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Preface

Like any scientific undertaking, a thesis does not develop in a vacuum, and
personal as it is, it is informed by the indirect as well as the direct influence of
many people. In the roll call of important actors that must of need accompany
such a document, regrettable omissions may be nigh inevitable. Indeed, as with
test cases and program bugs, a mention in a preface may show the presence of an
acknowledgment, not its absence—and in the flurry of writing and its companion
events, in keeping with the software analogy, slips are not altogether unlikely to
occur. In the world of computer science, at least, there is hope for getting things
just right; this work marks the point at which I start walking in that direction,
resolutely and in earnest.

First and foremost in importance and intensity, I am indebted to Dale for the
pleasure and the privilege of working with him. Much more than a directeur, he
is a teacher and a mentor, knowledgeable and wise, and the nicest person you will
ever meet; words do not do justice. May our paths continue to meet.

From the moment I entered the scene in April 2014, arriving on the plateau
de Saclay after the summer, Inria and École polytechnique have been wonderful
places to work and study. Dale’s team Parsifal takes most of the credit for being
friendly and collegial to the utmost. Much has changed on the plateau in the
intervening three years, the primordial constant being a pleasant and productive
life thanks to my fellow Parsifalians: an eclectic group of talented and wonderful
people, among whom I am honored to count myself. With the permanent
members I have partaken of all manners of conversations in and out of science,
meals in and out of the lab, teaching and offices, mostly with Kaustuv Chaudhuri,
Beniamino Accattoli, Stéphane Graham-Lengrand, and more recently Gabriel
Scherer. In addition to these activities, I have shared the experience of these
formative years with Zakaria Chihani and the rest of my student cohort: Quentin
Heath, Sonia Marin, Ulysse Gérard, and Matteo Manighetti. And, of course, the
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perspective and company of the young researchers we must become, especially
Taus Brock-Nannestad, Danko Ilik, Tomer Libal, Giselle Reis, and Marco Volpe.

In addition, Alberto Momigliano has been a genial colleague since we met
during his visit to Parsifal in 2016. We have a lot of interesting research to do,
and hopefully we shall find the time and the opportunity to continue to work
together, as has been my pleasure until now.

In fulfilling my teaching duties at Polytechnique, Eric Goubault, Benjamin
Werner, Frank Nielsen and Stéphane allowed me to participate actively in the
development of the classes they coordinated and welcomed my suggestions, im-
provements and proposals. Benjamin, along with Kaustuv and Julien Signoles,
with whom I had the pleasure to co-teach, and Dale, were all energetically sup-
portive despite the nebulous bureaucracy involved; without them a smooth run
would have been hardly conceivable, and for this they have my sincere gratitude.
None of this would have meaning without my students at the cycle d’ingénieur
polytechnicien, always hard-working, insightfully clever and invariably polite, in
sum the finest soil a professor could ask to assist in cultivating.

The administrative team at Inria, including Valérie Berthou, Catherine Ben-
soussan and very especially Christine Biard, helped me navigate the labyrinth of
bureaucracy—an everchanging maze whose strange corners I visited more than
once. On occasion the whole edifice looked Escherian indeed, but they never
failed to steer me in the right direction and dexterously remove most of the pain
from paperwork and procedure.

Scientific evaluation is the more enriching part of administrative procedure.
Sylvain Conchon and Hugo Herbelin accepted to serve in the committee of
my suivi approfondi à mi-parcours and provided detailed commentary on my
developing research project.

As the formal culmination of my doctoral studies and the act of scientific
evaluation par excellence, the defense is given meaning by the senior colleagues
who ratify the content of the present work. In particular, at this point in time,
I am indebted to Laura Kovács and Claudio Sacerdoti Coen, who have kindly
agreed to serve as reporters. As I write these lines they are the two confirmed
members of my jury; other examiners will join in, and be duly recognized, in
the near future. Dale’s comments and conversations, always insightful, have
percolated through and enriched the thesis, as have the observations of those who
have gracefully offered to read and proofread the manuscript.
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1 Introduction

The unifying theme of this thesis is how to establish trust that a certain property,
i.e., a theorem about some formalizable artifact, holds. If the abstract answer
to this question is “with a proof,” the issue becomes then to establish how
proofs are represented and how to trust them. A document or more generally
an act of communication purporting to represent a proof of a theorem cannot
be blindly trusted: it must be checkable independently from its origin. In a
world of mechanized proofs of formidable size and complexity, in addition to a
convenience automation becomes a necessity.

Thus, it would be desirable to represent pieces of proof evidence from very
different provenances in a unified format: proofs would then be represented by a
document, or certificate, to which would be attached the description of the syntax
of the proof and its semantics. With this information, independent checking
becomes possible. As it is proofs we are dealing with, the branch of logic that
studies proofs as mathematical objects, proof theory, is an obvious candidate
for such an undertaking. From these theoretical foundations, the ProofCert
project has developed broad-spectrum proof formats called Foundational Proof
Certificates (FPC). The resulting framework establishes how to define certificate
formats and build simple, trustworthy checkers that consume them. A checker
results from the combination of a proof checking kernel and the definition of a
proof certificate format.

Until now, research on FPCs has validated it and seen it applied to a range
of proof systems in proofs of concept, but had yet to graduate to certificates
“in the large.” In addition, with the desirable theoretical properties of the FPC
framework established, it remains to consider how an implementation of the
framework can be trusted: who watches the watchmen? A further point of
inquiry is whether proof certificates can represent more than inert evidence of
a proof: whether in addition to checking them, proof certificates can grow and
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2 chapter 1. introduction

shrink, whether they can be queried and interacted with. We shall consider all
these questions in turn. These investigations will be placed in relation to both
great groups of tools: automated and interactive theorem provers. The document
is structured in three parts.

Part I collects the general background common to the two main parts that
follow it; it is complemented by more specialized background at the beginning of
each of Part II and Part III. It is composed by two chapters.

Chapter 2 commences with an overview of the concept of proof and its
abstract treatment by the discipline of proof theory. It concentrates on sequent
calculi as the proof systems of choice and their treatment of canonical forms of
proofs to the point to which normalization can be gained by the development of
focused proofs.

Chapter 3 continues where the preceding chapter leaves off by further mo-
tivating the use of proof evidence as the foundation of trust and developing the
sequent calculus into a logically sound, programmable framework where proof
construction can be flexibly steered by the Foundational Proof Certificates that
are at the center of this research. It complements this discussion with a number
of examples which play various roles in subsequent chapters; these are the kind of
small, textbook systems with which the FPC framework has been used to date
with small, handcrafted examples.

Part II studies developments taking place in a classical logic without fixed
points, where the open-world assumption holds. Logics such as these underlie
standard logic programming languages and automated theorem provers.

Chapter 4 completes the background of Part I with the technical setting
specific to this part of the document. It briefly discusses the uses of logic in com-
putation to concentrate on the use of logic itself as a paradigm for computation,
that is, logic programming. After reviewing the common foundations of Prolog,
it presents the salient features of λProlog, the language used throughout this part,
and demonstrates the implementation of the kernel of a proof checker for the
FPC framework in that language, which can be used to execute the examples in
Chapter 3 as well as the original developments of future chapters.

Chapter 5 explores the idea of combining sources of proof evidence by defin-
ing a combinator that attempts to construct a proof of a formula using two
separate pieces of proof evidence in parallel. This opens rich possibilities of com-
bination of proof search strategies and of elaboration of proof evidence. Using
standard features of logic programming, this pairing combinator can be used to



1.0. 3

enrich a proof certificate with additional information (making it more efficient),
compacting it by removing inessential information (making it potentially slower),
or querying and extracting information about proofs. If a certificate is enriched
to be essentially a trace of the logical computation, the reproduction of this
trace is performed as a determinate computation, which does not resort to the
distinguishing features of logic programming

Chapter 6 exploits traces of computation of a proof used as proof evidence,
which constitute not a general logic computation, but a particular case of func-
tional computation. This suggest that we can implement specialized proof check-
ers for the determinate fragment of the FPC framework as functional programs,
which rely on simpler languages and runtimes and avoid the hard problems that a
logic programming language must integrate. Going further, the operation of these
simplified proof checkers can be modeled in a proof assistant like Coq and proved
correct. The result is a verified implementation of a simplified proof. Since the
FPC definitions from Chapter 5 always allow the extraction of a full trace, any
proof certificate defined in the framework can be run in the simplified, verified
setting by that intermediate translation step.

Chapter 7 begins to move the FPC framework from the realm of small
examples and prototypes into the domain of theorem provers and proof formats
as they are used in practice. Here we look at a family of automated theorem
provers that solve instances of the classical boolean satisfiability problem. These
tools are widely used and have already recognized the necessity for independent
validation of results by defining their own proof output formats. We develop a
proof theoretic view of the proofs underlying those formats representing proofs
of unsatisfiability of a propositional formula, and show how to interpret their
information as a proof certificate capable of guiding the reconstruction of a proof
in our proof checkers.

Chapter 8 proceeds in the same vein and seeks to apply the FPC framework
to certify proofs produced by a concrete automated theorem prover. The general
recipe involves analyzing the proof evidence produced by the concrete tool and
modeling it in terms of a proof calculus, which in turn can be described by an
FPC definition. We perform this study for Prover9, a venerable prover based on a
resolution proof calculus like many leading automated theorem provers. Starting
from a corpus of publicly available proofs, we apply the methods of Chapter 5
to obtain several certificates corresponding to the same proof with increasing
amounts of information and study the effects on certificate size and checking time.
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In addition to the general-purpose checkers built in λProlog, the determinate
checkers of Chapter 6 are employed as well.

Part III studies developments in the setting of intuitionistic logics to which
fixed points are added; here, the closed-world assumption replaces the open world
of Part II. These logics are typically used in the design of proof assistants.

Chapter 9 begins the background specific to this part by complementing
Chapter 2 with a logic where inductive and coinductive definitions, as well as
term equality, are featured as first-class logical connectives. A constructive logic
such as those that commonly serve as the foundations of proof assistants is
presented with those new logical features; the logic is then extended to support
focused proofs, and then the FPC framework on top of those.

Chapter 10, analogue to Chapter 4, completes the background specific to
Part III by studying how logic programming is affected by extending the logic
with the features in the previous chapter. The proof assistant Abella serves as the
programming language of choice for this part. After a short description of the
system, its use is exemplified by an implementation of the proof checking kernel
used in the chapters that follow.

Chapter 11 begins by inspecting the common structure of many proof devel-
opments both in informal mathematics and in the formalized setting of proof
assistants, and endeavors to support these schematic styles of proof in the FPC
framework. To this end, we define families of proof certificates that express
succinctly the high-level structure of a proof by resorting to high-level concepts
such as induction and use of previously proved lemmas. Several variations of this
general scheme experiment with the amount of detail added to these descriptions
and their effects on proof reconstruction by the checker at runtime. The resulting
proof outlines are closely related to the less strict languages of tactics and tacticals
that proof assistants expose to their users for the composition of proof scripts.

Chapter 12 adapts the FPC framework to the complement of proving formu-
las: disproving them. Much like programs may contain bugs, logical developments
may contain errors either by attempting to prove properties about the wrong
things or by attempting to prove the wrong properties about things. When a
proof assistant is confronted with a proof obligation, it may try to quickly find a
counterexample that falsifies the property, which indicates to the user that either
the specification or the property are wrong, and allows for correction before
much effort has been invested in a proof attempt that is doomed to fail. Compact
representations of the strategies that are commonly used to find counterexamples
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are given as proof certificates: exhaustive and random generation of test data is
followed by testing of the properties with the generated data. The expressive
logics considered in this part make it possible to apply these techniques to the
domain of the metatheory of programming languages.

Chapter 13 integrates these developments in Abella. It considers the tech-
nical and algorithmic extensions that go into thoroughly integrating the FPC
framework in a proof assistant. Proof certificates become a complement and
even a substitute for the built-in tactics language, which is replaced with another
language, that of certificates, which is not only programmable but offers the
formal guarantees of correctness of the framework.

Often a subject is treated in the context of one of the two main parts while
being in whole or in part applicable to the other part. Each chapter is com-
pleted by a Notes section that complements the preceding sections with extended
discussions and background, as well as connections to other chapters.
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Part I

Logical foundations

7





2 Structural proof theory

2.1 Concept of proof

Logic—the scientific study of reasoning and deduction—has the concept of proof
at its core: how is new knowledge created from what is already known? One
presents the fruit of deduction as a proof, but what exactly is a proof, and how
can we recognize one, that is, ensure that a claimed proof is correct? Our modern
understanding of the concept harkens back to David Hilbert’s vigorous efforts
to infuse all of mathematics with complete and absolute (metamathematical)
rigor—formalized by means of the kind of axiomatic proof systems which were
pioneered by such bodies of work as Gottlob Frege’s Begriffsschrift and Alfred
North Whitehead and Bertrand Russell’s Principia Mathematica. These same
efforts sparked foundational controversies with mathematicians like Frege and
L. E. J. Brouwer, and spurred Kurt Gödel to develop his incompleteness theorems—
which demonstrated that Hilbert’s lofty ambitions, at least in their original
form, were unattainable. The study of proofs as first-class mathematical objects
developed in close connection with these advances.

Vis-à-vis the purely mathematical conception of proof are the philosophical
and sociological faces of argumentation as a mental activity and an act of com-
munication. It is recognized that proof has a dual nature by which it can be
seen alternatively as proof-as-message or as proof-as-certificate. Taken as a message,
the purpose of a proof is the transmission of insight and understanding between
mathematicians: to convey the lines of argumentation followed to arrive at a con-
clusion and to convince of the truth of that conclusion—the focus is on meaning,
on semantics. Seen instead as a certificate, the purpose of proofs is the transmis-
sion and mechanical verification of knowledge: the use of the symbols and rules
of a formal language to unambiguously derive new, correct phrases—the focus
here is on syntax. In practice, both functions are closely related, and although

9
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formal study tends to emphasize the side of proof-as-certificate, proof-as-message
considerations will be pervasive in much of the work that follows (especially
throughout Part III, where proof assistants and user interaction are key subjects).

The rest of the chapter is organized as follows. Section 2.2 traces the devel-
opment of proof theory and describes its major formal systems. Section 2.3, in
parallel, outlines the most important division in the taxonomy of standard logics,
that separating classical and intuitionistic logics, both of which will be called
upon over the course of our study. Section 2.4 presents the sequent calculus,
one of the major deductive systems, on which our formal studies will be based.
Section 2.5 introduces the discipline of focusing, used to structure the proofs of
the sequent calculus in more organized, abstract forms. Section 2.6 summarizes
some important considerations on the relation between proof systems and the
logics they model. Section 2.7 concludes the chapter.

2.2 Evolution of proof theory

Proof theory is the branch of mathematical logic that studies proofs as objects
of mathematics. It is widely acknowledged that the modern study of proof
has its roots in the axiomatizing undertakings of Hilbert’s Program. Among
the disciplines of proof theory, structural proof theory studies the structure and
properties of proofs (in the sense of proof-as-certificate of the previous section).
The concrete objects of its study are proof calculi: formalized systems of deduction
where formulas and proofs are inductively defined objects, and the steps of
deduction are carried out syntactically by the application of inference rules which
transform formulas and in the process construct proof objects. There are three
principal families of proof calculi, each of which will be presented and placed in
its proper context in this section.

First, Hilbert systems take their name from the refined calculus developed
by Hilbert for the development of his Program. They reflect the longstanding
tradition of organizing mathematical developments as a sequence of steps which
starts from instances of a collection of logical axioms—for example, that every
property P implies itself: P ⊃ P—and follows by applications of inference rules
which derive new facts from previously known ones. Logical reasoning has
historically relied on this discursive style, from Aristotle to Gottlob Frege—after
whom these calculi are sometimes named Frege systems, as we shall reference in
Chapter 11. Often, a single inference rule, that of modus ponens, is used. This
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rule states that if we know that a fact Q is implied by another fact P , and we also
know that P holds, then we can infer that Q holds. For this reason (and closer to
the uniform terminology that will be used shortly) modus ponens is also called
implication elimination and depicted schematically as follows:

P ⊃ Q P
Q

Second, natural deduction systems arose as a response to the linear and unstruc-
tured proofs of Hilbert-style systems, to better reflect the “natural” way in which
proofs are built by mathematicians—in fact, although Hilbert systems have later
been inspected under the lens of structural proof theory, it is in natural deduction
that the discipline has its proper genesis. Natural deduction was developed by
Gerhard Gentzen (1935) in his landmark dissertation with the goal of accurately
reflecting the mental process of reasoning and its dependencies. Centrally, it
employs the concept of assumptions made over the course of a proof attempt and
which may be closed at some later point. An important question in this more
structured system is whether there exist normal forms of natural deduction proofs,
so that many shallowly different derivations of the same property may be given a
common representation. In his dissertation, Gentzen attempted to prove such
a normalization property, succeeding in the intuitionistic case but failing in the
classical case—eventually, Dag Prawitz (1965) succeeded in doing so within the
edifice of natural deduction, and we now know Gentzen himself persevered in his
efforts until the knot was untangled (von Plato, 2008).

The third and last great family of deductive systems is the sequent calculus,
which Gentzen developed to work around the difficulties of the proof of nor-
malization for natural deduction. Its technical motivation was to serve as a sort
of meta-calculus in which the derivability relation of natural deduction could
be expressed and reasoned about: the sequent calculus is more pedantic, but
also more practical. In this formalism, an analog of normalization for sequent
calculus proofs called cut elimination could be proved, and this result in turn ren-
dered the original pursuit—i.e., a proof of normalization for intuitionistic natural
deduction—unnecessary. Sequent calculi proved to be fertile theoretical ground,
more mechanistic than their forebears and far more relevant in the looming age
of computer science. They form the immediate substrate of the present work
and will be discussed extensively in the pages that follow; after a brief orthogonal
discussion, they will be properly introduced in Section 2.4.
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2.3 Classical and intuitionistic logics

Perhaps the most fundamental division in modern logic concerns the distinction
between the standard logics: classical logic and intuitionistic logic. Classical logic is
a “logic of truth,” concerned with the assignment of truth values (say, true
or false) to formal statements. The traditional study of logic starting with
Aristotle can be framed in this tradition. By contrast, intuitionistic logic is
a “logic of construction.” It was developed from L. E. J. Brouwer’s philosophy,
notably by Arend Heyting. In proving properties about mathematical objects, an
intuitionistic proof provides a way to construct objects exhibiting the properties
being proved. For example, to have a proof of “A and B,” we need separately a
proof of A and a proof of B .

Under the classical interpretation, the negation of a statement is an assertion
of its falsity. Conversely, the intuitionistic negation of a statement points to the
existence of a counterexample. As an illustration, consider proof by contradiction,
a standard proof technique commonly used in mathematics. A proof by contradic-
tion of a property p starts by assuming that p does not hold and proceeds to arrive
at a contradiction. Many commonplace results—such as the classic proof of the
irrationality of

√
2—make use of this method. However, such non-constructive

arguments are invalid in intuitionistic logic.

In practice, classical logic and intuitionistic logic can be related by disallowing
in the latter the non-constructive parts of the former—that is, the principle of the
excluded middle, which asserts that for every statement either itself or its negation
is true. By virtue of this constraint, intuitionism rejects the aberrant “proofs”
of classical logic which rely on non-constructive arguments. A priori, because
intuitionistic logic can be defined as a restriction of classical logic, not only can
intuitionistic logic not be stronger than classical logic, but it would moreover seem
to be weaker—every intuitionistically provable theorem is classically provable,
but there exist classical theorems which are not intuitionistically provable.

Nonetheless, the relation between the expressive powers of both logics is sub-
tler than their hierarchical relation might suggest. In the settings of propositional
and first-order logic, there exist translation functions such that, if a formula is a
theorem of classical logic, its translation is a theorem of intuitionistic logic: such
functions are called double-negation translations (Ferreira and Oliva, 2012)—in
fact, what such a function does is making explicit each use of the excluded middle
by means of an encoding based on double negations. (However, a formula is not
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intuitionistically equivalent to its translation, and no general mappings exist in
the opposite direction.) This leads to the observation that—in these settings—
intuitionistic logic is more expressive, or finer than classical logic: if a formula is
classically but not intuitionistically provable, we can find another formula which
is intuitionistically provable and classically indistinguishable from the original.

If classical logic can be seen as the logic of traditional mathematics, intuition-
istic logic takes on the mantle of the logic of computer science. In the context of
theorem proving, classical logic serves as the foundation of choice for reasoning in
automated theorem provers, where a computer program attempts to find proofs
of theorem candidates. In interactive theorem provers (or proof assistants), where
the user drives the search for proofs, the foundational role is assumed by intuition-
istic logic. Both classical and intuitionistic logics will be employed extensively as
the bases for Part II and Part III, respectively.

2.4 Sequent calculus

This section introduces Gentzen’s original sequent calculus, the proof theoretical
foundation of our investigations. We concentrate on the calculus for classical
logic and reference intuitionistic logic when appropriate. Classical logic will be
the focus of Part II, while Part III will adopt intuitionistic logic as its vehicle;
additional background is given in Chapter 9.

Classical logic contains the familiar set of logical constants or connectives. In
the propositional fragment, we have the nullary constants true ( t ) and false ( f );
the unary constant negation (or not, ¬); and the binary constants conjunction
(or and, ∧), disjunction (or or, ∨), and implication (⊃). First-order logic extends
propositional logic with the universal quantifier (∀) and the existential quantifier
(∃). The standard classical equivalences establish the interrelations between these
constants. We make no attempt to reduce the set of connectives to a small, or
minimal, functionally complete set of operators.

Added to these logical constants will be a type signature of non-logical constants
that will function as atomic propositions (or simply atoms). A literal is either an
atom or a negated atom. In first-order logic, as quantifiers are introduced, atoms
can be parameterized by terms, also part of the signature. Quantifiers bind names
within their scope and can be instantiated by the operation of substitution—all
the usual subtleties and caveats about free and bound variables, capture-avoiding
substitution, etc., apply here. Given a formula A, [t/x ]A designates the substitu-
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tion of a term t for a (free) variable x in A. A more computational view of all
these aspects is deferred until Chapter 4.

Sequent calculi are formal logic systems organized around the concept of
sequents. In its basic form, a sequent combines two arbitrary lists of formulas
separated by a turnstile, say:

A1, . . . ,Am ` B1, . . . , Bn

The list of formulas to the left of the turnstile is called the left-hand side
(LHS) or the antecedent of the sequent and abbreviated Γ. The list of formulas
to the right of the turnstile is called the right-hand side (RHS) or succedent of the
sequent and abbreviated ∆. The classical semantics of a sequent states that, if all
the formulas in the left-hand side are true, at least one formula in the right-hand
side is true, as well. Equivalently, the antecedent list represents a conjunction of
formulas, and the succedent list represents a disjunction of formulas.

Every sequent calculus is presented as a collection of inference rules on se-
quents. Each inference rule has one conclusion below the line and any number of
premises above the line—possibly complemented by provisos and side conditions.
The inference rules are actually rule schemata: they are essentially “universally
quantified” over all their variables (representing arbitrary formulas, list of for-
mulas, etc.), so that any combination of values for those syntactic variables
constitutes an instance of that inference rule. The rules of the standard sequent
calculus for classical logic are presented in Figure 2.1. (These rules do not cover
the nullary logical constants true and false, which can be trivially defined in terms
of the other connectives.)

The rules of the calculus are organized in three distinct groups. First, logical
rules, also called introduction rules, analyze each logical connective on both sides
of the turnstile in the conclusion of the rule and relate the conclusion to the
necessary premises for the introduction of the connective. Second, identity rules
treat the (symmetric) cases where the same formula appears on both sides of the
turnstile: the axiom rule in the conclusion; and the cut rule in the premises. And
third, structural rules manipulate the structure of the sequent without inspecting
its formulas: they are exchange, which reorders the components of the sequent;
weakening, which introduces new formulas in the conclusion; and contraction,
which makes copies of formulas in the premise. This presentation showcases the
deep, remarkable symmetry of classical logic.
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introduction rules

Γ,A ` ∆
Γ,A ∧ B ` ∆ ∧

1
L

Γ ` A,∆
Γ ` A ∨ B,∆ ∨

1
R

Γ, B ` ∆
Γ,A ∧ B ` ∆ ∧

2
L

Γ ` B,∆
Γ ` A ∨ B,∆ ∨

2
R

Γ,A ` ∆ Γ, B ` ∆
Γ,A ∨ B ` ∆

∨L
Γ ` A,∆ Γ ` B,∆
Γ ` A ∧ B,∆

∧R

Γ1 ` A,∆1 Γ2, B ` ∆2
Γ1, Γ2,A ⊃ B ` ∆1,∆2

⊃L
Γ,A ` B,∆
Γ ` A ⊃ B,∆

⊃R

Γ ` A,∆
Γ,¬A ` ∆

¬L
Γ,A ` ∆
Γ ` ¬A,∆

¬R

Γ, [t/x ]A ` ∆
Γ,∀x .A ` ∆ ∀L

Γ ` [y/x ]A,∆
Γ ` ∀x .A,∆ ∀R †

Γ, [y/x ]A ` ∆
Γ,∃x .A ` ∆ ∃L †

Γ ` [t/x ]A,∆
Γ ` ∃x .A,∆ ∃R

identity rules

A ` A axiom
Γ1 ` A,∆1 Γ2,A ` ∆2

Γ1, Γ2 ` ∆1,∆2
cut

structural rules

Γ1, B,A, Γ2 ` ∆
Γ1,A, B, Γ2 ` ∆

EL
Γ ` ∆1, B,A,∆2
Γ ` ∆1,A, B,∆2

ER

Γ ` ∆

Γ,A ` ∆ WL
Γ ` ∆

Γ ` A,∆ WR

Γ,A,A ` ∆
Γ,A ` ∆ CL

Γ ` A,A,∆
Γ ` A,∆ CR

2.1 Figure The LK proof system for classical logic with two-sided sequents
(Gentzen, 1935). Here, A and B are arbitrary formulas; Γ and ∆ are lists of
formulas. The proviso marked as † is the usual eigenvariable restriction that y
must not be free in the components of the premise (Γ, A, and ∆).
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introduction rules

Γ,A, B ` ∆
Γ,A ∧ B ` ∆

∧L
Γ ` A, B,∆
Γ ` A ∨ B,∆

∨R

Γ1,A ` ∆1 Γ2, B ` ∆2
Γ1, Γ2,A ∨ B ` ∆1,∆2

∨L
Γ1 ` A,∆1 Γ2 ` B,∆2
Γ1, Γ2 ` A ∧ B,∆1,∆2

∧R

2.2 Figure The multiplicative fragment of the LK proof system for classical logic
with two-sided sequents. These rules replace ∧iL, ∨

i
R (for i ∈ {1, 2}), ∨L, and ∧R

in Figure 2.1; the rest of the system remains unchanged. Presentation conventions
are shared with Figure 2.1.

An introduction rule corresponds to the analysis of a formula on a certain
side of the conclusion sequent with a certain top-level connective. The remaining
contents of the conclusion (the Γ and ∆ lists) are called the context. In Figure 2.1,
we have given a modern presentation of the original LK calculus as developed by
Gentzen. Such a presentation is said to be additive because of the relation between
the parts of the conclusion sequent and the parts of the premise sequents—namely,
the context is the same across all premises (and coincides with the context in
the conclusion). In contrast, a multiplicative reading requires that the parts of
the conclusion exactly match the sum of the parts of the premises—contexts are
disjoint across premises and merged in the conclusion. Two kinds of changes are
made to enforce this regime. First, the split one-premise and-right (resp. or-left)
rules are merged by requiring both conjuncts (resp. disjuncts) to be available in
the premise. Second, the two-premise rules split the lists of formulas Γ and ∆
so that the provenance of each is recorded. The alternative rules are shown in
Figure 2.2. In classical logic, these two views are interadmissible in the presence
of weakening and contraction—i.e., both resulting calculi prove exactly the set of
theorems of classical logic.

The initial rules determine how a single formula is introduced or eliminated
from both sides of a sequent simultaneously. The axiom rule is the sole proper
initial rule of the classical calculus, in that it has no premises and can be used at
all times. Gentzen’s main result is the admissibility of the rule of cut under the
form of the crucial cut-elimination theorem, which states that any theorem whose
proof makes use of the cut rule possesses another proof which does not employ
the cut rule. This result is the cornerstone of the theoretical study of sequent
calculi and among the first important properties to establish for a new calculus,
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from which other related results generally follow easily. It corresponds to the
notion of normal forms of proofs and strong proof normalization in systems like
natural deduction, and underlies the original motivation for the conception of
the sequent calculus.

Finally, structural rules are the administrative elements of the calculus. First,
the exchange rules allow arbitrary reorderings of the components of a sequent. As
the introduction rules are defined to analyze formulas at specific positions—here,
the rightmost left-hand side formula or the leftmost right-hand side formula, i.e.,
on the immediate neighbors of the turnstile symbol—it is necessary to rearrange
the formulas on which work is to be carried out. Second, the contraction rules
state that if a formula is present in a side of the sequent, its cardinality does
not matter, as we can always make more copies. Together with the ultimate
irrelevance of ordering by way of exchange, these rules substantiate the view of
the LHS and RHS as sets of formulas. More commonly, they are modeled as
multisets, which removes the exchange rules—this makes the instantiation of rule
schemata somewhat less concrete. Third and last, the weakening rules allow the
insertion of arbitrary formulas in the conclusion sequent.

In addition to the standard two-sided presentation of sequent calculus—where
formulas appear on both sides of the turnstile—classical logic also admits a one-
sided presentation, where all formulas are located on the right-hand side. In this
version of the classical sequent calculus, two significant changes take place relative
to the two-sided calculus. First, implication is defined as its classical reading,
so that: A ⊃ B ≡ ¬A ∨ B, for all A and B. Second, negation is only allowed
to have atomic scope, i.e., as part of a literal. In consequence, all formulas are
assumed to be in negation normal form, or NNF. To push negations down to
the atomic level, the De Morgan dual equivalences are used in combination with
the double-negation translation. The resulting rewrite system implementing the
NNF translation is strongly normalizing and confluent—hence, straightforward
application of the translation rules terminates and arrives at the unique NNF. For
arbitrary formulas A and B :

¬(A ∧ B) → ¬A ∨ ¬B ¬∀x .A → ∃x .¬A

¬(A ∨ B) → ¬A ∧ ¬B ¬∃x .A → ∀x .¬A

¬¬A → A
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introduction rules

` A, Γ
` A ∨ B, Γ ∨

1 ` B, Γ
` A ∨ B, Γ ∨

2 ` A, Γ ` B, Γ
` A ∧ B, Γ ∧

` [y/x ]A, Γ
` ∀x .A, Γ ∀ †

` [t/x ]A, Γ
` ∃x .A, Γ ∃

identity rules

` A,¬A axiom
` A, Γ1 ` ¬A, Γ2

` Γ1, Γ2
cut

structural rules

` Γ1, B,A, Γ2
` Γ1,A, B, Γ2

E ` Γ

` A, Γ W
` A,A, Γ
` A, Γ C

2.3 Figure The LK proof system for classical logic with one-sided sequents (Schütte,
1950; Tait, 1968). The system consists of versions of the right rules of the two-
sided LK where formulas are by definition in negation normal form. Rules
for negation and implication are therefore no longer part of the system, and
the negation of a formula represents the NNF of its negation. Presentation
conventions are shared with Figure 2.1.

The one-sided calculus has the advantage of being more concise and therefore
simpler to implement. Therefore, it will become the basis for the kernel of the
proof checker presented in Section 4.4. Figure 2.3 shows this sequent calculus.

Gentzen observed that a sequent calculus for intuitionistic logic, called LJ,
results as a particular case of the (two-sided) classical calculus LK by imposing the
simple restriction that the right-hand side of each sequent contain at most one
conclusion: this is called the intuitionistic restriction. Due to this fundamental
asymmetry, a one-sided calculus for intuitionistic logic—where left-hand side and
right-hand side are confused—cannot be formulated. Provided that this proviso is
threaded throughout all inference rules, Figure 2.1 can be used to describe LJ (a
rewrite with a small amount of syntactic simplification is also feasible).

Finally, note that based on these rules of Figure 2.1, we can connect the stated
semantics of sequents to their single-formula equivalent, also in sequent form:

` (A1 ∧ · · · ∧ Am ) ⊃ (B1 ∨ · · · ∨ Bn)
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In the one-sided calculus of Figure 2.3, the context is simpler and always
disjunctive, and this is equivalent to:

` ¬A1, . . . ,¬Am, B1, . . . , Bn

A derivation in sequent calculus is a proof tree whose edges are (correct)
applications of the inference rules of the calculus, and whose nodes are sequents.
A proof corresponds to a complete derivation, whose root sequent at the bottom
is the formula that is proved, and whose leaves are all vacuous and derived by
the axiom rule. Two operational readings of a proof are possible. The top-down
interpretation starts from the axiom and composes them into more complex
sequents. The bottom-up interpretation starts from the sequent to be proved and
decomposes it in smaller proof obligations until it arrives at instances of the
axioms. Under this latter view, the cut rule corresponds to the application of a
lemma inside the proof of a theorem: one premise provides a proof of the lemma
(as the goal of the sequent); the other premise uses the lemma to further the proof
of the theorem (as a new hypothesis). Cut elimination, in turn, corresponds to
the inlining of lemmas: instead of proving them once, building them from scratch
at each point where they are needed.

