the agent expression (x)P , x is bound and invisible to the outside. The

scoped value x, however, can be communicated outside its scope, providing a

phenomenon known as “scope extrusion.” For example, (z)(x̄z.P |Q) | x(y).R
is structurally equivalent to (z)(x̄z.P |Q | x(y).R), provided that z is not free

in x(y).R. This scope restriction is always easy to accommodate since we shall

assume that α-conversion is available for changing the name of bound vari-

ables. This expression can be reduced to (z)(P |Q |R[z/y]), where the scope of

the restriction (z) is larger since it contains the agent R[z/y] in which z may

be free. This mechanism of generating new names (using α-conversion) and

sending them outside their scope is an important part of the computational

power of the π-calculus.

For an example, consider the following process expression where a, b, x are

free constants of type name.

(x(y).ȳa.ȳb.nil) | (z)(x̄z.z(u).z(v).ūv.nil)

Given the informal description of how a π-calculus expression evolves, the

scope of the (z) restriction enlarges to yield the expression

(z)
(
(x(y).ȳa.ȳb.nil) | (x̄z.z(u).z(v).ūv.nil)

)

12.1 Communicating processes 227

Next, a communication can take place within the scope of the restriction,

yielding the expression

(z)
(
(z̄a.z̄b.nil) | (z(u).z(v).ūv.nil)

)
Two more internal communication steps yields that expression

(z)
(
nil | (āb.nil)

)
Since z is not free in the scope of the restriction (z) and since nil is the

unit of parallel composition, this last expression is essentially the same as the

expression (āb.nil).

We encode some of the behavior of the π-calculus as proof search within

Forum using the following primitive type and four non-logical symbols.

kind name type.

type or o -> o -> o.

type send name -> name -> o -> o.

type get name -> (name -> o) -> o.

type match name -> name -> o -> o.

As is clear from these types, we make use of higher-order types and λ-abstractions

to smooth the treatment of bound variables and variable scoping. The follow-

ing mapping translates some π-calculus expressions into linear logic.

⟨⟨P |Q⟩⟩ = ⟨⟨P ⟩⟩ ` ⟨⟨Q⟩⟩ ⟨⟨(x)P ⟩⟩ = ∀x⟨⟨P ⟩⟩ ⟨⟨nil⟩⟩ = ⊥

⟨⟨x̄y.P ⟩⟩ = send x y ⟨⟨P ⟩⟩ ⟨⟨x(y).P ⟩⟩ = get x λy⟨⟨P ⟩⟩

⟨⟨P +Q⟩⟩ = or ⟨⟨P ⟩⟩ ⟨⟨Q⟩⟩ ⟨⟨[x = y]P ⟩⟩ = match x y ⟨⟨P ⟩⟩

To describe the meaning of the five non-logical constants, we have the following

Forum specification.

get X R || send X Y Q :- R Y || Q.

match X X P :- P.

or P Q :- P.

or P Q :- Q.

Note that these axioms are higher-order in the sense that they allow quantifi-

cation over predicate symbols (such as P and Q) as well as variables of type

name → o (such as R).

Exercise 12.1. Show that the informal reduction of π-calculus expressions

given above can be reproduced in the Forum proof of the sequent Σ : Ψ;P0 ⊢
P1; · where Σ collects the constants declared above along with the declarations

that a and b are names, Ψ is the multiset of the six formulas listed above, P1

is the expression

228 Chapter 12. Encoding security protocols

get x (y\ send y a (send y b bot)) ||

pi z\ (send x z (get z u\ (get z v\ send u v bot)))

and P0 is the expression (send a b bot).

Exercise 12.2. Let Q be the expression

get x y (or (match y a (send x a bot))

(match y b (send x b bot)))

Also let Pa, Pb, and Pc be the processes (send x a bot), (send x b bot),

and (send x c bot), respectively. Show that the two Forum sequents Σ :

Ψ;Pa ⊢ Pa |Q; · and Σ:Ψ;Pb ⊢ Pb |Q; · are provable but that Σ:Ψ;Pc ⊢ Pc |Q; ·
is not provable.

Clearly, a goal of this kind of encoding of process calculus into linear logic

would be to identify the notion of “process P reduces to Q” with the prov-

ability of the Forum sequent Σ : Ψ; ⟨⟨Q⟩⟩ ⊢ ⟨⟨P ⟩⟩; ·. While this encoding into

linear logic captures some of the nature of computation and communication

in the π-calculus, there is also a serious flaws in this encoding. The first sug-

gestion of such a flaw concerns that fact that only some combinators of the

π-calculus are translated into linear logic connectives while others are encoded

using non-logical constants. Why not encode, for example, the π-calculus +

using the linear logic ⊕? While the right-introduction rules for ⊕ in linear

logic do encode the nondeterministic choice that is intended for the π-calculus

reduction, the left-introduction rule for ⊕ would force us to accept the fol-

lowing reduction strategy: if P reduces to Q1 and to Q2, then P reduces to

Q1 + Q2, which is a principle that is not generally seen as a proper reduc-

tion in the π-calculus literature. It is for this reason that the encoding of +

is made with a non-logical symbol since backchaining on its axiomatization

mimics the right-hand introduction rule for ⊕ but the left-hand introduction

is not available using that axiomatization.

Just as the left-rule for ⊕ rules out using that connective to encode the

π-calculus +, the left-rule for ∀ is also problematic. Note that ∀x∀y.Pxy ⊢
∀x.Pxx is provable in every quantificational logic we have considered in this

book. In the setting of the π-calculus, this would mean that we would need

to accept the reduction of (x)x̄a.x̄b.nil to the process (x)(y)x̄a.ȳb.nil, which

is again not an accepted reduction in the π-calculus.

We will provide a different encoding of the π-calculus in Chapter 13 in

which process expressions are not encoded as formulas but as terms. A much

greater precision with the π-calculus can be achieve with that encoding.

In the rest of this chapter, we shall consider a calculus for communication

that is, in some senses, weaker than that of the π-calculus. In this weaker

setting, provability in linear logic is much more accurate and flexible.

12.2 A conventional presentation of protocols 229

Message 1 A −→ S: A,B, nA

Message 2 S −→ A: {nA, B, kAB, {kAB, A}kBS
}kAS

Message 3 A −→ B: {kAB, A}kBS

Message 4 B −→ A: {nB}kAB

Message 5 A −→ B: {nB, Secret}kAB

Figure 12.2: The conventional presentation of the Needham-Schroeder

Shared Key Protocol.

12.2 A conventional presentation of protocols

Let us assume that Alice and Bob want to make use of a trusted server to help

them establish their own private channel for communications. Both Alice and

Bob have private encryption keys that allow them to communicate securely

with a server. At the end of this protocol’s execution, Alice and Bob should

be sharing an encryption key that allows them to securely exchange messages

between themselves, without any additional need of the trusted server.

Figure 12.2 is a presentation of the Needham-Schroeder Shared Key Proto-

col (abbreviated NS) using a standard kind of description. Here, A, B, and S

denote the agents Alice, Bob, and server, respectively. In addition, encryption

keys and nonces are denoted by the schematic variables k and n, respectively.

One of our goals is to replace this specific syntax with one that is based on

a direct use of logic. We do this now by identifying a sequence of aspects of

the conventional presentation that we might see as possible features of Forum.

Emphasize using a public network The notation A −→ B : M is a bit

misleading since it seems to indicate a “three-way synchronization” between

Alice, Bob, and a message M . However, it is important to see that commu-

nication is, in fact, asynchronous, in the sense that Alice is meant to put the

message M into a public network (say, the internet) and that at some time

later, Bob is meant to retrieve that message from that network. It should be

possible to these two actions to be interleaved with some intruder who might

read, delete, and/or modify the message M . Thus, a better syntax is inspired

by multiset rewriting (we use N · to denote network messages).

A −→ A′ | NM

B | NM −→ B′

...

E | NM −→ E′ | NM

230 Chapter 12. Encoding security protocols

Here, an eavesdropper E might read and rewrite the message while storing

part of it in it internal memory. More generally, we can image that the action

of an agent could be described more generally as

(A Memory) | NM1 | · · · | NMp −→ (A′ Memory ′) | NP1 | · · · | NPq

where p, q ≥ 0. The agent can be missing from the left (agent creation) or

can be missing from the right (agent deletion). If agent is missing from both

sides, messages might simply mutate into other messages. Multiset rewriting

and, hence, linear logic can easily capture such dynamics.

Static distribution of keys Consider a protocol containing the following

steps.
...

Message i A −→ S: {M}k
Message j S −→ A: {P}k

...
In the general setting, we need to declare exactly which agents have access to

which keys: in the steps above, we know two places where the k is used but

we must separately declare, for example, that the key is not known to any

other agents. This declaration is critical for modularity and for establishing

correctness later: it can also be made statically by using a local declaration,

such as the following.

local k.

...

A −→ A′ | N {M}k
S | N {P}k −→ S′

...

This declarations appears to be similar to a quantifier. The intention is that

we can statically examine all occurrences of the bound variable k in the scope

of this quantifier and thereby know which agents do and do not contain oc-

currences of this key.

Dynamic creation of new symbols During the execution of a protocol,

new symbols, representing nonces (used to help guarantee “freshness”) and

keys for encryption and session management, are needed in protocols. Using

the syntax in Figure 12.2, one needs to explicitly point out that, for example,

nA, nb, and kAB need to be generated a fresh, new symbols during the execu-

tion of this protocol. We introduce a more explicit syntax for this purpose.

a1 S −→ new k. (a2 k S) | N {M}k

12.3 A linear logic formulation 231

This new operator resembles, of course, a quantifier: it should support α-

conversion and seems to be a bit like reasoning generically. The scope of new

is over the body of this rule. This quantifier will also be used when we need

to generate a nonce.

Mapping the conventional notation into linear logic There are two

approaches to view the new notation we have introduced as logical connectives.

| unit −→ new local

disjunctive ` ⊥ › ∀ ∃
conjunctive ⊗ 1 ⊸ ∃ ∀

The disjunctive approach allows protocols to be seen as Forum specifications::

that is, it fits into the “logic programming as goal-directed search” paradigm.

The conjunctive approach is also popular and has been used in, say, the MSR

system [Cervesato et al., 1999]. From the linear logic perspective, these two

approaches yield essentially the same dynamics when doing proof search: the

only difference is that what happens in the right-hand side of sequents using

the disjunctive approach happens essentially unchanged on the left-hand side

using the conjunctive approach.

Encrypted data as an abstract data type A final step of encoding of

the conventional syntax into Forum requires dealing with encryption keys and

encrypted data. We shall assume that an encryption key is a symbolic function,

say, k of type d → d and that the encrypted message {M}k is encode as the

simple application (k M). If an agent has access to the data constructor

that is an encryption key, then via a simple matching operation within logic,

decryption can take place. If, however, the encryption key is not available to

the agent, then decryption is impossible. Thus, we are representing encrypted

data as an abstract data type.

In order for encryption keys to be inserted into data object, we introduce

the postfix coercion constructor (·)◦ of type (d → d) → d. The use of higher-

order types means that we will also use the equations of αβη-conversion when

processing encrypted data. Thus, we can write linear logic expressions of the

following form.

∃ k.

[
a1 S › ∀n. a2 ⟨k◦, S⟩ ` N k n

a2 ⟨k◦, S⟩ ` N k M › . . .

]

12.3 A linear logic formulation

For the rest of this chapter, we assume that the primitive types are S = {o, d}.
We use the type d to encode messages. For convenience, we shall assume that

232 Chapter 12. Encoding security protocols

all strings are included in this type. The tupling operator ⟨·, ·⟩, for pairing

data together, has type d → d → d. Expressions such as ⟨·, ·, . . . , ·⟩ denote

pairing associated to the right. As mentioned in the previous section, we also

need the constructor (·)◦ of type (d → d) → d in order to allow an encryption

key to be considered a data item.

We encode a public communication medium as a multiset of network mes-

sages that are encoded as an atomic formulas of the form N t, where N · is a

predicate of type d → o and t (of type d) is the actual encoding of a message.

For example, the following are examples of network messages.

N ⟨"alice", "account34"⟩ N ⟨"bob", "45euros"⟩

Such network messages could be used to facilitate a financial transaction. Since

we will model the public network as an evolving multiset of atomic formulas

with the N predicate, many actors (encoded as processes) other than Alice

and Bob can access and read these messages: it is likely that we do not intend

these financial transactions to be viewable and mutable by just anyone with

access to the network.

In order to encode actors, such as Alice and Bob, participating in a com-

munication protocol, we make the following few definitions. A role identifier

is a symbol, say, ρ. 1 For some number n ≥ 1 and for i = 1, . . . , n, the pair ρi
of a role identifier and an index is a role state predicate of type d → · · · d → o

of some (possibly zero) arity. These state predicates are used to encode inter-

nal states of a role as a protocol progresses. A role state atom is an atomic

formula of the form (ρi t1 · · · tm) where t1, . . . , tm are terms of type d and ρi
is a role state predicate. A role clause is a linear logic formula of the form

∀x1 . . . ∀xi[a1 ` · · · ` am › ∀y1 . . . ∀yj [b1 ` · · · ` bn]]

where m ≥ 1 and i, j, n ≥ 0. Here, the head of such a clause is the formula

a1 ` · · · ` am and the body is ∀y1 . . . ∀yj [b1 ` · · · ` bn]. Role clauses also

have the following restrictions: all the atoms a1, . . . , am, b1, . . . , bn are either

network messages or role state atoms such that the following hold.

1. There must be exactly one role state atom in the head and at most one

in the body.

2. If the role state atom in the head is (ρi t̄) and if there is any role state

atom in the body, say, (ρ′j s̄), then ρ and ρ′ must be the same role

identifier and i < j.

Thus, a role clause involves at most a single role (and possibly network mes-

sages): this implies that roles cannot synchronize with other roles directly and

1Should I use the term “agent” instead of “role”?

12.4 Encryption as an abstract data type 233

that one role cannot evolve into another role. It is allowed for a role to be

deleted since no role state atom must appear in the body. It is also the case

that all roles have finite runs.

A role theory is a linear logic formula of the form

∃x1 . . . ∃xr [C1 ⊗ · · · ⊗ Cs],

where r, s ≥ 0, C1, . . . , Cs are role clauses, where x1, . . . , xr are variables of

type d or d → d, and whenever Ci and Cj have the same role state predicate in

their head then i = j. This latter condition will imply that agents in protocols

are deterministic. This is a condition that can easily be relaxed within linear

logic if nondeterministic agents are of interest.

Many other restrictions or generalization could be considered here for the

definition of roles theory and role clauses, but for our simple considerations

here, this definition is sufficient. Ultimately, we will introduce a different

syntax for roles that will not need to use these rather awkward role state

predicates. Existential quantification like that surrounding role theories are

used in logic programming (see Section 9.6) to provide for abstract data-types

and here they will serve as local constants shared by certain role clauses.

In particular, shared keys between, say Alice and a trusted server, will be

existentially quantified in this way with a variable of type d → d. The use of

existential quantifier at type d → d is explained next.

12.4 Encryption as an abstract data type

As we have mentioned, encryption keys are encoded using symbols of type

d → d. These keys can be given static scope in a role theory using existential

quantification around role clauses in such a theory. They can also be generated

as new using a universal quantifier in the body of a role clause.

Consider the following specification that contains three occurrences of en-

cryption keys.

∃kas∃kbs[a1 ⟨M,S⟩ › a2 S ` N (kas M).

b1 T ` N (kbs M) › b2 M T.

s1 ` N (kas P) › N (kbs P).]

(Here as elsewhere, quantification of capital letter variables is universal with

scope limited to the clause in which the variable appears.) In this example,

Alice (a1, a2) communicates with Bob (b1, b2) via a server (s1). To make the

communications secure, Alice uses the key kas while Bob uses the key kbs.

The server is deleted immediately after it translates one message encrypted

for Alice to a message encrypted for Bob. The use of the existential quantifiers

helps establish that the occurrences of keys, say, between Alice and the server

234 Chapter 12. Encoding security protocols

∃kas∃kbs{

a1 S › ∀na. a2 na S ` N ⟨alice, bob, na⟩.
a2 N S ` N (kas⟨N, bob,K,En⟩) › a3 N K S ` NEn.

a3 Na Key◦ S ` N (Key Nb) › a4 ` N (Key⟨Nb, S⟩).
b1 ` N (kbs⟨Key◦, alice⟩) › ∀nb. b2 nb Key◦ ` N (Key nb).

b2 Nb Key◦ ` N (Key⟨Nb, S⟩) › b3 S.

s1 ` N ⟨alice, bob,N⟩ › ∀k.N (kas⟨N, bob, k◦, (kbs⟨k◦, alice⟩)⟩).
}

Figure 12.3: Encoding the NS protocol.

and Bob and the server, are the only occurrences of that key. Even if more

principals are added to this system, these occurrences are still the only ones

for these keys. Thus, the existential quantifier helps in determining the static

or lexical scope of key distribution. Of course, as protocols are evaluated (that

is, a proof is searched for), keys may extrude their scope and move freely onto

the network. This dynamic notion of scope extrusion is similar to that found in

the π-calculus [Milner et al., 1992a] and is modeled here similar to an encoding

of the π-calculus into linear logic found in [Miller, 1993].

Example 12.3. Figure 12.3 contains a linear logic implementation of the NS

protocol contained in Figure 12.2. Let C1, . . . , C6 be the six role clauses in

Figure 12.3 (remembering that there are implicit universal quantifiers around

role clauses). It is a simple matter to show that this protocol implements the

specification

∀x[a1 x ` b1 ` s1 › a4 ` b3 x]

in the sense that there is a simple proof of the Forum sequent

Σ, kas, kbs : C1, . . . , C6; · ⊢ ∀x[a4 ` b3 x ⊸ a1 x ` b1 ` s1]; ·

That is, this protocol is able to transform the initial states of Alice (with some

secret), Bob, and the server to the final states of Alice and Bob (now with the

secret).

Example 12.4. Consider the following two clauses for Alice.

a K◦ ` N (K M) › a′ M. (3.1)

a ` N (K M) › a′ M. (3.2)

In the first case, Alice possesses an encryption key and uses it to decrypt

a network message. In the second case, it appears that she is decrypting a

12.5 Abstracting internal states 235

message without knowing the key, an inappropriate behavior, of course. Note

that (3.2) is logically equivalent (and, hence, operationally indistinguishable

using proof search) to both of the formulas

∀M∀X[a ` NX › a′ M] and ∀X[a ` NX › ∃M.a′ M].

This last clause clearly illustrates that Alice is not actually decoding an ex-

isting message but is simply guessing (using ∃) at some data value M , and

continues with that guess as a′ M . If one thinks operationally instead of declar-

atively about proof search involving clause (3.2), we would consider possible

unifiers for matching the pattern (K M) with a network message, say, (k s),

for two constants k and s. Unification on simply typed λ-terms yields exactly

the following three distinct unifiers:

[M 7→ (k s),K 7→ λw.w] [M 7→ s,K 7→ k] [M 7→ M,K 7→ λw.(k s)]

Thus, M can be bound to either (k s) or s or any term: in other words, M

can be bound to any expression of type d.