2.4.1 Example Consider the two right introduction rules for ∨ and ∃ from Figure 2.1
where the two separate rules for disjunction (one for each disjunct) are compacted
into a single rule:

Γ ` Ai,∆

Γ ` A1 ∨ A2,∆
∨R

If one attempts to prove sequents by reading these rules from conclusion
to premises, the rules need either additional information from some external
source (e.g., an oracle providing the disjunct i ∈ {1, 2} or the term t ) or some
implementation support for non-determinism (e.g., unification and backtracking
search). Indeed, it is difficult to meaningfully use Gentzen’s sequent calculus to
directly support proof automation. Consider attempting to prove the following
sequent:

Γ ` ∃x .∃y .(p x y) ∨ ((q x y) ∨ (r x y))

Here, assume Γ contains, say, a hundred formulas. The search for a (cut-free)
proof of this sequent confronts the need to choose from among 101 potentially
applicable introduction rules. If we choose the right-side introduction rule, we
will then be left with, again, 101 introduction rules to apply to the premise. Thus,
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reducing this sequent to, say, Γ ` (q t s) requires picking one path of choices in a
space of 1014 possible choice combinations.

2.5 Focusing

It is clear from the most cursory inspection that the unadorned sequent calculus
exhibits prodigious levels of bureaucracy and nondeterminism: on the one hand,
copious applications of the structural rules are required to constantly transform
the sequents into forms suitable for the other two groups of rules; on the other,
work can take place anywhere in the sequent at any time, resulting in an expo-
nential number of equivalent interleavings. The resulting proofs are profoundly
non-canonical and too unstructured to offer any kind of realistic support for
automation. The practical question becomes, then, how to remedy this chaotic
situation and thereby bring more order into the operation of the calculus.

A series of advances in proof theory—stemming from the study of proofs to
describe the semantics of logic programming, notably the uniform proofs of Miller
et al. (1991)—have shown that imposing certain reasonable restrictions on the
proofs of the sequent calculus allow these proofs to be structured in alternating
phases of two distinct types. These results crystallized, in the linear logic setting,
in the form of the discipline of focusing and its associated focused proof systems,
introduced by Andreoli (1992); in the practical plane, these strategies have been
applied to describe computational aspects of theorem proving by Chaudhuri
et al. (2008b). Further developments by Liang and Miller (2009) extended this
discipline by obtaining focused sequent calculi for classical and intuitionistic logic.
This will be our starting point. Again, for the time being we continue to focus on
classical logic. Starting from the one-sided LK, its corresponding focused version
is called LKF, and shown in Figure 2.4.

First, at the level of formulas, the notion of polarity is central to focused
systems. Recall how, in the previous section, the inference rules for conjunction
and disjunction admit two interchangeable presentations: additive (in Figure 2.1)
and multiplicative (in Figure 2.2). Instead of choosing one conjunction and one
disjunction, making both variations of each connective available in the proof
system can lead to greater control over the inferences. This control will be
achieved by defining two conjunctions and two disjunctions, and assigning to
each one of admissible the rules for the connective, additive or multiplicative.
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asynchronous introduction rules

` Γ ⇑ t−,Θ
` Γ ⇑ A,Θ ` Γ ⇑ B,Θ
` Γ ⇑ A ∧− B,Θ

` Γ ⇑ A, B,Θ
` Γ ⇑ A ∨− B,Θ

` Γ ⇑ [y/x ]B,Θ
` Γ ⇑ ∀x .B,Θ †

` Γ ⇑ Θ

` Γ ⇑ f −,Θ

synchronous introduction rules

` Γ ⇓ t+
` Γ ⇓ B1 ` Γ ⇓ B2
` Γ ⇓ B1 ∧

+ B2

` Γ ⇓ Bi
` Γ ⇓ B1 ∨

+ B2
i ∈ {1, 2} ` Γ ⇓ [t/x ]B

` Γ ⇓ ∃x .B

identity rules

` ¬Pa, Γ ⇓ Pa
init

` Γ ⇑ B ` Γ ⇑ ¬B
` Γ ⇑ ·

cut

structural rules

` Γ,C ⇑ Θ
` Γ ⇑C ,Θ store ` P , Γ ⇓ P

` P , Γ ⇑ · decide
` Γ ⇑ N
` Γ ⇓ N release

2.4 Figure The LKF focused proof system for classical logic (Liang and Miller,
2009). Here, P is a positive formula; N is a negative formula; Pa is a positive
literal; C is a positive formula or a negative literal; A and B are arbitrary formulas;
and ¬B is the negation of B , itself in negation normal form. The proviso marked
as † is the usual eigenvariable restriction that y must not be free in the components
of the premise (Γ, B , and Θ).



22 chapter 2. structural proof theory

More generally, a focused proof system operates on polarized formulas, ob-
tained from regular, unpolarized formulas by replacing each logical connective
with a polarized version of it, positive or negative, and by assigning a polarity,
again positive or negative, to each non-logical constant. In the one-sided focused
sequent calculus for classical logic, the four connectives ∧, ∨, t and f exist in
both positive and negative versions, signified respectively by a + or − superscript.
The universal quantifier ∀ is always negative, whereas the existential quantifier ∃
is always positive. The polarity of a non-atomic formula is that of its top-level
connective, and the polarity of an atomic formula is assigned arbitrarily. Because
formulas of the one-sided calculus are always in negation normal form, the scope
of negation is always atomic, and negation is subsumed by polarity and corre-
sponds to a simple polarity flip: if an atom is defined as positively polarized,
its negation is defined as negative, and vice versa—the polarity of each atom is
arbitrary, but all instances of an atom must share the chosen polarity. From
now on, when we discuss formulas we will usually mean polarized formulas; the
distinction between unpolarized and polarized formulas will be made clear when
it is not clear from the context.

Second, at the level of inference rules, the same general classification in groups
of rules remains, but is built upon a more basic distinction that divides sequents
into two separate sequent types. Both these types divide their collection of
formulas in two: a storage zone (abbreviated Γ, like the original, unfocused RHS)
and a workbench (sometimes abbreviated Θ)—the two zones are separated by an
arrow sign. Proofs will now be structured in groups of inference rules of the same
kind constituting distinct phases:

1. Up-arrow sequents ` Γ ⇑Θ are related to the asynchronous phase (variously
called negative, invertible, and up-arrow phase). Here, Γ is a multiset of
formulas and Θ is a list of formulas. Each inference rule in this phase is
invertible—i.e., its premises are true iff its conclusion is true, so that they
can be moved at the end of a proof without loss of completeness. Moreover,
these rules involve exclusively up-arrow sequents in both conclusion and
premises. Owing to these properties, invertible rules can be applied to
saturation indistinctly in any order. In fact, Θ is modeled as a list to enforce
an order of evaluation in which asynchronous rules are always applied to
the head of the list. This phase corresponds to don’t-care nondeterminism.

2. Down-arrow sequents ` Γ ⇓ B are related to the synchronous phase (vari-
ously called positive, non-invertible, and down-arrow phase). Here, Γ is
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a multiset of formulas and B is a single formula. Inference rules in this
phase are not necessarily invertible, and some are indeed non-invertible.
Throughout a synchronous phase, the system is focused on the single for-
mula in the workbench and sequentially applies these non-invertible choices
until no more such rules are applicable (at which point the phase ends).
Because these choices are not reversible, we may need to backtrack and try
other possibilities if they choices are not good. This phase corresponds to
don’t-know nondeterminism.

The three groups of inference rules remain with the following changes to their
structure and organization:

1. Introduction rules are now subdivided into two groups depending on the
phase in which they operate: asynchronous introduction rules operate
on negative connectives, and synchronous introduction rules operate on
positive connectives. For each phase, there is one introduction rule for each
propositional connective of matching polarity—except for f +—and one
rule for the corresponding quantifier. Because each polarized connective is
introduced by at most one rule, inference rule names are simply those of
the connectives they introduce.

2. Initial rules do not experiment substantial modifications. The interest-
ing change occurs in the atomic init rule, which replaces the axiom rule.
The scope of this rule is now limited to a positive literal as a focused for-
mula whose negated complement is contained in the storage zone. Indeed,
Gentzen proved that all instances of init can be eliminated except for those
that operate on atomic formulas, which is the criterion the focused calculus
adopts. Whereas the init rule is part of the positive phase, the cut rule
operates in the negative phase.

3. Structural rules undergo the most significant changes with respect to the
unfocused calculus. First, the standard data structures eliminate the need
for an exchange rule. More importantly, weakening and contraction are
now integrated in other rules: contraction is used in the new decide rule,
and weakening in the init rule, above. The structural rules streamline the
flux of formulas between the zones of the sequent and arbitrate the phase
transitions. Because they are conceived to enable proof search, they are
best interpreted by a bottom-up reading, unlike the top-down we have
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followed until now. First, in the asynchronous phase, when the head of
the workbench list is positive or a literal—and therefore no asynchronous
rules apply to it—the store rule moves it into the storage zone. Second,
when all formulas of the asynchronous workbench have been processed,
the decide rule selects a positive formula from the storage zone as focus of
the synchronous phase that begins. And third, when a negative formulas
is encountered in the positive phase—and therefore no synchronous rules
apply to it—the release rule removes the focus from it and starts the next
asynchronous phase. (Note that the cut rule presents an alternative to the
decide rule that prolongs the asynchronous phase instead of switching to
the asynchronous phase.)

The resulting focused proofs are therefore structured as an alternation of neg-
ative and positive phases. The combination of a positive phase followed by a
negative phase is called a bipole. This aggregation of rules greatly decreases the
amount of nondeterminism in the calculus and organizes proofs into larger co-
herent units. Under the bottom-up reading—representing the aspect of proof
search which focusing is designed to automate—once the decide rule focuses on a
formula, this formula (and the sequence of synchronous choices made during the
positive phase) guides the evolution of the proof up to the boundaries between
the branching negative phases that follow the positive phase and the next set of
positive phases. For this reason, bipoles are described as synthetic inference rules.

It remains to prove the connection between the original classical calculus
LK and its focused version LKF. An important result that will be referenced in
subsequent chapters is the following:

2.5.1 Theorem Let B be a formula of classical logic. B is a theorem of classical logic
iff the entry point sequent ` · ⇑ B̂ is provable in LKF, where · is the empty storage
and B̂ is an arbitrary polarization of B .

Proof. Proved in Liang and Miller (2009).

In other words, LKF is sound and complete w.r.t. classical logic. Moreover,
an LKF proof reveals an underlying LK proof by removing all polarities and up-
and down-arrow sequent annotations—and possibly adapting structural rules to
the presentation of choice. In addition, LKF enjoys the cut-elimination property.
Finally, it must be noted that although polarization does not affect provability,
it influences the shapes and sizes of the proofs that can be found for a given
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theorem. Examples of the choice of polarities and their consequences on proof
size will be given in Chapter 3. In particular, compare Sections 3.3 and 3.4 and
the quantitative analyses in Section 8.5.

2.5.2 Example Returning now to Example 2.4.1, consider the synchronous intro-
duction rules for ∨+ and ∃ as refined by Figure 2.4. Focused proof systems address
the kinds of combinatorial explosions witnessed in the previous example by
organizing introduction rules into two distinct phases. Two rules of interest are
synchronous, i.e., they operate on a single formula marked as under focus.

As a result, it is easy to see that—after introducing the focusing decorations
in the previously considered sequents—reducing proving the original sequent
Γ ` ∃x∃y [(p x y)∨((q x y)∨(r x y))] ⇓ to its reduced form Γ ` (q t s ) ⇓ involves
only those choices related to the formula marked for focus: no interleaving of
other choices needs to be considered.

2.6 Soundness and completeness

Theorem 2.5.1 in the previous section states the properties of soundness and
completeness of the system LKF for classical logic. Because these concepts recur
in presentations of subsequent systems and frameworks, we collect here some
essential remarks. A proof system is sound with respect to a logic if every
statement it proves is a theorem of the logic. Conversely, a proof system is
complete with respect to a logic if for every theorem of the logic there exist proofs
of its statement in the proof system.

In sequent calculus, part of the interest of cut elimination lies on its connection
to the related property of consistency. Consider again the system LK in Figure 2.1.
Except for the cut rule, all inference rules satisfy the subformula property: that is,
every formula in the conclusion sequent is a subformula of one of the premise
sequents. If we can eliminate cut, we are left with a system that globally satisfies
the subformula property. From this, a proof of consistency is simple: if it were
possible to obtain proof of a contradiction (i.e., prove false), this contradiction
should be found as part of a premise for some inference rule in the calculus;
because none of the rules allow for this propagation of false from conclusion to
premise, the calculus is consistent. (Furthermore, because it globally satisfies the
subformula property, proof search can be easily automated.)

By similar arguments, LJ is found to be sound and complete w.r.t. intuitionis-
tic logic (Liang and Miller, 2009). Starting in Chapter 3, we will study methods to
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restrict completeness in such a way that soundness is preserved by construction.
The motivation will be to start from a system that is, say, “complete enough”
and sculpt out of it another system, possibly less complete, but also “complete
enough” for a certain domain of interest, in the hope that this leads to increased
expressiveness and efficiency.

2.7 Notes

The present work develops in the rich soils of computational logic in general and
structural proof theory in particular. As general overviews of the field, a number
of monographs serve as good references, expounding the bases of structural
proof theory and covering the needed logical preliminaries in various styles of
presentation: Takeuti (1987); Buss (1998); Troelstra and Schwichtenberg (2000);
Negri and von Plato (2001); von Plato (2013).

While we shall cover both classical and intuitionistic logic, a wealth of other
logics exist. Linear logic, the “logic of resources” developed by Girard (1987),
is especially relevant. Concepts like the distinction between additive and mul-
tiplicative inference rules (and connectives)—already present in relevant logics
(Anderson and Belnap, 1975; Read, 1988)—, are ubiquitous in linear logic. In fact,
the notions of polarity and focused proof developed by Andreoli (1992) extend
cleanly to classical and intuitionistic settings, as well as to fixed points (Baelde and
Miller, 2007; Liang and Miller, 2009) and serve to give a proof theoretical reading
to the complementary discipline of model checking (Heath and Miller, 2017).
Linear logic is one of the primary representatives of the family of substructural
logics, so called because they limit the application of structural rules—and at least
along this axis constitute a weakening of, say, classical logic. This logic reoccurs
during the introduction of fixed points in Chapter 9.

The original sequent calculi by Gentzen use the homonymous structures as
their fundamental building block. However, various extensions and refinements to
the paradigm have been proposed, of which focusing is one of the most important.
One way to obtain more general systems is to extend the data structures: calculi
based on hypersequents (Avron, 1991, 1996) do this by replacing simple sequents
with a list (or a multiset) of sequents, usually interpreted disjunctively (like the
formulas in a one-sided sequent); the motivation is to study general frameworks
in which to easily model many families of interesting logics. Another extension
to the basic data structures of the calculus employs nested sequents (Brünnler,
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2010), whose components can be not only formulas, but also other sequents,
thus turning the latter into a recursive data type. This last idea is related to deep
inference (Guglielmi, 2007, 2015), a design methodology for proof systems which,
applied to the sequent calculus, allows inference rules to be applied anywhere in a
sequent instead of being limited to the top-level connective of a certain formula.
Structural generalizations also extend to the arena of focused systems, where
multi-focusing (Chaudhuri et al., 2008a) allows the decide rule to operate on a set
of formulas, in this case to further increase the canonicity of sequent calculus
proofs that is the hallmark of focused systems.

The classic treatise on the nature of proof-as-message is the book by Lakatos
(1976). The proof-as-certificate counterpart is covered by MacKenzie (2001),
which traces the development of mechanized proofs with which we are directly
concerned. More recent overviews include Asperti (2012) and, under the prism
of Foundational Proof Certificates, Miller (2014). Although we are primarily
concerned with the certifying nature of proofs, it is arguable that work in the
latter chapters—Part III, and even sections of Part II—addresses the proof-as-
message half by a flexible linkage between formally defined certificates and the
messages conveyed by them, namely concise, readable descriptions of proofs made
syntactically—and semantically—precise while being usable by mathematicians.

The rule of cut serves very different purposes in proofs created for (or by)
machines or mathematicians. In addition to the important theoretical results
derived from it—bearing witness to certain desirable characteristics of a logic, like
consistency—the existence of cut-free proofs is instrumental to the automation of
proof search. In turn, for the mathematician, the ability to organize proofs using
lemmas is an absolute conceptual necessity. Beyond cognitive and stylistic consid-
erations, cuts are indispensable—also for machines—to manage the complexity
and size of proofs, as the combinatorial explosion that results from inlining every
auxiliary lemma at every point of use quickly becomes intractable (D’Agostino
and Mondadori, 1994).
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3 Foundational Proof Certificates

3.1 Proof as trusted communication

Chapter 2 opens by examining the mathematical concept of proof and briefly
charting its formal study. As we concentrate on the more solidified and structured
states of the malleable substance—and, through rigorous efforts, further seek to
reduce entropy and obtain a flawless crystallization of mathematical truth—, the
dual functions of proof-as-message and proof-as-certificate seemingly begin to
coalesce. In fact, inasmuch as computer programs can not only build proofs, but
also write and read them (and check them), those external representations of
machine proofs—transmitted between computer processes—must ideally function
both as messages and certificates. When the recipient of some proof evidence
is a computer program, that evidence should be enough to enable the program
to reconstruct the proof object which that evidence purports to represent; oth-
erwise, it has to be discarded. Of course, there are many precisions to make,
and an incomplete proof, even an incorrect one, is not always without value.
Nevertheless, ultimately a complete proof object is needed to establish trust,
and the proof-as-certificate aspect guarantees and safeguards the utility of the
proof-as-message.

The concept of proof as an object—materialized as some kind of document—
that attests to the truth of a statement made about a certain, formally defined
theory finds ample practical support in the ever-growing array of software tools
that facilitate the production and verification of proofs: automated theorem
provers (Alt-Ergo, Vampire, Z3), proof assistants (Coq, Isabelle, Abella), model
checkers (NuSMV, PRISM, Bedwyr), programming languages with sophisticated
type systems (Idris, F*), etc. These tools are generally not designed with com-
munication in mind, and as their number and sophistication increases, so does
fragmentation. Yet different tools have different strengths, and it is natural to

29
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wonder how to combine them—and their proofs—gracefully. The issue is more
than a theoretical curiosity, as complex developments may involve proofs which
are more easily obtained through a mix of (compatible) formalisms. The ability
to understand and admit proofs irrespective of their provenance is a prerequisite
for this scenario, akin to the interoperation of computer programs.

One may draw inspiration from the progressive application of formal methods
in the related area of programming languages. The study and development of
programming languages have been aided by the use of at least two important the-
oretical frameworks: on the one hand, context-free grammars, or CFG (Hopcroft
et al., 2006), are used to define the structure of programs; on the other, structural
operational semantics, or SOS (Plotkin, 1981, 2004), are used to define the evalua-
tion and behavior of programming languages. Both of these frameworks make it
possible to define the syntax and semantics of a programming language in a way
that is independent of a particular parser and particular compiler. Specifications
in these frameworks are both mathematically rigorous and easily given prototype
implementations using the logic programming paradigm (Borras et al., 1988;
Hannan, 1993; Shieber et al., 1995; Miller, 2009). These techniques scale to the
definition of practical programming languages, as demonstrated by the formal
specification of ML (Milner et al., 1990).

Similarly, work on automated and interactive reasoning systems can benefit
from the introduction of frameworks that are capable of defining the meaning
of proof descriptions that are output by proving tools, and representing these
descriptions in a shared language—that of logic. Such formal semantics of proof
languages make it possible to establish a separation of concerns between the produc-
tion of proofs and the checking of proofs. On the one hand, production is carried
out by theorem provers: the various families of tools (such as listed above) capable
of reasoning about formal specifications. These are complex, evolving pieces of
software; they are potentially difficult to prove correct, and thus vulnerable to
programming errors which can endanger their logical soundness. On the other
hand, proof checkers could be small and persistent, as well as easy to trust and
prove correct. In such a setting, the provenance of a proof should not be critical
for trusting it—subject to its successful checking by a trusted tool.

The key, then, is to define a logical framework where the syntax and, criti-
cally, the semantics of proofs can be defined in a clean, declarative fashion that
is both universal and permanent. That is, the framework should be able to
represent a broad spectrum of proof structures, such as resolution refutations,
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tableaux, (un)satisfiability proofs, superposition, etc. All these kinds of proof
evidence—given a definition of their semantics— are modeled through a unified
representation of proofs, which much satisfy certain properties.

3.1.1 Definition The term proof certificate denotes a document that should elaborate
into a full formal proof by means of a proof checker. Any general-purpose frame-
work implementing these concepts should satisfy the following four requirements
(Miller, 2014), which we shall callMiller’s desiderata, referring to them by number:

1. A simple checker can, in principle, check if a proof certificate denotes a
proof.

2. The format for proof certificates must support a wide range of proof
options.

3. A proof certificate is intended to denote a proof in the sense of structural
proof theory.

4. A proof certificate can simply leave out details of the intended proof.

Harnessing recent advances in structural proof theory, Foundational Proof
Certificates (FPCs) have been proposed as a general framework for the expression
of proof evidence (Miller, 2011; Chihani et al., 2013, 2016b). In this framework,
focused sequent calculi (for which see Section 2.5) act as foundations of a unifying
proof system, which—as its parallels in the programming language world—is easily
implemented in proof checking kernels in a logic programming language, as we
will see in Section 4.4. In this context, an FPC is a machine-readable document
which expresses a proof in terms of a series of synthetic inference rules. Those
inference rules, along with their logical interpretation, are given by a certificate
definition, which operates as nexus between the two sides of a checker: (a) for
the kernel, it is a small logic program loaded and run by the kernel, used to guide
proof search; and (b) for the client, a small domain-specific language in which
proofs (i.e., proof certificates) can be written. The payload that a client must
provide to a proof checker consists of both a certificate and its definition, although
FPC definitions are modular and it is in their vocation to be reusable.

The rest of the chapter is organized as follows. Section 3.2 introduces the
extensions to the focused sequent calculus that form the theoretical basis for the
framework. Section 3.3 presents the first of four simple FPC definitions which
are used as recurring examples, here a simple decision procedure for propositional
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logic. Section 3.4 continues with the second of these examples by by defining
precise guidance information obtained from an oracle in the certificate. Section 3.5
complements previous certificate formats with a more flexible constraint on
the size of proofs expressed as their depth in number of bipoles. Section 3.6
completes the series of examples with a certificate format for proofs by binary
resolution, closer to the proofs produced by automated theorem proving tools.
Section 3.7 discusses the relationships between the various parts and realizations
of the framework, which will find concrete expression in Chapter 4. Section 3.8
concludes the chapter.

3.2 Augmented sequent calculus

The standard sequent calculus of Section 2.4, while undeniably interesting from a
theoretical perspective, is not well suited for automation because it lacks structure.
One modern criterion for what constitutes a well-behaved proof system is whether
the logic admits a focused version, as illustrated in Section 2.5. Focused proofs
substantially reduce the amount of nondeterminism by structuring the proof in an
alternation of asynchronous and synchronous phases. Within each asynchronous
phase, only invertible rules are used and their ordering is irrelevant; within
each synchronous phase, the sequence of inference rules is fully determined.
Although focused proofs exhibit a much larger degree of canonicity, the sources
ofmeaningful nondeterminism remain: picking a formula to focus on in the decide
rule, devising a lemma to cut into the proof, choosing a disjunct or an existential
witness to instantiate the rules of the synchronous phase, etc. Focused phases are,
in a sense, synthetic inference rules, but lack flexibility.

The solution adopted by the FPC framework is to augment the focused
sequent calculus to allow fine control to the point of making it programmable.
Consider Figure 3.1, which presents the augmented calculus LKF a . Three main
categories of changes are introduced:

1. Starting from a standard focused system (here, the LKF of Figure 2.4),
every inference rules has all its premises and its conclusion enriched with
certificate terms, denoted Ξ.

2. Moreover, an additional premise is added to every rule—except that for
negative true, t−. The new premise represents a predicate that relates the
certificate terms in the conclusion and the premises, as well as every piece of
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additional information required by the rule (disjunctive choices, existential
witnesses, etc.). When fresh eigenvariables are involved (i.e., treating the
universal quantifier) the certificate terms on the premises are parameterized
over the new variable.

3. Finally, the storage zone Γ is transformed into a multiset of indexed for-
mulas, and inference rules storing and pulling formulas from this zone are
modified to reflect the new data structure.

The operational reading of the augmented calculus parallels bottom-up proof
reconstruction. Under this discipline, a concrete certificate term is expected in
the conclusion. The new (client-supplied) relational premises—which will be
presently characterized as clerks and experts—would then take the conclusion
certificate as “input” and use it to constrain all other elements as the “outputs” at
the premises. If the output certificate is related to continuation certificates for the
premises (and ancillary information: disjuncts, etc.), each possible combination
of values offers an opportunity to continue, and possibly finish, the proof. In
most practical FPC definitions, the relation behaves like a partial function from
conclusion certificate to premise certificates. By contrast, some forms of ancillary
information can be not only span several different values, but also be completely
unconstrained and left to the checker to reconstruct—logic variables can be used
to reflect these degrees of freedom. Similarly, clerk and expert relational premises
refer to formulas in storage exclusively by index; the model does not enforce a
functional mapping, so that an index may select an arbitrary number of formulas
from storage.

3.2.1 Example Let us revisit the interesting cases of the introduction rules in Ex-
ample 2.4.1—albeit in their focused versions. Consider the introduction rule for
the positive disjunction. In bottom-up proof search—once the inference rule is
augmented with an expert—, one of the charges of an FPC definition is to have
the expert dictate the disjunctive choice. Based on a certificate term and its own
defining clauses, the expert may stipulate that, at a given point in the derivation,
the left or the right disjunct should be used to proceed with the proof. It may
also decree that no choice is acceptable—and in consequence a derivation may not
be obtained, even if one exists—or that either choice may be attempted (hence,
an implementation should choose one of the disjuncts and continue the proof
attempt, and return to try the second disjunct if the first fails).
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asynchronous introduction rules

Ξ0 ` Γ ⇑ t−,Θ

Ξ1 ` Γ ⇑ A,Θ Ξ2 ` Γ ⇑ B,Θ ∧c (Ξ0,Ξ1,Ξ2)

Ξ0 ` Γ ⇑ A ∧− B,Θ

Ξ1 ` Γ ⇑ A, B,Θ ∨c (Ξ0,Ξ1)

Ξ0 ` Γ ⇑ A ∨− B,Θ

(Ξ1 y) ` Γ ⇑ (B y),Θ ∀c (Ξ0,Ξ1)

Ξ0 ` Γ ⇑ ∀x .B,Θ
†

Ξ1 ` Γ ⇑ Θ fc (Ξ0,Ξ1)

Ξ0 ` Γ ⇑ f −,Θ

synchronous introduction rules

te (Ξ0)

Ξ0 ` Γ ⇓ t+
Ξ1 ` Γ ⇓ B1 Ξ2 ` Γ ⇓ B2 ∧e (Ξ0,Ξ1,Ξ2)

Ξ0 ` Γ ⇓ B1 ∧
+ B2

Ξ1 ` Γ ⇓ Bi ∨e (Ξ0,Ξ1, i)

Ξ0 ` Γ ⇓ B1 ∨
+ B2

i ∈ {1, 2} Ξ1 ` Γ ⇓ (B t ) ∃e (Ξ0,Ξ1, t )

Ξ0 ` Γ ⇓ ∃B

identity rules

〈l , ¬Pa 〉 ∈ Γ inite (Ξ0, l )

Ξ0 ` Γ ⇓ Pa
init

Ξ1 ` Γ ⇑ B Ξ2 ` Γ ⇑ ¬B cute (Ξ0,Ξ1,Ξ2, B)

Ξ0 ` Γ ⇑ ·
cut

structural rules

Ξ1 ` Γ, 〈l , C 〉 ⇑ Θ storec (Ξ0,Ξ1, l )

Ξ0 ` Γ ⇑C ,Θ
store

Ξ1 ` Γ ⇓ P 〈l , P 〉 ∈ Γ decidee (Ξ0,Ξ1, l )

Ξ0 ` Γ ⇑ ·
decide

Ξ1 ` Γ ⇑ N releasee (Ξ0,Ξ1)

Ξ0 ` Γ ⇓ N
release

3.1 Figure The augmented LKF a focused proof system for classical logic (Chihani
et al., 2013). Presentation conventions are shared with Figure 2.4.
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The treatment of the existential quantifier generalizes that of the positive
disjunction in that the number of possible terms may be zero (if the type is
uninhabited), finite or infinite (in inductively defined types like the natural
numbers): more complex selection strategies are possible, but remain variations
on those available in the (binary) disjunctive case. In a focused proof system,
the decide rule is the primary source of proof structure. The choice of formula
under focus is afforded the same flexibility with the peculiarity that selections
are determined by the indexing scheme imposed by the certificate terms and the
store clerks. A decision depends on both the indexes allowed by the decide expert
and the sets of formulas filed under those indexes. Again in Example 2.4.1, if all
formulas share a single index, the number of choices remains unchanged; if each
formula is stored under a unique index, a certificate term can record the sequence
of choices that lead to a single, directed path to success.

In brief, the augmentation of LKF by certificates, indexes, and clerk and expert
relations modifies the original system merely by restricting when inference rules
can be applied: it affects completeness and leaves soundness untouched.

3.2.2 Theorem The system LKF a is sound w.r.t. classical logic (Chihani et al., 2016b,
Section 5).

Proof. The LKF system can be recovered from LKF a by removing all the augmen-
tations (marked in Figure 3.1), and therefore every proof of LKF a is also a proof
of LKF. The result follows from Theorem 2.5.1.

Theorem 3.2.2 implies that the soundness of the system cannot be compro-
mised by the client. Note that the augmentations of LKF a are completely generic
and can be assigned arbitrary meanings by the client: this is the function of
FPC definitions. By furnishing declarations and definitions (i.e., syntax and
semantics) to define a set of augmentations, the sequent calculus gains support for
programmable proof reconstruction. Effectively, such a description defines a family
of certification strategies. There are five groups of elements that constitute an
FPC definition, each described in the following paragraphs:

1. Polarization. A polarization strategy determines how to translate (stan-
dard) unpolarized formulas into polarized versions of them—the other
direction is direct by polarity erasure. As noted in Section 2.5, the choice of
polarities by itself does not affect provability, but its interactions with the
other members of an FPC definition may. Despite this seeming leniency,
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the role of polarities should not be underestimated: they have a strong im-
pact on the proofs that can be found for a given theorem, and can represent
the difference between brute force search (exponential in complexity) and
purposeful navigation, guided by a certificate along a predetermined set of
nondeterministic choices. For illustration, compare the certificate formats
and corresponding examples in Sections 3.3 and 3.4.

2. Certificate terms. Conceptually, certificate terms represent the state of a
proof, or the region of a proof in which we find ourselves at a given point
in the derivation. State information can be arbitrarily complex and, as the
proof evolves, so do the certificates, and the information contained in them
can be used (by clerks and experts) to steer the derivation towards success.

3. Indexes. Index terms control two important aspects of guided proof re-
construction: naming and storage. As synchronous formulas are moved to
the storage zone Γ, they are annotated with a data structure contained in
an index term, supplied in the store rule. Like certificate terms, they may
contain arbitrary information, and can later be called upon to selectively
retrieve a subset of candidate formulas for selection by the decide rule (to
treat during the positive phase inaugurated by the rule) or by the init rule
(to attempt to finish a branch of the derivation). Lookup can be as loose
or as tight as the designer chooses, offering great control over backtracking
points, classification and selection of formulas to make the proof progress,
etc. A good indexing scheme is critical to performant proof checking.

4. Clerks. These predicates, denoted by the c subscript in Figure 3.1, define
the control semantics of asynchronous rules. While not explicitly responsi-
ble for the decisions that are characteristic of synchronous rules, they can
nonetheless perform bookkeeping and record information that will eventu-
ally enable their synchronous counterparts to make their decisions when
they are executed. These can be thought of as ordinary program clauses,
making full use of the power of logic programming. Nontermination is
allowed by the framework, as it concerns itself only with the soundness of
successful derivations—for which termination of all instances of clerks and
experts is necessary.

5. Experts. The synchronous counterparts of clerks, signified by the e sub-
script, are—like their asynchronous duals—arbitrary program clauses, but
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in addition to possibly recording information while processing certificate
terms they will be required to make the decisions demanded by their phase
and supply information about those decitions to the checker. How much
or how little they commit to one or several possible courses of action is
not dictated by the framework and remains purely a design issue. For
example, ∨e must select one of the disjuncts, B1 or B2, to continue the
derivation. A possible, nondeterministic course of action is to try to use B1

first, backtracking to try B2 if a complete derivation based on B1 cannot be
found. Similarly, ∃e may provide a set of closed terms as witnesses or let an
arbitrary term be instantiated over the course of the proof.

The phase of the inference rule for a given logical connective is immediate
from the polarity of the connective. Structural rules are more nuanced: store oc-
curs during the asynchronous phase and is assigned a clerk, although it is charged
with the critical operation of filing formulas into storage, in the process assigning
them indexes. In turn, decide arbitrates the transition from asynchronous to syn-
chronous phase by using those very indexes, and its complement release mediates
(albeit trivially) the other phase transition, from synchronous to asynchronous.
Both these transitions can be seen as operating “between two worlds,” and are here
both declared as experts. The last group of identity rules is supervised by experts.
init is a standard expert of the synchronous phase: it operates on a positive literal
and involves selecting a stored complementary literal. On the other hand, cut
acts as an alternative to decide at the boundary of an asynchronous phase, and
instead of ending the phase, it prolongs it, but there is no doubt that its duties
and position correspond to those of an expert.