Exercise 12.5. The logical entailment can help in reasoning about role clauses

and theories: such entailments are strengthened by the presence of quantifi-

cation at type d → d. Consider the two clauses

a1 › ∀k.N (k m) and a1 › ∀k.N (k m′).

Both of these clauses specify that Alice can take a step that generates a new

encryption key and then outputs a message (either m or m′) using that en-

cryption key. Since Alice has no continuation, no one, not even Alice will be

able to decode this message. It should be the case that these two clauses are

“operationally” similar since they both generate a “junk message.” Show that

these formulas are, in fact, logically equivalent.

What is missing here is a kind of converse to the claim in Exercise 12.3.

12.5 Abstracting internal states

The following example illustrates that using existential quantification over

predicates (in particular, role state predicates) allows interesting rewriting of

the structure of role theories.

Example 12.6 (Reducing n-way to 2-way synchronization). General n-way

synchronization (n ≥ 3) can be rewritten using 2-way synchronization by the

236 Chapter 12. Encoding security protocols

introduction of new, intermediate, and hidden predicates. For example, the

following two formulas are logically equivalent.

∃l1∃l2.

a ` b › l1
l1 ` c › l2 ` e

l2 › d ` f

 ⊣⊢ a ` b ` c › d ` e ` f

The clause on the right specifies a 3-way synchronization and the spawning of

3 new atoms whereas the formula on the left is limited to rewriting at most

two atoms into at most 2 atoms. The proof of the forward entailment in linear

logic is straightforward while the proof of the reverse entailment involves the

two higher-order substitutions of a ` b for ∃l1 and d ` f for ∃l2. As long

as we are using logical entailment, these two formulas are indistinguishable

and can be used interchangeably in all contexts. If instead we could observe

possible failures in the search for proofs, then it is possible to distinguish these

formulas: consider the search for a proof of a sequent containing a and b but

not c. The proof theory of linear logic we have presented here does not observe

such failures since that proof theory is generally involved with reasoning about

complete proofs.

Existential quantification over program clauses can also be used to hide

predicates encoding roles. In fact, one might argue that the various restrictions

on sets of process clauses (no synchronization directly with atoms encoding

roles and no role changing into another role) might all be considered a way

to enforce locality (i.e., hiding) of predicates. Existential quantification can,

however, achieve this same notion of locality but much more directly.

Example 12.7 (Hiding role state predicates). The following two formulas are

logically equivalent:

∃ a2, a3.

a1 ` Nm0 › a2 ` Nm1

a2 ` Nm2 › a3 ` Nm3

a3 ` Nm4 › a4 ` Nm5

 ⊣⊢

a1 ` Nm0 › (Nm1 › (Nm2 › (Nm3 › (Nm4 › (Nm5 ` a4)))))

The changing of polarity that occurs when moving to the body of a › flips

expressions from output (e.g., Nm1) to input (e.g., Nm2), etc.

We develop the observation made in this example to a larger extent in the

next section.

12.6 Roles as nested implications

The observation that abstracting over internal states results in an equivalent

syntax with nested › suggests an alternative syntax for roles. Consider the

12.6 Roles as nested implications 237

following two syntactic categories of linear logic formulas:

H ::= A | ⊥ | H ` H K ::= H | H › K | ∀x.K

Here, A denotes the class of atomic formulas encoding network messages (in

particular, formulas of the form N ·). Formulas belonging to the classH denote

bundles of messages that are used as either input or output to the network.

Formulas belonging to the class K can have deep nesting of implications. As

we shall see, the nesting of › causes an alternation between a process that is

willing to output a message to one that is willing to input a message.

To see this mechanism in the proof search setting, consider a sequent ∆ −→
Γ, where ∆ is a multiset of K formulas and Γ are multisets of K formulas

(here, we elide the signature associated to a sequent). The right-hand side of

sequents involve asynchronous behavior (output) and left-hand side of sequents

involve synchronous behavior (input). The two rules involving proof search

with implications can be written as follows:

∆,K −→ Γ, H,A
∆ −→ H › K,Γ,A

H −→ A1 ∆ −→ K,A2

∆, H › K −→ A1,A2

Here, A denotes a multiset of atoms (i.e., network messages). Note that we can

assume that the left-introduction rule for › is only done when the right-hand

side of the concluding sequent contains at most atomic formulas.

Figure 12.4 contains three formulas are displayed: the first represents the

role of Alice, the second Bob, and the final one the server. (All agents in

this figure are written at the same polarity, in this case, in output mode:

since Bob and the server essentially start with inputs, these two agents are

negated, meaning they first output nothing and then move to input mode.)

These formulas are a second way to encode the NS protocol within linear

logic. If the three formulas in Figure 12.4 are placed on the right-hand side

of a sequent arrow (with no formulas on the left) then the role formula for

Alice will output a message and move to the left-side of the sequent arrow

(reading inference rules bottom up). Bob and the server output nothing and

move to the left-hand side as well. At that point, the server will need to be

chosen for a ⊸L inference rule, which will cause it to input the message that

Alice sent and then move its continuation to the right-hand side. It will then

immediately output another message, and so on. If a role for the server should

be permanent, then the first line of Figure 12.4 for the server could be simply

changed by replacing › with ⇐.

Various equivalences familiar from the study of asynchronous communi-

cation are found in linear logic. For example, if one skips a phase, the two

phases can be contracted as follows:

p › (⊥ › (q › k)) ≡ p ` q › k

238 Chapter 12. Encoding security protocols

(Out) ∀na. N ⟨alice, bob, na⟩ ›
(In) (∀K∀En. N (kas⟨na, bob, K◦, En⟩) ›
(Out) (NEn ›
(In) (∀N. N (KN) ›
(Out) (N (Kab⟨N, secret⟩) ›
(Cont) a4))).

The role for Alice

(Out) ⊥ ›
(In) (∀Key. N kbs(Key◦, alice) ›
(Out) (∀nb. N (Key nb) ›
(In) (N (Key⟨nb, secret⟩) ›
(Cont) b3 secret))).

The role for Bob

(Out) ⊥ ›
(In) (∀N. N ⟨alice, bob, N⟩ ›
(Out) (∀k. N kas⟨N, bob, k◦, kbs(k

◦, alice)⟩)).

The role for the server

Figure 12.4: The roles of Alice, Bob, and a server

p › (⊥ › ∀x(q x › k x)) ≡ ∀x(p ` q x › k x)).

While the nested presentation of roles is in some sense, more complicated

syntax than the form using role clauses, this presentation certainly has its

advantages. For example, there is only one predicate, namely N ·, involved in

writing out security protocols: role identifiers and role state predicates have

disappeared. A role can now be seen as simply a formula and a role theory as

simply an existentially quantified tensor of roles.

Do the following proposition and proof more carefully.

Proposition 12.8. For every role theory in which only the predicate N · is
free, there is a collection of role formulas to which it is provably equivalent.

Proof. This proposition is proved by showing how to remove the existentially

quantified role state predicate with maximal index by generating the appro-

12.6 Roles as nested implications 239

priate higher-order substitution (similar to those produced in Example 12.6).

When no more quantified role state predicates remain, the resulting theory is

the desired collection of role formulas.

The style of specification given in Figure 12.4 is similar to that of process

calculus: in particular, the implication › is syntactically similar to the dot

prefix in, say, CCS. Universal quantification can appear in two modes: in

output mode it is used to generate new eigenvariables (similar to the π-calculus

restriction operator) and in input mode it is used for variable binding (similar

to value-passing CCS). The formula a › (b › (c › (d › k))) can denote

processes described as

ā || (b. (c̄ || (d. . . .))) or a. (b̄ || (c. (d̄ || . . .)))

depending on which polarity it is being used. This formula and it’s negation

can also be written without linear implications as follows:

a ` (b⊥ ⊗ (c ` (d⊥ ⊗ . . .))) resp, a⊥ ⊗ (b ` (c⊥ ⊗ (d ` . . .))).

Once a process with a continuation (that is, one that has an implication)

has done an output (input), its continuation is an input (output) process.

The following two examples illustrate a difference between the abstractions

available in logic with those available in the π-calculus and the spi-calculus.

Example 12.9 (Comparison with the π-calculus). The π-calculus expression

(x)(x̄m | x(y).Py)

is (weakly) bisimilar to the expression (Pm). This example is used to show

that communication over a hidden channel provides no possible means for the

environment to interact. A similar expression can be written as the following

expression in linear logic:

∀K[Km ` (∀x(Px ⊸ Kx) ⊸ ⊥)].

Here, we have abstracted the predicate K: in a sense, we have abstracted the

communication medium itself, and as such, the medium is available only for

the particular purpose of communicating the message m from one process to

another that is willing to do an input. This expression is logically equivalent

to (Pm): the proof that (Pm) implies the displayed formula involves a use of

equality (easy to add to the underlying logic in several ways) and the higher-

order substitution λw.(w = m) ⊸ ⊥ for K.

Example 12.10 (Comparison with the spi-calculus). In the spi-calculus [Abadi

and Gordon, 1999], a “public” channel can be used for communicating. To

240 Chapter 12. Encoding security protocols

ensure that messages are only “understood” by the appropriate parties, mes-

sages are encrypted with keys that are given specific scopes. For example, the

expression

(k)(q̄({m}k) | q(y).let {x}k = y in Px)

describes a process that is willing to output an encrypted message {m}k on a

public channel q and to also input such a message and decode it. The key k

is given a scope similar to that given in the π-calculus expression. The linear

logic expression, call it B,

∀k[N (k m) ` (∀x(Px ⊸ N (k x))) ⊸ ⊥]

is most similar to this spi-calculus expression: here, the network N · corre-
sponds to the public channel q. It is not the case, however, that B is logically

equivalent to Pm since linear logic can observe that B can output something

on the public channel, that is, ∀y(⊤ ⊸ N y) ⊢ B whereas it is not necessarily

true that ∀y(⊤ ⊸ N y) ⊢ Pm is provable.

12.7 Bibliographic notes

Many of the examples from this chapter were taken from [Miller, 2003] and

some of those have been inspired by material on encoding security protocols

in MSR (multiset rewriting) found in [Cervesato et al., 1999, 2000a; Cervesato

and Stehr, 2007].

While high-level specifications of secure channels in systems like the π-

calculus or proof theory are elegant to use, it is possible to provide lower level

implementations using encryption of such high-level constructs [Abadi et al.,

2002].

Andreoli used a compilation method [Andreoli, 1992] collection of bipo-

lar formulas. Applying his compiling technique to the formula in Figure 12.4

yields the formulas in Figure 12.3: the new constants introduced by compila-

tion are the names used to denote role continuation.

Chapter13
Formalizing operational

semantic

In this chapter, we show how to use logic programming languages to spec-

ify the operational semantics of various programming and specification lan-

guages. Establishing these links between logic and operational semantics has

many advantages for operational semantics: implementations from automated

deduction can be used to animate semantic specifications; the proof-theoretic

treatment of term-level binding structures can be used to address binding

structures in the syntax of programs; and the declarative nature of logical

specifications provides broad avenues for reasoning about semantic specifica-

tions. We shall illustrate all of these advantages in this chapter.

This chapter will use the term “logic specification” interchangeably with

“logic program” and “theory”. Additionally, when we speak of “programming

languages” we include specification languages such as the λ-calculus and the

π-calculus.

13.1 Three frameworks for operational semantics

Several formalisms have been used to specify what and how programming lan-

guages compute. If one wishes to build on top of such formalisms such things

as concepts (e.g., observational equivalence and static analysis) and tools (e.g.,

interpreters, model checkers, and theorem provers), then the quality of such

encodings is essential. Here, we shall use logic to directly encode operational

semantics instead of other formal devices such as, for example, complete par-

tial orders, algebras, games, and Petri nets. Proof search will provide logical

specifications with dynamics that are able to capture a range of operational

specifications. We focus on three popular frameworks for specifying opera-

tional semantics and describe the logic frameworks most naturally associated

242 Chapter 13. Formalizing operational semantic

with that framework. These three frameworks are described below.

Structural operational semantics First introduced by Milner [1980] and

by Plotkin [1981, 2004], structural operational semantics (SOS) was used to

describe programming language features ranging from concurrency to func-

tional computation to stateful computations. This style of specification, now

commonly referred to as small-step SOS , allows for a natural treatment of

concurrency via interleaving. Big-step SOS , introduced by Kahn [1987], is

convenient for specifying, say, non-concurrent settings such as functional pro-

gramming. Both of these forms of operational semantics define relations using

inductive systems described by inference rules. As we shall see, Horn clauses

are usually appropriate for encoding such inference rules.

Abstract machines A certain kind of term rewriting can be viewed as

encoding abstract machines in which objects like code, stacks of arguments,

etc, are directly manipulated. The SECD machine of Landin [1964] is an

early example of an abstract machine. Such abstract machines can often be

represented using binary clauses, which are degenerate Horn clauses in which

the body of a clause contains one atomic formula. Proof search with such

clauses are tail recursive and naturally specify simple, iterative algorithms.

Arbitrary Horn clause programs can also be transformed into binary clauses

using a continuation-passing style transformation. As such, binary clauses

can be seen as capturing a thread of computation that contains a sequence of

instructions or commands. While binary clauses represent a retreat from logic

in the sense that they employ fewer logical constants (such as conjunction)

than general Horn clauses, they do provide two things in exchange: (1) a way

to explicitly specify the order of computation and (2) a basis for an extension

to linear logic in which concurrency and imperative features can be naturally

captured in a big-step-style semantic specification.

Multiset rewriting Specifying computations by computing directly on mul-

tisets was proposed in the 1990s with the Gamma programming language

[Banâtre and Métayer, 1993] and the chemical abstract machine [Berry and

Boudol, 1992], as well as later with the specification of security protocols

[Bistarelli et al., 2005; Cervesato et al., 1999; Durgin et al., 2004]. In addi-

tion, Petri net specifications can be encoded directly using multiset rewriting

[Delzanno, 2002]. Since the proof theory of linear logic employs multisets, it

is a simple matter to capture multiset rewriting using proof search in linear

(see Section 7.1 and [Gehlot and Gunter, 1990; Kanovich, 1995]).

13.2 The abstract syntax of programs as terms 243

13.2 The abstract syntax of programs as terms

In order to encode a programming language, we first map the syntactic expres-

sions used to form programs into logic-level terms. Since almost all interesting

programming languages contain binding constructions, we will capture those

binding constructions directly using the λ-binding available within Church’s

STT [Church, 1940] (see Section 2.3). Constructors of the programming lan-

guage are mapped to term constructors and the latter are typed by the syntac-

tic categories of the objects that are used in the construction. As is common,

the term constructor is modeled as an application of the constructor to argu-

ments. Similarly, binders in the programming language domain are mapped

to λ-abstractions of variables over the encoding of their scope. We illustrate

more aspects of this style of encoding with two examples that we shall return

to again later.

13.2.1 Encoding the untyped λ-calculus

The untyped λ-calculus (see Section 2.1) can be encoded as simply typed λ-

terms using one syntactic type, say tm, and two constructors for application

and abstraction. If we use the constructor app for building applications then

its typing is given as app : tm → tm → tm: that is, app takes two untyped λ-

terms and returns their application. If we use the constructor abs for building

an untyped λ-abstraction, its type is (tm → tm) → tm. Using λProlog syntax,

these tokens are declared as follows.

kind tm type.

type app tm -> tm -> tm.

type abs (tm -> tm) -> tm.

Note that abs is applied to a term-level abstraction: the argument type tm →
tm acts as the syntactic type of term abstractions over terms. The following

is a list of some untyped λ-terms along with their encoding as a simply type

λ-term of type tm.

λx.x (abs λx x)

λxλy.x (abs λx (abs λy x))

λx. (x x) (abs λx (app x x))

λxλyλz. (x z) (y z) (abs λx (abs λy (abs λz ((app (app x z) (app y z))))))

It is important to observe that two untyped λ-terms are α convertible if and

only if their encodings as terms of type tm are βη-convertible.

13.2.2 Encoding the π-calculus expressions

Processes in the finite π-calculus are describe by the grammar

P ::= 0 | x̄y.P | x(y).P | τ.P | (x)P | [x = y]P | P|P | P+ P.

244 Chapter 13. Formalizing operational semantic

kind n, p type.

type null p.

type taup p -> p.

type plus , par p -> p -> p.

type match , out n -> n -> p -> p.

type nu (n -> p) -> p.

type in n -> (n -> p) -> p.

Figure 13.1: Declarations of the primitive types and constructors for the

finite π-calculus.

(Many treatments of the π-calculus also include a replication operator or re-

cursion: their absence here is why we are describing the finite π-calculus.)

We use the symbols P and Q to denote processes and lower case letters, e.g.,

x, y, z to denote names. The occurrences of y in the processes x(y).P and (y)P

are binding occurrences with P as their scope. The notion of free and bound

variables is the usual one and we consider processes to be syntactically equal

if they are equal up to α-conversion.

We encode π-calculus expressions as terms using the declarations of two

primitives types, for names and processes, and process constructors in Fig-

ure 13.1. The precise translation of π-calculus syntax into simply typed λ-

terms is given using the following function [[.]] that translates process expres-

sions to βη-long normal terms of type p.

[[0]] = null [[P+ Q]] = plus [[P]] [[Q]]

[[τ.P]] = taup [[P]] [[P|Q]] = par [[P]] [[Q]]

[[x(y).P]] = in x (λy.[[P]]) [[x̄y.P]] = out x y [[P]]

[[(x)P]] = nu (λx.[[P]]) [[[x = y]P]] = match x y [[P]]

For example, the π-calculus expression νy.[x = y]x̄z.0 is translated into the ex-

pression (nu y\ match x y (out x z null)) which contains the free names

x and z.

13.3 Big step semantics: call-by-value evaluation

Figure 13.2 contains a common, big-step semantic specification of call-by-value

evaluation for the λ-calculus: this specification is given as both inference rules

as well as Horn clause specification (using λProlog syntax). The (infix) pred-

icate symbol % is of type tm → tm → o is written simply as eval in these

13.4 Small step semantics: π-calculus transitions 245

λx.R % λx.R

M % (λx.R) N % U R[U/x] % V

(M N) % V

type eval tm -> tm -> o.

eval (abs R) (abs R).

eval (app M N) V :-

eval M (abs R), eval N U, eval (R U) V.

Figure 13.2: Big step specification of the call-by-value evaluation of the

untyped λ-calculus.

clauses. The encoding of the atomic evaluation judgment R[U/x] % V in Fig-

ure 13.2 is simply (eval (R U) V) in the clausal specification: that is, the

logic expression simply forms the expression (R U) and once R is instantiated

with a λ-abstractions, the logic’s built-in treatment of β-reduction performs

the necessary substitution.

Such a specification is referred to as “big step” since the predicate % relates

an expression to its final value. In contrast, as we now illustrate, “small step”

specifications encode just a single step in a possibly long series of transitions.

13.4 Small step semantics: π-calculus transitions

Figure 13.3 contains a specification of the late transition semantics for the π-

calculus. Figure 13.5 contains the corresponding specification using λProlog.

This encoding uses three constructors for actions: τ : a (for the silent action)

and the two constants ↓ and ↑, both of type n → n → a (for building input

and output actions, respectively). Note that τ is overloaded by being used

as a constructor of actions and of processes. The free output action x̄y, is

encoded as ↑xy while the bound output action x̄(y) is encoded as λy (↑xy) (or
the η-equivalent term ↑x). The free input action xy, is encoded as ↓xy while

the bound input action x(y) is encoded as λy (↓xy) (or simply ↓x). Note that
bound input and bound output actions have type n → a instead of a.

The relation of one-step (late) transition [Milner et al., 1992b] for the π-

calculus is denoted by P
α

−−→ Q, where P and Q are processes and α is an action.

Our encoding splits this relation into two relations, depending on whether or

not the transition involves a free or a bound action. The relation between two

processes, P and Q, and an action A is encoded using the arrow P
A

−−→ Q.

This relation is captured using the predicate one of type p -> a -> p -> o in

Figure 13.5. The relation between a process P , an abstracted process Q, and

246 Chapter 13. Formalizing operational semantic

τ.P
τ

−−→ P
tau

x(y).P
x(w)
−−→ P[w/y]

in, w ̸∈ fn((y)P)

x̄y.P
x̄y

−−→ P

out P
α

−−→ P′

[x = x]P
α

−−→ P′
match

P
α

−−→ P′

P+ Q
α

−−→ P′
sum

P
α

−−→ P′

P | Q
α

−−→ P′ | Q
par, bn(α) ∩ fn(Q) = ∅

P
α

−−→ P′

(y)P
α

−−→ (y)P′
res, y ̸∈ n(α)

P
x̄y

−−→ P′

(y)P
x̄(w)
−−→ P′[w/y]

open, y ̸= x,w ̸∈ fn((y)P′)

P
x̄(w)
−−→ P′ Q

x(w)
−−→ Q′

P | Q
τ

−−→ (w)(P′ | Q′)
close

P
x̄y

−−→ P′ Q
x(z)
−−→ Q′

P | Q
τ

−−→ P′ | Q′[y/z]
comm

Figure 13.3: The late transition rules for the finite π-calculus.

an bound action A is encoded using the harpoon P
A

−−⇀ Q. This relation is

captured using the predicate oneb of type p -> (n -> a) -> (n -> p) -> o

in Figure 13.5.

One-step transition judgments are translated to atomic formulas as follows

(we overload the symbol [[.]] from Section 13.2.2).

[[P
xy

−−→ Q]] = [[P]]
↓xy
−−→ [[Q]] [[P

x(y)
−−→ Q]] = [[P]]

↓x
−−⇀ λy.[[Q]]

[[P
x̄y

−−→ Q]] = [[P]]
↑xy
−−→ [[Q]] [[P

x̄(y)
−−→ Q]] = [[P]]

↑x
−−⇀ λy.[[Q]]

[[P
τ

−−→ Q]] = [[P]]
τ

−−→ [[Q]]

Figure 13.3 contains a set of clauses, called Dπ, that encodes the oper-

ational semantics of the late transition system for the finite π-calculus. In

this specification, free variables are schema variables that are assumed to be

universally quantified over the clause in which they appear. These schema

variables have primitive types such as a, n, and p as well as arrow types such

as n → a and n → p.

Note that, as a consequence of using λ-tree syntax for this specification,

the usual side conditions in the original specifications of the π-calculus [Milner

et al., 1992b] are no longer present. For example, the side condition thatX ̸= y

13.4 Small step semantics: π-calculus transitions 247

tau: ⊤ ⊃ τ P
τ

−−→ P

in: ⊤ ⊃ in X M
↓X
−−⇀ M

out: ⊤ ⊃ out x y P
↑xy
−−→ P

match: P
A

−−→ Q ⊃ match x x P
A

−−→ Q

P
A

−−⇀ Q ⊃ match x x P
A

−−⇀ Q

sum: P
A

−−→ R ∨Q
A

−−→ R ⊃ P +Q
A

−−→ R

P
A

−−⇀ R ∨Q
A

−−⇀ R ⊃ P +Q
A

−−⇀ R

par: P
A

−−→ P ′ ⊃ P |Q
A

−−→ P ′ |Q

Q
A

−−→ Q′ ⊃ P |Q
A

−−→ P |Q′

P
A

−−⇀ M ⊃ P |Q
A

−−⇀ λn(M n |Q)

Q
A

−−⇀ N ⊃ P |Q
A

−−⇀ λn(P |N n)

res: ∀n(Pn
A

−−→ Qn) ⊃ νn.Pn
A

−−→ νn.Qn

∀n(Pn
A

−−⇀ P ′n) ⊃ νn.Pn
A

−−⇀ λm νn.P ′nm

open: ∀y(My
↑Xy
−−→ M ′y) ⊃ νy.My

↑X
−−⇀ M ′

close: P
↓X
−−⇀ M ∧Q

↑X
−−⇀ N ⊃ P |Q

τ
−−→ νy.(My |Ny)

P
↑X
−−⇀ M ∧Q

↓X
−−⇀ N ⊃ P |Q

τ
−−→ νy.(My |Ny)

com: P
↓X
−−⇀ M ∧Q

↑XY
−−→ Q′ ⊃ P |Q

τ
−−→ MY |Q′

P
↑XY
−−→ P ′ ∧Q

↓X
−−⇀ N ⊃ P |Q

τ
−−→ P ′ |NY

Figure 13.4: The inference rules in Figure 13.3 as logical formulas.

248 Chapter 13. Formalizing operational semantic

kind a type.

type tau a.

type dn, up n -> n -> a.

type one p -> a -> p -> o.

type oneb p -> (n -> a) -> (n -> p) -> o.

oneb (in X M) (dn X) M.

one (out X Y P) (up X Y) P.

one (taup P) tau P.

one (match X X P) A Q :- one P A Q.

oneb (match X X P) A M :- oneb P A M.

one (plus P Q) A R :- one P A R.

one (plus P Q) A R :- one Q A R.

oneb (plus P Q) A M :- oneb P A M.

oneb (plus P Q) A M :- oneb Q A M.

one (par P Q) A (par P1 Q) :- one P A P1.

one (par P Q) A (par P Q1) :- one Q A Q1.

oneb (par P Q) A (x\par (M x) Q) :- oneb P A M.

oneb (par P Q) A (x\par P (N x)) :- oneb Q A N.

one (nu P) A (nu Q) :- pi x\ one (P x) A (Q x).

oneb (nu P) A (y\ nu x\Q x y) :-

pi x\ oneb (P x) A (Q x).

oneb (nu M) (up X) N :-

pi y\ one (M y) (up X y) (N y).

one (par P Q) tau (nu y\ par (M y) (N y)) :-

oneb P (dn X) M , oneb Q (up X) N.

one (par P Q) tau (nu y\ par (M y) (N y)) :-

oneb P (up X) M , oneb Q (dn X) N.

one (par P Q) tau (par (M Y) T) :-

oneb P (dn X) M, one Q (up X Y) T.

one (par P Q) tau (par R (M Y)) :-

oneb Q (dn X) M, one P (up X Y) R.

Figure 13.5: The λProlog specification of for the finite π-calculus.

13.5 Binary clauses 249

in the open rule is implicit, since X is outside the scope of y and therefore

cannot be instantiated with y (substitutions into logical expressions cannot

capture bound variable names). The adequacy of our encoding is stated in

the following proposition (the proof of this proposition can be found in [Tiu,

2004]).

Proposition. Let P and Q be processes and α an action. Let n̄ be a list of

free names containing the free names in P, Q, and α. The transition P
α

−−→ Q

is derivable in the π-calculus if and only if ∀n̄.[[P
α

−−→ Q]] is provable from the

logical theory Dπ.

13.5 Binary clauses

A reduced class of Horn clause, called binary clauses, can play an important

role in modeling computation. As we argue below, they can be used to explic-

itly order computations whose order is left unspecified in Horn clauses: such

an explicit ordering is important if one wishes to use the framework of big-

step semantics to capture side-effects and concurrency. They can also be used

to capture the notion of abstract machines, a common device for specifying

operational semantics.

13.5.1 Continuation passing in logic programming

Continuation-passing style specifications are possible in logic programming

using quantification over the type of formulas [Tarau, 1992]. In fact, it is

possible to cps transform Horn clauses into binary clauses as follow. First,

for every predicate p of type τ1 → . . . → τn → o (n ≥ 0), we provide a

second predicate p̂ of type τ1 → . . . → τn → o → o: that is, an additional

argument of type o (the type of formulas) is added to predicate p. Thus,

the atomic formula A of the form (p t1 . . . tn) is similarly transformed to

the term Â = (p̂ t1 . . . tn) of type o → o. Using these conventions, the cps

transformation of the formula

∀z1 . . . ∀zm [(A1 ∧ . . . ∧An) ⊃ A0] (m ≥ 0, n > 0)

is the binary clause

∀z1 . . . ∀zm∀k [(Â1 (Â2(· · · (Ân k) · · ·))) ⊃ (Â0 k)].

Similarly, the cps transformation of the formula

∀z1 . . . ∀zm [A0] is ∀z1 . . . ∀zm∀k [k ⊃ (Â0 k)].

If P is a finite set of Horn clauses and P̂ is the result of applying this cps

transformation to all clauses in P, then P ⊢ A if and only if P̂ ⊢ (Â ⊤).

250 Chapter 13. Formalizing operational semantic

(((abs R) % (abs R)) ; K) ⊃ K.

((M % (abs R)) ; (N % U) ; ((R U) % V) ; K) ⊃ ((app M N) % V) ; K.

Figure 13.6: Binary version of call-by-value evaluation.

Consider again the presentation of call-by-value evaluation given by the

Figure 13.2. In order to add side-effecting features, this specification must be

made more explicit: in particular, the exact order in which M , N , and (R U)

are evaluated must be specified. The cps transformation of that specification

is given in Figure 13.6: there, evaluation is denoted by a ternary predicate

which is written using both the % arrow and a semicolon: e.g., the relation

“M evaluates to V with the continuation K” is denoted by (M % V) ; K. If

we write this evaluation predicate as evalc then the λProlog specification of

the formulas in Figure 13.6 can be written as follows.

type evalc term -> term -> o -> o.

evalc (abs R) (abs R) K :- K.

evalc (app M N) V K :- evalc M (abs R) (evalc N U

(evalc (R U) V K)).

In this specification, goals are now sequenced in the sense that bottom-up

proof search is forced to construct a proof of one evaluation pair before others

such pairs. The goal ((M % V) ; ⊤) is provable if and only if V is the call-

by-value result of M . The order in which evaluation is executed is now forced

not by the use of logical connectives but by the use of the non-logical constant

(· % ·) ; ·.

13.5.2 Abstract Machines

Abstract machines, which are often used to specify operational semantics, can

be encoded naturally using binary clauses. To see this, consider the following

definition of Abstract Evaluation System (AES) which generalizes the notion

of abstract machines [Hannan and Miller, 1992].

Recall that a term rewriting system is a pair (Σ, R) such that Σ is a signa-

ture and R is a set of directed equations {li ⇒ ri}i∈I with li, ri ∈ TΣ(X) and

V(ri) ⊆ V(li). Here, TΣ(X) denotes the set of first-order terms with constants

from the signature Σ and free variables from X, and V(t) denotes the set of

free variables occurring in t. An abstract evaluation system is a quadruple

(Σ, R, ρ, S) such that the pair (Σ, R∪{ρ}) is a term rewriting system, ρ is not

a member of R, and S ⊆ R.

13.5 Binary clauses 251

M ⇒ ⟨ nil, M, nil ⟩

⟨ E, λM, X :: S⟩ ⇒ ⟨X :: E, M, S⟩
⟨ E, M ˆN, S⟩ ⇒ ⟨ E, M, {E,N} :: S⟩
⟨{E′,M} :: E, 0, S⟩ ⇒ ⟨ E′, M, S⟩
⟨ X :: E, n+ 1, S⟩ ⇒ ⟨ E, n, S⟩

⟨ E, λM, nil ⟩ ⇒ {E, λM}

M ⇒⟨nil, nil, M :: nil, nil ⟩

⟨S, E, λM :: C, D⟩⇒ ⟨{E, λM} :: S, E, C, D⟩
⟨S, E, (M ˆN) :: C, D⟩⇒ ⟨S, E, M ::N :: ap :: C, D⟩

⟨S, E, n :: C, D⟩⇒ ⟨nth(n,E) :: S, E, C, D⟩
⟨X :: {E′, λM} :: S, E, ap :: C, D⟩⇒ ⟨nil, X :: E′, M :: nil, (S,E,C) ::D⟩
⟨X :: S, E, nil, (S′, E′, C ′) ::D⟩⇒ ⟨X :: S′, E′, C ′, D⟩

⟨X :: S, E, nil, nil⟩⇒X

Figure 13.7: The Krivine machine (top) and SECD machine (bottom).

Evaluation in an AES is a sequence of rewriting steps with the following

restricted structure. The first rewrite rule must be an instance of the ρ rule.

This rule can be understood as “loading” the machine to an initial state given

an input expression. The last rewrite step must be an instance of a rule in

S: these rules denote the successful termination of the machine and can be

understood as “unloading” the machine and producing the answer or final

value. All other rewrite rules are from R. We also make the following sig-

nificant restriction to the general notion of term rewriting: all rewriting rules

must be applied to a term at its root. This restriction significantly simplifies

the computational complexity of applying rewrite rules during evaluation in

an AES. A term t ∈ TΣ(∅) evaluates to the term s (with respect to the AES

(Σ, R, ρ, S)) if there is a series of rewriting rules satisfying the restrictions

above that rewrites t into s.

The SECD machine [Landin, 1964] and Krivine machine [Curien, 1990] are

both AESs and variants of these are given in Figure 13.7. There, the syntax

for λ-terms uses de Bruijn notation with ˆ (infix) and λ as the constructors

252 Chapter 13. Formalizing operational semantic

for application and abstraction, respectively, and {E,M} denotes the closure

of term M with environment E. The first rule given for each machine is the

“load” rule or ρ of their AES description. The last rule given for each is the

“unload” rule. (In each of these cases, the set S is a singleton.) The remaining

rules are state transformation rules, each one moving the machine through a

computation step.

A state in the Krivine machine is a triple ⟨E,M,S⟩ in which E is an

environment, M is a single term to be evaluated and S is a stack of arguments.

A state in the SECD machine is a quadruple ⟨S,E,C,D⟩ in which S is a stack

of computed values, E is an environment (here just a list of terms), C is a list

of commands (terms to be evaluated) and D is a dump or saved state. The

expression nth(n,E), used to access variables in an environment, is treated as

a function that returns the n + 1st element of the list E. Although Landin’s

original description of the SECD machine used variables names, our use of de

Bruijn numerals does not change the essential mechanism of that machine.

There is a natural and immediate way to see a given AES as a set of binary

clauses. Let load, unload, and rewrite be three predicates of one argument

each. Given the AES (Σ, R, ρ, S) let B be the set of binary clauses composed

of the following three groups of formulas:

1. ∀x̂ [rewrite r ⊃ load l] where ρ is the rewrite rule l ⇒ r,

2. for every rewrite rule l ⇒ r inR, add one clause of the form ∀x̂ [rewrite r ⊃
rewrite l], and

3. for every rewrite rule l ⇒ r in S, add one clause of the form ∀x̂ [unload r ⊃
rewrite l].

It is then easy to show that if we start with term t and evaluate it to get s (this

can be a nondeterministic relationship) then from the set of clauses B we can

prove unload t ⊃ load s. In particular, if this implication is provable from B
then it has a proof of the form displayed in Figure 13.8: there, only synthetic

inference rules (Section 5.8) are displayed. The transitions of the abstract

machine can be read directly from this proof: given the term s, the machine’s

state is initialized to be s1, which is then repeatedly rewritten yielding the

sequence of terms s2, . . . , sn, at which point the machine is unloaded to get the

value t. For more about translating SOS specifications directly into abstract

machines, see [Hannan and Miller, 1992].

In order to motivate our next operational semantic framework, consider the

problem of using binary clauses to specifying side-effects, exceptions, and con-

current (multi-threaded) computation. Since all the dynamics of computation

is represented via term structures (say, within s, s1, . . . , sn, t) all the informa-

tion about these threads, reference cells, exceptions, etc., must be maintained

as, say, lists within these terms. Such an approach to specifying these features

13.6 Linear logic 253

unload t ⊢ unload t
unload t ⊢ rewrite sn

...
unload t ⊢ rewrite si

...
unload t ⊢ rewrite s1
unload t ⊢ load s

Figure 13.8: A proof involving synthetic rules based on the formulas in B
related to the execution of an abstract machine.

of a programming language lacks modularity and makes little use of logic. We

now consider extending binary clauses so that these additional features have

a much more natural and modular specification.

13.6 Linear logic

In Sections 7.4 and 7.6, we illustrated how linear logic can be used to capture

multiset rewriting. Given that many aspects of computation can be captured

using multiset rewriting, it is possible to describe a subset of linear logic that

includes binary clauses but provides a natural means to capture side effects

and concurrency. The examples in this section are adapted from [Miller, 1996].

13.6.1 Adding a counter to evaluation

Consider again the binary clause example given in Figure 13.6. As we showed

in Section 6.5, the top-level intuitionistic implication ⇒ of Horn clauses can

be rewritten as the linear implication ⊸ without changing the operational

reading of proof search. With this change, the binary clauses in that figure

are also an example of multiset rewriting: in particular, one atom is repeatedly

replace by another atom (until the atom is replaced by a final continuation). In

this way, binary clauses can be seen as modeling single-threaded computation.

Now that we have embedded binary clauses within the richer setting of linear

logic, it is easy to see how “multi-threaded” computations might be organized.

We present a couple of examples here.

Consider adding to the untyped λ-calculus a single global counter that

can be read and incremented. In particular, we shall place all integers into

type tm and add two additional constructors of type tm, namely get and inc.

The intended operational semantics of these two constants is that evaluating

254 Chapter 13. Formalizing operational semantic

the first returns the current value of the counter and evaluating the second

increments the counter’s value and returns the counter’s old value. We also

assume that integers are values: that is, for every integer i the clause ∀k(k ⊸
(i % i) ; k) is part of the evaluator’s specification. The multiset rewriting

specification of these two additional constructors can be given as the two

formulas

∀K∀V (r V ` K ⊸ ((get % V) ; K) ` r V) and

∀K∀V (r (V + 1) ` K ⊸ ((inc % V) ; K) ` r V).

Here, the atom of the form (r x) denotes the “r-register” with value x. Let

D contain the two formulas in Figure 13.6, the two formulas displayed above,

and the formulas mentioned above describing the evaluation of integers. Then

D is a specification of the call-by-value evaluator with one global counter in

the sense that the logical judgment

!D ⊢ ((M % V) ; ⊤) ` r 0

holds exactly when we expect the program M to evaluation to V in the setting

when the register r is initialized to 0.

Of course, the name of the register should not be a part of the specification

of a counter. As described in Section 9.6, higher-order quantification over r

makes it possible to hide the name of this register. In Figure 13.9 there are

three specifications, E1, E2, and E3, of a counter: all three specifications store

the counter’s value in an atomic formula as the argument of the predicate r.