In the next few sections, we present a number of FPC definitions that illustrate
typical uses of the framework and will reoccur in subsequent chapters. The
definitions are given in executable λProlog code. They are direct, declarative
transcriptions of the mathematical relations they encode, comprising certificate
and index term constructors, and clauses for clerks and experts—polarization
conventions are implicitly defined from those. Only standard logic programming
features are used; argument order is preserved from Figure 3.1. We refer to
Chapter 4, specifically Section 4.4 for a study of the implementation of LKF a as a
proof checking kernel and its interface with client-defined clerks and experts, as
given by the kernel’s API.
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3.3 Running example: CNF decision procedure
An extreme minimalist use of the FPC framework is studied as our first example.
Consider the propositional fragment of classical logic, where all logical constants
are negatively polarized. In this situation, there is no opportunity to offer
guidance during the synchronous phase, and our only recourse is to exhaustive
search. While completely blind and exponentially inefficient, it is clearly a sound,
if empty, brute force “strategy,” a fact that can be clearly represented with a simple
FPC definition. Each of its five components can be explained as follows:

1. Polarization is purely negative across all allowed logical connectives (i.e.,
no quantifiers). By convention, formulas are in conjunctive normal form,
and negations translate into atoms of complementary polarities, e.g., negated
atoms are given negative polarity; non-negated atoms are given positive
polarity. This is the only allowed use of positive polarity.

2. Certificate terms carry no information. A singleton, nullary constructor,
cnf, leaves no option but to propagate it from conclusion to each premise,
unchanged.

3. Indexes also carry no information. A singleton, nullary constructor, idx,
is used to file all formulas in the store rule. Conversely, the decide rule
can only use this unique index to specify which formula(s) to choose.
Hence, the storage zone acts as a simple bucket of formulas; it contains
no information to help us discriminate the right formula to focus on.
Each instance of the decide rule attempts to find a proof for every formula
currently stored in Γ.

4. Clerks are declared for the negative connectives to enable proof search to
proceed through them and store positive formulas and negative literals, i.e.,
atoms, without distinction.

5. Experts are declared only for phase transitions and for the init rule, to
allow an atom to be matched with its stored complement and close a branch
of the derivation. It can be seen that, by design, the other inference rules
cannot occur, and therefore their definition would have no effect in proof
search.

The FPC definition is presented in full in Figure 3.2. This is, in fact, a decision
procedure for classical propositional logic.
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% Signature
type lit index.
type cnf cert.

% Implementation of clerks and experts
andC cnf cnf cnf.
orC cnf cnf.
falseC cnf cnf.
releaseE cnf cnf.
initialE cnf lit.
decideE cnf cnf lit.
storeC cnf cnf lit.

3.2 Figure The CNF decision procedure FPC (Chihani et al., 2016b, Section 7.1).

3.3.1 Example With patience, the theoremhood of small propositional formulas
can now be checked by using cnf with the entry point sequent. Let F be a
formula of LK, and F − be its negative polarization. Then F is a theorem of LK
iff cnf ` · ⇑ F − is provable.

3.4 Running example: oracle strings

Still in the decidable setting of classical propositional logic, the polar opposite
of the exhaustive exploration of the previous section—our sole recourse given
the lack of meaningful decisions—is the concrete expression of those decisions
and their representation of one instance of a successful search as the certificate
term. Thus, the tree of decisions effectively constitutes an oracle. The shift finds
reflection in the choice of polarities, which in turn affect the proofs that can
be found—and, fundamentally, open an avenue of feeding the oracle via a proof
certificate. We next define the components of the FPC definition, reproduced in
Figure 3.3.

1. Polarization is purely positive across the propositional connectives; nega-
tive polarity is allowed only with atomic scope.

2. Certificate terms carry as information a tree representing an oracle of
decisions represented by the kind oracle, with constructors for branching
conjunction (c, with a continuation for each branch) and disjunction
(l and r, respectively instructing to pick the left or the right disjunct,
with a continuation for the choice), as well as a branch terminator (emp).
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% Signature
kind oracle type.
type emp oracle. % empty
type l, r oracle -> oracle. % left, right
type c oracle -> oracle -> oracle. % conjunction

type start, consume, restart oracle -> cert.
type root, lit index.

% Implementation of clerks and experts
decideE (start Oracle) (consume Oracle) root.
storeC (start Oracle) (start Oracle) root.
decideE (restart Oracle) (consume Oracle) root.
storeC (restart Oracle) (restart Oracle) lit.
initialE (consume emp) lit.
trueE (consume emp).
andE (consume (c OracleL OracleR))

(consume OracleL) (consume OracleR).
orE (consume (l Oracle)) (consume Oracle) left.
orE (consume (r Oracle)) (consume Oracle) right.
releaseE (consume Oracle) (restart Oracle).

3.3 Figure The oracle string FPC (Chihani et al., 2016b, Section 7.2).

Oracle information is wrapped in three different constructors: the principal
consumer of decisions, consume; as well as start and restart, used
to simulate the homonymous rules of the purely positive fragment of LK
in the focused setting of full LKF via its structural rules.

3. Indexes carry little information: as in the previous section, lit is used to
store negative literals for further discharge by the initial rule. A second
index, root, marks the formula on which the (re)start rule proceeds to
the regular checking (i.e., consumption) phase.

4. Clerks are defined exclusively for the store rule: at the outset, to store the
positive theorem candidate as root; after a release that brings the state to
await a restart, to store the negative literals that caused the release of
focus as lit.

5. Experts are defined for each synchronous propositional introduction rule
as consuming the oracle corresponding to that exact connective, i.e., disjunc-
tive choices, conjunctive branchings, as well as closing branches by looking
up literals under lit or treating true; all this occurs in the consume phase.
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In addition, the decide rule implements the (re)start by focusing on the
formula stored under root, and the release of focus (into restart) when
a negative literal is encountered.

It is instructive to compare the purely negative proofs of Section 3.3 with
the purely positive proofs of this section. By polarizing a classical formula with
negative or positive bias, we obtain different proofs of the same (unpolarized)
theorems, though these proofs have vastly differing structures and computational
behaviors.

3.5 Running example: decide depth

Another useful FPC definition provides a simple restriction on the proofs it
allows by placing a certain bound on their size and admitting only “small” proofs
which satisfy that bound. While of limited use by itself, it is representative of
a common pattern of certificates as resources. Let us examine its components
group by group:

1. Polarization does not impose any restrictions on what connectives can be
used: this FPC definition concerns itself solely with a measure of the size
of an arbitrary proof.

2. Certificate terms are limited to a single constructor, dd, containing a
single piece of information: the maximum allowed decide depth from the
present point in the proof (represented by a natural number, here of type
nat as the standard inductive type).

3. Indexes carry no information: as in the previous example, a singleton,
nullary constructor (called indx in this case) is used for all formulas in the
storage zone.

4. Clerks are defined for each asynchronous inference rule. Each clerk prop-
agates the decide depth bound unchanged from conclusion to premises.
When treating the universal quantifier, the abstraction over the continua-
tion certificate is vacuous, i.e., the eigenvariable plays no role in the new
certificate. Storage of formulas uses the unique index at our disposal, indx.

5. Experts are defined for each synchronous inference rule—except cut. Like
their clerk duals, they propagate the decide depth bound from conclusion
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% Signature
type indx index.
type dd nat -> cert.

% Implementation of clerks and experts
andC (dd D) (dd D) (dd D).
andE (dd D) (dd D) (dd D).
falseC (dd D) (dd D).
releaseE (dd D) (dd D).
orC (dd D) (dd D).
allC (dd D) (x\ dd D).
orE (dd D) (dd D) Choice.
someE (dd D) (dd D) T.
storeC (dd D) (dd D) indx.
initialE (dd D) indx.
trueE (dd D).
decideE (dd (succ D)) (dd D) indx.

3.4 Figure The decide depth FPC (Blanco et al., 2017a).

to premises and select the singleton index indx whenever an index term
is solicited by the interface. There are two points of importance. First,
the decide depth bound is decremented on the decide rule while the cur-
rent allowance permits it (i.e., is greater than zero). Second, disjunctive
choices and existential witnesses are completely unconstrained by the FPC
definition, and fresh logic variables are returned to the kernel.

Figure 3.4 presents the FPC definition just described. An inductive definition
of natural numbers with zero and successor constructors (the latter written as
succ in the figure) is assumed present. These FPCs have fewer constraints and
in fact encompass the proofs covered by the definitions in Sections 3.3 and 3.4.
Decide depth bounds are less useful for proof search in isolation, but offer a useful
way to express the size of focused proofs in terms of their essential high-level
components—bipoles.

3.6 Running example: binary resolution

It is instructive to see how the FPC framework scales up to the core of a standard
proof technique. To this end we turn to resolution refutations. Suppose we want
to prove a formula of the form ¬C1 ∨ . . . ∨ ¬Cn. This is equivalent to refuting
the negation of the formula, i.e., C1 ∧ . . . ∧Cn—as usual, assumed in conjunctive
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normal form—where each clause Ci a disjunction of literals closed by universal
quantifiers. The key idea of the technique lies in the binary resolution rule (here,
subscripted as and bs are arbitrary literals).

a1 ∨ · · · ∨ ai−1 ∨ Pa ∨ ai+1 ∨ · · · ∨ am b1 ∨ · · · ∨ b j−1 ∨ ¬Pa ∨ b j+1 ∨ · · · ∨ bn
a1 ∨ · · · ∨ ai−1 ∨ ai+1 ∨ · · · ∨ am ∨ b1 ∨ · · · ∨ b j−1 ∨ b j+1 ∨ · · · ∨ bn

A proof by binary resolution is structured as a sequence of applications of
this rule. Each of these steps proceeds by attempting to apply the resolution rule
to a pair of clauses to generate a new clause, until the empty clause f is reached,
at which point the refutation succeeds. By assigning names to the clauses that
compose the formula to be proved, as well as to the new clauses that result from
applications of the resolution rule, it becomes possible to represent compactly a
proof by resolution by a list of triples, each denoting the two premises and the
conclusion of each application of the rule, respectively. A certificate representing
a proof by resolution must encode this information. Assuming clause names
are natural numbers assigned incrementally and starting from one, the following
triple of lists is a natural encoding of the information contained in the proof.

1. A list of clauses corresponding to the C1, . . . ,Cn of the formula whose
proof will be attempted. These will receive identifiers 1 through n.

2. A list of clauses used in the proof but not included in the input clauses, i.e.,
derived by applications of the resolution rule on previous clauses. These
will receive identifiers starting from n + 1.

3. A list of triples of numeric indexes 〈i, j, k〉, where i and j are the indexes of
the premises and k the index of the conclusion of an instance of the binary
resolution rule.

In order to design the FPC definition in detail, we determine one possible
shape of a general proof by resolution in LKF a , and work around to sculpt it
during proof reconstruction. A detailed description can be found, e.g., in Chihani
et al. (2016b). Conceptually, a proof is divided in three types of phases, or regions:

1. The first phase starts the proof and asynchronously stores the clauses of the
goal formula, each under its respective index. After all clauses have been
stored, the second phase commences.
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2. The second phase translates each use of the resolution rule (represented
by a triple of indexes in the certificate) into an instance of the cut rule,
where the derived clause acts as cut formula. One of the branches of this
cut continues on to the next instance of the resolution rule, forming a
backbone of cuts that finishes with the empty clause.

3. The third phase (type) branches off from each instance of the cut rule in
the second phase. It reconstructs a shallow proof that the triple of indexes
specified by the certificate is, indeed, a correct application of the binary
resolution rule.

The FPC definition is shown in Figure 3.5. The three phase types in a
proof by resolution correspond, in order, to the three groups of clerk and expert
clauses—separated by line comments—in Figure 3.6. (This structure is revisited
and expanded upon in Chapter 7.)

3.6.1 Example Suppose we wish to prove the following formula:

r (z ) ∧ (∀x .¬r (x ) ∨ t (x )) ∧ ¬t (z )

Here, z is a term of a certain type i, and r and t are relations of type i → o.
To prove the formula, we instead attempt to find a refutation of its negation:

¬r (z ) ∨ (∃x .r (x ) ∧ ¬t (x )) ∨ t (z )

We may do so by hand or by resorting to any of a number of automated
theorem provers. A resolution-based prover should be able to provide evidence
for the validity of the goal formula.

Instead of relying on an informally specified proof script, it would be easy to
adapt a proving tool to emit the information contained in the proof by resolution
as a formally defined FPC as per the definition in Figure 3.5. According to this
encoding, a possible certificate will have the following shape.

[resol 1 2 4, resol 4 3 5]
[1 7→ r (z ),
2 7→ ∀x .¬r (x ) ∨ t (x ),
3 7→ ¬t (z )]
[4 7→ t (z ),
5 7→ f ]
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In this presentation, indexes and their mappings to subformulas are given
explicitly, whereas the basic encoding detailed above relies on implicit numbering.
Both are acceptable variations of the same family of certificates. An independent
checker can use this certificate and the definition on which it is based to verify
that the goal formula is, in fact, a theorem.

The binary resolution FPC just presented illustrates the intricacies of precise
encodings and their close connection to proof reconstruction. The FPC definition
is designed in such a way that some natural and mostly independent extensions—
discussed throughout Chapter 8—are straightforward, but other, slightly different
encodings of resolution refutations do not share this property. Experience shows
that complex FPC definitions risk brittle behavior in the face of changes and
additions, and tests need to be maintained and pre- and postconditions carefully
documented. Naturally, simpler “proof scaffolds” are more robust—commonly at
the cost of some loss in efficiency. (Following this line of thought, for example,
the shallow proofs of the third phase could be given a much more compact,
implicit representation.)

3.7 Checkers, kernels, clients and certificates

At a basic level, there is a juxtaposition between the two parts that form a proof
checker. On the one hand there is a trusted, sound kernel that implements a
focused sequent calculus as a logic program. On the other, there is a client that
specializes the kernel by providing an untrusted FPC definition and certificates
built on it. Thus, the combination of the kernel and an FPC definition results in
a concrete instance of the proof checker. Nonetheless, note that the client side is
divided in two parts: the FPC definition and the FPC proper, the latter itself the
client of the former. While the implementation of the kernel does not concern
the client side, its semantics is of direct concern to the author of an FPC definition.
On the other side, the writer of FPCs based on a definition is only interested in
the higher-level semantics given by that definition, and not by its implementation
of the kernel’s. Moreover, the writer of FPCs is seldom interested in polarities, as
they do not affect provability and polarization is often fixed by the semantics of
the FPC definition, so that as a user one can easily write, say, formulas of LK and
FPCs, thus staying at a high level of abstraction.

From the time of the original FPC proposal by Miller (2011), a motivating
analogy has been advanced in the form of what are called synthetic inference rules.
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% Deduced clauses are listed via the lemma predicate.
type lemma int -> form -> o.

% Label of clauses which are never literals.
type idx int -> index.
% Labels for literals that enter the side context.
type lit index.
% Label for the stored pivot literal.
type pivot index.
% Used in small proofs
type immediate index.

% Needed just for the initial clerks.
type start int -> list cert -> cert.
% List of resolution triples.
type rlist list cert -> cert.
% Temporary linkage to share an index.
type rlisti int -> list cert -> cert.

% Introduce a resolvent subproof.
type resolve int -> cert -> cert.
% Introduce an order-ambiguous resolvent subproof.
type resolveX int -> cert -> cert.

% First index in resolvent
type res int -> cert -> cert.
% Second index in resolvent
type rex int -> cert -> cert.

type small cert.
type nsmall cert.
type ismall cert.
% Must do an initial rule immediately.
type rdone cert.
% End of the left premise of cut.
type done cert.

3.5 Figure The binary resolution FPC: signature (Chihani et al., 2016b, Sec-
tion 7.3).
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orC (start Ct Certs) (start Ct Certs).
falseC (start Ct Certs) (start Ct Certs).
storeC (start Ct Certs) (start Ct’ Certs) (idx Ct) :-

inc Ct Ct’.
cutE (start _ Certs) C1 C2 Cut :-

cutE (rlist Certs) C1 C2 Cut.
cutE (rlist (resolve K Cert::Certs))

Cert (rlisti K Certs) Cut :-
lemma K Cut, Cert = (res _ _).

% Ambiguous order
cutE (rlist (resolveX K (res I (rex J done))::Certs))

(res I (rex J done)) (rlisti K Certs) Cut :-
lemma K Cut.

cutE (rlist (resolveX K (res I (rex J done))::Certs))
(res J (rex I done)) (rlisti K Certs) Cut :-
lemma K Cut.

falseC (rlist Rs) (rlist Rs).
storeC (rlisti K Rs) (rlist Rs) (idx K).
decideE (rlist []) rdone (idx I).
trueE rdone.

% Left premise
allC (res I Cert) (x\ res I Cert).
orC (res I Cert) (res I Cert).
falseC (res I Cert) (res I Cert).
storeC (res I Cert) (res I Cert) lit.
decideE (res I (rex J Cert)) (rex J Cert) (idx I).
decideE (res I (rex J Cert)) (rex I Cert) (idx J).
someE (rex J Cert) (rex J Cert) T.
someE done done T.

andE (rex J Cert) small (rex J Cert).
andE (rex J Cert) (rex J Cert) small.
releaseE (rex J Cert) (rex J Cert).
storeC (rex J Cert) (rex J Cert) pivot.
decideE (rex I Cert) Cert (idx I) :- Cert = done.

andE done small done.
andE done done small.
initialE done pivot.

andE small small small.
trueE small.
initialE small lit.
releaseE small nsmall.
storeC nsmall nsmall immediate.
decideE nsmall ismall lit.
initialE ismall immediate.

3.6 Figure The binary resolution FPC (continued): implementation.
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The addition of focusing to the sequent calculus establishes a first approximation
in the form of alternating synchronous and asynchronous phases. Pursuing the
standard analogy, the metatheory of focused proof systems becomes the “rules
of chemistry” which allow us to take “atoms” of inference and compose them
into more complex, higher-level “molecules” of inference—these correspond to
the inference rules of the calculus and the phases of focusing, respectively. In the
FPC framework, all certificates are ultimately expressed in terms of those rules of
inference, and proof checkers implement and apply those rules.

An alternative and much closer interpretation of the FPC framework views,
rather, in computational terms. We liken the framework, rather, to a fantastic new
assembly language, one that programs a machine that is based on a certain logic
and whose instruction set, or ISA, is the set of inference rules of its corresponding
sequent calculus. The definition of the semantics of a certain FPC definition is
essentially the definition of a domain-specific language, or DSL, in which proof
evidence of the theoremhood of a formula can be expressed. A concrete certificate
acts as a program written in the language of the FPC definition and interpreted on
the checker that implements the assembly of the chosen logic, i.e., the architecture
of the logic computer. The analogy is apt insofar as it reflects the deep ties
between certificate definitions and the intricacies of proof systems: until now,
programming these FPC definitions has been the delicate domain of the expert.

While some attention has been paid to the discipline of programming FPC
definitions (Blanco and Chihani, 2016, 2017), the sole appeal remains to the
underlying logic. Concrete definitions to certify a certain proof family or a tool
cannot be easily extended to other, superficially similar tools, given that each
employs its own ad hoc DSL. The task of writing what amounts to a compiler to
a language based on logic remains a nontrivial task.

3.8 Notes

The increased complexity of modern automated theorem provers has brought
with it a need for proof certification. Potential sources of errors in claimed proofs
range from bugs in the code to inconsistencies in the object theory. To address
this problematic, various tools for proof certification have been implemented that
can improve our confidence that the output from theorem provers constitutes in
fact a proof. These tools can be classified into two groups according to the object
of verification:
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1. A given theorem prover could itself be proved formally correct. See, for
example, Ridge and Margetson (2005).

2. The output of a theorem prover can be verified independently from the tool
that produced it. This possibility can be further subdivided in two types
based on the proof reconstruction strategy:

(a) Systems for replaying proofs using external theorem provers for the
verification of specific proof steps. Among these, we count general-
purpose tools like Sledgehammer (Paulson and Susanto, 2007; Böhme
and Nipkow, 2010), PRocH (Kaliszyk and Urban, 2013), and GDV
(Sutcliffe, 2006), as well as more specialized efforts such as the verifi-
cation of proofs generated by the E prover using Metis (Paulson and
Susanto, 2007).

(b) Tools that comprise an encoding or a translation of the semantics of
certain theorem provers, which is then used to replay proofs from
those known provers. This group admits a further subdivision based
on specificity criteria:

i. Specific tools, such as Ivy (McCune and Shumsky, 2000) and the
encodings of MESON (Loveland, 1968) in HOL Light, and of
Metis (Hurd, 2003) in Isabelle.

ii. General-purpose tools like Dedukti (Boespflug et al., 2012) and
ProofCert (Miller, 2011). Our interest and our efforts concen-
trate in this last subcategory.

These various classes of tools represent different approaches to proof certi-
fication. While we can have a high level of trust in the correctness of formally
verified provers in category 1, their performance cannot be compared to that of
the leading theorem provers like E and Vampire (Riazanov and Voronkov, 2002).
The remaining groups do not pose restrictions on the provers themselves but the
generality and automation of those in category 2 group come with the cost of
using an external theorem prover and translations, which might result in reduced
confidence. The families of tools in subfamily 2b require an understanding of the
semantics of a theorem prover so that one may guarantee the soundness of proofs
by their reconstruction in a low-level formal logic. Working with an actual proof
has several advantages—as one can apply procedures like proof transformations.
Group 2(b)ii has additional advantages over its sibling 2(b)i: a single certifier can



50 chapter 3. foundational proof certificates

be written that should be able to check proofs from a range of different systems
and the existence of a common language for proofs allows for the creation of
proof libraries and marketplaces (Miller, 2011).

The tools in this last target group have had, so far, only limited success in the
theorem proving community at large. One reason for this is that understanding
and specifying the semantics of proofs requires sophistication in the interplay
between deduction and computation—whether via rewriting in functional style or
by proof search. Separating theorem provers from proof checkers using a simple,
declarative specification of proof certificates is not new: see Harrison et al. (2014)
for a historical account. We give here a brief partial sketch.

A common starting point is the dependently typed λ-calculus LF (Harper
et al., 1993), originally proposed as a framework for specifying natural deduction
proofs; the Elf system (Pfenning, 1989) provided both type checking and inference
for this framework; and the proof-carrying code project of Necula (1997) used LF
as a target proof language. The LFSC system is an extension of The dependently
typed λ-calculus has been extended with side conditions by the LFSC system;
an implementation of it has been successfully used to check proofs coming from
SMT solvers like CLSAT and CVC4 (Stump et al., 2013). Yet another extension to
the dependently typed λ-calculus is Deduction Modulo (Cousineau and Dowek,
2007; Boespflug, 2011): in this calculus, rewriting is available.

The Dedukti proof checker (Boespflug et al., 2012), based on this latter
extension, endeavors to answer similar questions as those posed in this chapter
through different methods, adopting a more computational view of checking
based a functional instead of a relational paradigm, and congruences generated
by sets of rewrite rules in lieu of FPC definitions. Dedukti has been successfully
used to check proofs from such systems as Coq (Boespflug and Burel, 2012) and
HOL (Assaf and Burel, 2015) among other systems. In the domain of higher-
order classical logic, the GAPT system (Ebner et al., 2016) is capable of proof
checking in sequent calculus, resolution, and expansion trees—a generalization of
Herbrand disjunctions—; it supports both checking and transformation among
proofs expressed in those supported formats.

The Foundational Proof Certificate framework described in this chapter was
recently proposed as a means of defining the semantics of a wide range of proof
languages for first-order classical and intuitionistic logic (Chihani et al., 2013;
Chihani, 2015; Chihani et al., 2016b). Instead of starting with a dependently
typed λ-calculus, the FPC framework is based on Gentzen’s lower-level notion
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of sequent calculus proof. Previously, FPC definitions have been formulated
to model diverse sources of proof evidence, among these resolution refutations
(Robinson, 1965), expansion trees (Miller, 1984), Frege proof systems, matings
(Andrews, 1976), simply typed and dependently typed λ-terms, equality reasoning
(Chihani and Miller, 2016), tableau proofs for some modal logics (Miller and
Volpe, 2015; Libal and Volpe, 2016b; Marin et al., 2016), and decision procedures
based on conjunctive normal forms, truth table evaluation, and the G4ip calculus
(Dyckhoff, 1992; Troelstra and Schwichtenberg, 2000). Some simple examples
have been covered in this chapter. New applications are described throughout
Parts II and III. As with other declarative and high-level frameworks, proof
checkers for FPC specifications can be implemented using the logic programming
model of computation (Chihani et al., 2015, 2016b; Miller, 2017).

In addition to those standard applications in theorem proving, FPCs have
been applied to model checking (Heath and Miller, 2015, 2017) given a richer logic
than used in the last paragraph. µMALL, i.e., multiplicative-additive linear logic
with greatest and least fixed points as logical connectives instead of exponentials, is
suitable for this purpose (Baelde and Miller, 2007). In a similar vein, the addition
of fixed points to intuitionistic logic, µLJ , serves to reason about constructive
proofs and their expression as outlines, in a note closer to the connection between
theorem provers and certification (Baelde et al., 2010). In this extended logical
framework, further developments will be studied in Part III.

As we have noted, the formula indexing mechanism of the FPC framework
does not impose functionality, i.e., different formulas can have the same index. Pre-
viously, indexes have been identified with diverse structures, including de Bruijn
numerals and formula occurrences (Chihani et al., 2013). It is possible to con-
ceive very sophisticated indexing structures that assign sets of properties to the
stored lemmas (e.g., “associativity lemmas” or “lemmas about natural number
addition”). These rich indexing schemes could then be used to greatly increase
the expressiveness of the decide rules.

The simple examples in this chapter serve already to showcase the existence
of versions of proofs with very different properties and behaviors. Both extremes
of very implicit proofs (as in Section 3.3, with constant certificate size and
exponential checking time) and very explicit proofs (as in Section 3.4) can be
expressed in the framework. Surely the nature and effectiveness of proof checkers
can be greatly affected by the level of detail of a proof format. Well-designed
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FPC definitions will exhibit the standard tradeoff between certificate space and
checking time. Chapters 5 and 6 will pursue this line of inquiry.

Even as we guide users away from the cryptic assembly of the sequent calculus,
letting them instead write abstract certificate terms based on an FPC definition,
the establishment of a mapping between these abstract terms and their correspon-
dence with the assembly level is an inevitable step of significant complexity that
needs to be repeated, with variations, for each FPC definition. Despite this, the
applicability of the framework to a number of representative and highly varied
settings has been studied with satisfactory results. Some inroads have been made
in the application of the FPC framework to certify the output of resolution-based,
automated theorem provers like the E prover (Schulz, 2013; Chihani et al., 2015),
and more recently and comprehensively for Prover9 (McCune, 2010; Blanco et al.,
2017a). On this topic, see esp. Chapters 7 and 8, but also Chapters 11 and 13.

Certification applies to automated and interactive theorem provers alike—
software with common foundations yet very different operating principles. There
exist efforts to integrate exemplars across the various categories of tools. Typically,
one starts from a proof assistant and calls an automated theorem prover through
an interface (called a proof hammer) to try to finish parts of the proof on behalf
of the user; see, for example, Blanchette et al. (2016). As integration grows,
the lines separating these categories blur to the point that classification becomes
unclear. For example, dependent types are commonly at the intersection between
programming languages and proof assistants: for instance, Agda defines itself as
both. Proof assistants may further shift towards automation by applying machine
learning to the task of obtaining proof scripts starting from corpora of existing
proofs (Kaliszyk and Urban, 2015).



Part II

Logics without fixed points
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4 Logic programming in intuition-
istic logic

4.1 Logic and computation

The mathematical study of computation encompasses a diverse range of abstract
models, of which Turing machines and λ-calculi are among the best known; their
notions of computable functions coincide with the concept of general recursion.
Moreover, the Church-Turing thesis conjectures that every effectively calculable
function is computable, say, by a Turing machine or an assimilable model. Hence,
if a concrete computer or a programming language running on a computer can
simulate a Turing machine (up to finite amounts of memory), it can compute any
function computable by a Turing machine: in other words, it is Turing-complete.
Many models of computation have this property, and some of these models are
based directly on logical principles.

In fact, logic can be seen as playing two kinds of roles in computation (Miller,
1995). On the one hand, it can be used externally as a tool to reason about
mathematical structures used to model programs and their behavior; that is,
computation-as-model. On the other hand, logic can be used internally: that is,
logical elements (formulas, etc.) can be used as the building blocks of computation;
that is, computation-as-deduction. In this latter class, two different visions giving
rise to two distinct paradigms exist. First, proof normalization models the state of
computation as a proof term, and the act of computing as the reduction of that
proof term to a normal form; this is the foundation of functional programming.
Second, proof search sees the state of computation as a collection of hypotheses
and a goal to prove from those, and the act of computing as the derivation of
a proof of the goal; this is the foundation of logic programming as embodied by
languages such as Prolog—and our primary interest.

55
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The automation of proof search at the center of logic programming relies
on the cut elimination property, which in suitable logics asserts the existence
of cut-free, analytical proofs. The resulting programming style is not functional,
but relational: pure logic programming, like pure functional programming, are
free from side effects; logic programming generalizes functional programming
by adding nondeterminism to the model of computation. The core concepts
of logic programming share with functional programming core concepts like
terms and types, while replacing functions with formulas, relations, and (explicit)
proofs. This chapter is not meant to be a comprehensive introduction to logic
programming: for this, consult among others Sterling and Shapiro (1986); O’Keefe
(1990); Miller and Nadathur (2012); our presentation is based on the latter book.
For a historical perspective on the development of λProlog, see also Nadathur
and Miller (1988).

The rest of the chapter is organized as follows. Section 4.2 introduces some
essential concepts of logic programming. Section 4.3 provides a succinct tutorial
introduction to the higher-order logic programming language λProlog, which is
used extensively throughout the document. Section 4.4 presents a proof checking
kernel for the FPC framework (in particular, the LKF a logic) as a representative
application of logic programming ideas in a concrete language like λProlog.
Section 4.5 concludes the chapter.

4.2 Logic programming

In what follows, we shall be interested in logic programming languages with
support for rich types—this is in contrast with standard Prolog, which is untyped.
Typed terms are interpreted in the usual sense of the Simple Theory of Types
of Church (1940). Under this view, a logic programming language must provide
syntactic support to write signatures Σ that permit us to write terms and formulas
over their types and type constructors, logic programs P as collections of formulas
over a given signature, and goal formulas G. In addition to those three syntactic
elements, the language must implement the semantics of a proof calculus, hence
enabling the construction (by searching) proofs of a goal G given a program
P, both over a signature Σ. The necessity to construct proofs points towards an
intuitionistic interpretation whose informal interpretation is the following:

1. The proof of t succeeds regardless of signature and program.
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2. The proof of a conjunctive goal G1 ∧G2 proceeds by finding proofs of G1

and G2 based on the unaltered signature and program.

3. The proof of a disjunctive goal G1 ∧G2 proceeds by finding a proof of G1

or a proof of G2 based on the unaltered signature and program.

4. The proof of an implicational goal D ⊃ G proceeds by finding a proof
of the consequent G based on the unaltered signature and the program
extended with the program clause dictated by the antecedent, P ∪ {D}.

5. The proof of a universal goal ∀x .G proceeds by finding a proof of [y/x ]G—
where x is replaced by a fresh constant y (an eigenvariable)—on the signa-
ture extended with the new constant Σ ∪ {y} and the unaltered program.

6. The proof of an existential goal ∃x .G proceeds by finding a proof of
[t/x ]G—where x is replaced by a term t—on the unaltered signature and
program. In implementation, a placeholder or logic variable for a concrete
term (of which there may be infinitely many) will be generated for t and
instantiated by solving problems of term unification.

The resulting operational semantics must correspond to the declarative reading
of logic in the underlying sequent. Missing from this picture is the treatment of
atomic goals, which will depend on the specific logic being implemented. Let us
now consider the logical framework of Horn clauses, which—in their first-order
variation—are the substrate of the Prolog programming language. The following
recursive definition defines formulas for goals G and for program clauses D; A
denotes atomic formulas:

G ::= t | A | G ∧G | G ∨G | ∃x .G

D ::= A | G ⊃ D | D ∧ D | ∀x .D

This is one of several equivalent definitions of Horn clauses. Here, quantifiers
are polymorphic at the type of the bound variable x . The resulting logic is said to
be first-order if quantification is only allowed at types of order 0 or 1; it is higher-
order if quantification is allowed at types of arbitrary order (while excluding the
type of predicates, commonly written o). Equivalently, program clauses can be
organized as formulas of the following form:

∀x1. · · · ∀xm .A1 ∧ · · · ∧ An ⊃ A0
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nat z
∀N .nat N ⊃ nat (s N )

∀N .plus z N N
∀K .∀M .∀N .plus K M N ⊃ plus (s K ) M (s N )

4.1 Figure Logic specification of natural numbers and addition on them as Horn
clauses. The specification is based on a type nat with two constructors represent-
ing the standard inductive definition of natural numbers: z of type nat, and s of
type nat→ nat.

That is, a prefix of universally quantified variables that bind an implication
with a conjunctive antecedent of atoms and an atomic consequent. The definition
of Horn clauses disallows implications and universal quantifiers in goals; in
consequence, the signature and the program remain unaltered during proof search
(and therefore during program execution). To complete the semantics of the
resulting programming language, it needs to furnish the semantics of proof search
on atomic goals. This process of backchaining analyzes the program to determine
if the goal is a known fact (in which case the proof is completed) or may be the
consequent of some other antecedent conditions, in which case proofs for those
will be sought.