In these three specifications, the predicate r is existentially quantified over

the specification in which it is used so that the atomic formula that stores

the counter’s value is itself local to the counter’s specification. The first two

specifications store the counter’s value on the right of the sequent arrow, and

reading and incrementing the counter occurs via a synchronization between

an %-atom and an r-atom. In the third specification, the counter is stored

as a linear assumption on the left of the sequent arrow, and synchronization

is not used: instead, the linear assumption is “destructively” read and then

rewritten in order to specify the get and inc functions (similar to the examples

in Section 7.4). Finally, in the first and third specifications, evaluating the inc

symbol causes 1 to be added to the counter’s value. In the second specification,

evaluating the inc symbol causes 1 to be subtracted from the counter’s value:

to compensate for this unusual implementation of inc, reading a counter in

the second specification returns the negative of the counter’s value.

Although these three specifications of a global counter are different, they

should be equivalent in the sense that the process of evaluating terms cannot

tell them apart. Although there are several ways that the equivalence of

such counters can be argued, the specifications of these counters are, in fact,

logically equivalent.

13.6 Linear logic 255

E1 = ∃r[(r 0)⊥ ⊗
!∀K∀V (r V ` K ⊸ ((get % V) ; K) ` r V)⊗
!∀K∀V (r (V + 1) ` K ⊸ ((inc % V) ; K) ` r V)]

E2 = ∃r[(r 0)⊥ ⊗
!∀K∀V (r V ` K ⊸ ((get % (−V)) ; K) ` r V)⊗
!∀K∀V (r (V − 1) ` K ⊸ ((inc % (−V)) ; K) ` r V)]

E3 = ∃r[(r 0)⊗
! ∀K∀V (r V ⊗ (r V ⊸ K) ⊸ ((get % V) ; K))⊗
! ∀K∀V (r V ⊗ (r (V + 1) ⊸ K) ⊸ ((inc % V) ; K))]

Figure 13.9: Three specifications of a global counter.

Proposition 13.1. The three entailments E1 ⊢ E2, E2 ⊢ E3, and E3 ⊢ E1

are provable in linear logic.

Proof. The proof of each of these entailments proceeds (in a bottom-up fash-

ion) by choosing an eigenvariable to instantiate the existential quantifier on

the left-hand side and then instantiating the right-hand existential quantifier

with some term involving that eigenvariable. Assume that in all three cases,

the eigenvariable selected is the predicate symbol s. Then the first entailment

is proved by instantiating the right-hand existential with λx.s (−x); the sec-

ond entailment is proved using the substitution λx.(s (−x))⊥; and the third

entailment is proved using the substitution λx.(s x)⊥. The proof of the first

two entailments must also use the identities −0 = 0, −(x + 1) = −x − 1,

and −(x − 1) = −x + 1. The proof of the third entailment requires no such

identities.

Clearly, logical equivalence is a strong equivalence: it immediately implies

that evaluation cannot tell the difference between any of these different spec-

ifications of a counter. For example, assume E1 ⊢ (M % V) ; ⊤. Then by

the cut inference rule (modus ponens) and the above proposition, we have

E2 ⊢ (M % V) ; ⊤.

It is possible to generalize a bit the previous example involving a single

global counter to languages that have the ability to generate references dy-

namically, such as those found in, say, Algol or Standard ML [Chirimar, 1995;

Miller, 1996].

256 Chapter 13. Formalizing operational semantic

K ⊸ (none % none) ; K.

(E % V) ; K ⊸ ((guard E) % (guard V)) ; K.

(E % V) ; K ⊸ ((poll E) % (poll V)) ; K.

(E % V) ; K ⊸ ((receive E) % (receive V)) ; K.

(E % V) ; K ⊸ ((some E) % (some V)) ; K.

(E % U) ; ((F % V) ; K) ⊸ ((choose E F) % (choose U V)) ; K.

(E % U) ; ((F % V) ; K) ⊸ ((transmit E F) % (transmit U V)) ; K.

(E % U) ; ((F % V) ; K) ⊸ ((wrap E F) % (wrap U V)) ; K.

Figure 13.10: These CML-like constructors evaluate to themselves.

13.6.2 Specification of Concurrency primitives

The concurrency primitives found in Concurrent ML (CML) [Reppy, 1991]

can also be specified in linear logic. We assume that the reader has some

familiarity with this extension to ML.

Consider extending the untyped λ-calculus with the following constructors.

none :tm.

guard, poll, receive, some, sync :tm → tm.

choose, transmit, wrap :tm → tm → tm.

spawn, newchan :(tm → tm) → tm.

The meaning of these constructors is then given using the linear logic for-

mulas in Figure 13.10 and Figure 13.11. The clauses in Figure 13.10 specify

the straightforward evaluation rules for the eight data constructors. In Fig-

ure 13.11, the predicate event is of type tm → tm → o → o and is used to

store in the multiset events, a technical aspect of this semantic specification.

The first three clauses of that figure defined the meaning of the three special

forms sync, spawn, and newchan. The remaining clauses specify the event

predicate.

The formulas in Figure 13.11 allow for multiple threads of evaluation. Eval-

uation of the spawn function initiates a new evaluation thread. The newchan

function causes a new eigenvariable to be picked (via the ∀c quantification)

and then to assume that that eigenvariable is a value (via the assumption

∀I(I ⊸ (c % c) ; I)): such a new value can be used to designate new chan-

nels for use in synchronization. The sync primitive allows for synchronization

between threads: its use causes an “evaluation thread” to become an “event

thread.” The behaviors of event threads are described by the remaining clauses

in Figure 13.11. The primitive events are transmit and receive and they rep-

13.6 Linear logic 257

eval E U (event U V K) ⊸ ((sync E) % V) ; K.

(((R unit) % unit) ; ⊥) ` K ⊸ ((spawn R) % unit) ; K.

∀c(∀I(I ⊸ (c % c) ; I) ⇒ ((R c) % V) ; K) ⊸ ((newchan R) % V) ; K.

K ` L ⊸ event (receive C) V K ` event (transmit C V) unit L

event E V K ⊸ event (choose E F) V K.

event F V K ⊸ event (choose E F) V K.

event E U (((app F U) % V) ; K) ⊸ event (wrap E F) V K.

((app F unit) % U) ; (event U V K) ⊸ event (guard F) V K.

(event E U ⊤) &K ⊸ event (poll E) (some E) K.

K ⊸ event (poll E) none K.

Figure 13.11: Specifications of some primitives similar to those in Concur-

rent ML.

resent two halves of a synchronization between two event threads. Note that

the clause describing their meaning is the only clause in Figure 13.11 that has

a head with more than one atom. The non-primitive events choose, wrap,

guard, and poll are reduced to other calls to event and %. The choice event is

implemented as a local, nondeterministic choice. (Specifying global choice, as

in CCS [Milner, 1989], would be much more involved.) The wrap and guard

events chain together evaluation and synchronization but in direct orders.

The only use of additive linear logic connectives, in particular & and ⊤,

in any of our semantic specifications is in the specification of polling: in an

attempt to synchronize with (poll E) (with the continuation K) the goal

(event E U ⊤) &K

is attempted (for some unimportant term U). Thus, a copy of the current

evaluation threads is made and (event E U ⊤) is attempted in one of these

copies. This atom is provable if and only if there is a complementary event for

E in the current environment, in which case, the continuation ⊤ brings us to

a quick completion and the continuation K is attempted in the original and

unspoiled context of threads. If such a complementary event is not present,

then the other clause for computing a polling event can be used, in which case,

the result of the poll is none, which signals such a failure. The semantics of

polling, unfortunately, is not exactly as intended in CML since it is possible

to have a polling event return none even if the event being tested could be

synchronized. This analysis of polling is similar to the analysis of testing in

process calculus as described in [Miller, 1993].

258 Chapter 13. Formalizing operational semantic

The PhD thesis of Chirimar [Chirimar, 1995] presents a linear logic speci-

fication of a programming language motivated by Standard ML [Milner et al.,

1990]. In particular, a specification for the call-by-value λ-calculus is provided,

and then modularly extended with the specifications of references, exceptions,

and continuations: each of these features is specified without complicating the

specifications of other the features.

13.7 Bibliographic notes

A distinction is often made between the static semantics and the dynamic

semantics of programming languages (see, for example, Clement et al. [1986]).

Static semantics refers to properties of program text that can be inferred by a

compiler: typing is a typical example of a static semantics. Dynamic semantics

refers to properties of programs that can be inferred by executing programs:

termination is a typical examples of dynamic semantics. In this chapter, we

have limited ourselves to the specification of dynamic semantics of some sim-

ple programming languages and to the π-calculus. Logic programming and

its concomitant technologies of unification and proof search has also had an

important role in specifying the static semantics of programming languages,

particular, in type checking and type inference: see, for example, the so-call

Hindley-Milner approach to type inference [Hindley, 1969; Milner, 1978].

There has been long-standing interest in being able to formally specify and

reason about the operational semantic descriptions of programming languages.

Early dynamic semantics used both small-step specifications and big-step se-

mantics have been formalized as logical specifications [Despeyroux, 1988; Han-

nan, 1993]. Such logical specifications have also been used to develop the for-

mal metatheory of those programming languages: see, for example, [Despey-

roux, 1986; Hannan and Pfenning, 1992; McDowell and Miller, 2002; Pfenning

and Schürmann, 1999]. One explicit approach to reasoning about static and

dynamic semantics is the two-level logic approach [McDowell and Miller, 2002;

Miller, 2010; Gacek et al., 2012] which has been formally supported in the

Abella proof assistant Baelde et al. [2014].

The specification of the π-calculus Milner et al. [1992a] in Figure 13.3 is

taken from [Miller and Palamidessi, 1999]. The general outline of this chapter

is based on the short article [Miller, 2008].

278 Chapter 13. Formalizing operational semantic

Solutions to selected exercises

Solution to Exercise 2.3 (page 15). E2 normalizes to the Church encoding

of 16. In general, En has the λ-normal form that encodes the number

22
2·
··
2 }

n+1

There are n+ 1 occurrences of 2 in this expression.

Solution to Exercise 2.4 (page 15). The abstraction (λx.w) is vacuous,

i.e., x is not free in its scope (which is just the variable w). Since substitution

is capture-avoiding, every instance of that term remains a vacuous abstraction.

Since the term λy.y is not a vacuous abstraction, no such expression for N is

possible.

Solution to Exercise 2.5 (page 17). The proof of uniqueness is a simple

induction on the structure of typing judgment proofs. For the second part

of this question, let Σ be the empty signature, let t be the λ-term λx.x, and

assume that S contains two different primitive sorts a and b. Then we have

both Σ ⊩ t : a → a and Σ ⊩ t : b → b.

Solution to Exercise 3.2 (page 29). The multiplicative version of the ∧R
rule is

Σ : Γ ⊢ ∆, B Σ : Γ′ ⊢ ∆′, C

Σ : Γ,Γ′ ⊢ ∆,∆′, B ∧ C
∧Rm.

The following derivation shows that weakening and the additive ∧R rule can

be used to derive the multiplicative ∧Rm rule.

Σ : Γ ⊢ ∆, B

Σ : Γ,Γ′ ⊢ ∆,∆′, B
wR,wL

Σ : Γ ⊢ ∆, C

Σ : Γ,Γ′ ⊢ ∆,∆′, C
wR,wL

Σ : Γ,Γ′ ⊢ ∆,∆′, B ∧ C
∧R

280 Chapter 13. Formalizing operational semantic

The following derivation shows that contraction and the multiplicative ∧Rm

rule can be used to derive the additive ∧R rule.

Σ : Γ ⊢ ∆, B Σ : Γ ⊢ ∆, C

Σ : Γ,Γ ⊢ ∆,∆, B ∧ C
∧Rm

Σ : Γ ⊢ ∆, B ∧ C
cR, cL

Similarly, the ∧Lm rule can be derived from the ∧L rule with contraction.

Σ : Γ, B,C ⊢ ∆

Σ : Γ, B ∧ C,C ⊢ ∆
∧L

Σ : Γ, B ∧ C,B ∧ C ⊢ ∆
∧L

Σ : Γ, B ∧ C ⊢ ∆
cL

Finally, the ∧L rule can be derived from the ∧Lm rule with weakening.

Σ : Γ, B ⊢ ∆

Σ : Γ, B,C ⊢ ∆
wL

Σ : Γ, B ∧ C ⊢ ∆
∧Rm

Solution to Exercise 4.1 (page 40). Since
√
2
√
2
is either rational or

irrational we have two cases to consider. In the case that
√
2
√
2
is rational,

then set a = b =
√
2. In the case that

√
2
√
2
is irrational, then set a =

√
2
√
2

and b =
√
2. A more satisfying proof of this fact results from assigning a =

√
2

and b = log2 9. R. Kuzmin [1930] proved that
√
2
√
2
is transcendental.

Solution to Exercise 4.3 (page 43). Of these examples, (3), (4), (5), (6),

and (7) all have C-proofs but no I-proofs. A C-proof of (5) is

p ⊢ p
init

p ⊢ q, p
wR

⊢ p ⊃ q, p
⊸R

p ⊢ p
init

(p ⊃ q) ⊃ p ⊢ p, p
⊃L

(p ⊃ q) ⊃ p ⊢ p
cR

· ⊢ ((p ⊃ q) ⊃ p) ⊃ p
⊸R

Solution to Exercise 4.5 (page 44). The list of pairs for which entailment

is provable in classical logic is

{⟨A,¬¬A⟩, ⟨¬¬A,A⟩, ⟨¬A,¬¬¬A⟩, ⟨¬¬¬A,¬A⟩, }

The list of pairs for which entailment is provable in intuitionistic logic is the

same list except that the pair ⟨¬¬A,A⟩ is removed.

13.7 Bibliographic notes 281

Solution to Exercise 4.7 (page 44). Assume that S contains the primitive

types i and j. The following is an I-proof.

f : i → j, y : i ⊩ (f y) : j f : i → j, y : i : · ⊢ t
tR

f : i → j, y : i : · ⊢ ∃jx t
∃R

f : i → j, y : i : · ⊢ ∀iy∃jx t
∀R

f : i → j : · ⊢ (∃jx t) ∨ (∀iy∃jx t)
∨R

The following is an C-proof.

f : i → j : · ⊢ (∃jx t) ∨ (∀ix f)

f : i → j, x : i ⊩ (f x) : j f : i → j, x : i : · ⊢ t , f
tR

f : i → j, x : i : · ⊢ ∃jx t , f
∃R

f : i → j : · ⊢ ∃jx t ,∀ix f
∀R

f : i → j : · ⊢ (∃jx t) ∨ (∀ix f), (∃jx t) ∨ (∀ix f)
∨R× 2

f : i → j : · ⊢ (∃jx t) ∨ (∀ix f)
cR

There is no I-proof of this sequent since the contraction of the right is necessary

to complete a proof. In both this example and in Exercise 4.3(4), completing a

proof requires two subformulas separated by a disjunction to “communicate”

in the sense that one disjunction puts into the sequent context some item (here,

an eigenvariable and in Exercise 4.3(4) an assumption) that the other disjunct

needs. This communication can happen in the proof if that disjunction is

contracted on the right.

Solution to Exercise 4.9 (page 45). We provide a high-level outline of the

proof: various details need to be filled in.

For one direction, we shall show how to transform a C-proof with a gener-

alized restart rule to a C-proof without restart. Since I-proofs are C-proofs,

this establishes the forward implication. Restarts can be removed one-by-one

via the following transformation.

Ξ
Σ : Γ ⊢ B,∆

Σ : Γ ⊢ C,∆
Restart

...
Σ′ : Γ′ ⊢ B,∆′

=⇒

Ξ
Σ : Γ ⊢ B,∆

Σ : Γ ⊢ C,B,∆
wR

...
Σ′ : Γ′ ⊢ B,B,∆′ cR

Σ′ : Γ′ ⊢ B,∆′

That is, the restart rule can be implemented using a contraction and a weak-

ening on the right. It is easy to confirm that the formula B can be added to

all possible inference rules below this occurrence of the restart rule.

282 Chapter 13. Formalizing operational semantic

For a sketch of the converse direction, consider a C-proof. Mark a formula

on the right-hand side of every sequent as follows. The single formula on

the right of the endsequent is marked (assuming that we start proof search

with a single formula to prove). If the last inference rule of the proof is

a left-introduction rule, then the marked occurrence of the formula in the

conclusion is also marked in all the premises. If the last inference rule is a

right-introduction rule, then we have two cases: If the introduced formula is

already marked, then mark its subformulas that appear in the right-hand side

of any premise (for example, if the marked formula is A ⇒ B then mark B

in the premise; if the marked formula is A ∧ B then mark A in one premise

and B in the other; etc). Otherwise, the right-hand formula introduced is not

marked, in which case, we have a marking break, and we mark in the premises

of the inference rules the subformulas of the right-hand formula introduced

and continue. The only other rules that might be applied are: cL, in which

case the marked formula on the right persists from conclusion to premise; cL,

in which case, if the marked formula is the one contracted then select one of

its copies to mark in the premise, otherwise, the marked formula persists in

the premise; and init, in which case, if the marked formula on the right is not

the same as the formula on the left, then this occurrence of the init rule is also

a marking break.

To illustrate this notion of marking formulas, consider the following anno-

tated C-proof.

p ⊢ p, q∗, p ⊃ q, p ∨ (p ⊃ q)
init∗

⊢ p, (p ⊃ q)∗, p ⊃ q, p ∨ (p ⊃ q)
⊸R

⊢ p, (p ⊃ q)∗, p ∨ (p ⊃ q)
cR

⊢ p∗, p ∨ (p ⊃ q), p ∨ (p ⊃ q)
∨R∗

⊢ p∗, p ∨ (p ⊃ q)
cR

⊢ p ∨ (p ⊃ q)∗, p ∨ (p ⊃ q)
∨R

⊢ p ∨ (p ⊃ q)∗
cR

Here, an asterisk is used to indicate marked formulas and to indicate which

inference rules correspond to marking gaps.

Now the I-proof with Restart is built as follows. For sequents that are the

conclusion of a rule that is not a marking break, delete all non-marked formula

on the right. For sequents that are the conclusion of a rule that is a marking

break, then this one inference rule become two: an instance of the Restart

rule must be inserted and then the version of the inference rule corresponding

to the marking break is put into the proof with the non-marked right-hand

formulas deleted.

For example, performing this transformation on the C-proof yields the

13.7 Bibliographic notes 283

following structure.

p ⊢ p
init

p ⊢ q
Restart

⊢ p ⊃ q
⊸R

⊢ p ⊃ q
cR

⊢ p ∨ (p ⊃ q)
∨R

⊢ p
Restart

⊢ p
cR

⊢ p ∨ (p ⊃ q)
∨R

⊢ p ∨ (p ⊃ q)
cR

This sequence of rules is not yet an I-proof: there are three occurrences of cR

that are not allowed in I-proofs: these can either be deleted or reclassified as

Restart rules.

Solution to Exercise 4.15 (page 49). Let Π1 and Π2 be the following

proofs of p ⊢ f and ⊢ p, respectively.

p ⊢ p
init

f ⊢ f
init

p, p ⊃ f ⊢ f
⊃L

p, p ⊢ f
defL

p ⊢ f
cL

Π1

p ⊢ f

⊢ p ⊃ f
⊸R

⊢ p
defR

Clearly, by defining p to be ¬p (hence, the equivalence p ≡ ¬p is provable),

one is asking for trouble. It turns out that if the ambient logic does not

have the contraction rules (such as in linear logic), it is not possible for such

a problematic definition to yield an inconsistency [Girard, 1992; Schroeder-

Heister, 1993].

Solution to Exercise 4.17 (page 50). Let Dk be the formula ∀x(p x ⊃
p (f2kx) sequent (k > 1). Prove that Dk+1 can be proved from Dk. Show how

these lemmas can be organized into a complete proof of, for example, p(f256a).

Solution to Exercise 4.20 (page 54). The following inference rules can

used to prove the invertibility of ∨L and ∀R. The remaining two cases can be

proved in a similar fashion.

B ⊢ B
init

B ⊢ B ∨ C
∨R Ξ

Γ, B ∨ C ⊢ ∆

Γ, B ⊢ ∆
cut

C ⊢ C
init

C ⊢ B ∨ C
∨R Ξ

Γ, B ∨ C ⊢ ∆

Γ, C ⊢ ∆
cut

Γ, B ∨ C ⊢ ∆
∨L

284 Chapter 13. Formalizing operational semantic

Ξ
Σ′ : Γ ⊢ ∀τx.B,∆

Σ′ :B[c/x] ⊢ B[c/x]
init

Σ′ : ∀τx.B ⊢ B[c/x]
∀L

Σ′ : Γ ⊢ B[c/x],∆
cut

Σ : Γ ⊢ ∀τx.B,∆
∀R.

Here, Σ′ is the signature Σ, c : τ and c is not declared in Σ. Note that if we

start with a proof Ξ of the sequent Σ : Γ ⊢ ∀τx.B,∆ then it is a simple matter

to view Ξ as a proof of Σ′ : Γ ⊢ ∀τx.B,∆.

Solution to Exercise 5.7 (page 64). Let the Σ-formulas D0, . . . , Dn (n ≥ 0)

be Horn clauses using description (5.3). Thus, D0 is of the form

∀x̄1.(A1 ⊃ · · · ⊃ (∀x̄m.Am ⊃ ∀x̄0.A0))

where m ≥ 0 and x̄0, . . . x̄m are lists of variables, all of which are distinct. It is

an easy matter to show that ⊃R and ∀R are invertible rules within C-proofs.

In particular, the sequent Σ :D1, . . . , Dn ⊢ D0 has a C-proof if and only if

Σ, x̄0, x̄1, . . . x̄m :D1, . . . , Dn, A1, . . . , Am ⊢ A0

has a C-proof. Since all the formulas on the left-hand side of this sequent are

Horn clauses, the result follows directly from Proposition 5.6. We can also

allow Horn clauses using description (5.2): we would simply need to prove

the invertibility of additional introduction rules. The result that the classical

entailment among Horn clauses implies their intuitionistic entailment can be

generalized to geometric formulas, in which case that result is often referred

to as the Barr Theorem [Negri, 2016].

Solution to Exercise 5.8 (page 64). Exercise 4.3(5) provides a C-proof of

((p ⊃ q) ⊃ p) ⊃ p. It is easy to see that there is no I-proof (and, hence, no

uniform proof) of this formula. Now assume that there is another formula, say,

A which only contains implications and is strictly smaller while also having a

C-proof but no I-proof. Thus B contains 2 or fewer occurrences of implica-

tions. Thus, B is of clausal order 2 or less and is of the form (A1 ⊃ (A2 ⊃ A3))

or ((A1 ⊃ A2) ⊃ A3) where A1, A2, A3 are atomic formulas. Thus attempt-

ing a cut-free proof of B leads to attempting proofs of either A1, A2 ⊢ A3

or A1 ⊃ A2 ⊢ A3. In either case, we have a sequent involving only Horn

clauses and, as a result of Proposition 5.6, if it is classically provable it is also

intuitionistically provable. This is a contradiction.

Solution to Exercise 5.28 (page 81). Let Γ1,Γ2 be multisets of ⇓ L0

formulas and let B and C be ⇓L0 formulas. Assume that Σ : Γ1 ⊢ B and

Σ : B,Γ2 ⊢ C have cut-free I-proofs. By completeness of ⇓L0-proofs, these

sequents also have ⇓L0-proofs. By the admissibility of weakening (Proposi-

tion 5.21), we have Σ : B,Γ1,Γ2 ⊢ C and Σ : Γ1,Γ2 ⊢ B have ⇓L0-proofs. By

13.7 Bibliographic notes 285

the admissibility of cut (Theorem 5.26), the sequent Σ : Γ1,Γ2 ⊢ C has an

⇓L0-proof. Finally, by the soundness of ⇓L0-proofs (Theorem 5.15), we have

Σ : Γ1,Γ2 ⊢ C has a cut-free I-proof.

Solution to Exercise 5.42 (page 95). Assume that there is an fohh program

Γ that satisfies the following specification: for every set k ≥ 1 and {n1, . . . , nk},
we have A,Γ ⊢I maxa n if and only if n is the maximum of the set {n1, . . . , nk}
and A is the set of atomic formulas {a n1, . . . , a nk}. Let A be the set of atoms

{a z, a (s z)} and let A′ be the set of atoms {a z, a (s z), a (s (s z))}. Thus, it
must be the case that A,Γ ⊢I maxa (s z). But by the monotonicity property

of intuitionistic provability, A′,Γ ⊢I maxa (s z) but this is a contradiction to

the choice of Γ, since (s z) is not the maximum of the set of numbers encoded

in A′.

Solution to Exercise 5.43 (page 96). Assume that the logic program Γ

defines the notconnected predicate. Using the graph described in Figure 5.5,

it must be the case that notconnected a e is provable. But if we add adj a e

to the logic program, the monotonicity property must force notconnected a e

to be provable in that extended program. But this contradicts the assumption

about notconnected.

Solution to Exercise 5.45 (page 97). Assume that there is a fohh-logic

specifications P over the signature ΣP . Also assume that this signature con-

tains the constants a : i and f : i → i → i. Also, assume that the constants

d : i and e : i are not declared in ΣP . By the specification of subAll, it is the

case that

d : i, e : i,ΣS ⊢I subAll d a (f d e) (f a e).

By Proposition 5.44 and using the substitution of e for d, we know that

e : i,ΣS ⊢I subAll e a (f e e) (f a e).

But this contradicts the specification for subAll.

Solution to Exercise 6.2 (page 107). Assume that there is a cut-free proof

of

⊢ p⊗ q, p⊥ ⊗ q, p⊗ q⊥, p⊥ ⊗ q⊥

Because of the symmetry of replacing p with p⊥ and q with q⊥, we can as-

sume without loss of generality that this sequent is proved by the following

occurrence of the ⊗R rule.

⊢ p,∆ ⊢ q,∆′

⊢ p⊗ q, p⊥ ⊗ q, p⊗ q⊥, p⊥ ⊗ q⊥
⊗R

Here, ∆ and ∆′ are multisets whose union is the three element multiset p⊥ ⊗
q, p⊗ q⊥, p⊥ ⊗ q⊥. Note first that neither ∆ nor ∆′ can be empty. Note also

286 Chapter 13. Formalizing operational semantic

that neither ∆ nor ∆′ can be a singleton: a simple case analysis show that

if one of these multisets is a singleton then the corresponding premise is not

provable. We have reached a contradiction when we note that every possible

partition of 3 elements must contain either an empty or singleton partition.

Solution to Exercise 6.5 (page 108). It is an easy matter to show that

for every prefix π ranging from the empty prefix, to !, ?, ! ?, ? !, ! ? !, and ? ! ?

satisfies the equivalence ππB ≡ πB for all formulas B. For example, the case

for π = ? ! leads to proving the following two entailments.

? !B ⊢ ? !B
init

! ? !B ⊢ ? !B
!D

? ! ? !B ⊢ ? !B
?L

!B ⊢ !B
init

!B ⊢ ? !B
?D

!B ⊢ ! ? !B
!R

!B ⊢ ? ! ? !B
?D

? !B ⊢ ? ! ? !B
?L

In the case that π = ! ? !, similar proofs can be give, although the following

chain of equivalences

! ? ! ! ? !B ≡ ! ? ! ? !B ≡ ! ? !B.

is more convincing (rewriting subformulas by logically equivalent subformulas

is justified using the cut-elimination result: see Section 4.3)

Here, we assume that the equivalences associated with ! and with ? ! have

already been proved. We can now prove that any prefix that has length 4

or more must be equivalence to one of shorter length. Let π be a prefix of

length 4 or more, thus we can write it as b1b2b3b4π
′ where the bi’s are either

! or ?. These first four position must alternate between these two flavors of

exponentials since otherwise they must contain either ! ! or ? ? (which can be

shortened). Thus, π must be either ! ? ! ?π′ or ? ! ? !π′. In the first case, we

repeat ! ? and in the second case we repeat ? !. In either case, these repeated

patterns can be shortened.

Solution to Exercise 6.17 (page 117). We use the six linear logic connec-

tives {⊤,&,⊥,⊸,⇒, ∀} to define the remaining connectives.

B⊥ ≡ B ⊸ ⊥ 0 ≡ ⊤ ⊸ ⊥ 1 ≡ ⊥ ⊸ ⊥ B ` C ≡ (B ⊸ ⊥) ⊸ C

B ⊕ C ≡ ((B ⊸ ⊥) & (C ⊸ ⊥)) ⊸ ⊥ B ⊗ C ≡ (B ⊸ C ⊸ ⊥) ⊸ ⊥

∃x.B ≡ (∀x(B ⊸ ⊥)) ⊸ ⊥

!B ≡ (B ⇒ ⊥) ⊸ ⊥ ?B ≡ (B ⊸ ⊥) ⇒ ⊥

Solution to Exercise 7.1 (page 153). Prove by induction on n that if Γ is a

multiset of atoms and P is a tensor of atoms A1⊗· · ·⊗An (n ≥ 0) then Γ ⊢ P

13.7 Bibliographic notes 287

is provable if and only if Γ is equal to the multiset {A1, . . . , An}. If n = 0

then this case is immediate since P is 1 and Γ is empty. Now, assume that

n > 0 and that P is (A1 ⊗ · · · ⊗Ai)⊗ (Ai+1 ⊗ · · · ⊗An). If Γ ⊢ P is provable

then there is a multiset partition of Γ into Γ1 and Γ2 such that both sequents

Γ1 ⊢ A1⊗· · ·⊗Ai and Γ2 ⊢ Ai+1⊗· · ·⊗An are provable. By induction, we have

that Γ1 is {A1, . . . , Ai} and Γ2 is {Ai+1, . . . , An} and, hence, Γ is {A1, . . . , An}.
For the converse, assume that Γ1 and Γ2 are the multiset of atomic formula

occurrences in P1 and P2, respectively. By induction, the sequents Γ1 ⊢ P1

and Γ2 ⊢ P2 are provable and, hence, so is Γ ⊢ P .

Solution to Exercise 7.4 (page 158). Let the program P be the result of

adding the declarations and clauses for leq from Figure 5.3 to the following

declarations and clauses.

type maxa nat -> o.

maxa M :- a M.

maxa M :- a N, a P, leq N P, (a P -o maxa M).

Solution to Exercise 7.5 (page 158). Let the program P be the result of

adding the declarations and clauses for sum from Figure 5.3 to the following

declarations and clauses.

type sumall nat -> o.

sumall M :- a M.

sumall M :- a N, a P, sum N P S, (a S -o sumall M).

288 Chapter 13. Formalizing operational semantic

Bibliography

Mart́ın Abadi and Andrew D. Gordon. A calculus for cryptographic protocols:

The spi calculus. Information and Computation, 148(1):1–70, 1999. (Cited

on page 239.)

Mart́ın Abadi, Cédric Fournet, and Georges Gonthier. Secure implementation

of channel abstractions. Information and Computation, 174(1):37–83, 2002.

(Cited on page 240.)

Samson Abramsky. Computational interpretations of linear logic. Theoretical

Computer Science, 111:3–57, 1993. (Cited on page 7.)

Alexander Aiken. Set constraints: results, applications, and future directions.

In PPCP94: Principles and Practice of Constraint Programming, number

874 in LNCS, pages 171–179, 1994. (Cited on page 212.)

Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. J.

of Logic and Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.

(Cited on pages 98, 149, 212, 213, 214, 240, and 263.)

Peter B. Andrews. Provability in elementary type theory. Zeitschrift fur

Mathematische Logic und Grundlagen der Mathematik, 20:411–418, 1974.

(Cited on page 13.)

Peter B. Andrews. An Introduction to Mathematical Logic and Type The-

ory: To Truth Through Proof. Academic Press, 1986. (Cited on pages 21

and 182.)

Andrew W. Appel and Amy P. Felty. Polymorphic lemmas and definitions

in λProlog and Twelf. Theory and Practice of Logic Programming, 4(1-2):

1–39, 2004. doi:10.1017/S1471068403001698. (Cited on page 22.)

K. R. Apt and M. H. van Emden. Contributions to the theory of logic pro-

gramming. J. of the ACM, 29(3):841–862, 1982. (Cited on pages 11 and 98.)

https://doi.org/10.1093/logcom/2.3.297
https://doi.org/10.1017/S1471068403001698

290 Bibliography

Ali Assaf. A framework for defining computational higher-order logics. PhD

thesis, École Polytechnique, September 2015. (Cited on page 261.)

Matthias Baaz and Alexander Leitsch. Cut-elimination and Redundancy-

elimination by Resolution. Journal of Symbolic Computation, 29(2):149–

176, 2000. (Cited on page 200.)

David Baelde. Least and greatest fixed points in linear logic.

ACM Trans. on Computational Logic, 13(1):2:1–2:44, April 2012.

doi:10.1145/2071368.2071370. (Cited on page 151.)

David Baelde and Dale Miller. Least and greatest fixed points in linear logic.

In N. Dershowitz and A. Voronkov, editors, International Conference on

Logic for Programming and Automated Reasoning (LPAR), volume 4790

of LNCS, pages 92–106, 2007. doi:10.1007/978-3-540-75560-9 9. (Cited on

page 151.)

David Baelde, Kaustuv Chaudhuri, Andrew Gacek, Dale Miller, Gopalan Na-

dathur, Alwen Tiu, and Yuting Wang. Abella: A system for reasoning about

relational specifications. Journal of Formalized Reasoning, 7(2):1–89, 2014.

doi:10.6092/issn.1972-5787/4650. (Cited on pages 21, 258, and 277.)

Jean-Pierre Banâtre and Daniel Le Métayer. Programming by Multiset Trans-

formation. Communications of the ACM, 36(1):98–111, January 1993.

(Cited on page 242.)

Henk Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume

103 of Studies in Logic and the Foundations of Mathematics. Elsevier, New

York, revised edition, 1984. (Cited on page 21.)

Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with

Types. Perspectives in Logic. Cambridge University Press, 2013. (Cited on

page 21.)

C. Benzmüller, C. E. Brown, and M. Kohlhase. Cut-simulation and im-

predicativity. Logical Methods in Computer Science, 5(1):1–21, 2009.

doi:10.2168/LMCS-5(1:6)2009. (Cited on page 200.)

Christoph Benzmüller and Peter Andrews. Church’s Type Theory. In Ed-

ward N. Zalta, editor, The Stanford Encyclopedia of Philosophy. Meta-

physics Research Lab, Stanford University, summer 2019 edition, 2019.

(Cited on page 11.)

G. Berry and G. Boudol. The chemical abstract machine. Theoretical Com-

puter Science, 96:217–248, 1992. (Cited on page 242.)

https://doi.org/10.1145/2071368.2071370
https://doi.org/10.1007/978-3-540-75560-9_9
https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.2168/LMCS-5(1:6)2009

Bibliography 291

Katalin Bimbó. Proof Theory: Sequent Calculi and Related Formalisms. CRC

Press, 2015. (Cited on pages 36 and 58.)

Stefano Bistarelli, Iliano Cervesato, Gabriele Lenzini, and Fabio Martinelli.

Relating multiset rewriting and process algebras for security protocol anal-

ysis. Journal of Computer Security, 13(1):3–47, 2005. (Cited on page 242.)

Roberto Blanco and Dale Miller. Proof outlines as proof certificates: a sys-

tem description. In Iliano Cervesato and Carsten Schürmann, editors, Pro-

ceedings First International Workshop on Focusing, volume 197 of Elec-

tronic Proceedings in Theoretical Computer Science, pages 7–14. Open

Publishing Association, November 2015. doi:10.4204/EPTCS.197.2. URL

http://www.eprover.org/EVENTS/IWIL-2015.html. (Cited on page 263.)

Kenneth A. Bowen. Programming with full first-order logic. In Hayes, Michie,

and Pao, editors, Machine Intelligence 10, pages 421–440. Ellis Horwood

and John Wiley, 1982. (Cited on page 276.)

Robert S. Boyer and J. Strother Moore. A Computational Logic. Academic

Press, 1979. (Cited on page 261.)

Pascal Brisset and Olivier Ridoux. Näıve reverse can be linear. In Koichi Fu-

rukawa, editor, Eighth International Logic Programming Conference, Paris,

France, June 1991. MIT Press. (Cited on page 216.)

Paola Bruscoli and Alessio Guglielmi. On structuring proof search for first

order linear logic. Theoretical Computer Science, 360(1-3):42–76, 2006.

doi:10.1016/j.tcs.2005.11.047. (Cited on page 150.)

M. Bugliesi, E. Lamma, and P. Mello. Modularity in logic programming.

Journal of Logic Programming, 19/20:443–502, 1994. doi:10.1016/0743-

1066(94)90032-9. (Cited on page 99.)

Iliano Cervesato and Mark-Oliver Stehr. Representing the MSR crypto-

protocol specification language in an extension of rewriting logic with

dependent types. Higher-Order Symbolic Computation, 20:3–35, 2007.

doi:10.1007/s10990-007-9003-3. (Cited on page 240.)

Iliano Cervesato, Joshua Hodas, and Frank Pfenning. Efficient resource man-

agement for linear logic proof search. In Roy Dyckhoff, Heinrich Herre, and

Peter Schroeder-Heister, editors, 7th Workshop on Extensions to Logic Pro-

gramming, LNAI, pages 28–30, Leipzig, Germany, March 1996. Springer.

(Cited on page 151.)

Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell, and

Andre Scedrov. A meta-notation for protocol analysis. In R. Gorrieri, editor,

https://doi.org/10.4204/EPTCS.197.2
http://www.eprover.org/EVENTS/IWIL-2015.html
https://doi.org/10.1016/j.tcs.2005.11.047
https://doi.org/10.1016/0743-1066(94)90032-9
https://doi.org/10.1016/0743-1066(94)90032-9
https://doi.org/10.1007/s10990-007-9003-3

292 Bibliography

Proceedings of the 12th IEEE Computer Security Foundations Workshop —

CSFW’99, pages 55–69, Mordano, Italy, 28–30 June 1999. IEEE Computer

Society Press. (Cited on pages 231, 240, and 242.)

Iliano Cervesato, Nancy A. Durgin, Patrick D. Lincoln, John C. Mitchell,

and Andre Scedrov. Relating strands and multiset rewriting for security

protocol analysis. In P. Syverson, editor, 13th IEEE Computer Security

Foundations Workshop — CSFW’00, pages 35–51, Cambridge, UK, 3–5

July 2000a. IEEE Computer Society Press. (Cited on page 240.)

Iliano Cervesato, Joshua S. Hodas, and Frank Pfenning. Efficient resource

management for linear logic proof search. Theoretical Computer Science,

232(1-2):133–163, 2000b. (Cited on page 151.)