Horn clauses are a powerful framework for writing logical specifications, such
as the program that contains clauses defining the construction and addition of
natural numbers in Figure 4.1. Nevertheless, it is possible to generalize them
by carefully allowing both signatures and programs to grow during proof search.
Hereditary Harrop formulas extend the definition of Horn clauses as follows:

G ::= t | A | G ∧G | G ∨G | ∃x .G | D ⊃ G | ∀x .G

D ::= A | G ⊃ D | D ∧ D | ∀x .D

In the extended logic, universal quantification is allowed in goals, as is implica-
tion subject to the restriction that the antecedent be a program clause. The syntax
of program clauses remains unaltered, but is now mutually recursive with the
definition of goals. This richer framework is one of the cornerstones of λProlog.
The second enhancement is the replacement of first-order terms with higher-order
λ-terms and quantification. This support for the application of abstractions to
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bound variables enables a powerful form of abstract syntax—i.e., the representa-
tion of expressions not by strings, but by data structures—where constructs like
names and variable bindings are reflected directly as binders in the representation
meta-language. This approach is called higher-order abstract syntax, or HOAS
(Pfenning and Elliott, 1988). In (higher-order) logic programming, λ-tree syntax
(Miller and Palamidessi, 1999; Miller, 2000) incarnates the ideas of HOAS in a
practical way; λProlog offers support for it by its use of dynamic higher-order
pattern unification. These problems are especially relevant to Section 13.2; the
difficulty of their application in a functional setting are discussed in Section 6.6.

Logic programming languages commonly implement some impure features,
such as a “cut” operator that restricts backtracking search—not to be confused
with the logical rule of cut—or a negation operator which purports to succeed
of a given goal fails. These extra-logical features, which have no reflection in the
logic that serves as the foundation of logic programming, may facilitate some
programming tasks, but do so at the cost of risking soundness if they are not
applied in very restricted cases and with great care. We will have little use for these
and will avoid them whenever possible, instead strongly favoring pure, declarative
programs with a clear mirror image in the underlying logic.

4.3 λProlog

Atomic types in λProlog are defined by the keyword kind. Typically, a kind
thus defined represents a type like natural numbers. However, these kinds can
also define families of types parameterized by other types, such is lists of elements
of a given type (predefined by λProlog) or pairs of elements of two given types.
Arrow types in kinds are used for these directives:

kind nat type.
kind pair type -> type -> type.

These kind expressions determine how type expressions may be constructed
from the concrete kinds that they define. Concrete type expressions are derived
by the usual mechanism of application: nat is already a complete type expression,
whereas pair must be given arguments, for instance (pair nat nat) for
pairs of naturals. In general, in a type expression τ1 → · · · → τn → τ0 with
n ≥ 0, τ0 is called the target type and the τi with i > 0 (if any) are called
argument types. The order of a type expressionO (τ1 → τ2) is defined recursively
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as max(O (τ1) + 1,O (τ2)), where the base case of types expressions without type
arguments has order 0. A first-order language restricts types to be of order 0 or 1.

For kinds to be populated by terms, they need to be endowed with type
constructors, defined by the keyword type and characterized by type expressions
whose target type is the kind in question. For instance, natural numbers can be
defined by zero and the successor of another natural number, and generic pairs by
the two types of their elements. Polymorphism is supported by the introduction
of type variables which can be unified with any concrete type. In concrete syntax,
arrow notation is unambiguously overloaded in the two contexts of kind and type
expressions:

type z nat.
type s nat -> nat.
type pr A -> B -> pair A B.

Based on this, we can write typed terms such as (s z) of type nat or
(pr z (s z)) of type (pair nat nat). These examples illustrate applica-
tion; the second operator of the λ-calculus, abstraction, is written \. For instance,
(x\ (s x)) represents an abstraction which, applied to a natural number, re-
turn its successor. The name x is thus bound in the expression that follows the
abstraction operator.

The type of formulas in λProlog is designated by o. It is populated by the
logical constants that represent the connectives of the logic, therefore taking other
formulas (i.e., terms of type o) as their arguments. In addition to these logical
constants, the programmer defines predicates (also called relations) by writing
type constructors with o as a target type: for example, a relation that takes two
natural numbers and relates them to their addition can be typed as:

type plus nat -> nat -> nat -> o.

That is, plus is a relation between triples of inductively defined naturals
that shall be defined to hold iff the sum of the two first arguments is equal to
the third. Relation symbols stand in contrast to type constructors with target
types other than i, which define function symbols. The full specification for plus
specification is shown in Figure 4.2. Generally speaking, in writing the clauses
for those relations, we will ordinarily resort to the logical constants. In λProlog,
these are the following:

1. true of type o, for t.
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% Signature: type
kind nat type.
type z nat.
type s nat -> nat.

% Signature: predicates
type is_nat nat -> o.
type plus nat -> nat -> nat -> o.

% Module
is_nat z.
is_nat (s N) :- is_nat N.

plus z N N.
plus (s K) M (s N) :- plus K M N.

4.2 Figure Relational specification of natural numbers and addition on them in
standard λProlog. Signature and module delimiters are omitted.

2. , of type o -> o -> o, for ∧, used in the bodies of clauses to sequence
subgoals in the usual manner.

3. & of type o -> o -> o, also for ∧, used with the heads of clauses. It
permits several heads to share a goal. For example, if we have a client-
defined type of formulas with constructors and and or (as well as not)
and we wish to recurse the structure of terms of this type, we could
compact repetitious bodies by writing:

recurse (not A) :- recurse A.
recurse (and A B) &
recurse (or A B) :- recurse A, recurse B.

4. ; of type o -> o -> o, for ∨.

5. :- of type o -> o -> o, for ⊂ in the sense of the implication ⊃ found
in program clauses D, where the succedent (i.e., the head of a clause) is
written before the antecedent (i.e., the body of the clause), following the
standard syntax of proof search as implemented in logic programming
languages.

6. => of type o -> o -> o, for ⊃, the implication found in goalsG, whose
succedent is a program clause D which is used to extend the program for the
purposes of finding a proof of the succedent under hypothetical reasoning.
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7. pi of type (A -> o) -> o, for ∀. Quantification operates on a formula
F abstracted over an arbitrary but defined type T, written pi (x:T)\F;
the type can often be uniquely determined by type inference and the anno-
tation dropped, thus writing simply pi x\F, where x\F is the argument
of the connective. In proof search, a fresh eigenvariable of the appropriate
type is applied to the abstracted formula.

8. sigma of type (A -> o) -> o, for ∃. In proof search, a fresh logic
variable of the appropriate type is applied to the abstracted formula.

Existential variables are often implicitly quantified and represented by names
starting with an uppercase letter. However, the abstraction operator can bind any
name in an expression: (X\ (s X)) and (x\ (s x)) are equivalent. The
anonymous logic variable _ can be used to represent a bound variable which goes
unused in the body of the abstraction.

λProlog programs are structured into modules. A module is composed two
parts. First, a signature file, which opens with the keyword sig <name>. and
declares the interface for the module, namely kind and type operators and their
complementary definitions. Second, a module file, started with the keyword
module <name>., and which contains clauses for the declared relations and
other private declarations. Both signatures and modules can depend on others of
the same type by signature accumulation (accum_sig <name>.) and module
accumulation (accumulate <name>.), respectively. These programming lan-
guage concepts have a clear logical interpretation and interact harmoniously with
the other features of λProlog. One important practical point is to ensure that
each module used by a program be accumulated at exactly one point: multiple
accumulations of the same module correspond to the creation of multiple copies
of the contained clauses and a combinatorial explosion in the number of possible
backtracking points.

Like other logic programming languages, λProlog has (limited) support for
I/O, as well as support for some extra-logical features like built-in arithmetic,
a backtracking cut operator ! and a negation operator not used to exercise
negation-as-failure. All these will be used sparingly and only in situations when it
is logically sound to do so.

Nowadays, two major implementations of λProlog coexist: the Teyjus com-
piler (Nadathur and Mitchell, 1999) and the ELPI interpreter (Dunchev et al.,
2015). Both will be the subject of lengthy discussion in Chapter 8. These are in
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addition to the declarative core of λProlog implemented at the specification level
in the Abella theorem prover (Baelde et al., 2014).

4.4 FPC kernels
Logic programming is ideally suited to the implementation of proof search, where
built-in mechanisms such as backtracking search and unification coincide with
the requirements of many proof systems—among those the augmented sequent
calculi that define the FPC framework (Miller and Nadathur, 2012, Chapter 9).
A proof checking kernel, i.e., a program that implements one such calculus, is
an interesting logic program that exhibits the characteristic features of λProlog
while laying the technical foundations for subsequent chapters. In this section
we concentrate on the FPC proof system for classical logic, LKF a , introduced in
Section 3.2 as an evolution of the sequent calculi presented throughout Chapter 2.

The kernel and its public interface are presented in full in Figure 4.3. For
the client, the interest resides in the standard interfaces essentially shared by all
kernel implementations for a given logic. The interface is divided in three parts:

1. The definition of the object logic of polarized classical formulas. The signa-
ture defines a type of atoms atm and a type of terms i which may appear in
atoms; both must be defined by the client. In addition, the logical constants
are defined: constructors to inject atoms into positive or negative literals,
as well as the various logical connectives. Quantifier constructors build
formulas from abstractions over formulas, resorting to the native support
of λProlog for binding representation of manipulation and thus avoiding
its thorny implementation. In addition to the standard connectives in both
polarities, a pair of delay connectives that force a polarity on an arbitrary
formula are introduced for practical purposes. Delays can be defined in
terms of the standard connectives and their presence is therefore inessential.
A number of related predicates are charged with the construction and de-
construction of formulas from and to their components, as well as various
polarity checks used by the inference rules of the sequent calculus.

2. The client signature for the FPC framework defines the kinds of certificates
and indexes (as well as disjunctive choices) and declares predicates for clerks
and experts corresponding to the annotations for each inference rule in
Figure 3.1. In order to instantiate the kernel into a proof checker, a client
must provide type constructors for certificates and indexes—together with
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%% Logic signature
kind form, i, atm type. % Formulas, terms, and atoms
type n, p atm -> form. % Literals
type f+, f-, t+, t- form. % Units
type d-, d+ form -> form. % Delays
type &-&, &+& form -> form -> form. % Conjunctions
type !-!, !+! form -> form -> form. % Disjunctions
type all, some (i -> form) -> form. % Quantifiers
infixr &-&, &+& 6.
infixr !-!, !+! 5.

% Construction and deconstruction of formulas
type true+, true-, false+, false- form -> o.
type conj+, conj- form -> form -> form -> o.
type disj+, disj- form -> form -> form -> o.
type lit-, lit+ atm -> form -> o.
type all-, some+ (i -> form) -> form -> o.

type isNegForm, isNegAtm, isPosForm,
isPosAtm, isNeg, isPos form -> o.

type negate form -> form -> o.
type ensure-, ensure+ form -> form -> o.

%% FPC signature
kind cert, index type.
kind choice type.
type left, right choice.
type allC cert -> (i -> cert) -> o.
type andC cert -> cert -> cert -> o.
type andE cert -> cert -> cert -> o.
type cutE cert -> cert -> cert -> form -> o.
type decideE cert -> cert -> index -> o.
type falseC cert -> cert -> o.
type initialE cert -> index -> o.
type orC cert -> cert -> o.
type orE cert -> cert -> choice -> o.
type releaseE cert -> cert -> o.
type someE cert -> cert -> i -> o.
type storeC cert -> cert -> index -> o.
type trueE cert -> o.

%% Kernel signature
type lkf_entry cert -> form -> o.
type async cert -> list form -> o.
type sync cert -> form -> o.
type storage index -> form -> o.

4.3 Figure The LKF a kernel in λProlog: signatures.
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lkf_entry Cert Form :- async Cert [Form].

async Cert nil :-
cutE Cert CertA CertB F,
negate F NF, async CertA [F], async CertB [NF].

async Cert nil :-
decideE Cert Cert’ I,
storage I P, isPos P, sync Cert’ P.

async Cert [t- | _].
async Cert [f- | Rest] :-
falseC Cert Cert’,
async Cert’ Rest.

async Cert [d- A | Rest] :-
async Cert [A | Rest].

async Cert [(A !-! B) | Rest] :-
orC Cert Cert’,
async Cert’ [A, B | Rest].

async Cert [(A &-& B) | Rest] :-
andC Cert CertA CertB,
async CertA [A | Rest], async CertB [B | Rest].

async Cert [all B | Rest] :-
term_to_string Cert _, % Teyjus bug: force normalization
allC Cert Cert’,
pi w\ async (Cert’ w) [B w | Rest].

async Cert [C|Rest] :- (isPos C ; isNegAtm C),
storeC Cert Cert’ I,
storage I C => async Cert’ Rest.

sync Cert t+ :-
trueE Cert.

sync Cert (d+ A) :-
sync Cert A.

sync Cert N :- isNeg N,
releaseE Cert Cert’,
async Cert’ [N].

sync Cert (p A) :-
initialE Cert I, storage I (n A).

sync Cert (A &+& B) :-
andE Cert CertA CertB,
sync CertA A, sync CertB B.

sync Cert (A !+! B) :-
orE Cert Cert’ C,
((C = left, sync Cert’ A); (C = right, sync Cert’ B)).

sync Cert (some B) :-
someE Cert Cert’ T,
sync Cert’ (B T).

4.4 Figure The LKF a kernel in λProlog (continued): implementation.
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any ancillary declarations on which those constructors depend—and must
determine the semantics of those constructors by defining the behavior of
clerks and experts through clauses of their predicates. In doing so, an FPC
definition is integrated with the kernel.

3. The kernel signature proper defines both types of sequents, synchronous
and asynchronous, expressing the proof search for a given conclusion
sequent. Both corresponding async and sync relations define parameters
for the certificate and the workbench; the indexed storage is maintained via
hypothetical reasoning, adding facts to the logic program by filing formulas
with their indexes as clauses of the storage predicate. Ordinarily, the
end user is only interested in the elementary operation that takes a formula
and a certificate, forms the initial entry sequent with both and performs
proof search guided by the certificate term; this is what is represented by
the interface relation to the kernel, lkf_entry.

The kernel module implements guided proof search as a direct encoding of
the proof system of Figure 3.1. Each inference rule is turned sideways and written
clause with the conclusion at the head and the (conjunctive) premises as the
body. As a general rule, calls to clerks and experts precede recursive calls to the
proof search predicates on asynchronous and synchronous sequents, which are
only performed if the corresponding clerk or expert declares the inference rule
as applicable according to the certificate term. As noted above, the store rule
uses the λProlog implication to extend the clauses that define the storage zone,
initially empty; this relation is then queried by the decide rule. The treatment
of quantifiers is also of interest: the universal quantifier relies on λProlog to
generate a fresh term eigenvariable used to instantiate the formula abstraction;
the continuation certificate produced by the clerk is also abstracted over a term:
the new eigenvariable is applied to this abstracted certificate to obtain a “plain”
certificate. Besides these interesting techniques in very specific places, the kernel
code is remarkably simple.

In addition to the polarized formulas used by the kernel, represented by the
kind form, it is common to define a standard classical (unpolarized) logic with
a full set of connectives including, say, implication and non-atomic negation.
Let us call this type of unpolarized formulas bool. An unpolarized logic is
useful on the client side to write formulas as they are commonly understood; the
module that defines the unpolarized logic must also furnish predicates to translate
unpolarized formulas into polarized formulas—including their conversion to
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negation normal form. This facilities are commonly available without loss of
generality, given that in common FPC definitions—such as those presented in
Chapter 3—the polarization scheme is fixed and leaves no choices to the user.
Typically, these polarization predicates project unpolarized atoms to a standard
encoding of polarized atoms.

Over time, several kernels and programming environments for those kernels
have been developed with varying degrees of client support. One such family
is used in works such as Chihani et al. (2016b); with minimal changes, this is
the basis of the kernel presented in Figure 4.3, which is used throughout Part II.
A related effort is represented by the Checkers system by Chihani et al. (2015),
which offers more (scripting) support for modular definition of problems and
their use of FPC definitions. In principle, the structural differences between both
principal families of kernels are primordially cosmetic: both are straightforward
implementations of sequent calculi—with focusing and augmentations—with
some differences in their concrete syntax. (In fact, some of the experiments in
coming chapters have been adapted to run in Checkers without issue by means of
a shallow mapping translation.)

Some versions of these systems use hosting to implement some kernels on top
of others, deemed more canonical in some sense. Typically, this involves hosting
classical logic in intuitionistic logic (namely, LKF a in LJF a ) by double-negation
translations—as discussed in Section 2.3, but also by appealing to the LKU system
of Liang and Miller (2009); for the connection with focusing, see Chihani et al.
(2016a). A similar effort has been recently undertaken by Libal and Volpe (2016a).
In reality, the coexistence of multiple kernels, including computational models
that diverge significantly from the direct implementation of the sequent calculus,
is possible and desirable; the only requirement is that the client interface—chiefly
the clerks and experts through which FPC definitions sculpt the semantics of
proofs—remains unchanged.

4.5 Notes

Proof checking has been implemented many times over the past decades, ranging
from Automath (de Bruijn, 1980) to the Edinburgh LCF system (Gordon et al.,
1979) and, more recently, to Dedukti (Dedukti). Although logic programming
engines have seldom been used for such purposes, they make for rather natural
and direct implementations of proof checkers, as Section 4.4 has shown. Logic
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programming foundations make it possible to naturally perform certain tasks
that might be harder to do in these other proof checking frameworks. One such
central task is to do “proof reconstruction” as an integral part of proof checking:
in terms of the FPC framework, the designer of a proof certificate format can
leave out details of a proof from a certificate if that designer feels confident that
the missing details can be reconstructed with acceptable costs. In that way, there
is an easy trade-off between the size of certificates and the costs of checking those
certificates.



5 Certificate pairing

5.1 Implicit and explicit versions of proof

A central issue in designing a proof certificate format (i.e., an FPC definition)
involves choosing the level of proof detail that is stored within a certificate. If a lot
of details (e.g., complete substitution instances and complete computation traces)
are recorded within certificates, simple programs can be used to check certificates.
Of course, such certificates may also be large and impractical to communicate
between prover and checker. On the other hand, if many details are left out, then
proof checking would involve elements of proof reconstruction that can increase
the time to perform proof checking—and reconstruction—as well as increase the
sophistication of the proof checking mechanism.

One approach to this trade-off is to invoke the Poincaré principle (Barendregt
and Barendsen, 2002), which states that traces of computations (such as that for
2 + 2 = 4) should be left out of a proof and reconstructed by the checker. This
principle requires a checker to be complex enough to contain a—possibly small—
programming language interpreter capable of filling the gaps in a proof skeleton
and thus elaborating it into a full proof. In frameworks like LFSC (Oe et al.,
2009) and the Dedukti checker (Cousineau and Dowek, 2007; Boespflug et al.,
2012; Assaf et al., 2016), such computations are performed using deterministic
functional programs.

The FPC framework goes a step beyond such systems by allowing nondeter-
ministic computation carried out by a higher-order logic programming language.
As in other settings like, say, finite state machines, nondeterministic specifica-
tions can be exponentially smaller than deterministic ones: such a possibility for
shortening specifications is an interesting option to exploit in specifying proof
certificates in particular. Of course, deterministic computations are instances of

69
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nondeterministic computations: similarly, FPCs can be restricted to deterministic
computation when desired.

5.1.1 Example The following example illustrates a difference between requiring all
details to be present in a certificate and allowing a certificate to elide some details.
A proof checker for first-order classical logic could be asked to establish that a
given disjunctive collection of literals, say, L1 ∨ · · · ∨ Ln is provable. An explicit
certificate of such a proof could be an unordered pair {i, j} ⊆ {1, . . . , n} such that
Li and L j are complementary. A proof certificate term for this could be written
as (complementary i j).

If we allow nondeterminism, then the indexes i, j do not need to be provided:
instead, we could simply confirm that there exist guesses for i and j such that
literal Li is the complement of L j . Compactly, a certificate term may be written
as, for example, some_complementary. Of course, there may be more than
one such pair of guesses. The use of nondeterminism here is completely sensible
since a systematic and naive procedure for attempting a proof of such a disjunction
can reconstruct the missing details. The cost of this nondeterminism is, in this
case, a quadratic number of guesses in the size of the number of literals.

Since the sequent calculus can be used as the foundation for both logic pro-
gramming and theorem proving, the nature and structure of nondeterministic
choices in the search for sequent calculus proofs have received a lot of attention.
For example, the original LK and LJ sequent calculus proof systems by Gentzen
(1935) contain so many choices that it is hard to imagine performing meaningful
proof search directly in those proof systems. Instead, those original proof sys-
tems can be replaced by focused sequent calculus proof systems in order to help
structure nondeterminism—this development was covered in Section 2.5.

In particular, recall the common dichotomy between don’t-care and don’t-
know nondeterminism and how it gives rise to two different phases of focused
proof construction. Don’t-know nondeterminism is employed in the positive
phase, where significant choices affecting the evolution of the proof—choices
determined by, say, an oracle or a proof certificate—are chained together. Don’t-
care nondeterminism is employed in the negative phase and it is responsible for
performing determinate (i.e., functional) computation. As we shall see, this
second phase provides support for the Poincaré principle.

The rest of the chapter is organized as follows. Section 5.2 introduces the
pairing meta-FPC. Section 5.3 illustrates how it can be used to elaborate proof
certificates (introduce more details) and to distil proof certificates (remove some
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details). Section 5.4 presents the maximally elaborate FPC as the limit of elabora-
tion and introduces the discussion of how certificate transformations can be used
to provide trust in proof checking, which is the subject of Chapter 6. Section 5.5
outlines some experimental transformations between proof formats enabled by
pairing. Section 5.6 concludes the chapter.

5.2 Pairing of FPCs

Because FPC definitions of proof evidence are declarative (in contrast to pro-
cedural), some powerful, formal manipulations of proof certificates are easily
enabled. In this section, we demonstrate how the formal combination of two
certificates—their pairing—can be used to transform proof certificates into other
certificates, either more or less explicit than the first.

5.2.1 Example Consider checking a proof certificate for a resolution refutation that
does not contain the substitutions used to compute a resolvent (as in Exam-
ple 3.6.1). Since the checking process computes a detailed focused sequent in
the background, that process must compute all the substitution terms required
by sequent calculus proofs (in the above example, the bound variable x shall be
instantiated with the concrete term z ). If we could check in parallel a second
certificate that allows for storing such substitution terms, then those instances
could be inserted into the second, more explicit certificate.

For example, consider the existential expert is defined for two different certifi-
cate constructors: one we shall call instan (providing an explicit instantiation
term for the existential quantifier) and a second one designated simply by f
(which contains no relevant information). These two correspond to the following
two expert clauses:

∃e ((instan t Ξ),Ξ, t ). ∃e ((f Ξ), (f Ξ), t ).

A pairing constructor of certificates, 〈·, ·〉, could be defined for all clerks and
experts by simply invoking the same clerk and expert on the components of the
pair. For example, the existential expert would be defined as:

∃e (〈Ξ1,Ξ2〉, 〈Ξ′1,Ξ
′
2〉, t ) :- ∃e (Ξ1,Ξ′1, t ) ∧ ∃e (Ξ2,Ξ′2, t ).

In this way, if we pair an implicit proof certificate with the more explicit
version of that certificate, we can use the underlying logic programming engine to
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record into the more explicit certificate information that was discovered during
the proof reconstruction of the implicit certificate.

Fortunately, it is a simple matter to do just such parallel checking of two
proof certificates. The full specification (using λProlog syntax) of such a process
is given in Figure 5.1. In the figure, <c> is an infix constructor of type cert ->
cert -> cert and <i> is an infix constructor of type index -> index
-> index. This pairing operation allows for the parallel checking of two cer-
tificates: at each step, both certificates must agree to allow the proof to progress.
Essentially, the pairing FPC can be seen as ameta-FPC or an FPC combinator that
takes two FPC definitions and combines them into one: each clerk and expert
calls the corresponding clerk and expert from each certificate in the pair. The
pairing construct is composable: each half of a pairing can itself be another, nested
pairing.

For a pairing to be useful, the two certificates included in it must eventually
be able to expand into the same underlying sequent calculus proof, but those
certificates could retain different amounts of detail from each other—or different
kinds of information. At each application of an inference rule, the two halves of
a pairing must agree to allow proof construction to proceed (through success of
their respective clerks or experts). In addition, they must agree on the positive
choices that certificates relay to the kernel in order to find a proof. This concrete
interface manifests directly in three pieces of information: (a) substitution terms
for existential quantifiers; (b) choices for (positive) disjunctions; and (c) cut
formulas. A fourth piece is necessary through indirection: while paired certificates
need not agree on the notion of index—the pairing constructor <i> is used to
form an index out of two indexes—the pair of indexes must be able to agree on a
single formula on which to focus.

5.2.2 Example In Example 5.2.1, two variants of a binary resolution certificate are
used, one that does not include substitution information and one that does. The
key difference is their treatment of the existential expert, where the more explicit
certificate provides a witness term t—in the example, the single addition of z for
the bound x in clause 2—and the more implicit certificate leaves a hole in the
form of a logic variable to be instantiated at a later point by unification. The
definition of pairing for the existential expert ensures that both certificates agree
on the witness. Agreement in this case is trivial: the logic variable in the implicit
certificate gets immediately instantiated with the substitution term when both are
unified by the pairing expert. Thus, it is possible to transform a proof certificate
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5.1 Figure The pairing meta-FPC. Signature and module names and accumulations
of kernel signatures are omitted. Core declarations are assumed.
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encoding resolution that does not contain substitution terms to one that does
contain substitution terms. The reverse is also possible.

In a pairing construct, the more restrictive choice, or subset of choices, domi-
nates each step of proof checking. Nonetheless, uses of pairing are not limited to
zooming in and out on more implicits or explicit versions of the “same” proof
certificate, as in the last example. Proof certificates can also be thought of as
more general proof search tactics implementing more or less general strategies, and
pairing these certificates as a modular method of tactic composition.

5.2.3 Example Consider the FPC definition that limits proof search by decide depth
only, defined in Section 3.5. This constraint can be easily combined with other,
independent strategies, as these two applications show:

1. The CNF search procedure for propositional logic from Section 3.3 can
generate very large proofs. To find out whether a relatively shallow and
quick proof exists, cnf and dd—at the desired decide depth—can be paired
and checked together. This pairing works because the clerks and experts
of both FPCs are compatible: they allow the same connectives to proceed
without restrictions, and the indexes used to store and decide on formulas
are also compatible.

2. In combination with the semantics of the kernel, dd performs depth-first
search, which can lead to much longer search times when shallow proofs
avail. It is a simple matter to obtain iterative deepening by pairing dd with
a pseudo-FPC that generates integers in increasing order at the root of the
proof and communicates those integers to dd through a logic variable.

With some support from the logic and the programming language, along
with a growing library of FPC definitions, a sophisticated treatment of FPCs as a
general-purpose formalism arises. This perspective is explored in Chapter 13.

While the transformations between proof certificates that can take place using
the pairing FPC are useful—as we argue throughout the chapter—the extent of
such transformations is also limited. For example, pairing cannot be used to
transform a proof certificate based on, say, conjunctive normal forms, into one
based on resolution, since the former makes no use of cut and the latter contains
cuts. The pairing of two such certificates will (almost) always fail to succeed. The
fundamental limitation of pairing as a means of transforming proofs lays within
the spectrum of “many details, fewer details” and not between two different styles
of proof. This is the topic of the next section.
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5.3 Elaboration and distillation
When it checks a certificate, a kernel is building a formal sequent calculus proof
which is not explicitly in the certificate, stored but is, in a very real sense, per-
formed by the kernel. It is the fact that such a sequent calculus proof is being built
that helps to provide trust in the kernel. If a certificate lacks necessary details
for building such a sequent calculus proof—for example, substitution instances as
in Example 5.2.2—a kernel could attempt to reconstruct those details. (Indeed,
the kernel does exactly that in the case of binary resolution where substitution
instances are not part of the certificate.)

The formal pairing of certificates described in the previous section connects
two certificates that lead to the performance of the same sequent calculus proof.
In the logic programming setting, it is completely possible to see such linking of
certificates as a means to transform one certificate into another certificate. We
use the term elaboration to refer to the process of transforming an implicit proof
certificate into a more explicit proof certificate. The converse operation, which
we call distillation, can also be performed: during such an operation, certain proof
details can be discarded and a more implicit proof is produced.

Since a given proof certificate can be elaborated into a number of different
sequent calculus proofs, certificates can be used to provide high-level descriptions
of classes of proofs: cnf and dd are examples of such classes—informed, of
course, by the formulas to be proved—and other important classes are discussed
in Chapter 11.

5.3.1 Example Following Part (2) of Example 5.2.3, we can illustrate the concept of
classes of proofs by the following pairing:

cnf <c> (dd N)

If such a combined reconstruction is possible for a given formula, pairing the
proof checking of the CNF decision procedure with a more explicit form of FPC,
here decide depth, would mean that the missing proof details—namely, the decide
depth of the proof, signified by the logic variable N—could be recorded.

In a similar fashion, the notion of obvious logical inference by Davis (1991)
can be described easily as an FPC: here, an inference is “obvious” if all quantifiers
are instantiated at most once; thus, using a kernel to attempt to check such an
FPC against a specific formula essentially implements the check of whether or
not an “obvious inference” can complete the proof.
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Distillation, the complement of elaboration, also plays an important role
in the practical manipulation of proof certificates. Consider, for example, a
proof certificate that contains substitution instances for all quantifiers that appear
within a proof (such as the resolution certificate with substitution information
in Example 5.2.1). In some situations, such terms might be large and their
occurrences within a certificate could make the size of this certificate explode—but
the usefulness of this substitution information may vary. Namely, in the first-order
logic setting, if a certificate stores instead linkage or mating information between
literals in a proof, then the implied unification problems can be used to infer the
missing substitutions—assuming that the kernel contains a trusted implementation
of unification (for a discussion of related matters, see Chapter 6). The resulting
certificates, where derivable substitutions are omitted, could be much smaller:
checking these compressed certificates could, however, involve possibly large
unification problems to be performed. The usual space-time tradeoffs apply;
experimental coverage can be found in Section 8.5.

Besides applications to proof compression such as those, distilling can provide
an elegant way to answer questions such as: What lemmas have been used in this
proof? How deep (counting decide rules) is a proof? What substitution terms are
used in a certain subproof? That is, it can be used as a framework to formulate
proof queries to extract information from a proof. Certificates that retain only
some coarse information, like the ones studied so far, can be used to provide some
high-level insights into the structure of a given proof. Moreover, the next section
provides a means of composing general queries which may involve information
that is missing from a given proof certificate.

5.4 Maximally explicit FPCs

We can define a maximally explicit FPC that contains all the information that is
explicitly needed to fill in all details in the augmented inference rules of a sequent
calculus that implements the Foundational Proof Certificate framework. For
the LKF a proof system, the corresponding maximally explicit FPC (sometimes
referred to as maximally elaborate) is given in Figure 5.2. Such an FPC represents
an exhaustive trace of a proof tree.

The FPC definition is structured as follows. A top-level constructor, max,
pairs a natural index with the symbolic representation of a proof tree. This
wrapper is propagated to all continuation proof sub-trees and serves to assign
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kind max type.
type ix nat -> index.
type max nat -> max -> cert.
type max0 max.
type max1 max -> max.
type max2 max -> max -> max.
type maxa index -> max.
type maxi index -> max -> max.
type maxv (tm -> max) -> max.
type maxt tm -> max -> max.
type maxf form -> max -> max -> max.
type maxc choice -> max -> max.

allC (max N (maxv C )) (x\ max N (C x)).
andNegC (max N (max2 A B)) (max N A) (max N B).
andPosE (max N (max2 A B)) (max N A) (max N B).
cutE (max N (maxf F A B)) (max N A) (max N B) F.
decideE (max N (maxi I A)) (max N A) I.
storeC (max N (maxi (ix N) A)) (max (s N) A) (ix N).
falseC (max N (max1 A)) (max N A).
orNegC (max N (max1 A)) (max N A).
releaseE (max N (max1 A)) (max N A).
orPosE (max N (maxc C A)) (max N A) C.
someE (max N (maxt T A)) (max N A) T.
trueE (max N max0).
initialE (max N (maxa I)) I.

5.2 Figure A maximally elaborate FPC. Signature and module names and accumu-
lations of kernel signatures are omitted. Core declarations are assumed. Indexes
are drawn from the usual inductive definition of natural numbers, nat here,
where s denotes the successor.

increasing indexes to formulas as they are stored, so that the storage zone is (along
each branch from the root of the tree) a functional mapping from naturals to
formulas, making decide rules unambiguous. max is also the name of the type of
symbolic proof trees, each of whose constructors represent different types of nodes,
holding all information needed by the clerks and experts without recording the
actual proof derivation. Each constructor represents a type of node in a proof
tree: max0 is a leaf node; max1 is a simple unary node; max2 is a simple binary
node; maxv is a unary node used to bind an eigenvariable to the rest of the tree;
maxt is a unary node annotated with a term; maxf is a binary node annotated
with a cut formula; maxc is a unary node annotated with with a (disjunctive)
choice; and maxi is a unary node annotated with an index.
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The encoding of the maximally elaborate FPC mirrors exactly the structure
of the sequent calculus in Figure 3.1: thus, there is a one-to-one correspondence
between proofs of LKF a and these maximally elaborate certificates, modulo
indexing conventions. The operation of maximal elaboration can also be seen
as injecting or recording a trace of an LKF proof in the FPC framework. Typical
usage will have a certificate variable paired with another certificate Ξ driving the
proof proper via the standard idiom:

Ξ <c> (max 0 Max)

Here, the first index is given as zero—which we take the liberty of writing in
standard numeric notation—, but this choice is inconsequential: unique indexes
will be asigned to each stored formula starting from this value. It is fundamental
that the proof tree to be recorded (represented by the logic variable Max) be
injected into the family of certificate constructors for the maximally elaborate
FPC via the top-level injector max, so that the appropriate clerks and experts may
be selected. In short, such a fully explicit proof certificate can be automatically
obtained through elaboration of any other proof certificate and the use of the
pairing of certificates.