Kaustuv Chaudhuri. The Focused Inverse Method for Linear Logic. PhD

thesis, Carnegie Mellon University, December 2006. Technical report CMU-

CS-06-162. (Cited on page 150.)

Kaustuv Chaudhuri. Encoding additives using multiplicatives and subex-

ponentials. Math. Structures in Computer Science, 28(5):651–666, 2018.

doi:10.1017/S0960129516000293. URL http://chaudhuri.info/papers/

draft15mallmsel.pdf. (Cited on page 151.)

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent

proofs via multi-focusing. In G. Ausiello, J. Karhumäki, G. Mauri, and

L. Ong, editors, Fifth International Conference on Theoretical Computer

Science, volume 273 of IFIP, pages 383–396. Springer, September 2008a.

doi:10.1007/978-0-387-09680-3 26. (Cited on page 151.)

Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characteriza-

tion of forward and backward chaining in the inverse method. J. of Auto-

mated Reasoning, 40(2-3):133–177, 2008b. doi:10.1007/s10817-007-9091-0.

(Cited on pages 150 and 263.)

Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A multi-focused proof

system isomorphic to expansion proofs. J. of Logic and Computation, 26

(2):577–603, 2016. doi:10.1093/logcom/exu030. (Cited on page 151.)

Zakaria Chihani and Dale Miller. Proof certificates for equality reasoning. In

Mario Benevides and René Thiemann, editors, Post-proceedings of LSFA

2015: 10th Workshop on Logical and Semantic Frameworks, with Applica-

tions. Natal, Brazil., number 323 in ENTCS, pages 93–108. Elsevier, 2016.

doi:10.1016/j.entcs.2016.06.007. (Cited on page 270.)

https://doi.org/10.1017/S0960129516000293
http://chaudhuri.info/papers/draft15mallmsel.pdf
http://chaudhuri.info/papers/draft15mallmsel.pdf
https://doi.org/10.1007/978-0-387-09680-3_26
https://doi.org/10.1007/s10817-007-9091-0
https://doi.org/10.1093/logcom/exu030
https://doi.org/10.1016/j.entcs.2016.06.007

Bibliography 293

Zakaria Chihani, Dale Miller, and Fabien Renaud. Foundational proof certifi-

cates in first-order logic. In Maria Paola Bonacina, editor, CADE 24: Con-

ference on Automated Deduction 2013, number 7898 in LNAI, pages 162–

177, 2013. doi:10.1007/978-3-642-38574-2 11. (Cited on pages 270 and 271.)

Zakaria Chihani, Tomer Libal, and Giselle Reis. The proof certifier Checkers.

In Hans De Nivelle, editor, Proceedings of the 24th Automated Reasoning

with Analytic Tableaux and Related Methods (TABLEAUX), number 9323

in LNCS, pages 201–210. Springer, 2015. doi:10.1007/978-3-319-24312-2 14.

(Cited on page 271.)

Zakaria Chihani, Dale Miller, and Fabien Renaud. A semantic framework

for proof evidence. J. of Automated Reasoning, 59(3):287–330, 2017.

doi:10.1007/s10817-016-9380-6. (Cited on pages 259, 263, 270, and 271.)

Jawahar Chirimar. Proof Theoretic Approach to Specification Languages.

PhD thesis, University of Pennsylvania, February 1995. URL http://www.

lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.ps. (Cited on

pages 255 and 258.)

Alonzo Church. A formulation of the Simple Theory of Types. J. of Symbolic

Logic, 5:56–68, 1940. doi:10.2307/2266170. (Cited on pages 5, 6, 13, 17,

167, 200, 204, 243, and 269.)

D. Clement, J. Despeyroux, T. Despeyroux, L. Hascoet, and G. Kahn. Natural

semantics on the computer. InK. Fuchi and M. Nivat, editors, proceedings of

the France-Japan AI and CS Symposium, ICOT, Japan, pages 49–89, 1986.

URL http://www.inria.fr/rrrt/rr-0416.html. also Technical Memo-

randum PL-86-6 Information Processing Society of Japan and Rapport de

recherche #0416, INRIA. (Cited on page 258.)

Denis Cousineau and Gilles Dowek. Embedding pure type systems in the

lambda-Pi-calculus modulo. In Simona Ronchi Della Rocca, editor, Typed

Lambda Calculi and Applications, 8th International Conference, TLCA

2007, Paris, France, June 26-28, 2007, Proceedings, volume 4583 of LNCS,

pages 102–117. Springer, 2007. (Cited on page 261.)

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice

model for static analysis of programs by construction or approximation of

fixpoints. In POPL, pages 238–252. ACM, 1977. (Cited on page 218.)

P.-L. Curien. The λρ-calculus: An abstract framework for environment ma-

chines. Technical report, LIENS–CNRS, 1990. (Cited on page 251.)

https://doi.org/10.1007/978-3-642-38574-2_11
https://doi.org/10.1007/978-3-319-24312-2_14
https://doi.org/10.1007/s10817-016-9380-6
http://www.lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.ps
http://www.lix.polytechnique.fr/Labo/Dale.Miller/chirimar/phd.ps
https://doi.org/10.2307/2266170
http://www.inria.fr/rrrt/rr-0416.html

294 Bibliography

V. Danos, J.-B. Joinet, and H. Schellinx. LKT and LKQ: sequent cal-

culi for second order logic based upon dual linear decompositions of clas-

sical implication. In J.-Y. Girard, Y. Lafont, and L. Regnier, editors,

Advances in Linear Logic, number 222 in London Mathematical Society

Lecture Note Series, pages 211–224. Cambridge University Press, 1995.

doi:10.1017/CBO9780511629150. (Cited on page 263.)

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. The structure

of exponentials: Uncovering the dynamics of linear logic proofs. In Georg

Gottlob, Alexander Leitsch, and Daniele Mundici, editors, Kurt Gödel Col-

loquium, volume 713 of LNCS, pages 159–171. Springer, 1993. (Cited on

page 151.)

Vincent Danos, Jean-Baptiste Joinet, and Harold Schellinx. A new decon-

structive logic: Linear logic. Journal of Symbolic Logic, 62(3):755–807, 1997.

doi:10.2307/2275572. (Cited on page 149.)

Dedukti. The Dedukti system. https://deducteam.github.io/, 2013.

(Cited on page 260.)

Olivier Delande and Dale Miller. A neutral approach to proof and refu-

tation in MALL. In F. Pfenning, editor, 23th Symp. on Logic in

Computer Science, pages 498–508. IEEE Computer Society Press, 2008.

doi:10.1016/j.apal.2009.07.017. URL http://www.lix.polytechnique.

fr/Labo/Dale.Miller/papers/lics08b.pdf. (Cited on page 151.)

Giorgio Delzanno. An overview of MSR(C): A CLP-based framework for the

symbolic verification of parameterized concurrent systems. Electron. Notes

Theor. Comput. Sci, 76:65–82, 2002. doi:10.1016/S1571-0661(04)80786-2.

(Cited on page 242.)

Joëlle Despeyroux. Proof of translation in natural semantics. In 1st Symp. on

Logic in Computer Science, pages 193–205, Cambridge, Mass, June 1986.

IEEE. (Cited on page 258.)

Thierry Despeyroux. TYPOL: A formalism to implement natural semantics.

Research Report 94, INRIA, Rocquencourt, France, March 1988. (Cited on

page 258.)

Henry DeYoung and Frank Pfenning. Substructural proofs as automata. In

Asian Symposium on Programming Languages and Systems, pages 3–22.

Springer, 2016. (Cited on page 223.)

Roberto Di Cosmo and Dale Miller. Linear logic. In Edward N. Zalta, edi-

tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, summer 2019 edition, 2019. (Cited on page 11.)

https://doi.org/10.1017/CBO9780511629150
https://doi.org/10.2307/2275572
https://deducteam.github.io/
https://doi.org/10.1016/j.apal.2009.07.017
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08b.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lics08b.pdf
https://doi.org/10.1016/S1571-0661(04)80786-2

Bibliography 295

Nancy A. Durgin, Patrick Lincoln, and John C. Mitchell. Multiset rewriting

and the complexity of bounded security protocols. J. Comput. Secur, 12(2):

247–311, 2004. doi:10.3233/JCS-2004-12203. (Cited on page 242.)

Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J.

of Symbolic Logic, 57(3):795–807, September 1992. doi:10.2307/2275431.

(Cited on page 160.)

Roy Dyckhoff and Stephane Lengrand. Call-by-value λ-calculus

and LJQ. J. of Logic and Computation, 17(6):1109–1134, 2007.

doi:10.1093/logcom/exm037. (Cited on page 263.)

Maarten H. van Emden and Robert A. Kowalski. The semantics of predicate

logic as a programming language. J. of the ACM, 23(4):733–742, 1976.

(Cited on pages 11 and 98.)

Javier Esparza and Mogens Nielsen. Decidability issues for petri nets - a

survey. Bulletin of the EATCS, 52:244–262, 1994. (Cited on page 214.)

William M. Farmer. Simple Type Theory: A Practical Logic for Expressing

and Reasoning About Mathematical Ideas. Springer Nature, 2023. (Cited on

pages 21 and 182.)

Melvin Fitting. Tableaus for logic programming. Journal of Automated Rea-

soning, 13(2):175–188, 1994. (Cited on page 276.)

Melvin C. Fitting. Intuitionistic Logic Model Theory and Forcing. North-

Holland, 1969. (Cited on page 44.)

Dov M. Gabbay. N-Prolog: An extension of Prolog with hypothetical im-

plication II—logical foundations, and negation as failure. Journal of Logic

Programming, 2(4):251–283, December 1985. (Cited on page 45.)

Dov M. Gabbay and Nicola Olivetti. Goal-Directed Proof Theory, volume 21

of Applied Logic Series. Kluwer Academic Publishers, August 2000. (Cited

on page 98.)

Andrew Gacek, Dale Miller, and Gopalan Nadathur. A two-level logic ap-

proach to reasoning about computations. J. of Automated Reasoning, 49

(2):241–273, 2012. doi:10.1007/s10817-011-9218-1. URL http://arxiv.

org/abs/0911.2993. (Cited on pages 258 and 277.)

Jean H. Gallier. Logic for Computer Science: Foundations of Automatic The-

orem Proving. Harper & Row, 1986. (Cited on pages 11, 36, 58, and 98.)

https://doi.org/10.3233/JCS-2004-12203
https://doi.org/10.2307/2275431
https://doi.org/10.1093/logcom/exm037
https://doi.org/10.1007/s10817-011-9218-1
http://arxiv.org/abs/0911.2993
http://arxiv.org/abs/0911.2993

296 Bibliography

Vijay Gehlot and Carl Gunter. Normal process representatives. In 5th Symp.

on Logic in Computer Science, pages 200–207, Philadelphia, Pennsylvania,

June 1990. IEEE Computer Society Press. doi:10.1109/LICS.1990.113746.

(Cited on page 242.)

Gerhard Gentzen. Investigations into logical deduction. In M. E. Szabo, editor,

The Collected Papers of Gerhard Gentzen, pages 68–131. North-Holland,

Amsterdam, 1935. doi:10.1007/BF01201353. Translation of articles that

appeared in 1934-35. Collected papers appeared in 1969. (Cited on pages 6,

20, 36, 40, 44, 57, 58, 99, 102, 163, 262, 267, and 276.)

Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102,

1987. doi:10.1016/0304-3975(87)90045-4. (Cited on pages 6, 118, 151, 167,

203, 204, and 263.)

Jean-Yves Girard. On the unity of logic. Technical Report 26, Université Paris

VII, June 1991a. (Cited on page 149.)

Jean-Yves Girard. A new constructive logic: classical logic. Math. Struc-

tures in Comp. Science, 1:255–296, 1991b. doi:10.1017/S0960129500001328.

(Cited on page 263.)

Jean-Yves Girard. A fixpoint theorem in linear logic. An email posting

archived at https://www.seas.upenn.edu/~sweirich/types/archive/

1992/msg00030.html to the linear@cs.stanford.edu mailing list, February

1992. (Cited on pages 99 and 283.)

Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types. Cambridge

University Press, 1989. (Cited on pages 36, 58, and 149.)

Georges Gonthier. The four colour theorem: Engineering of a formal proof.

In Deepak Kapur, editor, 8th Asian Symposium on Computer Mathematics,

volume 5081 of LNCS, page 333. Springer, 2007. (Cited on page 259.)

Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. Ed-

inburgh LCF: A Mechanised Logic of Computation, volume 78 of LNCS.

Springer, 1979. doi:10.1007/3-540-09724-4. (Cited on page 261.)

Mike Gordon. From LCF to HOL: a short history. In Gordon D. Plotkin,

Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction:

Essays in Honour of Robin Milner, pages 169–186. MIT Press, 2000. (Cited

on page 21.)

Alessio Guglielmi. Abstract Logic Programming in Linear Logic—Independence

and Causality in a First Order Calculus. PhD thesis, Università di Pisa,

1996. (Cited on page 150.)

https://doi.org/10.1109/LICS.1990.113746
https://doi.org/10.1007/BF01201353
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/S0960129500001328
https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html
https://www.seas.upenn.edu/~sweirich/types/archive/1992/msg00030.html
https://doi.org/10.1007/3-540-09724-4

Bibliography 297

Alessio Guglielmi. A system of interaction and structure. ACM

Trans. on Computational Logic, 8(1):1–64, January 2007.

doi:10.1145/1182613.1182614. (Cited on pages 58 and 111.)

Thomas C. Hales. A proof of the Kepler conjecture. Annals of Mathematics,

162(3):1065–1185, 2005. (Cited on page 259.)

Lars Hallnäs and Peter Schroeder-Heister. A proof-theoretic approach to logic

programming. II. Programs as definitions. J. of Logic and Computation,

1(5):635–660, October 1991. doi:10.1093/logcom/1.5.635. (Cited on page

58.)

John Hannan. Extended natural semantics. J. of Functional Programming, 3

(2):123–152, April 1993. doi:10.1017/S0956796800000666. (Cited on page

258.)

John Hannan and Dale Miller. From operational semantics to abstract ma-

chines. Mathematical Structures in Computer Science, 2(4):415–459, 1992.

doi:10.1017/S0960129500001559. (Cited on pages 250 and 252.)

John Hannan and Frank Pfenning. Compiler verification in LF. In 7th Symp.

on Logic in Computer Science, Santa Cruz, California, June 1992. IEEE

Computer Society Press. (Cited on page 258.)

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework

for defining logics. Journal of the ACM, 40(1):143–184, 1993.

doi:10.1145/138027.138060. (Cited on page 261.)

R. Harrop. Concerning formulas of the types A → B ∨ C, A → (Ex)B(x) in

intuitionistic formal systems. J. of Symbolic Logic, 25:27–32, 1960. (Cited

on page 99.)

Quentin Heath and Dale Miller. A proof theory for model checking. J. of

Automated Reasoning, 63(4):857–885, 2019. doi:10.1007/s10817-018-9475-3.

(Cited on pages 99 and 151.)

Hugo Herbelin. Séquents qu’on calcule: de l’interprétation du calcul des

séquents comme calcul de lambda-termes et comme calcul de stratégies

gagnantes. PhD thesis, Université Paris 7, 1995. URL https://tel.

archives-ouvertes.fr/tel-00382528. (Cited on page 263.)

Manuel V. Hermenegildo, Germán Puebla, Francisco Bueno, and Pedro López-

Garćıa. Integrated program debugging, verification, and optimization using

abstract interpretation (and the ciao system preprocessor). Sci. Comput.

Program., 58(1-2):115–140, 2005. (Cited on page 218.)

https://doi.org/10.1145/1182613.1182614
https://doi.org/10.1093/logcom/1.5.635
https://doi.org/10.1017/S0956796800000666
https://doi.org/10.1017/S0960129500001559
https://doi.org/10.1145/138027.138060
https://doi.org/10.1007/s10817-018-9475-3
https://tel.archives-ouvertes.fr/tel-00382528
https://tel.archives-ouvertes.fr/tel-00382528

298 Bibliography

R. Hindley. The principal type-scheme of an object in combinatory logic.

Transactions of the American Mathematical Society, 146:29–60, 1969. (Cited

on page 258.)

Joshua Hodas and Dale Miller. Logic programming in a fragment of intuition-

istic linear logic: Extended abstract. In G. Kahn, editor, 6th Symp. on Logic

in Computer Science, pages 32–42, Amsterdam, July 1991. IEEE. (Cited

on page 151.)

Joshua Hodas and Dale Miller. Logic programming in a fragment of intu-

itionistic linear logic. Information and Computation, 110(2):327–365, 1994.

doi:10.1006/inco.1994.1036. (Cited on pages 151, 165, and 203.)

Joshua Hodas, Kevin Watkins, Naoyuki Tamura, and Kyoung-Sun Kang. Ef-

ficient implementation of a linear logic programming language. In Joxan

Jaffar, editor, Proceedings of the 1998 Joint International Conference and

Symposium on Logic Programming, pages 145–159, 1998. (Cited on page

151.)

Joshua S. Hodas. Logic Programming in Intuitionistic Linear Logic: Theory,

Design, and Implementation. PhD thesis, University of Pennsylvania, De-

partment of Computer and Information Science, May 1994. (Cited on page

166.)

Joshua S. Hodas. A linear logic treatment of phrase structure grammars for

unbounded dependencies. In Alain Lecomte, Françoise Lamarche, and Guy

Perrier, editors, Proceedings of the 2nd International Conference on Logical

Aspects of Computational Linguistics (LACL-97), volume 1582 of LNAI,

pages 160–179, Berlin, September 1999. Springer. (Cited on page 166.)

Joshua S. Hodas and Naoyuki Tamura. lolliCop — A linear logic implemen-

tation of a lean connection-method theorem prover for first-order classical

logic. In R. Goré, A. Leitsch, and T. Nipkow, editors, Proceedings of IJCAR:

International Joint Conference on Automated Reasoning, number 2083 in

LNCS, pages 670–684. Springer, 2001. (Cited on page 151.)

Jacob M. Howe. Proof Search Issues in Some Non-Classical Logics. PhD

thesis, University of St Andrews, December 1998. Available as University

of St Andrews Research Report CS/99/1. (Cited on page 263.)

Jörg Hudelmaier. Bounds on cut-elimination in intuitionistic propositional

logic. Archive for Mathematical Logic, 31:331–353, 1992. (Cited on page

160.)

https://doi.org/10.1006/inco.1994.1036

Bibliography 299

Gérard P. Huet. A unification algorithm for typed λ-calculus. Theoreti-

cal Computer Science, 1:27–57, 1975. doi:10.1016/0304-3975(75)90011-0.

(Cited on page 9.)

Gilles Kahn. Natural semantics. In Franz-Josef Brandenburg, Guy Vidal-

Naquet, and Martin Wirsing, editors, Proceedings of the Symposium on

Theoretical Aspects of Computer Science, volume 247 of LNCS, pages 22–39.

Springer, March 1987. doi:10.1007/BFb0039592. (Cited on page 242.)

Max I. Kanovich. Petri nets, Horn programs, Linear Logic and vec-

tor games. Annals of Pure and Applied Logic, 75(1–2):107–135, 1995.

doi:10.1017/S0960129500001328. (Cited on page 242.)

Stephen Cole Kleene. Permutability of inferences in Gentzen’s calculi LK and

LJ. Memoirs of the American Mathematical Society, 10:1–26, 1952. (Cited

on page 37.)

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David

Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolan-

ski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood.

seL4: Formal verification of an OS kernel. In Proceedings of the 22nd Sympo-

sium on Operating Systems Principles (22nd SOSP’09), Operating Systems

Review (OSR), pages 207–220, Big Sky, MT, October 2009. ACM SIGOPS.

(Cited on page 259.)

Naoki Kobayashi and Akinori Yonezawa. Asynchronous communication model

based on linear logic. Formal Aspects of Computing, 7(2):113–149, 1995.

doi:10.1007/BF01211602. (Cited on page 218.)

R. A. Kowalski. Algorithm = Logic + Control. Communications of the Asso-

ciation for Computing Machinery, 22:424–436, 1979. (Cited on page 9.)

S. Kripke. A completeness theorem in modal logic’. J. of Symbolic Logic, 24

(1):1–14, 1959. (Cited on page 99.)

S. A. Kripke. Semantical analysis of intuitionistic logic I. In J. N. Crossley

and M. Dummett, editors, Formal Systems and Recursive Functions, pages

92–130. (Proc. 8th Logic Colloq. Oxford 1963) North-Holland, Amsterdam,

1965. (Cited on pages 39 and 99.)

Jean-Louis Krivine. Lambda-Calcul : Types et Modèles. Etudes et Recherches

en Informatique. Masson, 1990. (Cited on page 21.)

R. Kuzmin. Sur une nouvelle classe de nombres transcendants. Bulletin de

l’Académie des Sciences de l’URSS, pages 585–597, 1930. (Cited on page

280.)

https://doi.org/10.1016/0304-3975(75)90011-0
https://doi.org/10.1007/BFb0039592
https://doi.org/10.1017/S0960129500001328
https://doi.org/10.1007/BF01211602

300 Bibliography

Keehang Kwon, Gopalan Nadathur, and Debra Sue Wilson. Implementing a

notion of modules in the logic programming language λProlog. In Evelina

Lamma and Paola Mello, editors, 4th Workshop on Extensions to Logic

Programming, volume 660 of LNAI, pages 359–393. Springer, 1993. (Cited

on page 99.)

P. J. Landin. The mechanical evaluation of expressions. Computer Journal, 6

(5):308–320, 1964. (Cited on pages 242 and 251.)

Olivier Laurent. Etude de la polarisation en logique. PhD thesis, Université

Aix-Marseille II, March 2002. (Cited on page 263.)

Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52

(7):107–115, 2009. doi:10.1145/1538788.1538814. (Cited on page 259.)

Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionis-

tic, and classical logics. Theoretical Computer Science, 410(46):4747–4768,

2009. doi:10.1016/j.tcs.2009.07.041. Abstract Interpretation and Logic Pro-

gramming: In honor of professor Giorgio Levi. (Cited on pages 263 and 267.)

Chuck Liang and Dale Miller. A focused approach to combining

logics. Annals of Pure and Applied Logic, 162(9):679–697, 2011.

doi:10.1016/j.apal.2011.01.012. (Cited on page 150.)

Chuck Liang and Dale Miller. On subexponentials, synthetic connectives, and

multi-level delimited control. In Martin Davis, Ansgar Fehnker, Annabelle

McIver, and Andrei Voronkov, editors, Logic for Programming, Artificial In-

telligence, and Reasoning (LPAR), number 9450 in LNCS, November 2015.

doi:10.1007/978-3-662-48899-7 21. URL http://www.lix.polytechnique.

fr/Labo/Dale.Miller/papers/subdelimlncs.pdf. (Cited on page 151.)

Chuck Liang and Dale Miller. Focusing Gentzen’s LK proof system. In

Thomas Piecha and Kai Wehmeier, editors, Peter Schroeder-Heister on

Proof-Theoretic Semantics, Outstanding Contributions to Logic. Springer,

2022. URL https://hal.archives-ouvertes.fr/hal-03457379. To ap-

pear. (Cited on page 150.)

P. Lincoln, J. Mitchell, A. Scedrov, and N. Shankar. Decision problems for

propositional linear logic. Annals of Pure and Applied Logic, 56:239–311,

1992. (Cited on page 107.)

John W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 2

edition, 1987. ISBN 3-540-18199-7. (Cited on pages 11 and 98.)

Pablo López and Ernesto Pimentel. The UMA Forum linear logic programming

language. implementation, January 1998. (Cited on page 151.)

https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1016/j.tcs.2009.07.041
https://doi.org/10.1016/j.apal.2011.01.012
https://doi.org/10.1007/978-3-662-48899-7_21
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/subdelimlncs.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/subdelimlncs.pdf
https://hal.archives-ouvertes.fr/hal-03457379

Bibliography 301

Sonia Marin, Dale Miller, and Marco Volpe. A focused framework for emulat-

ing modal proof systems. In Lev Beklemishev, Stéphane Demri, and András

Máté, editors, 11th Conference on Advances in Modal Logic, number 11

in Advances in Modal Logic, pages 469–488, Budapest, Hungary, August

2016. College Publications. URL https://hal.archives-ouvertes.fr/

hal-01379624. (Cited on page 271.)

Sonia Marin, Dale Miller, Elaine Pimentel, and Marco Volpe. From axioms

to synthetic inference rules via focusing. Annals of Pure and Applied Logic,

173(5):1–32, 2022. doi:10.1016/j.apal.2022.103091. (Cited on page 99.)

Per Martin-Löf. Constructive mathematics and computer programming. In

Sixth International Congress for Logic, Methodology, and Philosophy of Sci-

ence, pages 153–175, Amsterdam, 1982. North-Holland. (Cited on page 7.)

John McCarthy. Artificial intelligence, logic and formalizing common sense. In

Richmond Thomason, editor, Philosophical Logic and Artificial Intelligence.

Kluwer Academic, 1989. URL http://www-formal.stanford.edu/jmc/

ailogic.dvi. (Cited on page 92.)

Raymond McDowell and Dale Miller. Cut-elimination for a logic with def-

initions and induction. Theoretical Computer Science, 232:91–119, 2000.

doi:10.1016/S0304-3975(99)00171-1. (Cited on page 178.)

Raymond McDowell and Dale Miller. Reasoning with higher-order abstract

syntax in a logical framework. ACM Trans. on Computational Logic, 3(1):

80–136, 2002. doi:10.1145/504077.504080. (Cited on pages 58, 258, and 277.)

Raymond McDowell, Dale Miller, and Catuscia Palamidessi. Encoding tran-

sition systems in sequent calculus. Theoretical Computer Science, 294(3):

411–437, 2003. doi:10.1016/S0304-3975(01)00168-2. (Cited on page 99.)

Jia Meng. The integration of higher order interactive proof with first order

automatic theorem proving. PhD thesis, University of Cambridge, Com-

puter Laboratory, 2015. URL http://www.cl.cam.ac.uk/techreports/

UCAM-CL-TR-872.pdf. (Cited on page 261.)

Dale Miller. A theory of modules for logic programming. In Robert M. Keller,

editor, Third Annual IEEE Symposium on Logic Programming, pages 106–

114, Salt Lake City, Utah, September 1986. (Cited on page 98.)

Dale Miller. Lexical scoping as universal quantification. In G. Levi

and M. Martelli, editors, Sixth International Logic Programming

Conference, pages 268–283, Lisbon, Portugal, June 1989a. MIT

Press. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/iclp89.pdf. (Cited on page 181.)

https://hal.archives-ouvertes.fr/hal-01379624
https://hal.archives-ouvertes.fr/hal-01379624
https://doi.org/10.1016/j.apal.2022.103091
http://www-formal.stanford.edu/jmc/ailogic.dvi
http://www-formal.stanford.edu/jmc/ailogic.dvi
https://doi.org/10.1016/S0304-3975(99)00171-1
https://doi.org/10.1145/504077.504080
https://doi.org/10.1016/S0304-3975(01)00168-2
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-872.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-872.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp89.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp89.pdf

302 Bibliography

Dale Miller. A logical analysis of modules in logic programming. Journal

of Logic Programming, 6(1-2):79–108, January 1989b. doi:10.1016/0743-

1066(89)90031-9. (Cited on page 99.)

Dale Miller. Abstractions in logic programming. In Piergiorgio Odifreddi,

editor, Logic and Computer Science, pages 329–359. Academic Press,

1990. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/AbsInLP.pdf.pdf. (Cited on page 263.)

Dale Miller. Unification of simply typed lambda-terms as logic programming.

In Koichi Furukawa, editor, Eighth International Logic Programming Con-

ference, pages 255–269, Paris, France, June 1991. MIT Press. (Cited on

page 99.)

Dale Miller. Abstract syntax and logic programming. In Logic Programming:

Proceedings of the First Russian Conference on Logic Programming, 14-18

September 1990, number 592 in LNAI, pages 322–337. Springer, 1992. (Cited

on page 99.)

Dale Miller. The π-calculus as a theory in linear logic: Preliminary results.

In E. Lamma and P. Mello, editors, 3rd Workshop on Extensions to Logic

Programming, number 660 in LNCS, pages 242–265, Bologna, Italy, 1993.

Springer. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/pic.pdf. (Cited on pages 214, 234, and 257.)

Dale Miller. A proposal for modules in λProlog. In R. Dyckhoff, editor, 4th

Workshop on Extensions to Logic Programming, number 798 in LNCS, pages

206–221. Springer, 1994. (Cited on page 99.)

Dale Miller. Forum: A multiple-conclusion specification logic. Theoretical

Computer Science, 165(1):201–232, 1996. doi:10.1016/0304-3975(96)00045-

X. (Cited on pages 150, 165, 253, and 255.)

Dale Miller. Higher-order quantification and proof search. In Hélène Kirchner

and Christophe Ringeissen, editors, Proceedings of AMAST 2002, number

2422 in LNCS, pages 60–74, 2002. (Cited on page 200.)

Dale Miller. Encryption as an abstract data-type: An extended ab-

stract. In Iliano Cervesato, editor, Proceedings of FCS’03: Founda-

tions of Computer Security, volume 84 of ENTCS, pages 18–29. El-

sevier, 2003. doi:10.1016/S1571-0661(04)80841-7. URL http://www.

lix.polytechnique.fr/Labo/Dale.Miller/papers/fcs03.pdf. (Cited

on pages 218 and 240.)

https://doi.org/10.1016/0743-1066(89)90031-9
https://doi.org/10.1016/0743-1066(89)90031-9
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/AbsInLP.pdf.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/AbsInLP.pdf.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/pic.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/pic.pdf
https://doi.org/10.1016/0304-3975(96)00045-X
https://doi.org/10.1016/0304-3975(96)00045-X
https://doi.org/10.1016/S1571-0661(04)80841-7
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fcs03.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fcs03.pdf

Bibliography 303

Dale Miller. Collection analysis for Horn clause programs. In Proceedings

of PPDP 2006: 8th International ACM SIGPLAN Conference on Princi-

ples and Practice of Declarative Programming, pages 179–188, July 2006.

doi:10.1145/1140335.1140357. URL http://www.lix.polytechnique.fr/

Labo/Dale.Miller/papers/ppdp06.pdf. (Cited on page 218.)

Dale Miller. Formalizing operational semantic specifications in logic. Concur-

rency Column of the Bulletin of the EATCS, October 2008. (Cited on page

258.)

Dale Miller. Reasoning about computations using two-levels of logic. In

K. Ueda, editor, Proceedings of the 8th Asian Symposium on Programming

Languages and Systems (APLAS’10), number 6461 in LNCS, pages 34–

46, 2010. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/aplas10.pdf. (Cited on page 258.)

Dale Miller. A proposal for broad spectrum proof certificates. In J.-P.

Jouannaud and Z. Shao, editors, CPP: First International Conference on

Certified Programs and Proofs, volume 7086 of LNCS, pages 54–69, 2011.

doi:10.1007/978-3-642-25379-9 6. URL http://www.lix.polytechnique.

fr/Labo/Dale.Miller/papers/cpp11.pdf. (Cited on page 270.)

Dale Miller. Communicating and trusting proofs: The case for broad spectrum

proof certificates. In P. Schroeder-Heister, W. Hodges, G. Heinzmann, and

P. E. Bour, editors, Logic, Methodology, and Philosophy of Science. Pro-

ceedings of the Fourteenth International Congress, pages 323–342. College

Publications, 2014. (Cited on page 260.)

Dale Miller. Proof checking and logic programming. Formal Aspects of

Computing, 29(3):383–399, 2017. doi:10.1007/s00165-016-0393-z. URL

http://dx.doi.org/10.1007/s00165-016-0393-z. (Cited on page 259.)

Dale Miller. Reciprocal influences between logic programming and

proof theory. Philosophy & Technology, 34(1):75–104, March 2021.

doi:10.1007/s13347-019-00370-x. (Cited on page 11.)

Dale Miller. A survey of the proof-theoretic foundations of logic programming.

Theory and Practice of Logic Programming, 22(6):859–904, October 2022.

doi:10.1017/S1471068421000533. Published online November 2021. (Cited

on page 11.)

Dale Miller and Gopalan Nadathur. Higher-order logic programming. In

Ehud Shapiro, editor, Proceedings of the Third International Logic Pro-

gramming Conference, volume 225 of LNCS, pages 448–462, London, June

1986. Springer. doi:10.1007/3-540-16492-8 94. (Cited on page 98.)

https://doi.org/10.1145/1140335.1140357
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp06.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/ppdp06.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/aplas10.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/aplas10.pdf
https://doi.org/10.1007/978-3-642-25379-9_6
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cpp11.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/cpp11.pdf
https://doi.org/10.1007/s00165-016-0393-z
http://dx.doi.org/10.1007/s00165-016-0393-z
https://doi.org/10.1007/s13347-019-00370-x
https://doi.org/10.1017/S1471068421000533
https://doi.org/10.1007/3-540-16492-8_94

304 Bibliography

Dale Miller and Gopalan Nadathur. Programming with Higher-Order Logic.

Cambridge University Press, June 2012. doi:10.1017/CBO9781139021326.

(Cited on pages 21, 22, 98, 99, and 269.)

Dale Miller and Catuscia Palamidessi. Foundational aspects of syntax. ACM

Computing Surveys, 31, September 1999. doi:10.1145/333580.333590. (Cited

on page 258.)

Dale Miller and Elaine Pimentel. Linear logic as a framework for specifying

sequent calculus. In Jan van Eijck, Vincent van Oostrom, and Albert Visser,

editors, Logic Colloquium ’99: Proceedings of the Annual European Summer

Meeting of the Association for Symbolic Logic, Lecture Notes in Logic, pages

111–135. A K Peters Ltd, 2004. URL http://www.lix.polytechnique.fr/

Labo/Dale.Miller/papers/lc99.pdf. (Cited on pages 58 and 165.)

Dale Miller and Elaine Pimentel. A formal framework for specifying sequent

calculus proof systems. Theoretical Computer Science, 474:98–116, 2013.

doi:10.1016/j.tcs.2012.12.008. URL http://hal.inria.fr/hal-00787586.

(Cited on pages 37, 58, and 165.)

Dale Miller and Marco Volpe. Focused labeled proof systems for modal

logic. In Martin Davis, Ansgar Fehnker, Annabelle McIver, and Andrei

Voronkov, editors, Logic for Programming, Artificial Intelligence, and Rea-

soning (LPAR), number 9450 in LNCS, pages 266–280, November 2015.

doi:10.1007/978-3-662-48899-7 19. (Cited on page 271.)

Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform

proofs as a foundation for logic programming. Annals of Pure and Applied

Logic, 51(1–2):125–157, 1991. doi:10.1016/0168-0072(91)90068-W. (Cited

on pages 184 and 263.)

Robin Milner. A theory of type polymorphism in programming. J. of Computer

and System Sciences, 17(3):348–375, 1978. (Cited on page 258.)

Robin Milner. A Calculus of Communicating Systems, volume 92 of LNCS.

Springer, New York, NY, 1980. (Cited on page 242.)

Robin Milner. Communication and Concurrency. Prentice-Hall International,

1989. ISBN 978-0-13-115007-2. (Cited on page 257.)

Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard

ML. MIT Press, 1990. (Cited on page 258.)

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, Part I. Information and Computation, 100(1):1–40, September

1992a. doi:10.1016/0890-5401(92)90008-4. (Cited on pages 234 and 258.)

https://doi.org/10.1017/CBO9781139021326
https://doi.org/10.1145/333580.333590
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lc99.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/lc99.pdf
https://doi.org/10.1016/j.tcs.2012.12.008
http://hal.inria.fr/hal-00787586
https://doi.org/10.1007/978-3-662-48899-7_19
https://doi.org/10.1016/0168-0072(91)90068-W
https://doi.org/10.1016/0890-5401(92)90008-4

Bibliography 305

Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile

processes, Part II. Information and Computation, 100(1):41–77, 1992b.

doi:10.1016/0890-5401(92)90009-5. (Cited on pages 245 and 246.)

John C. Mitchell and Eugenio Moggi. Kripke-style models for typed lambda

calculus. Annals of Pure and Applied Logic, 51(1-2):99–124, 1991. (Cited

on page 99.)

Joan Moschovakis. Intuitionistic Logic. In Edward N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford

University, Fall 2021 edition, 2021. (Cited on page 11.)

Gopalan Nadathur. A Higher-Order Logic as the Basis for Logic Programming.

PhD thesis, University of Pennsylvania, May 1987. (Cited on page 186.)

Gopalan Nadathur and Dale Miller. An Overview of λProlog. In Ken-

neth A. Bowen and Robert A. Kowalski, editors, Fifth International

Logic Programming Conference, pages 810–827, Seattle, August 1988. MIT

Press. URL http://www.lix.polytechnique.fr/Labo/Dale.Miller/

papers/iclp88.pdf. (Cited on page 218.)

Gopalan Nadathur and Dale Miller. Higher-order Horn clauses. Journal of

the ACM, 37(4):777–814, October 1990. doi:10.1145/96559.96570. (Cited

on page 186.)

Gopalan Nadathur and Frank Pfenning. The type system of a higher-order

logic programming language. In Frank Pfenning, editor, Types in Logic

Programming, pages 245–283. MIT Press, 1992. (Cited on pages 22 and 218.)

George C. Necula and Shree Prakash Rahul. Oracle-based checking of un-

trusted software. In Chris Hankin and Dave Schmidt, editors, 28th ACM

Symp. on Principles of Programming Languages, pages 142–154. ACM,

2001. (Cited on page 270.)

Sara Negri. Proof analysis beyond geometric theories: from rule systems to

systems of rules. Journal of Logic and Computation, 26(2):513–537, 2016.

doi:10.1093/LOGCOM/EXU037. (Cited on page 284.)

Sara Negri and Jan von Plato. Structural Proof Theory. Cambridge University

Press, 2001. (Cited on pages 36, 58, and 99.)