An important second use of maximally explicit FPCs is the checking of proof
certificates, here really representing full proofs. In exchange for a comparatively
large certificate size, checking becomes a determinate operation that can be per-
formed very efficiently. Since all choices are stored in the certificate, proof
checking becomes a purely functional computation. This has significant implica-
tions on the trust model of proof checkers as well as their implementation; these
aspects are discussed at length in Chapter 6.

At the beginning of the section, we proposed the definition of “a” maximally
explicit FPC. Indeed, figreffpc-maximal is not the only possible definition that
constitutes an accurate trace of a proof tree. A more direct, slightly less compact
definition (in terms of declarations) will replace the conflated node constructors of
type maxwith one constructor of the appropriate type for each logical connective.
For example, instead of max2—shared by both conjunctions—we will have:

type maxAndNegC, maxAndPosE max -> max -> max.

All other conflated encodings are similarly unfolded. The resulting definition
is equivalent to the original, maximally elaborate FPC. The former, while more
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pedantic in its recording of logical connectives in the tree, does not contain more
information than the compact definition because the inference rule at a node is
uniquely determined by the its conclusion. Other determinate FPCs can be given,
say, recording only synchronous choices while leaving the asynchronous phase
implicit. For a discussion of determinacy in FPC definitions, see Chapter 6.

A third use of maximally elaborate FPCs is querying through distillation,
introduced in the previous section. A certificate where all proof information
is explicitly available allows the extraction of arbitrary information about the
proof object which said certificate represents. A general workflow may involve
elaborating the source certificate into its maximal form and distilling the desired
information from this intermediate representation, where said information is
guaranteed to be available.

Maximally explicit certificates are trivially defined for other logics with minor
variations based on the types of nodes in the proof tree, each annotated with each
piece of information output by clerks and experts.

5.5 Experiments
We have experimented with various uses of certificate pairing and we report
briefly on some of those experiments here. In particular, we have used pairing in
our λProlog checker in order to distil and elaborate a number of matrix-style, i.e.,
cut-free, proofs. A few representative instances based on our case studies are:

• Propositional CNFs elaborate to matings (Andrews, 1981).

• Decision depth bounds elaborate to oracles (Chihani et al., 2016b, Sec-
tion 7).

• Propositional CNFs, matings, decision depth bounds and oracles elaborate
to maximal certificates.

All these pairings work in reverse as distillations, with the proviso that a
maximally elaborate certificate distills to certificate formats which are compatible
with the proof from which they were generated. Thus, the maximal elaboration
of an oracle certificate (which operates on the positive phase) cannot be distilled
as a mating tree (which operates on the negative phase) even if proofs in both
formats exist. This illustrates the fundamental limitation of pairing.

The ensemble of operations works as expected, but the formats mentioned in
this section cannot easily be employed beyond small numbers of moderately sized
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examples, since these formats are seldom used in actual theorem provers. More
extensive experiments must involve proof certificates where the cut rule is allowed,
which furthermore will allow us to check the output of real software provers,
both automated and interactive. For more details, see Chapters 7, 8, and 11.

5.6 Notes

The developments in this chapter have been presented in Blanco et al. (2017a),
though earlier work, including Blanco and Miller (2015), anticipates the interest
of combining and extracting information from proofs—expressed as certificates.

An application of the pairing FPC involves the reconstruction of a certain
focused proof by two separate proof certificates. The definition in Figure 5.1
creates a pairing from two separate terms of the uniform certificate type cert.
Contingent on the definition of the paired FPC definitions, this confusion can
create ambiguity when attempting to elaborate a certificate of a certain kind,
say A, to another one, say B, represented by a logic variable. To avoid mixed
certificates combining parts from separate definitions, the clerks and experts in
the B family must unambiguously constrain continuation certificates to their
own family. A more type-based result could be achieved by defining the pairing
constructor <c> as combining two disjoint certificate types: its type would be
certA -> certB -> cert. The language should offer the option to alias
families of certificates to either of the paired types—recent versions of Teyjus
implement this experimental feature. Of course, both certA and certB could
themselves be pairs of other FPCs.

The matings referred to in Section 5.3 are related to expansion trees, represen-
tations of proofs studied by Miller (1987); Chaudhuri et al. (2016). This paradigm
has also been given expressin in the FPC framework.

As we noted already in Chapter 2, the advent of computer-aided verification
enables proofs which by their sheer complexity are far beyond what manual
calculation can reasonably achieve. In particular, automated theorem provers—
commonly based on resolution calculi (for which see Section 3.6) and encoding
theorems as instances of satisfiability problems (discussed at length in Chapter 7)—
are prone to generate enormous, low-level proof descriptions. The current largest
reported proof was obtained by such methods by Heule et al. (2016) and consists
of an unsatisfiability certificate almost 200 TB in size, itself not a full elaboration
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of a proof object. Substantial effort goes not only into producing, but into
mechanically checking the correctness of such claims (Cruz-Filipe et al., 2017b).

While the discussion in this chapter is limited to classical first-order logic,
the FPC framework is applied to other frameworks, such as intuitionistic logic
and logics extended with least and greatest fixed points. Certificate pairing and
maximally elaborate certificates are equally applicable to all these—and will be
applied in various settings in successive chapters.
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6 Determinate checkers

6.1 Trust and determinate FPCs

The FPC framework was originally proposed and designed to give answer to two
needs: communicating and trusting proofs (Miller, 2014). The separation between
untrusted provers and trusted checkers plays a vital role in this endeavor—as a
matter of fact, it is the subject of the very first requirement in Miller’s desiderata
(Definition 3.1.1). It has been convincingly argued that a (higher-order) logic
programming language like λProlog is a good choice to implement the augmented
focused sequent calculi that embody the FPC framework. The resulting checkers
are both elegant and powerful, and encode the proof systems they implement
so faithfully and tersely that it is a simple matter to sanction them as correct by
construction, and thus trustworthy. The present chapter is dedicated to studying
and sharpening this assertion and the very concept of trusted checkers.

Firstly, we consider the implications of the general FPC architecture on its
necessary trusted computing base (TCB). In a wide sense, the TCB comprises such
varied elements as a hardware platform, an operating system and a compiler
or interpreter. In the present day, it is not yet feasible to assemble a system
where every component is formally verified: exemplars are few and fairly specific.
What is more, conformance to a specification does it itself guarantee that the
specification constitutes a correct and complete description of the system: that is,
verification does not entail validation. Yet even admitting all these components
into the TCB—a practical necessity—, we may question the choice of programming
environment and its impositions on the TCB.

As a matter of fact, higher-order logic programming comes with a very
characteristic set of features: sophisticated operations like variable binding and
substitution, higher-order unification, and backtracking search, are all available as
language primitives. One may eye these complex operations with suspicion and
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wonder whether these must be admitted into the primeval TCB as the unavoidable
price to pay, or whether, say, the simpler computational model of pure functional
programming offers a viable alternative whose implementation is easier to come
to trust. At the same time, we may note that it is precisely those features of logic
programming that make the encoding of kernels so straightforward and easy to
trust—provided that the implementation of said features in a logic programming
language are, indeed, correct. Furthermore, Miller’s desiderata appear to mandate
the use of logic-like features in any full implementation of the FPC framework.

Section 5.4 anticipated a solution to this problem in the form of determi-
nate proof certificates, which contain enough information about the proof they
represent so as to render proof checking determinate. Such certificates could be
passed as inputs to a simplified checker implemented in a functional programming
language where none of the complicating signature features of logic programming
are present. A priori, such a simplified checker should be even simpler to trust
while implementing the determinate fragment of the FPC framework. Full gener-
ality could be restored by checking an arbitrary certificate with a general, logic
programming-based checker, while using pairing to elaborate a determinate certifi-
cate, which could be then exported and re-checked against the same formula using
a determinate checker. An architecture like this will be discussed in Chapter 8.
Before that, the construction of such simplified checkers needs to be addressed.

Secondly—and orthogonally to the aforementioned minimization of the TCB
of the FPC framework—the informal correctness argument by which an imple-
mentation of a checker may be declared sound and “obviously correct” may be
brought under scrutiny. Given that the integrity of the entire framework rests on
the correctness of this critical piece of software, close examination is warranted.
While it has been posited that proof checkers are amenable to formalization, the
informal argument has been treated as satisfactory, and no verification efforts have
been undertaken. A hidden source of complexity lies precisely in the qualities of
logic programming languages that would need to be modeled and proven correct
inside a proof assistant. Nevertheless, a determinate checker would not face these
obligations and could offer an approachable starting point.

Finally, we note by way of illustration that the notion of determinacy has
considerable depth, beyond the proof traces that are its clearest expression. It is
possible—at least in some logical settings—to leave out certain details from a proof
certificate while still providing for determinate proof checking. For example,
consider the variant of the maximally explicit FPC in which no substitution terms



6.2. trust and determinate fpcs 85

type maxv max -> max.
type maxt max -> max.

allC (max N (maxv C)) (max N C).
someE (max N (maxt A)) (max N A) T.

6.1 Figure A variation on the maximally explicit FPC of Figure 5.2. The types
and clauses given here replace the uses of maxv and maxt in that figure. In
this version, first-order unification provides determinate computation of witness
terms, and eigenvariables are managed fully by the kernel.

are stored in the certificate. Specifically, we redefine two pieces of information:
(a) the certificate constructors previously assigned to eigenvariable bindings and
substitution terms, used respectively to treat the universal and the existential
quantifier; and (b) the clerk and expert predicates that linked those constructors
with their corresponding connectives. The changes with respect to Figure 5.2 are
shown in Figure 6.1.

Certificates of this modified format will not contain any reference to eigen-
variables or to substitution terms (existential witnesses). A proof checker for such
certificates can, however, use so-called logic variables instead of explicit witness
terms and then perform unification during the implementation of the initial rule.
Since the unification of first-order terms (even in the presence of eigenvariables
and their associated constraints) is determinate, such proof checking will not
involve the need to perform backtracking search. The main downside for this
variant of the maximally explicit certificate is that checking will involve the some-
what more complex operation of unification. Of course, such unification must
deal with either Skolem functions or eigenvariables in order to address quantifier
alternation—λProlog treats eigenvariables directly since it implements unification
under a mixed quantifier prefix (Miller, 1992).

The rest of the chapter is organized as follows. Section 6.2 presents the
implementation of a functional checker for determinate certificates in the OCaml
programming language. Section 6.3 addresses the verification of a determinate
checker specialized for the maximally elaborate certificates of Section 5.4 in the
Coq proof assistant. Section 6.4 considers the interface of these checkers with
outside tools. Section 6.5 discusses the use of proof checkers and proof certificates
as an extension of the repertoire of tactics available to proof assistants. Section 6.6
concludes the chapter.
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6.2 Functional checkers in OCaml
As noted in Section 5.4, a sufficiently detailed certificate turns certificate checking
into a behaviorally determinate process, which can be performed by a kernel
programmed in a functional language without side effects. Such a checker will
be simpler and potentially easier to analyze and trust. A maximally explicit
certificate contains all the information needed to build a proof in its focused
sequent calculus. In particular, all don’t-know nondeterminism is given a definite
answer in the certificate, so that unification and backtracking search are not
utilized by the checker.

To demonstrate this possibility, we implement a determinate proof checker
as an OCaml program, called MaxChecker. It can be used with any determinate
certificate definition, for which the following module implementations need to
be given by the client:

1. A certificate type defining the certificate constructors.

2. An index type defining the index constructors, together with a comparison
function (used by the context module to file formulas into storage).

3. An implementation of clerks and experts according to the specification
of a bureau module. Each clerk and expert takes a certificate as input and
returns an option type formed by continuation certificates and all necessary
information: indexes, existential witness terms, etc. (As a special case, the
true expert returns a boolean instead of an option type of unit.)

The maximally explicit certificate of Figure 5.2 is one such definition. In
addition to an FPC definition, a concrete instance of the kernel—and its concrete
certificates—rely on a problem specification on which formulas are parameterized,
as well as certificates, insofar as they can include formulas or some of their
components. A problem signature is characterized by the following pair of
client-side definitinions:

1. A term type, which could be empty in propositional formulas, where only
atoms are used. The term type can be recursive, and term constructors are
only expected to have term parameters.

2. An atom type, parametric on a term type. Atom constructors are only
expected to have parameters of this term type.
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The public interface of the checker is simply an entry function that takes a
certificate and a formula as arguments and returns a boolean indicating whether
the certificate represents a determinate proof of the formula. This is translated
into a call of the main function, which takes a certificate and a sequent and returns
a boolean if and only if the certificate is able to prove the sequent; Figure 6.2
shows this function. The structure of the checker closely resembles λProlog-based
kernels, with the difference that all pattern matching operations are structured in
the same function instead of divided in program clauses.

Each inference rule is delegated to its associated auxiliary function (clerk or
expert), which is charged with calling the corresponding clerk or expert from
the FPC definition used to instantiate the kernel and, if successful, performs
the requisite recursive calls to the main function (with which all these helpers
are mutually recursive). Figure 6.3 presents an representative selection of some
of the more interesting functions. These illustrate in more detail a number of
representative design constraints:

1. In the logic programming encoding, universal and existential quantifiers
envelop a formula abstraction that becomes a formula after a term is applied
to it: an eigenvariable for the universal quantifier and a term (fully unified
or not) for the existential quantifier. In OCaml, the argument of both
quantifiers is a function that takes a term argument and returns a formula;
moreover, term arguments are always fully defined.

2. Terms at the kernel level can be either client-side terms, defined by the user,
or eigenvariables. The latter are a separate kind of term, created fresh when
the kernel encounters a universal quantifier, then passed to the formula
function. In this kernel, they are never unified. Elements provided by the
user (i.e., formulas and certificates) cannot contain eigenvarible terms.

3. The storage zone becomes a functional context where each index may occur
once. An attempt to store a formula under an already claimed index results
in an error. It is the responsibility of the certificate to ensure functionality
of the indexing scheme.

Finally, an example function from the bureau that implements the maximally
explicit FPC definition is given in Figure 6.4; all clerk and expert functions have
simple definitions in the same style.

There is an important precision to make: at the end of the asynchronous
phase, the decide and cut rules are in conflict: that is, the sequent does not
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let rec check certificate = function
| Unfocused(storage, workbench) ->

(match workbench with
| [] ->

if decide_cut_conflict certificate then
failwith "Decide and cut are in conflict"

else
let check_decide = decide_expert certificate storage
and check_cut = cut_expert certificate storage in
check_decide || check_cut

| hd :: tl ->
(match hd with
| NegativeFalse ->

false_clerk certificate storage tl
| NegativeAnd(left, right) ->

and_clerk left right certificate storage tl
| NegativeOr(left, right) ->

or_clerk left right certificate storage tl
| NegativeTrue ->

true
| ForAll(formula) ->

forall_clerk formula certificate storage tl
| _ ->

store_clerk hd certificate storage tl
)

)
| Focused(storage, workbench) ->

(match workbench with
| PositiveTrue ->

true_expert certificate
| PositiveAnd(left, right) ->

and_expert left right certificate storage
| PositiveOr(left, right) ->

or_expert left right certificate storage
| Exists(formula) ->

exists_expert formula certificate storage
| PositiveAtom(atom) ->

init_expert atom certificate storage
| PositiveFalse ->

false
| _ ->

release_expert workbench certificate storage
)

6.2 Figure The MaxChecker kernel written in OCaml. For display purposes, the
store and release rules make use of catch-all matches instead of exhaustive listings.
check is defined with mutually recursive clerk and expert handlers.
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and forall_clerk formula certificate storage workbench =
match Lkf_bureau.all_clerk certificate with
| None -> false
| Some certificate’ ->

let eigenvariable = Lkf_term.eigenvariable () in
let certificate_filled = certificate’ eigenvariable
and formula_filled = formula eigenvariable in
check certificate_filled

(Unfocused(storage, formula_filled :: workbench))

and store_clerk formula certificate storage workbench =
match Lkf_bureau.store_clerk certificate with

| None -> false
| Some (certificate’, index) ->

let storage’ = Lkf_context.add index formula storage
in check certificate’ (Unfocused(storage’, workbench))

and exists_expert formula certificate storage =
match Lkf_bureau.exists_expert certificate with

| None -> false
| Some (certificate’, term) ->

let formula_filled = formula term in
check certificate’ (Focused(storage, formula_filled))

and init_expert atom certificate storage =
match Lkf_bureau.init_expert certificate with
| None -> false
| Some index ->

(match Lkf_context.find index storage with
| None -> false
| Some formula ->

formula = NegativeAtom(atom)
)

6.3 Figure The MaxChecker interface to FPCs in OCaml. Shown here are some
especially interesting cases. All definitions are defined in mutual recursion with
the kernel as defined in Figure 6.2.

let decide_expert = function
| Index(index, next) -> Some (next, index)
| _ -> None

6.4 Figure Definition of clerks and experts of the maximally elaborate FPC against
the MaxChecker bureau interface, as called in Figure 6.3. All definitions follow
the pattern exemplified here.
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uniquely determine a unique inference rule that can be applied—subject to the
certificate term and the clerks and experts. In general, the kernel must look at
both bureau functions and ascertain that at most one allows the proof to proceed
with the present certificate and, if one such function avails, use it, otherwise the
proof cannot continue. If the kernel is specialized to work with a fixed FPC
definition, it is possible that the two rules are never in conflict, and the specialized
checker integrating such an FPC definition could be simplified accordingly. The
maximally explicit FPC satisfies this property of absence of conflict.

The resulting program is remarkably compact: the complete kernel is slightly
over 150 lines of code, and the bureau for the maximally explicit FPC definition
about 50 lines of code, both formatted for legibility, not compactness. The
handful of supporting type modules referred to in the discussion (formulas,
contexts, sequents, etc.) are equally succinct. The ensemble of modules and usage
examples adds up to 350 lines of code. This is an auspicious starting point for
formalization efforts, given that (in particular) the maximally explicit certificate
contains all the information needed to build a focused sequent calculus proof,
and the proof checker is a terminating program performing purely functional
computation without any complex operations (like unification and search). The
next section continues this line of research by performing the verification of a
checker for propositional classical logic.

6.3 Verified checkers in Coq

The Coq proof assistant (Bertot and Castéran, 2004) can be used to program a
determinate proof checker as a purely functional, terminating program. This
program can then be verified by proving the appropriate theorems on it, in par-
ticular the soundness theorem. Since we will only be utilizing one particular FPC
format with this checker (i.e., the maximally explicit FPC), we shall consider the
presentation of the specialized checker where the FPC definition is embedded in
the kernel. This will remove the obligation to prove the soundness of the kernel
for any conceivable FPC definition; this choice will remove some inessential rea-
soning clutter from the development. In this section, we present a formalization
from first principles with an aim to uncovering the fundamental complexity of
the problem, without any dependencies on libraries and complex external results.
The port from OCaml is generally straightforward; two specific design choices
merit discussion.
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To commence, consider the inductive type of polarized formulas for the
propositional fragment of LKF where non-logical constants, i.e., atoms, are
represented by the type of propositions in Coq, Prop. The negation of formulas
and both unfocused and focused sequents are defined in the usual manner. The
choice of Prop as the type of atoms is the most flexible and it is advantageous
from an internal perspective: if the checker proves a formula, its depolarization
trivially yields a Coq proposition which can then be considered proven—as a
matter of fact, certified—and used normally inside Coq. The tradeoff is that the
checker can no longer yield a simple boolean as an answer, because the initial rule
involves equality between atoms (i.e., Coq propositions) which is not decidable
in general. Therefore, the checker must operate modulo equality between Props
and return a proposition consisting of these terminal equalities. In successful runs,
those equalities will be identities, and the proposition trivially true.

The second important choice is the representation of the indexed storage
in both types of sequents. As we know from the OCaml implementation in
Section 6.2 and, further still, from the definition of the maximally elaborate FPC
in Section 5.4, unique indexes can be drawn from an incrementing counter from
the root to each point in the proof tree—that is, unicity is enforced along each
branch. Instead of using a partial map library, we exploit these observations by
modeling the storage as a list. The index of an element is its position in the list,
so that a fresh index is assigned by appending a formula at the end of the list.
This representation, while inefficient, can be easily swapped—as the proofs will
make clear, the few lemmas required by the main result are all easy, a fact that the
simple list representation makes particularly clear.

Given these considerations, we can encode the determinate checker as a simple
fixed point definition, presented in Figures 6.5 and 6.6. Unlike in the OCaml
checker, the maximally elaborate FPC is fixed and embedded in the checker: there
are no helper functions; instead, the pattern matching of each clerk and expert and
subsequent processing are all inlined. The resulting code is remarkably succinct
and predictably decreasing on the size of the certificate.

To begin to prove the soundness of the checker, we need to relate the polarized
formulas of the FPC framework with logical connectives of propositions in Coq,
both in isolation and as part of a sequent. As we follow the one-sided presentation
of LKF, the latter case will correspond to the disjunction of the parts—in any case,
the proofs will guarantee the correctness of this connection.
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Fixpoint check (cert : certificate) (seq : sequent) : Prop
:= match seq with

(* Decide and cut. *)
| store // [] ⇒
match cert with

| Index1 (Idx idx) next ⇒ (* Decide. *)
match nth_error store idx with
| Some form ⇒ next ` (store \\ form)
| None ⇒ False

end
| Cut form nextp nextn ⇒

(nextp ` (store // [form])) ∧
(nextn ` (store // [negate form]))

| _ ⇒ False
end

(* Negative phase. *)
| store // (False- :: work) ⇒

match cert with
| Cert1 next ⇒ next ` (store // work)
| _ ⇒ False

end
| store // ((forml ∧- formr) :: work) ⇒
match cert with

| Cert2 nextl nextr ⇒
(nextl ` (store // (forml :: work))) ∧
(nextr ` (store // (formr :: work)))

| _ ⇒ False
end

| store // ((forml ∨- formr) :: work) ⇒
match cert with

| Cert1 next ⇒
next ` (store // (forml :: formr :: work))

| _ ⇒ False
end

| _ // (True- :: _) ⇒ True
(* Store. *)
| store // ([_]- as form :: work)
| store // (True+ as form :: work)
| store // (False+ as form :: work)
| store // ([_]+ as form :: work)
| store // ((_ ∧+ _) as form :: work)
| store // ((_ ∨+ _) as form :: work)
⇒

6.5 Figure The classical propositional MaxChecker kernel and FPC in Coq. Po-
larized logical connectives, as well as atoms (here, arbitrary propositions, in
brackets), follow Coq’s standard notation with + and - suffixes. Sequents are
one-sided, ⇑ is marked // and ⇓ is marked \\.
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match cert with
| Index1 (Idx idx) next ⇒
if beq_nat (length store) idx
then next ` ((store ++ [form]) // work)
else False

| _ ⇒ False
end

(* Positive phase. *)
| store \\ True+ ⇒

match cert with
| Cert0 ⇒ True
| _ ⇒ False

end
| store \\ (forml ∧+ formr) ⇒

match cert with
| Cert2 nextl nextr ⇒
(nextl ` (store \\ forml)) ∧
(nextr ` (store \\ formr))

| _ ⇒ False
end

| store \\ (forml ∨+ formr) ⇒
match cert with

| Choice Left next ⇒ next ` (store \\ forml)
| Choice Right next ⇒ next ` (store \\ formr)
| _ ⇒ False

end
| store \\ [atomp]+ ⇒

match cert with
| Index0 (Idx idx) ⇒

match nth_error store idx with
| Some [atomn]- ⇒ atomp = atomn
| _ ⇒ False

end
| _ ⇒ False

end
| _ \\ False+ ⇒ False
(* Release. *)
| store \\ True- as form | store \\ False- as form
| store \\ [_]- as form | store \\ (_ ∧- _) as form
| store \\ (_ ∨- _) as form
⇒

match cert with
| Cert1 next ⇒ next ` (store // [form])
| _ ⇒ False

end
end

6.6 Figure The classical propositional MaxChecker kernel and FPC in Coq (con-
tinued). Presentation conventions are shared with Figure 6.5.
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6.3.1 Definition Let J·K0 be a depolarization function that maps polarized to unpolar-
ized formulas. It assumes that the negative polarity is reserved for negated atoms.
It is defined as follows:

Jt+K0 = Jt−K0 = t

J f +K0 = J f −K0 = f

JPaK0 = a

JNaK0 = ¬a

JA ∧+ BK0 = JA ∧− BK0 = JAK0 ∧ JBK0

JA ∨+ BK0 = JA ∨− BK0 = JAK0 ∨ JBK0

Here, Pa is the atom a positively polarized, Na is the atom a negatively polarized,
and A and B are arbitrary polarized formulas. The notion of depolarization
function is easily extended to focused sequents. In LKF, one-sided sequents are
interpreted as classical disjunctions, and their depolarization is defined as:

J` Γ ⇑ ΘK0 = *
,

∨
A∈Γ

JAK0+
-
∨ *
,

∨
B∈Θ

JBK0+
-

J` Γ ⇓ BK0 = *
,

∨
A∈Γ

JAK0+
-
∨ JBK0

The same scheme is valid for LKF a , where the index assigned to each formula in
the storage area Γ is quietly discarded.

An implementation of a checker must adapt the depolarization function on
sequents to operate on what data structures are used to implement the various
zones. In the present case, only lists are used.

In order to prove the main result of the soundness of the checker, we make
use of a small number of helper lemmas. The first property is a sort of pseudo-
excluded middle applied to the depolarization function.

6.3.2 Lemma Let B be a polarized formula and ¬B its negation. It cannot be the
case that both their depolarizations, JBK0 and J¬BK0, hold.

Proof. By a simple case analysis on the structure of B .

The remaining auxiliary results are technical lemmas used to relate a particular
implementation of the storage zone, its interpretation as a set of formulas at the
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sequent level, and the depolarization of this fraction of the sequent as a disjunction
of (unpolarized) formulas. While these lemmas are formulated in terms of lists in
the present treatment, they are easily swappable with homologues for the indexed
data structures of choice, as the abstract properties we require are simple.

6.3.3 Lemma Given an indexed storage zone Γ and an index i, if the index addresses
a formula B, (i, B) ∈ Γ, then the depolarization of the storage JΓK0 is logically
equivalent to the depolarization where the formula B is added as a disjunct:
JΓK0 ∨ JBK0.

Proof. In our encoding, the index lookup corresponds to indexed access. The
proof proceeds a simple induction on the structure of the storage zone Γ and the
logical properties of disjunction.

6.3.4 Lemma Given an indexed storage zone Γ and an index i, if the index addresses
a formula B, (i, B) ∈ Γ, and if the depolarization of the formula, JBK0, holds,
then so does the depolarization of the entire zone, JΓK0.

Proof. In our encoding, the index lookup corresponds to indexed access. The
proof proceeds a simple induction on the structure of the storage zone Γ.

6.3.5 Lemma Given an indexed storage zone Γ and a formula B , if the depolarization
of the storage zone augmented with the formula JΓ ∪ {B}K0 holds, then so does
the disjunction of the depolarization of the parts: JΓK0 ∨ JBK0.

Proof. In our encoding, storage corresponds to the append operation at the end
of the list modeling Γ. The proof proceeds by a simple induction on the structure
of the storage zone Γ.

Armed with these results, we are ready to prove the principal theorem, which
establishes the connection (the implication) between the checkability of LKF a

sequents and their corresponding depolarization as members of Coq’s Prop type
of propositions, Prop.

6.3.6 Theorem Let Ξ be a maximally elaborate certificate and S be a sequent. If Ξ
successfully certifies the sequent S via checker, then the depolarization of the
sequent JSK0 holds.

Proof. The proof proceeds by structural induction on the certificate Ξ. Most
cases follow directly from the induction hypotheses. The remaining cases, in
addition, make use of the auxiliary results:
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1. The case of cut makes use of Lemma 6.3.2.

2. The case of the initial rule, where the focus is on a positive atom, makes
use of Lemma 6.3.3 along with the logical properties of disjunction and the
excluded middle.

3. The case of the decide rule uses Lemma 6.3.4.

4. All variations of the store rule—applied to the various storable formulas—
use Lemma 6.3.5.

This concludes the proof.

In trying to prove properties of a classical proof system (like LKF) in a
constructive system (like Coq), the appeal to the axioms of classical logic is to be
expected. Predictably, the axiom of the excluded middle makes a single appearance
in the proof of the initial rule, where we look at an atom in both positive and
negative polarities: back in Coq terms, a proposition and its negation.

In practice, a checker exposes a limited interface where a certificate is used
to check a single formula, from which the initial sequent (for which recall Theo-
rem 2.5.1) is derived. This property is a specialization from the general result:

6.3.7 Corollary Let Ξ be a maximally elaborate certificate and B be a formula. If Ξ
certifies the initial sequent ` · ⇑ [B ], then the unpolarized formula JBK0 holds.

Proof. Immediate from Theorem 6.3.6.

In the special case of certificates as proof traces, if the proof system is complete
and if every proof has a trace in certificate form, a complementary theorem could
be stated that, if a formula is provable, there must exist a certificate that checks
it. This property goes beyond the full scope of the FPC framework and is not
considered here.

One can imagine two possibilities to make practical use of a formally verified
checker. First, a second standalone checker—like that in the previous section—
could be extracted from Coq into, say, OCaml. Second, the checker could be used
natively inside Coq as an alternative method for proof building. The next two
sections discuss each of these possibilities in turn.
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6.4 Extraction of verified checkers

The development of the proof checker in Coq constitutes an instance of verified
programming, in which the code has been proven to satisfy its specification. To
move beyond the boundaries of the proof assistant and become an independent
executable program, code can be extracted to a functional programming language
like OCaml (Letouzey, 2008). In terms of trust, we obtain correctness guarantees
about the code by admitting additional systems into the trusted computing base.
Specifically, those guarantees rely on the correctness of the proof assistant and on
the procedure of code extraction, which themselves are not formally verified.

Moreover, the process of extraction comes with certain restrictions that
interact with the design choices made in the previous section. In the first place,
the use of Coq’s native Prop renders code extraction inapplicable. In order to
obtain extractable code, we need to, say, move from the world of propositions to
the world of booleans—as in the original OCaml checker—, thus replacing logical
connectives with boolean operations throughout the development. Furthermore,
propositions-as-atoms must be replaced with a general model of atoms that can
be extracted, say, based on strings (as is the case in some kernels written in
λProlog). Such a model easily allows an extracted checker to be adapted to general
problem signatures without having to translate those signatures into Coq code
(the definition of an atom type in the native OCaml checker for each instance of
the kernel is a representative of this approach).

Secondly, the possible interaction between any axioms of classical logic and
the generation of purely functional, constructive code must be assessed. To
begin with, code cannot be extracted from theorems that involve classical axioms,
although in a Prop-based formalization this possibility is also precluded by the
encoding of atoms. In a checker based on boolean return values where atoms
are represented by a type with decidable equality, it is possible for the proofs to
progress in a weaker setting. Even if some properties of classical logic are used
to simplify reasoning in the final stages of the proof, extracting compilable code
from the fixed point definitions instead of the theorems remains possible; this last
option is employed by other verified systems such as the CompCert compiler.

Besides previous considerations—given a suitable target for extraction—for the
extracted program to be usable, it remains to determine how the user is to interact
with it: how formulas and certificates will be input and output. Separate from
the kernel there must be a parser that reads from an input stream that contains
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three families of items: (a) a collection of non-logical constants and their types
(the signature discussed above); (b) a polarized version of a formula (the proposed
theorem); and (c) a proof certificate expressed as a maximally explicit FPC. The
kernel is then asked to check whether or not the given certificate yields a proof
of the proposed theorem, calling to this end the verified checker function. If
this check is successful, the kernel depolarizes the theorem and prints it out as a
means to confirm what formula it has actually checked.

As Pollack (1998) has argued, the printer and parser of our system must be
trusted to be faithfully representing the formulas that they input and output. This
concern can be addressed in standard ways: by using standard parser generating
tools in order to link trust in the checker with trust in a well-engineered and
frequently used tool. Further refinements would come from an obvious direction,
by crafting and employing verified parsers and printers. Strictly speaking, only the
printer needs to be trusted, in that whatever formula was checked, and whether
this differs from the input, can be ascertained by inspecting the trusted output of
the checker, be this a simple “yes/no” answer or the declared theorem.

6.5 FPCs by reflection in Coq

The second use case for a verified checker takes place directly within the proof
assistant where verification is carried out. In this environment, we can push this
issue of trust another step. Since the MaxChecker is a simple terminating func-
tional program, it is—as has been demonstrated—a simple matter to implement it
within Coq. Moving on, one could formally prove that a successful check leads to
a formal proof in, say, Gentzen’s LK and LJ proof systems. By reflecting (Boutin,
1997; Harrison, 1995) these weaker proof systems into Coq—including the axiom
of the excluded middle for classical logic proofs—, the chaining of a flexible (logic
programming-based) certificate elaborator with the Coq-based checker can then
be used to get the proof assistant to accept proofs from a range of other proof
systems.

A more direct avenue exploits propositions-as-atoms to produce a similar
result. Given a polarized formula, we know by application of Theorem 6.3.6 that
if the “output proposition” from the checker is provable, so is the depolarization
of the input formula. In the case of a successful check, the output proposition is
trivially provable, as it only involves identity equalities where both sides are the
same proposition. This usage scheme works as follows:
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1. Given a (polarized) formula, secure a proof of theoremhood by an external
prover, say, a resolution proof, for which an FPC definition exists.

2. Check the formula against the proof certificate and elaborate it to its
maximally explicit form in a logic programming-based kernel.

3. Check the formula against the maximally explicit certificate in Coq.

4. Apply the soundness theorem to obtain the depolarization of the formula
as a proved proposition to be used in a Coq development.

To apply this style of proof, it is necessary to move between Coq propositions
and their polarized versions, to use the checker to prove the latter and then
recover the original propositions. This process of reification corresponds to that
of polarization in focused sequent calculus. The subject will be taken up and
treated more at length in Section 13.3.

6.6 Notes

The original development of MaxChecker in OCaml was first introduced in
Blanco et al. (2017a) as a consequence of the development of determinate FPC
definitions, in particular the maximally elaborate FPC of Section 5.4.

The natural role of logic programming in the implementation of proof calculi
in general and the FPC framework in particular is well established in the literature.
Among others, it is discussed by Felty (1993); Miller and Nadathur (2012);
Chihani (2015); Chihani et al. (2016b).

Functional programming serves as a reasonable simplification in the imple-
mentation mechanisms required—at the level of programming languages—in the
TCB of a proof checker. To go further, we must turn to the layers of software
below the (possibly verified) checker: compiler, operating system, hardware. At
present, an end-to-end verification of the entirety of the systems on which a
program (here, the proof checker) relies is impracticable; efforts like DeepSpec
(DeepSpec) aim at exactly such ubiquitous application of the techniques described
in this chapter. Still, questions about security and about the correctness of verified
specifications abound. Nonetheless, the production of a formal proof of the
ascribed properties of the checker represents a significant increase in the level of
trust we may accord to a proof checker—whose trustworthiness is, indeed, the
ultimate measure of its value.
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In the discussion of extracting an executable functional program from a
specification written in Coq, we must note that the concrete proof checker that
has been the object of the chapter implements classical logic; in consequence,
the associated proofs of correctness rely (in some, very limited, measure) on
non-constructive reasoning, namely the axiom of the excluded middle. We may
therefore be suspecious of the results of constructively extracting a program
from such a development. However, subject to less stringent requirements,
such an extraction—performed on the definition of the checker about which
the theorems reason, and not on the theorems themselves—can be performed
successfully. Indeed, classical reasoning does not by itself invalidate the extraction
of a verified specification. For example, the CompCert verified compiler (Leroy,
2009) employs the excluded middle to derive some of its corollaries while its
executables are extracted from the fixed point definitions. A similar situation
is seen in certain specialized checkers for unsatisfiability proofs—the subject of
Chapter 7—, a standard problem in classical logic (Cruz-Filipe et al., 2017a).

In this chapter, we have presented a determinate checker written in OCaml
side by side with a formalization this MaxChecker in Coq which was restricted
to the propositional fragment. In extending this treatment to the quantifiers, and
with them to full first-order logic, the handling of bindings predictably becomes
the principal point of interest. In Coq, bindings are not first-class constructs
of the language and must therefore be explicitly modeled and their metatheory
proved; several Coq libraries facilitate facilitate work with bindings and mitigate
the increase in the complexity of proofs. Our use of Prop as the type of atoms
is a further complication that needs to be addressed. A simplifying factor lifted
from the OCaml checker consists of fixing a single type of terms—over which
quantification may occur—mimicking the kernel in Figure 4.3 and those to come
in Part III. An aspect of the OCaml code which resists easy formalization is the
representation of bindings by function spaces in the encoding of higher-order
abstract syntax. Adopting functions leads to so-called exotic terms and are far
more general than the limited operation of substitution they are expected to
represent (Despeyroux et al., 1995).

An appealing alternative is to specify the checker and prove it correct not in
Coq, but in another proof assistant with rich metaprogramming support, where
we can reason directly variable bindings, eigenvariables, etc., using λ-tree syntax,
therefore obtaining simple proofs like those we have come to expect from our
exposition of the propositional fragment. Abella, used extensively in Part III, is
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one such system; an introduction to it is included in Chapter 10. In any case,
it should be noted that the propositional checker alone covers many common
sources of proofs, including the satisfiability refutations that are the topic of the
next chapter.

A complementary development of reduced complexity is the adaptation of
MaxChecker in both unverified and verified forms to function as a checker for
intuitionistic logic; the changes required for this closely related kernel are few
and predictably simple. A more ambitious undertaking may seek to obtain a
verified checker for the general FPC framework, and in so doing would avoid
the intermediate state of imposing determinacy—performed to increase trust
in the underlying model of computation. Such a development is substantially
more complex than the one undertaken in this chapter. Fundamentally, it relies
on a certified implementation of logic programming and consequently of the
interesting and complex problems of unification and backtracking search.
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7 Unsatisfiability certificates

7.1 Boolean satisfiability

The boolean satisfiability problem, or SAT, is one of the quintessential problems of
logic and computer science. Given a classical propositional (i.e., boolean) formula,
the decision problem asks whether there exists a boolean interpretation that satis-
fies the formula—i.e., an assignment of truth values to the finite set of variables in
the formula such that the formula evaluates to true. SAT is the first decision prob-
lem to be proved NP-complete (Cook, 1971) and in the intervening half-century
has been instrumental in the study and classification of the complexity of decision
problems. While it might seem that theoretical intractability precludes practical
application, recent advances in heuristic algorithms have heralded spectacular
progress in the size and sophistication of the problems that specialized programs,
called SAT solvers, can process, pushing automated theorem provers based on
these techniques out of the ivory tower of academia and into industrial practice.

We are mainly interested in proof evidence of the satisfiability properties of
boolean expressions. A positive proof of satisfiability is simple: the existence of
truth values that satisfy a propositional formula is expressed in first-order logic
by binding the set of variables with existential quantifiers; a proof certificate
needs only to give witnesses (true or false) for each of those variables. Such a
positive certificate is easy to write and trivial to check. In contrast, a negative
proof of unsatisfiability, or UNSAT, is more challenging. In proving the negation
of the SAT property, the existential variables turn into universals, and the onus
is to show that no combination of values given to those variables satisfy the
formula—brute force being clearly impracticable. Similarly to resolution (treated
in Section 3.6), unsatisfiability is of interest in theorem proving as a potential
means of providing a refutation: to prove a theorem, obtain instead a refutation
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of its negation. Our interest will be in these latter unsatisfiability certificates and
their formal checking.

7.1.1 Example Let variables be chosen from the set x1, x2, . . .. The boolean expres-
sion x1 ∧ ¬x2 is satisfiable because there exist values for x1 (true) and x2 (false)
that make the expression, and its first-order formulation ∃x1.∃x2.x1 ∧ ¬x2, true.

Conversely, the boolean expression x1 ∧ ¬x1 is unsatisfiable because the
negation of its first-order formulation ∀x1.¬x1 ∨ x1 is a tautology.

The question of correctness of SAT solvers is particularly apt: they are com-
plex prover programs—engineered for efficiency and heavily optimized—which
carry out critical verification tasks. In order to trust their results, it is imperative
to ensure that no unsound reasoning may occur—but maintaining a proof of
soundness of such a program as it evolves may be unfeasible. Fortunately, the
separation of concerns between prover and checker is recognized and enforced
through the definition of standard UNSAT certificate formats to provide evidence
of a proof of unsatisfiability. Most modern software is based on Conflict-Driven
Clause Learning, or CDCL (Marques-Silva and Sakallah, 1999; Moskewicz et al.,
2001)—a refinement of the classical DPLL search algorithm for complete satisfia-
bility checking (Davis and Putnam, 1960; Davis et al., 1962)—, and support for
those certificate formats is easily added to the base algorithm. Hence, instead of
checking the tools, a specialized checker checks the results emitted by the tools.

Those specialized proof checkers are simpler, more stable programs, more
amenable to a formal proof of their correctness. In fact, a series of recent formal-
ization efforts has produced a number of verified checkers to cement the trust in
a theorem by way of an UNSAT certificate that purports to refute the negation
of said theorem. Similarly to our checker in Chapter 6, these tools are built in a
proof assistant like Coq or Isabelle and proven correct against their specification,
and then extracted as executable code. To aid efficiency, certificate formats are
commonly extended with additional information to make checking more deter-
ministic; lacking support from the SAT solvers, an intermediate processing step
is then needed to enrich the standard certificates before they are passed to the
verified checker. Though the certificates change, the objective is always the same:
verifying that the input formula is unsatisfiable.

Instead of building a checker and laboriously proving it correct—(i.e., verify-
ing that it is sound and “complete enough” for the domain of interest)—, the FPC
framework provides a direct and foundational attack on the problem. Now, by
first understanding how a proof of the unsatisfiability of a formula is built from
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the information in an UNSAT certificate, we will craft FPC definitions to carve
such proofs directly into the logic. An obvious advantage will be that, although
(as with any other checker) we may want to prove a metatheorem about the
relative completeness of the procedure, the framework guarantees its soundness,
and in consequence, the concrete checker—run on top of a trusted kernel—cannot
ever declare the theoremhood of an impostor formula.

The rest of the chapter is organized as follows. Section 7.2 introduces the
standard formats and the properties on which UNSAT certificates are based.
Section 7.3 studies the connection between resolution proofs and a primitive
form of UNSAT certificate based on resolution traces. Section 7.4 undertakes
the certification in the FPC framework of the current family of UNSAT proof
evidence. Section 7.5 continues the developments of the previous section while
relaxing its reliance in the cut rule. Section 7.6 concludes the chapter.

7.2 Redundancy properties and shallow certificates

A SAT (or UNSAT) problem consists of a boolean expression, generally written
in DIMACS CNF format. A text file represents a boolean expression in clausal
normal form as a series of lines. The first line includes two numbers: the number
of variables v present in the formula (represented implicitly by the numbers
1, 2, . . . , v , and the number of clauses c of the formula in CNF form. The first
line is followed by c lines, each representing a clause. A clause is given as a subset
of literals drawn from the variable set 1, 2, . . . , v (unsigned if they are positive,
prefixed by a minus sign if they are negated) and terminated by 0. An example is
given in Figure 7.1.

The key insight of the DPLL backtracking algorithm is its introduction of
simplifications based on the properties of boolean variables while preserving the
completeness of backtracking search. In particular if a clause contains exactly one
literal, its satisfaction forces a fixed truth value, which can be used to simplify
other occurrences of the involved variable. Formally:

7.2.1 Definition A unit clause is a clause with a single literal. Unit propagation (also
called boolean constraint propagation, or BCP) is a simplification procedure for
formulas in conjunctive normal form which, given a literal clause l , performs the
following operations:

1. It removes every clause containing the literal l except the unit clause.



106 chapter 7. unsatisfiability certificates

p cnf 4 8
1 2 -3 0
-1 -2 3 0
2 3 -4 0
-2 -3 4 0
1 3 4 0
-1 -3 -4 0
-1 2 4 0
1 -2 -4 0

7.1 Figure Standard example of propositional formula in the DIMACS CNF
format. It comprises 4 variables, say x1, x2, x3, x4, and 8 clauses. The represented
formula is: (x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ · · · ∧ (x1 ∨ ¬x2 ∨ ¬x4).

2. It removes every negated instance of the literal, ¬l , across all clauses.

The removal of negated instances may cascade and lead to the formation of
new unit clauses; the process is repeated to saturation. Unit propagation derives a
conflict if it results in a pair of complementary unit clauses l ′ and ¬l ′.

This operation is also related to the inference rule of unit resolution, which
simplifies the general rule of binary resolution (discussed in Section 3.6) by
imposing that one of the resolvents be a unit clause.

Current UNSAT certificate formats are designed around the use of redundant
clauses, that is, clauses which added to a formula in CNF preserve properties
like unsatisfiability. If we want to prove that a CNF formula is unsatisfiable,
a simple procedure involves adding clauses that preserve unsatisfiability and
hopefully assist in adding further redundant clauses until arriving at the empty
clause—at which point the formula can be declared trivially unsatisfiable. For
example, accumulating a tautological formula to a conjunction of clauses is always
redundant, though also uninformative. Let us consider the following, more
interesting property:

7.2.2 Definition A clause C = l1 ∨ · · · ∨ ln is a reverse unit propagation (RUP) clause
w.r.t. a CNF formula F if unit propagation on an assignment that falsifies C (that
is, the addition to F of the unit clauses ¬l1, . . . ,¬ln ) derives a conflict.

A RUP clause is said to have the asymmetric tautology property, or AT. Addi-
tion of RUP clauses to a CNF formula preserves logical equivalence. RUP is the
strongest redundancy property that preserves equivalence.
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1 2 0
1 0
2 0
0

7.2 Figure Certificate of unsatisfiability for the formula in Figure 7.1 in the RUP
certificate format.

The simplest among the UNSAT certificate formats we will study is that called
reverse unit propagation (RUP) certificate format. A RUP certificate consists of
a series of clauses, called “lemmas,“ each of which has the RUP property with
respect to the accumulation of the initial formula and previous RUP lemmas. The
certificate ends with the empty clause. Figure 7.2 presents an example of a RUP
certificate, with clauses represented in the same DIMACS CNF format as the
input formula.

7.2.3 Example Starting from the problem in Figure 7.1, take the first lemma in
Figure 7.2, negate it and attempt to derive a conflict by unit propagation on the
resulting formula:

1 2 -3 | 2 -3 | -3 | -3
-1 -2 3 | | |
2 3 -4 | 2 3 -4 | 3 -4 | -4
-2 -3 4 | -2 -3 4 | |
1 3 4 | 3 4 | 3 4 | 4
-1 -3 -4 | | |
-1 2 4 | | |
1 -2 -4 | -2 -4 | |
-1 | -1 | -1 | -1
-2 | -2 | -2 | -2

First, the unit clauses -1 and -2 are propagated. This generates a new unit
clause, -3, whose propagation derives a conflict between 4 and -4. Therefore,
the lemma is a RUP clause that can be added while preserving logical equivalence.
The process is repeated with each subsequent lemma. Once all lemmas have
been added, only the empty clause remains. That is, to finish the proof, unit
propagation on the set of original clauses and added lemmas must derive a conflict.
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1 2 -3 | | |
-1 -2 3 | -2 3 | 3 | 3
2 3 -4 | 2 3 -4 | |
-2 -3 4 | -2 -3 4 | -3 4 | 4
1 3 4 | | |
-1 -3 -4 | -3 -4 | -3 -4 | -4
-1 2 4 | 2 4 | |
1 -2 -4 | | |
1 2 | | |
1 | 1 | 1 | 1
2 | 2 | 2 | 2

Thus, the original formula is unsatisfiable.

The RUP format is reasonably compact and easy to implement (both its
production and its checking), but rather costly to verify. The main contributor to
the inefficiency of checking is the accumulation and persistence of lemmas, even
as they become unnecessary by the addition of newer lemmas.

In fact, a defining characteristic of the more general CDCL algorithm that lies
at the foundations of modern SAT solvers is its ability to both add and remove
clauses by conflict analysis techniques. Clause elimination techniques, like their
additive counterparts, can delete clauses whose removal preserves properties like
satisfiability. The solver must provide this information in the certificate, which
motivates a simple extension to the RUP format. DRUP certificates add the
option to mark extant clauses (or lemmas) as deleted by prefixing them with
a d marker; they are otherwise identical to RUP certificates. Figure 7.3 shows
an example certificate. Intuitively, when we attempt to derive a conflict by unit
propagation, it is irrelevant that we ignore a subset of deleted lemmas, as long as
we can find the conflict with less information.

Clause deletion alone results in significant performance improvements, but
progress does not stop there. More sophisticated redundancy properties, powerful
enough to express in terms of them all the processing techniques employed by
standard SAT solvers. Namely, the following property:

7.2.4 Definition A clause C has the resolution asymmetric tautology property (RAT)
w.r.t. a CNF formula F = C1 ∧ · · · ∧Cn if either:

1. C has the AT property w.r.t. F ; or
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1 2 0
d 1 2 -3 0

1 0
d 1 2 0
d 1 3 4 0
d 1 -2 -4 0

2 0
0

7.3 Figure Certificate of unsatisfiability for the formula in Figure 7.1 in the DRUP
certificate format.

-1 0
d -1 -2 3 0
d -1 -3 -4 0
d -1 2 4 0

2 0
d 1 2 -3 0
d 2 3 -4 0

0

7.4 Figure Certificate of unsatisfiability for the formula in Figure 7.1 in the DRAT
certificate format.

2. C contains a literal l such that all the clauses that result from resolving
C with a clause Ci of F on l (i.e., Ci contains the literal ¬l ) have the AT
property w.r.t. F .

Addition of RAT clauses to a CNF formula preserves satisfiability (and
therefore its complement, unsatisfiability). It is the strongest redundancy property
that preserves SAT (and UNSAT).

It is clear that RAT generalizes AT (i.e., RUP). We consider directly the
certificate format that combines the addition of RAT lemmas with clause deletion:
the result is called DRAT. Syntactically, it coincides with DRUP. In order to
simplify operation, each lemma to be added either has the RUP property or it
has the RAT property on its first literal. An example is given in Figure 7.4.

7.2.5 Example Again starting from the problem in Figure 7.1, we take the first
lemma in the certificate, this time from Figure 7.4. By applying unit propagation,
we note that its negation does not derive a conflict. Thus, it does not have the
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RUP property, so we select the first (here, only) literal of the lemma and generate
a new set of clauses by resolving it with all applicable current clauses:

1 2 -3 | 2 -3
-1 -2 3 |
2 3 -4 |

-2 -3 4 |
1 3 4 | 3 4

-1 -3 -4 |
-1 2 4 |
1 -2 -4 | -2 -4

Each of the three resulting clauses can then be checked for the RUP property
with respect to the current clause set. The checks succeed, and so the original
lemma has the RAT property and can be added to the set of clauses. The addition
and deletion of lemmas continues until the end, when only the empty clause
remains and unit propagation should derive a conflict without assistance of any
more lemmas.

DRAT is the current de facto standard for UNSAT certificates, partly owing
to its adequate expressive power: the standard toolbox of processing techniques at
the disposal of modern SAT solvers can be formulated in terms of sequences of
RAT lemmas—although not all techniques can be given short translations; for an
overview and recent developments see Järvisalo et al. (2012); Heule et al. (2015).
We say that all these formats are “shallow” because they do not incorporate
a definition of their semantics in the sense that an FPC definition does. Our
objective will be to interpret these formats as proper foundational certificates and
furnish the missing proof theoretical pieces.

7.3 Resolution FPCs and traces
We commence with a further exploration of the connections between resolution
refutations and UNSAT certificates, which are another form of refuting a formula,
and consequently proving the theoremhood of its negation. Both families of
proofs operate on the same principle: starting from a formula in clausal form,
prove and accumulate a series of lemmas (themselves clauses) until arriving at an
extended collection of clauses from which unsatisfiability is immediate. It is only
in the properties and proofs of those lemmas that the two methods differ.

First, let us recall the binary resolution FPC of Section 3.6. The heart of a
general proof by binary resolution, as presented by Chihani et al. (2016b), is a
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backbone of cuts. Each cut corresponds to an application of the resolution rule,
which adds a new, derived clause on one cut branch and proves that the clause
indeed follows by binary resolution on the other cut branch; these auxiliary
proofs are simple. It keeps adding derived clauses until it can derive the empty
clause, thus finishing the proof. The following general proof pattern is inspired by
this style of reasoning.

7.3.1 Definition Let F = C1 ∧ · · · ∧Cm a CNF formula, and L1, . . . ,Ln a sequence
of lemmas, each of them a clause, that lead to a refutation of F by a certain rule
of inference (e.g., binary resolution, RUP, etc.).

If F is unsatisfiable, then the DNF formula ¬F = ¬C1 ∨ · · · ∨ ¬Cm , where
negated clauses are conjuncts, is a tautology. If lemmas preserve satisfiability
when added to F , so do their conjunctive negations when added to ¬F .

Given a procedure,Λ, to build proofs of redundancy of a new (negated) lemma
with respect to a set of assumptions (clauses and prior lemmas, all negated), an
LKF proof by lemma backbone proceeds by:

1. Storing the negated clauses as initial assumptions.

2. Cutting each negated lemma into the proof, building a derivation Λ that it
follows from the current set of assumptions (and adding it as an assumption
in the opposite branch).

3. The final lemma is the empty clause (negated, true). The final proof, Λ0,
shows the tautology of the complete set of negated clauses and lemmas by
its redundancy property, while the opposite branch is closed by true.

The proof schema is shown in Figure 7.5. Disjunctions are polarized negatively
and conjunctions are polarized positively. To ensure all negated clauses are
positive, including unit clauses, they can be paired with the conjunctive unit, true.

The resolution certificate in Figure 3.5 is an example of this pattern—and,
as we begin to corroborate in the next section, the same organization applies to
redundancy properties like RUP. Before doing that, in complement to proofs
which explicitly exploit redundancy properties, we further our study of resolution
by adapting one of its main variants:

7.3.2 Definition Let A ./ B designate a clause that results from resolving clauses
A and B. Hyperresolution is a generalization of the binary resolution rule that
takes a sequence of clauses C1,C2, . . . ,Cn (n ≥ 2) and yields a clause that results
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7.5 Figure The lemma backbone proof pattern for CNF refutations.
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1 1 2 -3 0 0
2 -1 -2 3 0 0
3 2 3 -4 0 0
4 -2 -3 4 0 0
5 1 3 4 0 0
6 -1 -3 -4 0 0
7 -1 2 4 0 0
8 1 -2 -4 0 0
9 1 2 0 1 3 5 0
10 1 0 9 4 5 8 0
11 2 0 9 3 6 7 0
12 0 10 11 2 4 6 0

7.6 Figure Certificate of unsatisfiability for the formula in Figure 7.1 in the
TraceCheck certificate format.

from the application of a left fold on the list with the binary resolution relation:
(· · · (C1 ./ C2) ./ · · · ) ./ Cn.

Hyperresolution avoids the creation of intermediate clauses and leads to more
compact proofs. SAT solvers are easily adapted to emit proof certificates based on
conflict analysis and redundancy criteria like RUP, but they cannot be so easily
modified to produce proofs by resolution. Resolution certificates contain large
amounts of proof evidence which also makes them much larger, but faster to
check. It is important to note that a sequence of resolution steps may result in
zero, one, or several possible solutions. In the context of a correct certificate, such
a sequence will yield at least one solution, but backtracking is needed to ensure
the one needed for the proof is eventually inspected.

Hyperresolution derivations are used in a legacy UNSAT certificate format,
TraceCheck. A certificate file contains two kinds of lines: original clauses and
derived lemmas—as in any proof by resolution. Each line starts with a unique
number which names each clause. First, the clauses of the original form are
given—always following DIMACS conventions—terminated by two zeroes. They
are followed by a sequence of lemmas, terminated with a zero, followed by a
sequence of existing clause identifiers which derive the clause by hyperresolution,
finished with the second zero. As always, the empty clause concludes the proof
evidence. An example is shown in Figure 7.6.
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7.3.3 Example Consider the resolution proof given in TraceCheck format in Fig-
ure 7.6. Clauses 1 through 8 reproduce the formula to refute (namely, that of
Figure 7.1), and lemmas 9 through 12 constitute a proof by (hyper)resolution.

Clause 9 states that the lemma x1 ∨ x2 follows by resolving clauses 1 and 3
(x1 ∨ x2 ∨ ¬x3 ./ x2 ∨ x3 ∨ ¬x4 = x1 ∨ x2 ∨ ¬x4); then resolving the result with
clause 5 (x1 ∨ x2 ∨ ¬x4 ./ x1 ∨ x3 ∨ x4 = x1 ∨ x2 ∨ x3); and, finally, resolving
with 1 again (x1 ∨ x2 ∨ x3 ./ x1 ∨ x2 ∨ ¬x3 = x1 ∨ x2). In all these cases, there is
only one literal on which to resolve; literals repeated in both resolvents are not
duplicated. The rest of the lemmas proceed similarly.

To define an FPC for hyperresolution proofs (for example, expressed in a
transcription of the TraceCheck format), we shall assume use of the lemma
backbone pattern. It will then suffice to exhibit a proof procedure, Λ, that builds
a proof of a lemma, ` ¬C1, . . . ,¬Ck ⇑Ck+1 by making use of the hyperresolution
information associated to the lemma in the certificate.

7.3.4 Theorem Let ¬C1, . . . ,¬Ck be a set of negated clauses. If a negated lemma
L = ¬l1 ∧ · · · ∧ ¬ln follows by a hyperresolution sequence [i1, . . . , im ] on the
negated clauses, Figure 7.7 builds an LKF a proof that the lemma ¬L follows from
the assumed set of clauses.

Proof. The proof evidence (i.e., the certificate) is the hyperresolution sequence.
Assume for brevity that each negated clause ¬Ci is stored under a matching
numeric index i; the mapping is not shown in the figure.

Initially, the lemma L is seen as a disjunction of literals, all of which are stored.
All literals are stored under a unique index for the literals of the lemma; also for
brevity, the figure does not show indexes explicitly.

Once all literals are stored, the proof creates a backbone ofm−1 cuts unrolling
the sequence of applications of binary resolution steps in the hyperresolution
sequence. The two first indexes in the sequence are used to select the clauses
indexed by them; the cut formula is the result of resolving both clauses. For the
j -th cut, the formula ¬Ck+ j is equal to ¬Ck ./ ¬C j+1 (except ¬Ck+1 = ¬Ci1 ./

¬Ci2 ). Therefore, ¬Ck+ j = (· · · (¬Ci1 ./ ¬Ci2 ./ · · · ) ./ ¬Ci j+1. Then:

1. In the positive branch, we have to prove that the derived clause Ck+ j

follows from binary resolution. This is exactly what the FPC definition in
Section 3.6 does. The task is delegated to one such certificate, abbreviated
Ξ in the figure.
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2. In the negative branch, the new negated clause ¬Ck+ j is stored and the
construction of the backbone continues.

At the end of the backbone, when the last formula has been stored, we
have precisely the result of the hyperresolution sequence, namely the expansion:
¬Ck+m−1 = (· · · (¬Ci1 ./ ¬Ci2 ./ · · · ) ./ ¬Cim . If the hyperresolution sequence
yields the negated clause that was expected, this is ¬l1 ∧ · · · ∧ ¬ln. Since the
complementary literals are all stored from the beginning of the proof, focusing
on the Ck+m−1 yields n literal branches, each of which can be closed, and with it
the proof.

That is, the full proof of a TraceCheck-style UNSAT certificate proceeds by a
nested lemma backbone whose main procedure for the proofs of lemmas, Γ, is that
given by Theorem 7.3.4. This, in turn, builds a binary resolution proof from the
information contained in a hyperresolution sequence, and delegates the proofs of
lemmas to the procedure given by the binary resolution FPC. The only difference
is that Theorem 7.3.4 does not derive the empty clause, but the context of literals
of the lemma derived by hyperresolution.

The FPC definition follows directly from this result and the structure in
Figure 3.5 through the insertion of the nested backbone, which mimics the
structure of the main backbone. The salient feature of the hyperresolution
backbone is that the cut formulas are not contained in the lean certificate, but
rather they are extracted from the context of the sequent, namely the storage
zone—compare this with Example 3.6.1, where all derived clauses are explicitly
provided. There are two technical solutions to this necessity:

1. Allow the cut expert to inspect the storage zone Γ to assist in the program-
matic composition of a cut formula B .

2. Add information in the certificate (and the clerks and experts) to replicate
the relevant sections of the storage zone in the certificate, so as to derive
the cut formulas without access to the state of the kernel.

In standard kernel designs the state is not only unwriteable, but also unread-
able by clerks and experts. However, there is an argument to be made that experts
can occasionally be more “expertly” if they can read parts of the state; this is
especially true of cut. The second possibility of a certificate reflecting parts of the
kernel in lockstep is also a recurring pattern that is observed in Section 11.6 and
Section 12.4, where it will be discussed at length.
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7.7 Figure Proof schema of a hyperresolution proof step in LKF a .
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Study of resolution will resume in Chapter 8. For the rest of this chapter, we
concentrate on redundancy-based UNSAT certificates.

7.4 Unsatisfiability FPCs with cut
In this section we adapt the lemma backbone pattern to the families of UNSAT
certificates that are actually used in practice. As in the previous section for hyper-
resolution proofs and the TraceCheck format, the sole metatheoretic obligation
is to prove the redundancy of a lemma with respect to the set of clauses and
previously added lemmas (both negated). We start by considering how to obtain
LKF a proofs of RUP certificates.

7.4.1 Theorem Let ¬C1, . . . ,¬Ck be a set of negated clauses. Given a negated clausal
lemma L = ¬l1 ∧ · · · ∧ ¬ln, if the lemma has the RUP property w.r.t. the formula
formed by the set of clauses, then there is a simple LKF a proof of the lemma.

Proof. The base context in a RUP proof step (after the literals of the lemma have
been stored) is the union of the set of previous clauses and lemmas (both negated),
¬C1, . . . ,¬Ck , and the literals of the RUP lemma, l1, . . . , ln. Those literals are
essentially unit clauses which will serve as sources of RUP reductions, i.e., unit
propagations. These operations will be modeled as a backbone of cuts.

The proof proceeds by levels. Initially, at level 0, all the stored formulas are
active: clauses can be addressed by number; literals can be addressed by a common
index. Both index types are qualified by level.

Each level consists of an application of unit propagation on an active literal.
To progress from level i to level i + 1, a cut is used. To obtain the cut formula,
select an arbitrary i-level literal (i.e., currently active), say l i . Assume its negation
¬l i holds, and for each i-level negated clause, ¬C i

j :

1. If the negated clause contains ¬l i , its true occurrence is removed at the next
level: ¬C i+1

j = ¬C i
j − {¬l i}.

2. If the negated clause contains l i , it is removed—there is no ¬C i+1
j .

3. All other clauses are copied unchanged at level i + 1: ¬C i+1
j = ¬C i

j .

The cut formula is the disjunction of all these clauses. Then:

1. In the positive branch, the revised negated clauses are stored independently
reflecting their new level. All unit clauses at level i except l i are stored at
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level i + 1 together with any new unit clauses contained in the cut formula.
Having stored all (negated) clauses, we proceed with the next cut in the
backbone on a new unit clause.

2. In the negative side, the negated cut formula becomes a (positive) CNF
formula, ¬B =

∧
j C i+1

j . It will be stored and immediately focused upon.
In the positive phase, as many branches as there are clauses in ¬B appear.

For each branch, there is a release on a C i+1
j = m1 ∨ · · · ∨ mk , and in

the negative phase its literals are stored. Immediately, we focus on the
i-level predecessor ¬C i

j , which contains at least the complementary literals
¬m1 ∧ · · · ∧ ¬mk .

The positive phase results, again, in a number of branches on literals whose
complement is in storage, and which are therefore easily closed. If the
assumed literal for unit propagation, ¬l i , appears as well, l i is available in
storage to close the branch, as well.

The backbone ends when all unit clauses have been processed—and with it
unit propagation. If the lemma did satisfy the RUP property, unit propagation
must result in a pair of complementary literals, which will be available and can
be used to finish the proof.

As the case of TraceCheck, the full proof of the RUP UNSAT certificate is
an exemplar of the nested backbone pattern. Also as with TraceCheck, lemma
derivations rely on a smart choice of formulas based on the context by the cut
expert. In addition, indexing is used heavily to keep track of the provenance
of formulas in storage—which never deletes data. Besides the sequence of RUP
lemmas, the certificate only needs to keep track of the current level in each
subproof.

7.4.2 Example Consider the problem in Figure 7.1. The claim is that the following
formula is unsatisfiable. For compactness, variables x i are represented by their
numeric identifiers, as in DIMACS format, and negated variables are barred:

(1∨2∨3̄)∧(1̄∨2̄∨3)∧(2∨3∨4̄)∧(2̄∨3̄∨4)∧(1∨3∨4)∧(1̄∨3̄∨4̄)∧(1̄∨2∨4)∧(1∨2̄∨4̄)

Equivalently, the following formula is a tautology:

(1̄∧2̄∧3)∨(1∧2∧3̄)∨(2̄∧3̄∧4)∨(2∧3∧4̄)∨(1̄∧3̄∧4̄)∨(1∧3∧4)∨(1∧2̄∧4̄)∨(1̄∧2∧4)
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We want to prove that (1 ∨ 2) is a RUP lemma. If that is the case, adding the
negated disjunct (1̄ ∧ 2̄) to the presumed theorem preserves its tautology. The
interesting part of the proof is the side of the cut that shows that the lemma
follows from the assumptions. The negated lemma is precisely the original RUP
clause, (1 ∨ 2). Once everything is stored, the goal looks like this at level 0:

1̄ ∧ 2̄ ∧ 3, 1 ∧ 2 ∧ 3̄, 2̄ ∧ 3̄ ∧ 4, 2 ∧ 3 ∧ 4̄, 1̄ ∧ 3̄ ∧ 4̄, 1 ∧ 3 ∧ 4, 1 ∧ 2̄ ∧ 4̄, 1̄ ∧ 2 ∧ 4, 1, 2

Again, for succinctness, indexes and sequent notation—including polarities—
are abbreviated. We observe that there are unit clauses to propagate, so we pick
one, say 2, and assume its negation 2̄ holds. We use this as the basis for unit
propagation and its effect on the currently considered set of stored (negated)
clauses to define the cut formula:

(1̄ ∧ 3) ∨ (3̄ ∧ 4) ∨ (1̄ ∧ 3̄ ∧ 4̄) ∨ (1 ∧ 3 ∧ 4) ∨ (1 ∧ 4̄)

Let us first consider what happens on the negative branch, where the negation
of the cut formula will be stored and immediately focused upon:

(1 ∨ 3̄) ∧ (3 ∨ 4̄) ∧ (1 ∨ 3 ∨ 4) ∧ (1̄ ∨ 3̄ ∨ 4̄) ∧ (1̄ ∨ 4)

Synchronous treatment results in as many branches are there are clauses. Let
us consider the first of these, (1 ∨ 3̄). As a negative formula, it will be released
and its literals 1, 3̄ stored in the context, signaling the end of the negative phase.
Noting that the clause comes from the negation of a negated clause at the current
level, namely 1̄ ∧ 2̄ ∧ 3, we decide on the origin clause. Observe that for every
literal in the formula we just stored its complement—and if the clause contains 2̄,
that is the unit clause we are using for unit propagation. Hence, all branches can
be closed. This extends to all clauses in the negative branch of cut.