Vivek Nigam and Dale Miller. Algorithmic specifications in linear logic

with subexponentials. In António Porto and Francisco Javier López-

Fraguas, editors, ACM SIGPLAN Conference on Principles and Prac-

tice of Declarative Programming (PPDP), pages 129–140. ACM, 2009.

doi:10.1145/1599410.1599427. (Cited on page 151.)

https://doi.org/10.1016/0890-5401(92)90009-5
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/iclp88.pdf
https://doi.org/10.1145/96559.96570
https://doi.org/10.1093/LOGCOM/EXU037
https://doi.org/10.1145/1599410.1599427

306 Bibliography

Vivek Nigam, Elaine Pimentel, and Giselle Reis. An extended framework for

specifying and reasoning about proof systems. J. of Logic and Computation,

2014. doi:10.1093/logcom/exu029. (Cited on page 165.)

Carlos Olarte, Vivek Nigam, and Elaine Pimentel. Subexponential concur-

rent constraint programming. Theoretical Computer Science, 606:98–120,

November 2015. doi:10.1016/j.tcs.2015.06.031. (Cited on page 151.)

Leszek Pacholski and Andreas Podelski. Set constraints: A pearl in research on

constraints. In Principles and Practice of Constraint Programming - CP97,

number 1330 in LNCS, pages 549–562. Springer, 1997. (Cited on page 212.)

Remo Pareschi and Dale Miller. Extending definite clause grammars with

scoping constructs. In David H. D. Warren and Peter Szeredi, editors, 1990

International Conference in Logic Programming, pages 373–389. MIT Press,

June 1990. (Cited on page 166.)

Lawrence C. Paulson. Isabelle: A Generic Theorem Prover. Number 828 in

Science & Business Media. Springer, 1994. (Cited on page 21.)

Frank Pfenning. Elf: A language for logic definition and verified metapro-

gramming. In 4th Symp. on Logic in Computer Science, pages 313–321,

Monterey, CA, June 1989. IEEE. (Cited on page 22.)

Frank Pfenning. Structural cut elimination I. intuitionistic and classical logic.

Information and Computation, 157(1/2):84–141, March 2000. (Cited on

page 37.)

Frank Pfenning. Church and Curry: Combining intrinsic and extrinsic typing.

In Christoph Benzmüller, Chad E. Brown, Jörg Siekmann, and Richard

Statman, editors, Reasoning in Simple Type Theory: Festschrift in Honor

of Peter B. Andrews on His 70th Birthday, number 17 in Studies in Logic,

pages 303–338. College Publications, 2008. (Cited on page 21.)

Frank Pfenning and Carsten Schürmann. System description: Twelf — A

meta-logical framework for deductive systems. In H. Ganzinger, editor,

16th Conf. on Automated Deduction (CADE), number 1632 in LNAI, pages

202–206, Trento, 1999. Springer. doi:10.1007/3-540-48660-7 14. (Cited on

pages 22 and 258.)

Jan von Plato. The development of proof theory. In Edward N. Zalta, edi-

tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, winter 2018 edition, 2018. (Cited on page 11.)

Jan von Plato and G. Gentzen. Gentzen’s proof of normalization for natural

deduction. Bulletin of Symbolic Logic, 14(2):240–257, June 2008. URL

http://www.jstor.org/stable/20059973. (Cited on page 58.)

https://doi.org/10.1093/logcom/exu029
https://doi.org/10.1016/j.tcs.2015.06.031
https://doi.org/10.1007/3-540-48660-7_14
http://www.jstor.org/stable/20059973

Bibliography 307

Gordon D. Plotkin. A structural approach to operational semantics. DAIMI

FN-19, Aarhus University, Aarhus, Denmark, September 1981. (Cited on

page 242.)

Gordon D. Plotkin. A structural approach to operational semantics. J. of Logic

and Algebraic Programming, 60-61:17–139, 2004. (Cited on page 242.)

Dag Prawitz. Natural Deduction. Almqvist & Wiksell, Uppsala, 1965. (Cited

on page 44.)

A. N. Prior. The runabout inference-ticket. Analysis, 21(2):38–39, December

1960. (Cited on page 49.)

Michael Rathjen and Wilfried Sieg. Proof theory. In Edward N. Zalta, edi-

tor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,

Stanford University, fall 2020 edition, 2020. (Cited on page 11.)

David W. Reed and Donald W. Loveland. A comparison of three Prolog

extensions. Journal of Logic Programming, 12(1 & 2):25–50, January 1992.

(Cited on page 276.)

John H. Reppy. CML: A higher-order concurrent language. In ACM SIGPLAN

Conference on Programming Language Design and Implementation, pages

293–305, June 1991. (Cited on page 256.)

J. A. Robinson. A machine-oriented logic based on the resolution principle.

JACM, 12:23–41, January 1965. (Cited on page 8.)

Harold Schellinx. Some syntactical observations on linear logic. J. of Logic

and Computation, 1(4):537–559, September 1991. (Cited on page 179.)

Wolfgang Schönfeld. PROLOG extensions based on tableau calculus. In Pro-

ceedings of IJCAI 85, pages 730–732, 1985. (Cited on page 276.)

Peter Schroeder-Heister. Rules of definitional reflection. In M. Vardi, editor,

8th Symp. on Logic in Computer Science, pages 222–232. IEEE Computer

Society Press, IEEE, June 1993. doi:10.1109/LICS.1993.287585. (Cited on

pages 99 and 283.)

Robert J. Simmons. Structural focalization. ACM Trans. on Computational

Logic, 15(3):21, 2014. doi:10.1145/2629678. (Cited on page 151.)

Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard

Isomorphism, volume 149 of Studies in Logic. Elsevier, 2006. (Cited on page

21.)

https://doi.org/10.1109/LICS.1993.287585
https://doi.org/10.1145/2629678

308 Bibliography

Richard Statman. Bounds for proof-search and speed-up in the predicate

calculus. Annals of Mathematical Logic, 15:225–287, 1978. (Cited on page

37.)

Paul Tarau. Program transformations and WAM-support for the compilation

of definite metaprograms. In Proceedings of the First and Second Russian

Conference on Logic Programming, number 592 in LNAI, pages 462–473.

Springer, 1992. (Cited on page 249.)

Alwen Tiu. A Logical Framework for Reasoning about Logical Specifications.

PhD thesis, Pennsylvania State University, May 2004. URL http://etda.

libraries.psu.edu/theses/approved/WorldWideIndex/ETD-479/.

(Cited on page 249.)

Alwen Tiu and Dale Miller. A proof search specification of the π-

calculus. In 3rd Workshop on the Foundations of Global Ubiq-

uitous Computing, volume 138 of ENTCS, pages 79–101, 2005.

doi:10.1016/j.entcs.2005.05.006. URL http://www.lix.polytechnique.

fr/Labo/Dale.Miller/papers/fguc04workshop.pdf. (Cited on page 58.)

Anne Sjerp Troelstra, editor. Metamathematical Investigation of Intuitionis-

tic Arithmetic and Analysis, volume 344 of Lecture Notes in Mathematics.

Springer, 1973. (Cited on page 44.)

Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in Mathematics,

volume 1. North-Holland, 1988. (Cited on page 39.)

Christian Urban. Forum and its implementations. Master’s thesis, University

of St. Andrews, December 1997. (Cited on page 151.)

Nathan Wetzler, Marijn J. H. Heule, and Jr. Warren A. Hunt. DRAT-trim:

Efficient checking and trimming using expressive clausal proofs. In Carsten

Sinz and Uwe Egly, editors, Theory and Applications of Satisfiability Test-

ing - SAT 2014, volume 8561 of LNCS, pages 422–429. Springer, 2014.

doi:10.1007/978-3-319-09284-3 31. (Cited on page 262.)

http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-479/
http://etda.libraries.psu.edu/theses/approved/WorldWideIndex/ETD-479/
https://doi.org/10.1016/j.entcs.2005.05.006
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fguc04workshop.pdf
http://www.lix.polytechnique.fr/Labo/Dale.Miller/papers/fguc04workshop.pdf
https://doi.org/10.1007/978-3-319-09284-3_31

Index

(‡), 3

Abella, proof assistant, 258

abstract data type, 231

Abstract Evaluation System (AES), 250

abstract logic programming language,

60, 125

abstract machines, 242, 250

additive connective, 102

additive inference rule, 29

α-conversion, 14

Andreoli, Jean-Marc, 149, 240

argument types, 16

atomic formula, 18

atomic initial rule, 46

atomically closed proof, 46, 60

axiom, 27

backchaining, 1, 34

Barr Theorem, 284

βη-long normal form, 17

β-normal, 14

β-reduction, 14

big-step semantic specification, 244

Big-step SOS, 242

binary clauses, 242, 249

bipole, 87

border sequent, 130

for ⇓L2 proofs, 130

for L0 proofs, 87

bounded context, 113

C-proof, 40

call-by-name, 7

call-by-value, 7

call-by-value evaluation, 244

Church numerals, 14

Church, Alonzo, 6, 13, 243

classical provability, Σ;∆ ⊢C B, 42

classical logic, 6

clausal order, order(·), 19
clause, 65

computation-as-deduction, 7

computation-as-model, 7

concurrency primitives, 256

Concurrent ML (CML), 256

conjunction ∧, 6
conjunctive normal form, 8

consistency, 34

continuation-passing style, 249

contraction, structural rule, 26

CPS transformation, 249

Curry-Howard correspondence, 2, 21,

31

curry/uncurry equivalences, 62, 112

cut rule, 27

exponential cut !, 134

exponential cut?, 134

for ⇓+L0, 76

main cut, 134

cut-elimination theorem

cut-elimination theorem for ⇓+L2,

141

cut-elimination theorem for ⇓+L0,

310 Index

79

discussion, 34

cut-free proof, 34

D1, 62

D2, 65

decidability of {⊤,&,⊃}, 85, 99
dependent pair, 82

dereliction rules, 108

derivation, as partial proof, 31

diamond translation

(·)⋄, removing implications, 115

disjunction ∨, 6
disjunction property, 61, 99

don’t-care nondeterminism, 57

don’t-know nondeterminism, 57

dynamic semantics, 258

dynamics of proof search

⇓L1, 117

fohc, 92

fohh, 95

eigenvariables, 20, 28

embedding fohh into linear logic, 118

endsequent, 31

equivalence ≡, 51, 108, 154

η-reduction, 14

ETT, Elementary Theory of Types,

13, 21

ex falso quodlibet, 54, 56

exchange, structural rule, 26

excluded middle, 39, 43

existence property, 61, 99

exponential cut rules, 134

exponential prefixes, 108, 286

exponentials !, ?, 42, 108

first-order hereditary Harrop formu-

las, 64, 66

first-order Horn clauses, 1, 62

first-order logic, 6, 18

focused proofs, 34, 115

fohc, first-order Horn clauses, 62

fohh

three presentations, 64

fohh, first-order hereditary Harrop for-

mulas, 66

Forum, 1

Forum presentation of linear logic, 124

⇓+L2-proof system, 134

forwardchaining, 71

Frege proofs, 23, 27

function symbol of arity n, 18

G1, 62

G2, 65

G-proof, 55

Gentzen, Gerhard, 1, 6, 20, 36

Girard, Jean-Yves, 6, 58, 118, 151

goal-directed proof search, 1, 60, 98

goal-reduction, 1, 34

Harrop formulas, 67, 99

height of a ⇓L2-proof, 134

height of an ⇓+L0-proof, |Ξ|, 76
hereditary Harrop formulas, 64

higher-order hereditary Harrop formu-

las, 1

higher-order Horn clauses, 88

higher-order logic, 18

Hindley-Milner type inference, 258

Horn clauses, 61

hyperexponential function, 37

I-proof, 40

identity rules, 26

implication

classical and intuitionistic ⊃, 19

intuitionistic in linear logic⇒, 112

linear ⊸, 112

implication ⊃, 6

inference rule permutabilities, 125

inference rules

identity, 26

introduction, 26

structural, 26

Index 311

initial rule, 27

instan inference rule, 81

interpretation, 82

introduction rules, 26

intuitionistic implication ⇒, 112

intuitionistic logic, 6

intuitionistic provability, Σ;∆ ⊢I B,

42

invertible inference rule, 33, 52, 57,

102

junctiveness, 112

key cut rule

for ⇓+L0, 77

Kowalski, Robert, 9

Kripke models, 39, 82

Krivine machine, 252

L0 = {⊤,&,⊃,∀}, 72
⇓L0-proof system, 65, 72

L0-formula, 71

⇓L′
0 system, 85

L1 = {⊤,&,⊸,⇒,∀}, 113
⇓L1-proof system, 115

L1-formula, 113

L2 = {⊤,&,⊸,⇒,∀,⊥,`, ?}, 124
L2-formula, 124

⇓L2-proof system, 125

⇓L2-proof system, 126

λProlog, 1, 2, 89

λ-calculus, 241

λ-term, 13

λ-terms, untyped, 243

left-introduction phase, 69

linear implication ⊸, 105, 112

linear logic, 6, 42

literals, 61

L-formulas, 108

logic variables, 57

logical constants, 17

Lolli, 1, 118

M-proof, 54, 63

MALL, multiplicative additive linear

logic, 105, 151

minimal logic provability, 54

mobility of binders, 28

monotoncity property, 95

most general unifiers, 8

multi-focusing proof system, 151

multiple-conclusion proof system, 40

multiplicative connective, 102

multiplicative inference rule, 29

multiset rewriting, 242

n-way synchronization, 235

Needham-Schroeder Shared Key Pro-

tocol, 229

negation ¬, 6
negation defined using ⊃ and f , 43

negation normal form, 109

negative subformula occurrence, 19

nondeterminism, don’t know vs don’t

care, 57

o, the Greek letter omicron, 6, 17

the type of formulas, 17

ord(τ), order of type τ , 16

order(B), clausal order of formula B,

19

P-proof system, 113, 114

paths in a formula, B ↑ P , 72, 128

π-calculus, 244, 245

π-calculus, 241

polarity, 109, 149

positive subformula occurrence, 19

possible world semantics, 39

predicate symbol of arity n, 18

primitive types, 15

Prior, A. N., 49

Prolog, 1

promotion rules, 108

proof normalization, 7

proof search, 1, 7, 21

proof system, 31

312 Index

proof systems, focused

⇓L0, 65

⇓+L0, 76

⇓L′
0, 85

⇓L1, 115

⇓L2, 125

⇓+L2, 134

proof systems, unfocused

C (classical), 40

I (intuitionistic), 40

L (linear), 108

M (minimal), 63

P (for L1), 113, 114

proof-nets, 151

propositional constants, 17

propositional logic, 6, 18

pumping lemmas, 95

quantificational logic, 6

resolution refutations, 8, 11, 61, 98

restart rule, 45

reverse a list

in fohc and fohh, 93

right-introduction phase, 69

role identifier, 232

role state atom, 232

role state predicate, 232

S, the set of sorts, 15

scope extrusion, 95

search semantics, 59

SECD machine, 252

sequent calculus, 6

sequent calculus proofs, 30

sequents, 1, 20

antecedent, 20

left-hand side, 20

one-sided, ⊢ ∆, 20

right-hand side, 20

succedent, 20

two-sided, Γ ⊢ ∆, 20

Σ : Γ ⊢X ∆, 31

Σ inhabits primitive type, 44

Σ0, signature of non-logical constants,

18

Σ−1, signature of logical connectives,

17

Σ-formula, 18

Σ-term of type τ , 17

signature over S, 16

Simple Theory of Types, 6, 13

simple types, 15

simultaneous rule application, 125

single-conclusion proof system, 40

size of a formula, |B|, 76
Skolem functions, 9

Skolem normal form, 8

SLD-resolution, 8, 11, 98

small-step SOS, 242

sorts, a.k.a. primitive types, 15

static semantics, 258

strengthening, 75, 135

structural operational semantics, 242

structural rules, 26

subexponentials, 151

subformula property, 35

subst, substitution rule, 46

substitution M [x/N], 14

syntactic categories, 15, 243

syntactic types, 15

synthetic inference rules, 86, 130

target type, 16

tonk, 49

unbounded context, 113

unification, 57

uniform proof, 34, 60

multi-conclusion version, 125

single-conclusion version, 60

untyped λ-terms, 243

weakening, structural rule, 26

	Preface
	Introduction
	A spectrum of logics
	Logic and the specification of computations
	Proof search and logic programming
	Designing logic programming languages
	Why use logic to write programs?
	Bibliographic notes

	Terms, formulas, and sequents
	Untyped -terms
	Types
	Signatures and typed terms
	Formulas
	Sequents
	Bibliographic notes

	Sequents calculus proofs rules
	Sequent calculus and proof search
	Inference rules
	Structural rules
	Identity rules
	Introduction rules

	Additive and multiplication inference rules
	Sequent calculus proofs
	Permutations of inference rules
	Cut-elimination and its consequences
	Bibliographic notes

	Classical and intuitionistic logics
	Classical and intuitionistic inference rules
	The identity rules and their elimination
	Logical equivalence
	Invertible introduction rules
	Negation, false, and minimal logic
	Choices to consider during the search for proofs
	Bibliographic notes

	Two abstract logic programming languages
	Goal-directed search
	Horn clauses
	Hereditary Harrop formulas
	Backchaining as focused rule application
	Formal properties of focused proofs
	Kripke model semantics
	Backchaining as a single left rule
	Synthetic inference rules
	Disjunctive and existential goals
	Examples of fohc logic programs
	Dynamics of proof search for fohc
	Examples of fohh logic programs
	Dynamics of proof search for fohh
	Limitations to fohc and fohh logic programs
	Bibliographic notes

	Linear logic
	Reflections on the structural inference rules
	LK vs LJ: An origin story for linear logic
	Sequent calculus proof systems for linear logic
	Multiplicative additive linear logic
	Linear logic as MALL plus exponentials
	Duality and polarity
	Introducing implications

	Single conclusion sequents with two zones
	Embedding fohh into linear logic
	A model of resource consumption
	Multiple conclusion uniform proofs
	Formal properties of Forum proofs
	Paths and synthetic inference rules
	Admissibility of the general initial rule
	Cut rules and cut elimination
	Soundness and completeness of the focused proof system

	Bibliographic notes

	Linear logic programming
	Encoding multisets as formulas
	A syntax for Lolli programs
	Permuting a list
	Multiset rewriting
	Context management in a theorem prover
	Multiset rewriting in Forum
	Specification of sequent calculus proof systems
	Bibliographic notes

	Collection analysis for Horn clauses
	Introduction
	The undercurrents
	If typing is important, why use only one type system?
	Viewing constants and variables as one
	Linear logic underlies computational logic

	Abstraction and substitution in proof theory
	Substituting for types
	Substituting for non-logical constants
	Substituting for assumptions

	Multisets approximations
	Formalizing the method
	Sets approximations
	Automation of deduction
	List approximations
	Difference list approximations
	Future work
	Bibliographic notes

	Encoding security protocols
	Communicating processes
	A conventional presentation of protocols
	A linear logic formulation
	Encryption as an abstract data type
	Abstracting internal states
	Roles as nested implications
	Bibliographic notes

	Formalizing operational semantic
	Three frameworks for operational semantics
	The abstract syntax of programs as terms
	Encoding the untyped -calculus
	Encoding the -calculus expressions

	Big step semantics: call-by-value evaluation
	Small step semantics: -calculus transitions
	Binary clauses
	Continuation passing in logic programming
	Abstract Machines

	Linear logic
	Adding a counter to evaluation
	Specification of Concurrency primitives

	Bibliographic notes

	Solutions to Selected Exercises
	Bibliography
	Index