In the positive branch of cut, we store the revised set of negated clauses and
mark the used unit clause, so that the effective contents at level 1 are:

1̄ ∧ 3, 3̄ ∧ 4, 1̄ ∧ 3̄ ∧ 4̄, 1 ∧ 3 ∧ 4, 1 ∧ 4̄, 1

We now perform unit propagation on the still untreated unit clause 1, assum-
ing 1̄ and proceeding in the same manner. The new cut lemma, once stored—
which corresponds with the level 2 state, is the following. We obviate the negative
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side of cut as immediate by the same procedure exhibited above.

3, 3̄ ∧ 4,∧3̄ ∧ 4̄

Unit propagation generates a new unit clause, 3. If the same process is applied
to obtain level 3, we end up with a pair of unit clauses, 4 and 4̄, from which the
positive backbone of lemmas ends.

The scheme just presented is easily extended to support DRUP certificates
simply by adding deletion instructions to the certificate; these will update levels
normally, and will additionally remove from considerations those clauses marked
for deletion.

7.5 Cut-free unsatisfiability FPCs
In Section 7.3 and Section 7.4, we have constructed LKF a proofs based on a
double backbone pattern: a primary spine of cuts adding a series of lemmas,
and in the proof of each of these lemmas a secondary spine of cuts attending
to hyperresolution or unit propagation criteria, respectively. Now we turn to a
more general proof scheme that for proving lemmas based on redundancy criteria,
like RUP certificates. The overall proof still follows the lemma backbone pattern,
of course, but the derivations of the lemmas will not rely on cuts as it did in
previous proofs.

7.5.1 Theorem Let ¬C1, . . . ,¬Ck be a set of negated clauses. Given a negated clausal
lemma L = ¬l1 ∧ · · · ∧ ¬ln, if the lemma is redundant w.r.t. the formula formed
by the set of clauses, then there is a cut-free LKF a proof of the lemma.

Proof. The base context in a redundancy proof step (after the literals of the lemma
have been stored) is the union of the set of previous clauses and lemmas (both
negated), ¬C1, . . . ,¬Ck , and the literals of the current lemma, l1, . . . , ln. Those
literals are essentially unit clauses.

The proof proceeds as a tree of decides on negated clauses from the set
¬C1, . . . ,¬Ck . A negated clause is inactive if it contains a positive literal whose
negation is not among the l1, . . . , ln: a focused proof on a positive literal can only
end by an init rule, for which the negated literal needs to be in the storage area.

Clauses all of whose positive literals have negative counterparts in storage are
active. The decide rule may focus on any active clause, say, ¬Ci = m1∧

+ · · ·∧+mk .
Processing the conjunctions results in k branches, as many as literals in ¬Ci . By
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definition of active clause, all branches on positive literals are closed by init on
their negative complements.

Branches focused on negative literals m j proceed by releasing the focus and
storing the negative literal, thus potentially growing the set of available negative
literals—and with them the set of active (negated) clauses. For each branch, the
proof can continue by selecting a locally active, still unused (negated) clause until
all branches are closed, in which case the proof succeeds.

In this proof scheme, as opposed to previous ones, the expert in charge of
orchestrating the proof is the decide expert. Like in previous proof schemes,
it benefits greatly from having read access to the storage area—or otherwise
replicating the necessary information as part of the certificate term, at the cost of
additional complexity.

7.5.2 Example Consider once again the problem defined by Figure 7.1. The DRAT
certificate in Figure 7.4 asserts that 1̄ is a RAT lemma. Indeed we saw in Ex-
ample 7.2.5 that the clause has the RAT but not the RUP property. On the
negative side of the main cut, we will have the following goal, where presentation
conventions will be shared with Example 7.4.2 throughout the example:

1̄ ∧ 2̄ ∧ 3, 1 ∧ 2 ∧ 3̄, 2̄ ∧ 3̄ ∧ 4, 2 ∧ 3 ∧ 4̄, 1̄ ∧ 3̄ ∧ 4̄, 1 ∧ 3 ∧ 4, 1 ∧ 2̄ ∧ 4̄, 1̄ ∧ 2 ∧ 4, 1̄

Now, instead of cutting on a formula, we decide on one of the clauses to
operate on. The clause has to be such that all positive literals can be closed with
currently available negative literals; otherwise, it is impossible to continue the
proof. Here, from the stock of 1̄, we have two possible choices: (1̄ ∧ 3̄ ∧ 4̄) and
(1 ∧ 2̄ ∧ 4̄). Say we focus on the latter. This yields three branches, one for each
literal. 1 is closed immediately and two remain. One of them (after release and
store) is:

1̄ ∧ 2̄ ∧ 3, 1 ∧ 2 ∧ 3̄, 2̄ ∧ 3̄ ∧ 4, 2 ∧ 3 ∧ 4̄, 1̄ ∧ 3̄ ∧ 4̄, 1 ∧ 3 ∧ 4, 1 ∧ 2̄ ∧ 4̄, 1̄ ∧ 2 ∧ 4, 1̄, 2̄

Now we have a larger stock to close positive literals. If we next decide on
(1 ∧ 2 ∧ 3̄), two of the branches are immediately closed, and the single remaining
branch adds 3̄ to the set of negative literals: 1̄, 2̄, 3̄. For the next step, we can
decide on (2 ∧ 3 ∧ 4̄), which like its predecessor results in a single continuation
branch, to which the negative literal 4̄ is added. Finally, by deciding on (1∧ 3∧ 4),
all branches can be closed, and with it the subproof.
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The second sequent that remained open from the first decide is:

1̄ ∧ 2̄ ∧ 3, 1 ∧ 2 ∧ 3̄, 2̄ ∧ 3̄ ∧ 4, 2 ∧ 3 ∧ 4̄, 1̄ ∧ 3̄ ∧ 4̄, 1 ∧ 3 ∧ 4, 1 ∧ 2̄ ∧ 4̄, 1̄ ∧ 2 ∧ 4, 1̄, 4̄

This allows a new negated clause to be decided on effectively, (2̄ ∧ 3̄ ∧ 4), but
all the (unused) applicable clauses allow us to close at most one branch out of
three. Let us say that we decide on this last choice, which at least can close one,
and proceed as follows:

1. 2̄ is added to the list of negative literals: 1̄, 2̄, 4̄. By deciding on (1 ∧ 2 ∧ 3̄),
the 1 and 2 branches are closed, and 3̄ is added to the list of negative literals:
1̄, 2̄, 3̄, 4̄. By deciding on (1 ∧ 3 ∧ 4), all branches are closed.

2. 3̄ is added to the list of negative literals: 1̄, 3̄, 4̄. By deciding on (1 ∧ 3 ∧ 4),
all branches are closed.

3. 4 is closed immediately with 4̄.

The proof of the lemma is thus finished.

We have glossed over the indexing schemes which are used to make sure that
we do not decide several times on the same negated clause along the same branch,
as well as the maintenance of the available negated literals, but these are both easily
encoded. In addition to that, the decide expert can make use of this information
to implement sophisticated heuristics to decide in which order to try the available
clauses, for example, based on the number of branches that will be immediately
closed—so as to reduce the branching factor.

7.6 Notes

The SAT problem is one of the most representative problems in computer science,
not only because of its theoretical significance, but also due to the breadth of
practical applications of modern SAT solvers. Good general treatments of the
problem can be found in the monographs Biere et al. (2009); Knuth (2015). Heule
and Biere (2015) present the state of the art of what is broadly understood of a
proof of (un)satisfiability.

The idea of using unsatisfiability proofs as certificates for use by an indepen-
dent checker goes back at least to Goldberg and Novikov (2003), shortly after
the rise of the current generation of SAT solvers and, with them, the large-scale
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applications of the problem; their ascent coincided with the appearance of the
modern series of SAT solving competitions (SatComp). In contrast to an early
line of proof formats more directly based on resolution, the first of the current
family of proof formats, RUP, was proposed by Gelder (2008) and quickly made
its appearance in a dedicated track in the SAT competitions; the trimming of
clauses that leads to the refinement of DRUP appeared some years later (Heule
et al., 2013b) along with the DRUP-trim checker.

The RAT property is of great importance because all proof techniques utilized
by modern SAT solvers can be expressed in terms of sequences of RAT lemmas
(Järvisalo et al., 2012)—even though this does not imply that it can express
everything efficiently. Its use coupled with clause deletion led to the definition
of the DRAT format (Heule et al., 2013a; Wetzler et al., 2014) and its associated
checker, DRAT-trim, which remain the reigning standards to this day. Like its
predecessor, DRAT-trim is a highly optimized C program in which bugs are
occasionally found. Indeed, such a well-defined and stable checker is a prime
target for verification as undertaken by a number of recent formalization efforts
using proof assistants—as opposed to our pure logic-based approach.

As it stands, UNSAT certificate checking is an expensive operation: common
figures report checking times in the same order of magnitude as proving times.
These costs are compounded by the penalty of modeling and extracting checkers
in higher-level languages and assistants, which has motivated the definition of
specialized proof formats that refine a DRAT source certificate. The GRIT
format (Cruz-Filipe et al., 2017b) identifies the costliest operation in DRAT
checking—namely, finding the unit clauses used during unit propagation—and
includes this information in the certificate; it is formalized in Coq, but does
not cover the RAT property in its entirety. The LRAT format (Cruz-Filipe
et al., 2017a) extends GRIT to verify all of RAT by choosing a pivot element
and checking the RAT property across all clauses containing the negation of that
element; certified checkers are implemented in Coq and ACL2 that are roughly as
fast as the unverified DRAT-trim. Independently, the GRAT format (Lammich,
2017) also extends the insight of GRIT from DRUP to DRAT by more explicit
information about a particular way to execute the checking operation; a verified
checker is implemented in Isabelle.

All these refinements are geared towards the production reasonably perfor-
mant, specialized checkers. Since solvers do not emit any of these extended
certificate formats, an additional unverified stage transforms DRAT certificates to
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each new format; only the checker operating on these augmented certificates is
verified. However, some form of completeness property on the mapping from
a DRAT certificate to one of the new formats—stating, say, that the original
certificate is checkable iff its map is—is only empirically validated.

It should be noted that the standard boolean satisfiability problem is limited
to classical propositional logic. The generalization of SAT to include quantifiers is
called the quantified boolean formula problem, or QBF. An important generaliza-
tion replaces variables with predicate and function symbols drawn from various
background theories—themselves expressed in first-order logic with equality—:
this is the satisfiability modulo theories problem, or SMT. However, the lively
activity in certification standards and checkers for SAT has as of yet no close
parallel in either extended setting, although a certificate format for QBF, called
QRAT, has been proposed (Heule et al., 2014). For overviews of both problems,
refer to the appropriate chapters in Biere et al. (2009).

In the context of the FPC framework, the proof formats proposed in this
chapter are very easily implemented—provided that the kernel allows clerks and
experts to inspect its state without modifying it, otherwise relatively extensive
bookkeeping is required. In standard presentations, including those in Chapters 4
and 10, the kernel is completely opaque to all clerks and experts, which are simply
called by the kernel without any information about their context. Some older
kernel implementations have provided limited context information to clerks and
experts, in particular the one formula that is being operated upon in an inference
rule. A somewhat more generous kernel (which remains functionally sealed) is
a reasonable possibility and well suited to the generation of smart cut formulas
and to sophisticated bookkeeping based on the contents of the context. While
everything can be simulated at the level of clerks and experts, the result is less
modular and more cumbersome. Section 11.6 illustrates this alternative approach,
which recurs later in Section 12.4.



8 Certification of theoremprovers

8.1 Towards FPCs in the large

In previous chapters, we have developed techniques to add and subtract detail
to proof certificates while representing the same proof (Chapter 5). If sufficient
detail is added, the process of checking becomes determinate and can be delegated
to a functional checker that is even simpler, faster and more reliable than standard
proof checkers based on logic programming (Chapter 6). Until this point, a
number of realistic if somewhat academic FPC definitions have been presented
(Chapter 3), but previous related publications (Chihani, 2015; Chihani et al.,
2016b; Libal and Volpe, 2016b) have yet to address the transition from small,
handcrafted examples and idealized calculi to one of the purported goals of
ProofCert: the emission of proof certificates by provers and their independent
validation by trusted proof checkers in realistic scenarios. A stepping stone was
the adaptation as foundational proof certificates of well defined, standard proof
formats (Chapter 7). Completing this opening move towards proof certificates
“in the large” is the subject of the present chapter.

In Section 6.1, we anticipated a general architecture to support a spectrum of
trust levels, which we exercise over the course of the chapter. Truly, a determinate
checker can reduce the trusted computing base needed to come to trust the
theoremhood of a formula, but the proof traces that constitute tractable proof
certificates for MaxChecker are as artificial as their interest is purely mechanistic.
A practical solution must involve both non-determinate and determinate checkers,
combined in such a way that the resulting system enjoys the expressiveness of the
former and the trustworthiness of the latter.

With the components at our disposal, it is now a relatively easy matter to
describe the architecture of a composite proof checker that we can use to check
any proof certificate defined by the FPC framework while only needing to trust
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MaxChecker. First, use the general, say, λProlog-based checker to perform the
formal checking of a formula based on an arbitrary proof certificate accompanied
by its FPC definition; this checking operation must pair the certificate with a
maximally explicit certificate that will result from the elaboration of the first
(as explained in Example 5.3.1 and Section 5.4). Second, independently run
MaxChecker on this explicit certificate and the same formula. Of course, we
only need to trust the second of these checkers—with the proviso that the trusted
checker must contain a trusted printer to output successfully checked formulas.
(An independent matter is how to obtain confidence in the correctness of the
trusted checker, but—as noted in Chapter 6—a verified implementation of the full
checker is not yet within reach, thus motivating the two-tier architecture.)

Our goal is to certify the proof evidence produced by a bona fide, complex
theorem proving tool, that is sufficiently powerful to provide us with realistic,
reasonably sized and publicly available proof corpora. To that end, we have
selected Prover9 (McCune, 2010), a legacy, automated theorem prover of modest
capabilities. An important feature for our experiments is that the output from
the software exposes a relatively simple and well-documented resolution calculus,
perhaps the simplest deductive model used in practice. We will refine and elaborate
the original resolution FPC presented in Section 3.6, and study some sources of
nondeterminism and their effects on checking.

The rest of the chapter is organized as follows. Section 8.2 introduces Prover9
and describes a significant subset that is used to model the proofs selected for
certification. Section 8.3 revisits the binary resolution certificates and presents
various extensions and elaborations addressing significant sources of nondeter-
ministic behavior. Section 8.4 describes in detail the elaboration workflow and
the practical composition of the general and determinate provers, along with the
requirements of each. Section 8.5 analyzes the results of the certification of all pub-
licly available (non-equational) Prover9 proofs in the TPTP library, the effect of
the various formats and checkers, and the systems on which they run. Section 8.6
discusses the extension of the techniques employed throughout the chapter to
certify the results of more tools and achieve some level of interoperation across
tools. Section 8.7 concludes the chapter.
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8.2 The automated theorem prover Prover9

Prover9, developed by McCune (2010) is an automated theorem prover for first-
order and equational logic based on a simple resolution calculus, successor to the
Otter theorem prover. While no longer actively developed—its last version was
released in November 2009—, it remains (in spite of its simplicity) a moderately
competent prover to this day and a benchmark for newer tools, as evidenced by
its continued placement in the CASC system competition for automated theorem
provers (CASC): it remains a good baseline for new developments. Yet in that
simplicity we find one of its virtues. Prover9 reports proofs in a well-documented
format, close to its calculus, and offers tools to manipulate (and even verify) those
proofs. This rare luxury among automated theorem provers paves the way to
certification without excessive efforts in reverse engineering.

The output format of Prover9 represents proofs by a sequence of steps, each of
which is derived from previous steps by one of 17 primary tactics (of which 14 are
used in standard proofs), followed by a sequence drawn from 5 secondary tactics.
Proofs in standard format may contain non-clausal assumptions and goals together
with clauses. These standard proofs can be transformed by external programs,
notably Prover9’s own Prooftrans, which can simplify justifications and
produce more verbose proofs in a subset of the grammar of tactics (i.e., instances
of the hyperresolution rule can be transformed into sequences of applications of
the binary resolution rule). As a consequence, Prover9 proofs can be brought to
close proximity with our model binary resolution FPC described in Section 3.6.
In fact, it will suffice to cover only the following five tactics from Prover9’s
vocabulary:

1. assumption: primary tactic which annotates the input formula.

2. clausify: primary tactic which annotates the result of translating a
non-clausal assumption to CNF.

3. resolve: primary tactic which performs binary resolution on two clauses.

4. factor: primary tactic which performs factoring on two literals of a
clause.

5. merge: secondary tactic which removes a literal that is identical to a
previous literal in the clause that results from the previous tactic.
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%% SIGNATURE

% A pair for factoring.
type factor int -> int -> cert.

% List of (the) clause on which to factor.
type factr int -> cert.

% Used to start the sync phase in factor checking.
type fsmall cert.

%% MODULE

cutE (rlist (factor I K ::Certs))
(factr I) (rlisti K Certs) Cut :- lemma K Cut.

% Describe the meaning of the factoring subproof.
allC (factr I) (x\ factr I).
orC (factr I) (factr I).
falseC (factr I) (factr I).
storeC (factr I) (factr I) lit.
decideE (factr I) fsmall (idx I).
someE fsmall fsmall T.
andE fsmall small small.
trueE fsmall.
initialE fsmall lit.

8.1 Figure Additions made to the binary resolution FPC (Figure 3.5) to support
factoring. A new top-level proof step constructor is added to the resolution step,
along with constructors and clauses for the (small) factoring subproof.

Support for factoring requires simple additions to the binary resolution
FPC listed in Figure 8.1. These additions are completely modular and permit
certification of the non-equational fragment of Prover9; the remaining equational
fragment makes use of paramodulation and a small number of ancillary tactics.
Such additions have been coded as proof certificates by (Chihani et al., 2015)
and applied to the certification of a (very small) fragment of proofs produced by
the E prover. We will instead concentrate on what the seemingly simple binary
resolution FPC can achieve with no or small changes when applied to proofs
generated by an automated theorem prover like Prover9.
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8.3 Resolution certificate elaboration

In addition to certifying a sizeable number of resolution proofs produced by a
real theorem prover, we will explore the effects of adding and removing details
from proofs through the pairing combinator introduced in Section 5.2. We note
that the binary resolution FPC given in Section 3.6—which closely reflects the
semantics of Prover9—leaves two optional aspects of a resolution proof implicit:

1. The order in which two clauses are resolved to yield a third is unspecified.

2. Substitution terms used to instantiate quantifiers are not given.

The fact that the order of the resolvents is left unspecified has by itself
a potentially enormous impact on proof checking if standard techniques are
used, given the exponential number of backtracking points it can generate in a
degenerate proof.

Amore explicit proof could provide one or both kinds of information, thereby
making checking more deterministic. These proof formats can be easily encoded
as FPC definitions in the style of Figure 3.5. In fact, they are simple variations that
can be formulated as simple changes on the original FPC. Figure 8.2 shows the
minimal change required to impose a fixed ordering of the resolvents, replacing
two possible schemes for the decide rule in the left premise with one, slighlty
simplified clause. Figure 8.3 presents the limited additions made to support
explicit substitution information; these changes extend the resolution rule to the
new constructors and simplify the treatment of the decide rule and the existential
quantifier. Both sets of changes, together with the original FPC, can be described
as modular additions to a common template for resolution FPCs.

The preceding notes have addressed the addition of more information to a
proof certificate capable of modeling proof evidence produced by Prover9 (i.e.,
its elaboration). Conversely, Prover9 tactics specify not only the names of the
affected clauses, but also (the indexes of) the involved literals. This information
is lost in the encoding of the binary resolution FPC: strictly speaking, it is a
distillation of the—in some respects—more complete proof produced by the tool.

8.3.1 Example Consider the resolution example in Example 3.6.1. In Prover9, an
equivalent proof is expressed by the following script, once preprocessed and then
simplified by Prooftrans. Clause numbering is slightly beautified to reflect
the fact that the clausify tactic is used to replace universal quantifiers with
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% Left premise
allC (res I Cert) (x\ res I Cert).
orC (res I Cert) (res I Cert).
falseC (res I Cert) (res I Cert).
storeC (res I Cert) (res I Cert) lit.
%decideE (res I (rex J Cert)) (rex J Cert) (idx I).
%decideE (res I (rex J Cert)) (rex I Cert) (idx J).
decideE (res I Cert) Cert (idx I) :- Cert = (rex _ _).
someE (rex J Cert) (rex J Cert) T.
someE done done T.

8.2 Figure Addition of ordering of resolvents to the (unordered) binary resolution
FPC (Figure 3.5). The only necessary change occurs in decide rule of the left
premise, where instead of two clauses, one for each possible ordering of the
resolvents, a single clause fixes said ordering. Changes are noted by showing, for
each affected rule, the old clauses commented and immediately followed by their
replacements.

fresh eigenvariables, so that said quantifiers are not directly visible in processed
proof scripts. Thus, we get:

1 r(z). [assumption].
2 -r(c1) | t(c1). [clausify(0)].
3 -t(z). [assumption].
4 t(z). [resolve(1,a,2,a)].
5 \$F. [resolve(3,a,4,a)].

In practice, the signatures of the various flavors of the binary resolution FPC
must use disjunct sets of constructors (e.g., resolve, factor,. . . for the “base”
FPC in Figure 8.1; resolve’, factor’, . . . for the variation in Figure 8.2,
etc.). This requirement allows the top-level constructor of a proof certificate—and
any constructor at any point in a certificate—to determine the certificate family
to which it belongs. With this information, a missing certificate (represented
by a logic variable) can be reconstructed via pairing drawing exactly from the
correct set of constructors. Otherwise, mixed certificates could be constructed
and checked—at the cost of an explosion in the number of choices and an erosion
of the separation of semantics we endeavor to dictate.

8.3.2 Example Continuing Example 8.3.1, we look at the various representations
under consideration. The full standard payload (unordered, without substitution
information) strongly closely resembles the description in Example 3.6.1:
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% Introduce an order-ambiguous resolvent subproof.
%type resolveX int -> cert -> cert.

% Eigenvariables allowed into certificate here.
type rquant (i -> cert) -> cert.
% Use the following substitution term.
type subst i -> cert -> cert.

8.3 Figure The ordered binary resolution FPC with added subtitution informa-
tion. Changes to the signature are limited to the removal of resolvent sufproofs
with ambiguous ordering (cut clauses involving the resolveX constructor are
likewise removed) and the introduction of constructors for quantification and
substitution. Changes in the module (see Figure 8.3) add constructor condutions
to the rules, which further constraint the system and allow for more natural
elaboration. Presentation conventions are shared with Figure 8.2.

[(r z), % 1
(forall x\ or (ng (r x)) (t x)), % 2
(ng (t z))] % 3
[(t z), % 4
ff] % 5
[resolve 4 (res 1 (rex 2 done)),
resolve 5 (res 3 (rex 4 done))]

Here, clause numbering is implicit in both clause lists. The certificate is
properly the third list of inference (resolution) rules; any ordering of the resolvent
clauses is allowed. As a first refinement, the order of the resolvents is fixed, so
that only one combination of the exponentially many reorderings is accepted:

[resolve’ 4 (res’ 1 (rex’ 2 done’)),
resolve’ 5 (res’ 4 (rex’ 3 done’))]

The clause lists remain unaltered; only the certificate fraction is adapted.
Finally, substitution information can be added to the relevant rules:

[resolve’’ 4 (res’’ 1 (rex’’ 2 (subst’’ z done’’))),
resolve’’ 5 (res’’ 4 (rex’’ 3 done’’))]

While there is no standard feature to perform renaming while allowing for
modular definitions and name reuse in λProlog, an experimental branch of Teyjus
enables this kind of operations. In what follows, the requisite renamings will be
assumed regardless of the technical means used to achieve them.
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8.4 Figure The ordered binary resolution FPC with added subtitution information
(continued). Presentation conventions are shared with Figure 8.2.
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8.4 Certification workflow
In this section, we describe the certification of resolution proofs produced by
an automated theorem prover based on a simple resolution calculus—namely,
the non-equational fragment of Prover9. The most permissive of the binary
resolution FPCs that have been discussed (with unordered resolution and no
substitution information) subsumes the inference rules used by the fragment of
interest of Prover9.

In order to organize the experiments, we compose a module resolution-
elab which accumulates the various versions of the resolution FPC and defines
instances of pairing between the unordered binary resolution certificate with-
out substitution information (Figure 8.1) and other, more explicit certificate
placeholders (Figures 8.2 and 8.3), which are completed by means of elaboration.
These form a framework for our experiments in certification of Prover9 proofs
and “translating between implicit and explicit versions of proof.” The module is
actually a schema for other modules, that is, it does not define any non-logical
constants or any proofs by resolution based on those constants: it is syntactically
correct and can be readily compiled, but is inert. To define resolution problems
and their proofs, the following elements can be plugged in.

1. In the signature file, constructors for atoms (of type bool) and terms (of
type i), both of which may have term arguments. Each of these must be
complemented in the module definition by a clause of pred_pname or
fun_pname, respectively, used by the polarized to translate formulas into
the NNF format required by the kernel. This constitutes the user signature.

2. In the module file, problem definitions based on the signature. These are
the combination of a problem identifier, and a triple of lists:

(a) A list of the clauses that constitute the input formula (therefore given
implicitly in clausal normal form).

(b) A list of clauses derived from applications of proof steps.

(c) A list of proof steps providing justifications for the derived clauses
representing. This list is properly a schematic representation of a
proof by binary resolution with factoring.

8.4.1 Example Continuing from Example 8.3.2, the translation of the problem to
λProlog results in a series of term and atom declarations in the signature:
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type r_p9, t_p9 i -> bool.
type z_p9, c1_p9 i.

These declarations are given a prover-specific prefix to avoid clashes with other
names. The module contains the payload given in Example 8.3.2—adapted to
reflect the prefixed identifiers—alongside auxiliary declarations for printing and
counting.

pred_pname (r_p9 X1) "r_p9" [X1].
size_bool (r_p9 X1) Size :- size_term X1 SizeX1,

Size is SizeX1 + 1.
pred_pname (t_p9 X1) "t_p9" [X1].
size_bool (t_p9 X1) Size :- size_term X1 SizeX1,

Size is SizeX1 + 1.
fun_pname z_p9 "z_p9" [].
size_term z_p9 Size :- Size is 1, !.
fun_pname c1_p9 "z_p9" [].
size_term c1_p9 Size :- Size is 1, !.

The module defines three possible pairings, all starting from the Prover9-like
FPC in Figure 8.1 and elaborating to: (a) binary resolution with ordering (Fig-
ure 8.2); (b) binary resolution with ordering and substitutions (Figure 8.3); and
(c) maximally explicit elaborations (Figure 5.2). For all three pairings, predicates
are given in triads of: (a) elaboration; (b) elaboration followed by checking of the
new certificate; and (c) elaboration followed by reporting. The decomposition
in steps is geared towards producing accurate measurements, from which exact
checking times can be derived. This approach has two practical advantages. First,
experiments can be carried out from a single λProlog program, without exporting
and importing intermediate results. Second, it circumvents certain limitations
in Teyjus; as a result, a direct comparison with other implementations of the
language, like ELPI, is possible. To this end, utility predicates are defined in the
module in the following fashion:

1. check_unordered: check the Figure 8.1 certificate specified by a prob-
lem description without any additional operations.

2. elab_to_sans: pair the Figure 8.1 certificate with, and elaborate into, a
Figure 8.2 certificate through checking.

3. check_sans: perform the elaboration in elab_to_sans, followed by
an independent check of the resulting Figure 8.2 certificate.
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4. print_sans: perform the elaboration in elab_to_sans, followed by
printing of problem size statistics.

5. elab_to_subst, check_subst, print_subst: like the *_sans
predicates above, but pairing and elaborating the example with a Figure 8.3
certificate.

6. elab_to_max, check_max, print_max: like both the *_sans and
*_subst predicates above, but pairing and elaborating the example with a
Figure 5.2 certificate.

7. elab_and_export: pair the Figure 8.1 certificate specified by the ex-
ample with a Figure 5.2 placeholder, as elab_to_max, and output the
certified formula and maximally explicit certificate as OCaml code, ready
to be imported in MaxChecker.

Each of these predicates takes a problem identifier as argument. The check_*
and elab_to_* predicates work without any further additions. Reporting
predicates rely on auxiliary operations on user-defined atom and term constructors
as follows.

1. print_* require a size_bool clause for each atom constructor and a
cut-terminated size_term clause for each term constructor. The size of a
constructor is defined as 1 (the constructor itself), plus the sum of the sizes
of its term arguments.

2. elab_and_export requires a print_name clause for each atom con-
structor and a cut-terminated print_term clause for each term con-
structor. Atom names relate the string representation of atoms given in
pred_pname and a valid OCaml identifier. Terms relate the construc-
tor to a valid OCaml identifier and to the printed representations of its
arguments for use by MaxChecker.

All these additions can be easily generated automatically. To import a formula
and certificate into MaxChecker, the atom and term signatures must agree with
the identifiers given by the translation.

8.4.2 Example Finalizing the sequence from Example 8.4.1, the MaxChecker instan-
tiation relies on the definition of isomorphic, native OCaml types for terms:
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type ’a t =
| R_p9 of ’a
| T_p9 of ’a

As well as atoms:

type t =
| Eigenvariable of int
| Z_p9
| C1_p9

MaxChecker then takes the translation of the original formula as well as the
maximally elaborate certificate in OCaml syntax and checks the combination of
both; this final piece of information is omitted for brevity.

The process of certifying a Prover9 proof comprises three main steps:

1. Extract the problem signature from the Prover9 proof script. From this,
constructors and auxiliary clauses are extracted. Each proof step is mapped
into the sets of clauses and justifications that define a problem. Having
done this, the resolution-elabmodule is instantiated. If MaxChecker
is used, identifiers and constructors for its atom and term types are derived.

2. Certify the extracted formula with the extracted certificate on the λProlog
kernel. The baseline goal check_unordered checks the certificate as
given in the problem description; further exploration is possible.

3. If MaxChecker is used, solve goal elab_and_export, export the trans-
lated formula and certificate to OCaml, and run the functional checker on
the maximally explicit elaboration.

The sequence can be fully automated. A translation from Prover9 to either
kernel should generate valid identifiers for each language, and particularly in
λProlog avoid clashes between names, say, by using a dedicated namespace. Note
that renumbering of clauses with respect to the original clause numbers of Prover9
may be necessary, given that the FPC numbers its clauses by order as they are
given in the certificate, first the base clauses and after those the derived clauses;
contrast this with Prover9 proofs, in which assumptions can be introduced at any
point in the proof.
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8.5 Analysis of results

The study, optimization and comparison of theorem provers relies on the exis-
tence of widespread benchmarks. In the automated theorem proving community,
the TPTP library—short for Thousands of Problems for Theorem Provers—fulfills
this role (Sutcliffe, 2009). Its success is cemented in its syntactic conventions, easy
to understand by mathematicians and to parse and process by programs alike, and
close to the syntax of Prolog. An important part of TPTP is its syntactic support
for the expression not only of problems but of proofs of those problems. For a
large number of theorem prover, the library contains a collection of solved theo-
rems along with the generated proofs, TSTP—short for Thousands of Solutions for
Theorem Provers—(Sutcliffe et al., 2004). Those proofs are expressed as sequences
of inference rules whose dependencies satisfy a DAG structure (in essence, a form
of Frege proof, for which see Section 11.1). The ready availability of a widely
recognized corpus of proofs forms the basis of the experimental study.

We have collected the full set of Prover9 refutations in the TPTP library—a
total of 2668 in version 6.4.0—and excluded 52 files with irregular formatting (the
resulting set of examples is precisely that of version 6.3.0). Of these, 978 fall in the
fragment supported by the resolution FPCs; 27 are empty proofs that refute false.
The two largest problems are extreme outliers, also excluded since they would be
of limited utility to establish or confirm trends. Each problem is expanded into a
detailed proof in the simplified binary resolution calculus via the homonymous
expand option of Prover9’s built-in Prooftrans tool.

A further preprocessing step is required. Prover9 accepts as input arbitrary
first-order formulas (i.e., they need not be given in clausal normal form), and
transforms those non-clausal assumptions as necessary by way of the clausify
tactic; the resulting translated clauses are added and the original assumption given
as their provenance. This has two consequences. First, non-clausal assumptions
are made redundant by this “clausification” process and will be removed; note
that resolution certificates only describes problems problems expressed in clausal
normal form. Second, suppose that not all clauses of the input formula (or its
CNF translation) are used in the proof. There is no guarantee that every single
clause—including unused ones—will be part of the proof script produced by
Prover9, and thus in the proof certificate derived from the script. In consequence,
such a certificate may indeed represent a stronger theorem than the original
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8.5 Figure Space complexity of resolution certificate elaborations. Payload sizes
are defined as the sum of components of a problem: formula and certificate.
The size is computed as the sum of constructors, where natural numbers (serv-
ing as indexes) are represented natively and counted as single constructors. In
this and following figures, data series are represented by the following color
codes: unordered-without (Figure 8.1), ordered-without (Figure 8.2),
ordered-with (Figure 8.3), maximal (Figure 5.2).

formulation used by the theorem prover, albeit the derived theorem statement
can be easily shown to imply original theorem statement.

Having obtained the data and performed this preprocessing, the general work-
flow described in the previous section is applied. As part of the experiments, we
run the λProlog-based checker on two separate implementations of the language:
the more mature compiler Teyjus (Nadathur and Mitchell, 1999) and the more
modern interpreter ELPI (Dunchev et al., 2015). The dataset presents us with
ample amounts of problems encoded as logic programs, in sizes and numbers
rarely seen in the language.
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8.6 Figure Time complexity of resolution certificate elaborations on ELPI. Presen-
tation conventions are shared with Figure 8.5.

We have successfully checked all resolution refutations produced by Prover9
involving binary resolution and factoring; no errors have been found in this set
of Prover9 proofs. Quantitative information emanates naturally from the data. A
first point of interest concerns the size of certificates and how it is defined. The
natural approach is to defined the size of a resolution certificate to be the sum of
the sizes of the initial and derived clauses along with their justifications; and the
size of a maximally explicit certificate as the size of the actual certificate term plus
the size of the original set of clauses. In this way, we compare different certificate
formats by the size of their full payload: how much it costs to express a problem
and provide proof evidence for it—the theorem is implicit in, say, a resolution
certificate, but not in a maximally elaborate certificate.

In both binary resolution and maximally explicit certificates, natural numbers
are used extensively as indexes and have a great bearing on their overall sizes. Here
we consider various possible representations. First, we may use machine integers
and count a natural number as one constructor. Second, we can use the standard
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8.7 Figure Time complexity of resolution certificate elaborations on Teyjus. Pre-
sentation conventions are shared with Figure 8.5.

inductive definition and extend the count of the number of constructors to the
inductively defined naturals; this results is a size increase, possibly important,
which can then be measured. Other reasonable alternative inductive encodings
(like the ternary definition that mimics a binary representation, where a number
is either zero, twice the value of a number, or twice the value of a number plus
one) will fall somewhere between the two extremes considered here.

Figure 8.5 presents the effect of elaboration on certificate size. Adding order-
ing information (from unordered-without to ordered-without) does
not affect certificate size, and therefore that first uninformative data series it
not shown in the figure. Certificate sizes grow as they are made more explicit,
though the blowup here is bounded by small constants. Elaborating from the
original unordered-without to ordered-with adds a linear multiplica-
tive constant to the payload; sizes grow by 16% on average. Finally, elaborating
to the maximally explicit certificate causes an increase by an average factor of 2.8,
ranging between 1.02 and 6.54. We do not expect hard trends since results depend
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on the coverage of a wide space of problems by available data, and in particular
the corpus of larger examples at our disposal is relatively limited.

If we adopt the simple inductive definition of natural numbers and adjust
counts accordingly, the increase in size is considerable. On average, this represen-
tation causes certificates to grow by an average factor of 5.8 as they are elaborated
to their maximally explicit form. However, there is much greater variability,
ranging between factors of 1.2 to 361.

Concentrating on the more natural approximation of natural indexes as
constants, Figure 8.6 presents the evolution of checking times under the various
certificate formats as the size of said certificates grows. As a matter of fact,
and as may be expected, the more detailed a certificate is, the faster it is to
check. Overall, progress is fairly rapid: for example, a sizeable certificate in the
unordered-without format about 75000 symbols large can be checked in
approximately 6 seconds; a similarly sized certificate in the maximally explicit
format can be checked in about a second. However, due to size blowup it cannot
be asserted that a maximally explicit certificate will always check faster than
its resolution equivalent, and in fact for some of the larger problems we notice
an inversion of this naive hypothesis. Both extremes (i.e., unordered binary
resolution without substitutions and maximally explicit elaboration) appear to
exhibit behavior that is fitted well by a quadratic regression curve, although the
proof corpus becomes sparser as problem sizes grow, and more data would be
necessary to establish definite trends—if any avail. In addition, it should be noted
that the more explicit resolution certificates gain a large part of the efficiency of
the much simpler maximal elaborations by a very moderate increase in size and
complexity; ordering of the resolvents, in particular, is the determining factor in
avoiding backtracking points.

The use of Teyjus as λProlog runtime, as depicted in Figure 8.7 yields overall
qualitatively similar results. However, performance significantly slower and more
asymmetrical. Outliers are more frequent and more extreme, and the overhead
of elaboration is substantial with respect to the much faster and more consistent
ELPI; the intermediate formats show particularly erratic behavior. Conversely,
the checking times for OCaml-based MaxChecker on the large, maximally explicit
certificates running are completely negligible compared to both elaboration and
checking times in λProlog: in particular, MaxChecker checks every example in
less than 0.01 seconds.
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Taken as a benchmark, the Prover9 corpus enables comparison of the two
principal implementations of λProlog. Functionally, both have behaved equiva-
lently with some minimal rough edges in the ELPI parser being uncovered by our
experiments. The principal differences are summarized in the following points:

1. There are moderate limits to the size of the terms Teyjus can parse, both
in the compiler tjcc and in the simulator tjsim. While these have not
impeded the list-based formulation of resolution certificates, exporting
and importing large proofs and formulas is problematic. This motivates
the additive composition of elaboration and checking steps given in the
resolution-elab module, in which once the unordered certificate is
read all computation is performed in-memory.

2. The intermediate compilation step in Teyjus, absent from the ELPI inter-
preter, has scalability issues of its own. Compilation times are seen to grow
substantially once a certain threshold in the size of the proof translation is
reached. For the very largest examples in the corpus, this grows to make
Teyjus unusable, to the point of compilation possibly failing to terminate
(and certainly not doing so in any reasonable amount of time).

3. In some of the larger examples, the process of elaboration has been ob-
served to surpass the capacity of Teyjus’ internal data structures, causing
a premature stack overflow and a termination of checking. This can be
observed first when combining elaboration and checking in the check_*
predicates.

4. Teyjus does not implement a predicate to measure execution times inside
the language, whereas ELPI reports the execution time of goals by default.
Therefore Teyjus must rely on external tools and we need find a way to
separate the time taken to load the program from the proper user time
required by elaboration and checking operations.

There are observable performance differences between the two systems. Gen-
erally speaking, ELPI runs as fast or faster and scales better, although the two
systems show different patterns of behavior, especially in the relative cost of
running elaboration through paired certificates, compared with the checking time
of each individual certificate. In its favor, the interface of Teyjus is more complete
and more amenable to scripting. Although workarounds can be found for ELPI,
batch reporting in Teyjus remains more informative.
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8.6 The next 700 certificate formats

In this and the previous chapter, we have successfully extended the areas of
application of the FPC framework from small handcrafted examples to the
practical domain of automated theorem provers. We have done so by designing
certificates for the proof evidence produced by actual theorem provers, and then
converting and checking the proofs produced by those tools. In Chapter 7, the
objects of formalization were part of a series of well defined proof formats shared
by a large family of software in wide use—still a rarer fortune. In previous sections
of this chapter, we considered a relatively simple and well documented proof
format which could be reduced to a standard calculus with minimal changes. In
light of these encouraging results, it remains to consider how to extend them—and
their adoption—further. There are two principal aspects of this push towards
widespread use: first, the definition of certificate formats supporting additional
proving tools; second, the recognition of FPCs by these tools and the import of
proofs and interoperability between compatible provers.

The first aspect is intricately related to the mechanisms offered by the FPC
framework to program proof search in the “logical computer” of the augmented
sequent calculus. This, the critical step, remains the domain of the specialist
logician. Indeed, the main difficulty lies in translating the proof evidence produced
by a certain tool into formal terms. Each format constitutes a sort of domain-
specific language for the writing of proofs, which must be compiled into the
assembly language of the underlying proof system: an FPC definition fulfills the
role of such a compiler. Currently, there is no systematic methodology to move
from an arbitrary description of a proof semantics into a lower-level description
built upon the sequent calculus; the capability to embed high-level descriptions of
semantics as part of an FPC would greatly simplify this task. Some advances have
been made in streamlining the use of augmented sequent calculi as a bona fide
programming environment, therefore offering some guarantees of completeness
(in a loose sense) and of continuous integration of tests—since programming
in this exotic logical assembly, where instructions are inference rules, involves
behaviors that exceed the complexity of, say, the more conventional imperative
and functional languages (Blanco and Chihani, 2016, 2017). Metatheoretical
results—e.g., soundness and completeness of provability by an FPC definition
with respect to a proof system and a mapping between proofs in that source
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system and concrete FPCs expressed in that FPC definition—must be established
separately.

The second aspect of interoperability through proof certificates is fundamen-
tally one of integration. A prover may not only write its output as a proof
certificate, but also read certificates in an understood definition, in essence acting
as a checker (or delegating the task to a dedicated checker) and reconstructing a
proof for a given formula, which can then upon success be accepted as proved. The
expression of proof semantics is self-contained in FPC definitions and provides
support for the use of proofs generated by external tools. (A more challenging
sort of interoperability involves translating a proof from one certificate format
to another a given tool can understand; as we observed in Chapter 5, this is in
general not possible.) On the whole, this second aspect follows easily from the
first, which is in that sense its prerequisite.

The preceding two aspects are fundamentally technical in nature: they may
involve a certain amount of work to specify and give proof theoretical readings of
the various proof calculi, as well as translations as FPC definitions and integration
of proof checkers with the provers themselves. These questions are best solved
by establishing a dialog between the authors of theorem provers and the authors
of FPC definitions (if they differ); the work presented here makes a convincing
case that such a dialog is not only possible but deeply beneficial. The principal
challenge is social: making the authors of theorem provers aware of the existence
of these Foundational Proof Certificates and collaborating with them to add
support for certification and proof checking. The desirability of such formats is
acknowledged by the theorem proving community, as the recent first ARCADE
workshop—celebrated as part of CADE-26 in August 2017—made manifest (AR-
CADE). While “every problem is a people problem,” the FPC framework has a
strong claim towards becoming a canonical solution, if it is not the only one.

8.7 Notes

The original certification experiments on Prover9 were published in Blanco et al.
(2017a). Two additional topics are mentioned here in passing and are elaborated
elsewhere. In related work in Blanco et al. (2016), we proposed an extension
of the TPTP format that integrates the semantics of inference rules as logic
programming specifications as an intermediate step towards filling the semantic
void of free-form proof output formats. On the side of the FPC framework, a
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programming methodology and assistant tools that aim to make the use of proof
certificates more approachable is proposed in Blanco and Chihani (2016).

In order to capture all of Prover9’s proofs in the TPTP repository we need to
add support for paramodulation: the FPC for paramodulation given in Chihani
et al. (2015) is a starting point, and can be adapted with few modifications to work
with other, related implementations of resolution calculi like the one employed in
this chapter. The development in that paper of the paramodulation FPC follows
that of of the proof certifier Checkers. This system implements a pair of kernels
for the standard calculi LKF a and LJF a in the same tradition of the kernel used
throughout the present Part II and defined in Section 3.7. To these kernels it adds
a structured module system for the definition of problem signatures and their
composition with FPC definitions to yield complete instances of the checker. The
plan was to use Checkers to certify the proofs produced by the E prover, which is
based on a superposition calculus—itself a variant of resolution. However, only
a minimal sample of proofs could be checked owing to difficulties in modeling
the semantics of the relatively rich inference rules of the theorem prover out of
limited documentation. In our view, this experiment showcases the necessity for
communication and collaboration between the authors of provers and checkers,
and a greater need for documentation.

Until now, the process for certifying the output of a theorem prover has been
for a independent effort on the checking side to understand the semantics of each
inference rule of the object calculus. This approach generally suffers from missing
documentation, naming conventions, changes across software versions, etc. One
way to overcome this gap is to supply the implementers of theorem provers
with an easy to use format in which to describe the semantics of their inference
rules. This format should be general enough to allow specifications to range from
precise, determinate definitions to more implicit, less specific hints that would
instruct a checker on how to reconstruct a full proof of the object calculus—even
if left partly (albeit inessentially) unspecified. The insight of the proposal in
Blanco et al. (2016) is to reduce the gap mentioned above by employing a format
that is already known to implementers of theorem provers, namely the TPTP
format, enriching a syntactic base with semantic information expressed in a logic
programming style. The resulting model is closer to the proof checkers of the
FPC framework, although there remains to establish the connection between the
logic programs that embed the semantics of a proof system and the expanded
proof in an underlying sequent calculus.
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The computational model of the related project Dedukti, based on the λ-
calculus, is closer to the more type-driven paradigm of common proof assistants,
themselves routinely founded upon the precepts of functional programming
(rather than logic programming, as in the FPC framework). Libraries have been
developed to translate proof evidence originating in the common OpenTheory
format shared by the HOL family of proof assistants (which includes the standard
configuration of Isabelle), fragments of Coq and its close relative Matita (both
based on the calculus of inductive constructors), and theorem provers like iProver
and Zenon (both extended from first-order logic to Deduction Modulo). In
this setting, work towards interoperability has already been initiated (Assaf and
Cauderlier, 2015; Cauderlier and Dubois, 2017).

In practice, when such frameworks as FPCs are not directly understood by
the source provers, it is necessary to convert the proof evidence output by the
provers into suitable, equivalent proof certificates. This translation need not be
trusted as the result of checking is tied to the formula being checked.
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Logics with fixed points
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9 Fixed points in logic

9.1 Fixed points and equality as logical connectives

Logical frameworks based on the theory of intuitionistic logic (outlined in Chap-
ter 4)—as well as linear logic—have been adopted as the foundations of higher-order
logic programming and used to specify many aspects of programming languages
and theorem provers. An important limitation of the logical frameworks used
until now—notably λProlog—is that they do not offer a natural treatment of
inductive definitions and proofs under the paradigm of higher-order abstract
syntax that those frameworks employ widely and fruitfully (for reference on
these topics, see Section 4.2). As inductive reasoning is the bread-and-butter of
functional and logic programming languages, and of their metatheory, extending
the logic with a clean treatment of these concepts is of the essence for the formal
study of those paradigms and reason about them effectively.

McDowell and Miller (1997, 2000, 2002) developed in response a logic that
incorporated the concept of definitions, whose use allows certain declarations
to be treated as closed, i.e., as fixed point expressions representing (mutually)
recursive predicates—along with rules for unfolding (similar to backchaining)
and induction on definitions. These connections were matured through research
efforts by Miller and Tiu (2003, 2005)—with Tiu and Momigliano (2003) and
further work by Tiu (2004, 2006)—and Gacek et al. (2008b, 2011). Baelde and
Miller (2007), followed by work by Baelde (2008b, 2009, 2012), extended these
developments to general least and greatest fixed points expressions as logical
connectives in various logics. The systems Bedwyr and Abella have their roots in
this line of work, which forms also the proof theoretical basis of the developments
in this Part III.

From the perspective of the sequent calculus, the two principal criteria that
invest a connective with logical legitimacy are: (a) the definition of introduction

149
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nat ≡µ(λNat. λn.n = 0∨
∃n′.n = S n′ ∧+ Nat n′)

plus ≡µ(λPlus. λk .λm .λn.(k = 0 ∧+ m = n)∨

∃k ′.∃n′.n = S n′ ∧+ p = S p ′ ∧+ Plus k ′ m n′)

9.1 Figure Logic specification of natural numbers and addition on them as a
least fixed points in µLJF. The specification is based on a type nat with two
constructors representing the standard inductive definition of natural numbers: 0
of type nat, and S of type nat→ nat.

rules for the connective; (b) the preservation of the cut elimination property once
those rules are folded into the proof system. Let us first consider a generic fixed
point operator, µ, say, for now, in a simple, one-sided calculus reminiscent of LK.
The introduction rule for such a connective would be:

` B (µB) t̄, Γ
` µBt̄, Γ

Here, B is a formula, abstracted over a recursive predicate and an arbitrary
number n of variables, called the body of the fixed point. The fixed point operators
take the body and exposes the abstracted variables. To this combination can be
applied a list of n terms, t̄ , acting as the arguments to the fixed point. The
unfolding operation applies to the body its own definition wrapped in the fixed
point (recursion) and the list of variables. Two example fixed point expressions—
the inductive definition of natural numbers and the addition relation on these—are
shown in Figure 9.1. A predicate thus becomes a name for a fixed point expression.

This illustration motivates the need for equality as a logical connective. Fixed
point definitions can very naturally encode recursive specifications such as those
written in a programming language like Prolog—compare the encoding of the
same relations in λProlog, in Figure 4.2. In a relational specification expressed
in pure logic, it becomes necessary to relate the abstracted variables that act as
parameters of a predicate with the values passed them as arguments. In a basic
sense, the pattern matching at the head of the clause must take place inside the
logic. This is achieved by defining the introduction rules for equality. In the same
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one-sided setting as above, these are:

` t = t, Γ
` {Γσ : σ ∈ CSU (s = t )}

` s , t, Γ †

The rule for equality applied on two instances of the same term t has the
same effect as the initial rule: it finishes the current branch of the proof. The rule
for inequality inspects two terms, s and t , and determines the conditions under
which they are equal; these conditions are expressed by a set of substitutions σ,
each representing conditions (the complete set of unifiers, or CSU) which make the
two terms equal. If there are no such solutions, the set of premises is empty and
the rule succeeds immediately (this endows the system with a notion of negation-
as-failure); otherwise, each possible solution to the equation becomes a premise
whose context is the same context of the conclusion, Γ, once the substitutions
have been applied—this proviso is represented by †. The treatment of equality
marks also the introduction of unification—which computes the substitutions
that make two terms equal—not only in the implementation details of a logic
programming language, but as part and parcel of the logic proper. In first-order
logic, the complete set of unifiers coincides with the more familiar most general
unifier, or MGU, to which we shall return in Section 13.2.

9.1.1 Example Consider the inductive definition of the type of natural numbers in
Figure 9.1 and compact notation for constants. The sequent ` 2 = 2 is immediately
provable the application of the rule of equality, whereas ` 1 = 2 is not. Conversely,
` 1 , 2 is proved by the inequality rule: because no unifiers of 1 = 2 exist, the
empty set of premises is trivially satisfied. Finally, ` S a , S b, Γ (where a and b
are variables) is provable if (` Γ)σ is provable subject to the substitution σ which
allows a = b to unify.

Coming back to the fixed point connectives, we may advance that with the
addition of focusing the operation of the introduction rule for µ, also called the
unfolding rule, would not split in two, but be identical in both asynchronous and
synchronous splits of the original introduction rule. The differences that materi-
alize the division between least and greatest fixed points (resp. µ and ν ) arise from
the addition of (respectively) induction and coinduction: without these principles,
both connectives are indistinguishable. If induction and coinduction are added,
the symmetry between the least and greatest fixed points is restored. Returning
to the two-sided sequent calculus, the least fixed point µB is characterized by the
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following two introduction rules:

Γ, S t̄ ` R BS x̄ ` S x̄
Γ, µBt̄ ` R induct

Γ ` B (µB) t̄
Γ ` µBt̄

unfold

The right introduction rule is just an unfolding of the fixed point, which
expresses that B (µB) t̄ ⊃ µBt̄ . The left introduction rule is the induction principle,
where S is the inductive invariant; its right premise shows that the invariant is a
prefixed point (i.e., BS ⊆ S ), whereas the left premise shows that the invariant
can be used in lieu of the fixed point to prove the base goal. Note that the right
premise operates on a fresh set of universal variables used as arguments, x̄ . In
addition, from induct it is possible to derive a left unfolding rule as a particular
case:

Γ, B (µB) t̄ ` R
Γ, µBt̄ ` R

The greatest fixed point with its introduction rules is the dual of the least
fixed point, and completely symmetric with it:

Γ ` S t̄ S x̄ ` BS x̄
Γ ` νBt̄ coinduct

Γ, B (νB) t̄ ` R
Γ, νBt̄ ` R

unfold

And with them, the right unfolding rule as a particular case of coinduction:

Γ ` B (νB) t̄
Γ ` νBt̄

The rest of the chapter is organized as follows. Section 9.2 structures the
developments outlined in this section as part of an intuitionistic sequent calculus.
Section 9.3 extends the FPC framework with kernels based on those rich intu-
itionistic proof systems. Section 9.4 presents the concept of nominal abstraction
and integrates it in the proof system. Section 9.5 concludes the chapter.

9.2 Focused sequent calculus

Section 2.4 presented the foundations of sequent calculus proof systems applied
to classical logic—the dominant paradigm in automated theorem proving and
in all of Part II. It was noted then that an intuitionistic sequent calculus results
from a simple restriction on standard two-side sequents: namely, that at most one
formula appear on the right-hand side. The pervasive symmetry of the classical
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setting allows a presentation based on one-sided sequents, on which the discipline
of focusing was presented. This addition entailed a redesign of the structural rules
of the traditional LK which preserved the soundness and completeness of the
resulting LKF with respect to classical logic.

This chapter lays the necessary proof theoretical foundations for the remaining
chapters. The present Part III is closer to the world of inductive definitions, proof
scripts, etc., which is characteristic of proof assistants, themselves typically built
upon constructive logics. From the point of view of the sequent calculus, it is a
simple matter to streamline the presentation of LK into that of LJ by enforcing
the intuitionistic restriction at the level of inference rules. An important detail
concerns the division between additive and multiplicative connectives. In the
classical sequent calculus, the two sets of rules are interadmissible—in fact, the
focused calculus LKF integrates both—but as can be seen from Figure 2.2, the right
rule for multiplicative disjunction violates the intuitionistic restriction. Ergo,
only additive disjunction is intuitionistically valid. As focusing is added to LJ to
obtain LJF, only the positive disjunction (written ∨ instead of ∨+) is present in
the system; both positive and negative conjunctions continue to coexist.

Figure 9.2 shows the focused sequent calculus LJF. In contrast with Figure 2.4,
it presents a two-sided development of a focused calculus; in addition, it integrates
the constructive constraints in the rules instead of maintaining them as side
conditions. Like Figure 2.4 (as opposed to, say, Figure 2.1), it features directly
the structural rules adapted to the focusing discipline (as opposed to the more
traditional weakening, contraction, etc.). Both factors (intuitionistic, two-sided)
contribute to a more complex taxonomy of sequents:

1. Unfocused sequents Γ ⇑ Θ ` R divide their left-hand side into two zones:
storage, Γ, and workbench, Θ. The right-hand side R is more interesting,
because it contains exactly one formula and must model a limited single-
place, storage-or-workbench division: the formula must be assigned to one
of these “areas.” Thus: (a) Γ ⇑ Θ ` B ⇑ has the RHS formula B in the
workbench; and (b) Γ ⇑ Θ ` ⇑ B has B in storage.

2. Focused sequents on the left Γ ⇓ B ` R, where the left workbench
contains exactly the formula under focus. On the RHS, the goal must be in
storage, because otherwise the asynchronous phase would not have finished
giving way to a focus, in this case on the left.
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3. Focused sequents on the right Γ ` B ⇓, where the right workbench
contains the formula under focus, and the LHS workbench must be empty.

The two-sided focused sequent calculus further imposes a deterministic order
of evaluation of formulas across all workbenches: first the proper workbench on
the left-hand side, then the right-hand side formula if it is in “workbench mode.”
In spite of the greater superficial variety, the division between asynchronous
and synchronous phases is identical to that in the one-sided calculus. However,
two-sided calculi are bigger (in number of inference rules) than one-sided calculi,
all situations—except the self-symmetrical cut—have to be treated on both sides of
the sequent. In exchange, the two-sided presentation emphasizes the symmetries
in the calculus and allows for more uniform presentation across logics.

Note that (two-sided) sequents in the asynchronous phase have two storage-or-
workbench divisions represented by two up-arrows. In the asynchronous phase, a
sequent has a formula under focus in the workbench of one of the sides (marked
by the usual down-arrow) while the other side is storage-only, and the second
arrow that separates this zone from the empty workbench is omitted.

The LJF proof system with added fixed points and equality will become µLJF,
the basis of our subsequent study. In LJF, the connectives ∧+, ∨, t+, f +, and ∃
are positive; the connectives ∧−, ⊃, t−, f −, and ∀ are negative. As for the new
connectives, equality, =, and the least fixed point, µ, are defined as positive; the
greatest fixed point, ν , is defined as negative. These polarities are natural choices
for the semantics of the fixed points, though it may be possible to assign them
differently (Baelde, 2008b, Chapter 4). The set of focused inference rules that
expand LJF into µLJF are given in Figure 9.3. There are now essentially three
operations (and their corresponding inference rules) that can be used to treat a
least fixed point formula on the left-hand side of the sequent:

1. The most substantial inference rule on least fixed points is the induction
rule. In its general form, its premises involve an induction invariant (as we
will see in Chapter 11, there exist common simplifications that apply in
most situations). Like the cut rule, induction is non-analytic in the sense
that its inference rule does not have the subformula property.

2. The least fixed point can be unfolded on the left as a direct consequence of
the induction rule.

3. The fixed point can be frozen in the sense that when a dedicated version
of the store-left rule is applied to it, the resulting occurrence of the fixed
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point in storage will never be unfolded again, nor will it be the site of
an induction. Such frozen fixed points can only be used later in proof
construction within an instance of the initial rule.

All three rules take place in the asynchronous phase. They are completed
by the right-unfold rule on least fixed points in the synchronous phase. Dually,
greatest fixed points feature synchronous unfolding on the left and three asyn-
chronous rules on the right: coinduction (also non-analytic), right unfolding as a
consequence of coinduction, and freezing.

The freezing rules deserve special mention. As we process a fixed point
asynchronously (say, µ on the left), at a certain point in the proof we decide to
fix it and never modify it again (i.e., by inductive rules). As the fixed point is
effectively negative, the storage rules would never operate on in. The freezing rule
moves the fixed point to a region of storage reserved for fixed points, which one
stored (i.e., frozen) are never decided upon. Following Blanco and Miller (2015),
we model this behavior through a dedicated frozen zone, written Φ. In the case
of greatest fixed points, the homologous process takes place with one important
distinction: the single-formula slot on the RHS functions as a multi-purpose zone.
Once a greatest fixed point is moved to right storage (i.e., frozen), the whole RHS
is blocked until proof’s end.

Frozen fixed points come into play in the revised initial rules. These rule
now search not an atom of complementary polarity on the opposite side, but
an identical (i.e., unifiable, see above) and unalterable (i.e., frozen) atom on the
opposite frozen zone. In short, fixed points play the role of atoms and replace
the “undefined atoms”—not definitional—with fixed points. The other connective
that intervenes in the finalization of branches is equality. Interestingly, both new
types of connectives—fixed points and equality—are used as initial-style rules, and
both involve unification problems at the logic level.

Critically, the addition of focusing must preserve the set of theorems of the
original unfocused system:

9.2.1 Theorem The system µLJF is sound and complete w.r.t. µLJ.

Proof. Proved in Baelde (2008b).

9.3 Augmentations and kernels
In the same way LJF is extended to µLJF—and, before them, LJ is extended to
µLJ—by the addition of fixed points and equality, the inference rules in Figure 9.3,
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asynchronous introduction rules

Γ ⇑ A, B,Θ ` R
Γ ⇑ A ∧+ B,Θ ` R

Γ ⇑ Θ ` R

Γ ⇑ t+,Θ ` R
Γ ⇑ ` A ⇑ Γ ⇑ ` B ⇑
Γ ⇑ ` A ∧− B ⇑ Γ ⇑ ` t− ⇑

Γ ⇑ A,Θ ` R Γ ⇑ B,Θ ` R
Γ ⇑ A ∨ B,Θ ` R Γ ⇑ f ,Θ ` R

Γ ⇑ A ` B ⇑
Γ ⇑ ` A ⊃ B ⇑

Γ ⇑ ` [y/x ]B ⇑
Γ ⇑ ` ∀x .B ⇑ †

Γ ⇑ [y/x ]B,Θ ` R
Γ ⇑ ∃x .B,Θ ` R †

synchronous introduction rules

Γ ` A ⇓ Γ ` B ⇓
Γ ` A ∧+ B ⇓ Γ ` t+ ⇓
Γ ⇓ Ai ` R

Γ ⇓ A1 ∧
− A2 ` R

Γ ` Ai ⇓

Γ ` A1 ∨ A2 ⇓

Γ ` A ⇓ Γ ⇓ B ` R
Γ ⇓ A ⊃ B ` R

Γ ⇓ [t/x ]B ` R
Γ ⇓ ∀x .B ` R

Γ ` [t/x ]B ⇓
Γ ` ∃x .B ⇓

identity rules

Γ ⇓ Na ` Na
initl

Γ, Pa ` Pa ⇓
initr

Γ ⇑ ` B ⇑ Γ ⇑ B ` ⇑ R
Γ ⇑ ` ⇑ R

cut

structural rules

Γ,N ⇓ N ` R
Γ,N ⇑ ` ⇑ R decidel

Γ ` P ⇓
Γ ⇑ ` ⇑ P decider

Γ ⇑ P ` ⇑ R
Γ ⇓ P ` R releasel

Γ ⇑ ` N ⇑
Γ ` N ⇓ releaser

C , Γ ⇑ Θ ` R
Γ ⇑C ,Θ ` R

storel
Γ ⇑ ` ⇑ D
Γ ⇑ ` D ⇑

storer

9.2 Figure The LJF focused proof system for intuitionistic logic (Liang and Miller,
2009). Here, P is a positive formula; N is a negative formula; Pa is a positive
literal; Na is a negative literal; A and B are arbitrary formulas; C is a negative
formula or a positive literal; and D is a positive formula or a negative literal. R
represents an arbitrary right-hand side; in structural and initial rules, a mixed
style that combines this generic symbol and some sequent arrows is used. The
proviso marked as † is the usual eigenvariable restriction.



9.3. augmentations and kernels 157

asynchronous introduction rules

Φ; Γ ⇑ S t̄,Θ ` R Φ; Γ ⇑ B S ȳ ` S ȳ ⇑
Φ; Γ ⇑ µB t̄,Θ ` R inductL †

Φ; Γ ⇑ ` S t̄ ⇑ Φ; ⇑S ȳ ` BSȳ ⇑
Φ; Γ ⇑ ` νBt̄ ⇑ inductR †

Φ; Γ ⇑ ` B (νB) t̄ ⇑
Φ; Γ ⇑ ` νB t̄ ⇑

unfoldL
Φ; Γ ⇑ B (µB) t̄,Θ ` R
Φ; Γ ⇑ µB t̄,Θ ` R

unfoldR

µB t̄,Φ; Γ ⇑ Θ ` R
Φ; Γ ⇑ µB t̄,Θ ` R

freezeL Φ; Γ ⇑ ` ⇑Φ νB t̄
Φ; Γ ⇑ ` νB t̄ ⇑

freezeR

{Φ; Γ ⇑ Θ ` R}σ σ ∈ CSU (s = t )
Φ; Γ ⇑ s = t,Θ ` R

synchronous introduction rules

Φ; Γ ` B (µB) t̄ ⇓
Φ; Γ ` µB t̄ ⇓

unfoldR Φ; Γ ⇓ B (νB) t̄ ` R
Φ; Γ ⇓ νB t̄ ` R

unfoldL
Φ; Γ ⇓ t = t ` R

identity rules

µB t̄ ∈ Φ
Φ; Γ ` µB t̄ ⇓ initR

Φ; Γ ⇓ νB t̄ ` ⇑ΦνB t̄
initL

9.3 Figure The µLJF focused proof system for intuitionistic logic with fixed points
(Baelde et al., 2010). This figure contains the new inference rules for least and
greatest fixed points and equality which are added to the proof system in Figure 9.2.
The style of encoding follows Blanco and Miller (2015). A new storage zone for
frozen (least) fixed points, Φ, is added to all sequents and threaded throughout all
existing inference rules. When a greatest fixed point is frozen, the entire right-
hand side becomes frozen and can no longer be manipulated; this new restriction
is represented by the storage-only annotation ⇑Φ. Two new initial rules replace
atoms with fixed points: an initial rule applies to a fixed point under focus if a
frozen copy of the same fixed point is available on the opposite side of the sequent.
Besides these changes, presentation conventions are shared with Figure 9.2.
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asynchronous introduction rules

Ξ1 : Γ ⇑ A, B,Θ ` R ∧+c (Ξ0,Ξ1)

Ξ0 : Γ ⇑ A ∧+ B,Θ ` R

Ξ1 : Γ ⇑ Θ ` R t+c (Ξ0,Ξ1)

Ξ0 : Γ ⇑ t+,Θ ` R

Ξ1 : Γ ⇑ ` A ⇑ Ξ1 : Γ ⇑ ` B ⇑ ∧−c (Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ⇑ ` A ∧− B ⇑

t−c (Ξ0)

Ξ0 : Γ ⇑ ` t− ⇑

Ξ1 : Γ ⇑ A,Θ ` R Ξ2 : Γ ⇑ B,Θ ` R ∨c (Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ⇑ A ∨ B,Θ ` R

f +c (Ξ0)

Ξ0 : Γ ⇑ f ,Θ ` R

Ξ1 : Γ ⇑ A ` B ⇑ ⊃c (Ξ0,Ξ1)

Ξ0 : Γ ⇑ ` A ⊃ B ⇑

(Ξ1y) : Γ ⇑ ` [y/x ]B ⇑ ∀c (Ξ0,Ξ1)

Ξ0 : Γ ⇑ ` ∀x .B ⇑

(Ξ1y) : Γ ⇑ [y/x ]B,Θ ` R ∃c (Ξ0,Ξ1)

Ξ0 : Γ ⇑ ∃x .B,Θ ` R

synchronous introduction rules

Ξ1 : Γ ` A ⇓ Ξ2 : Γ ` B ⇓ ∧+e (Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ` A ∧+ B ⇓

t+e (Ξ0)

Ξ0 : Γ ` t+ ⇓

Ξ1 : Γ ⇓ Ai ` R ∧−e (Ξ0,Ξ1, i)

Ξ0 : Γ ⇓ A1 ∧
− A2 ` R

Ξ1 : Γ ` Ai ⇓ ∨e (Ξ0,Ξ1, i)

Ξ0 : Γ ` A1 ∨ A2 ⇓

Ξ1 : Γ ` A ⇓ Ξ2 : Γ ⇓ B ` R ⊃e (Ξ0,Ξ1,Ξ2)

Ξ0 : Γ ⇓ A ⊃ B ` R

Ξ1 : Γ ⇓ [t/x ]B ` R ∀e (Ξ0,Ξ1, t )

Ξ0 : Γ ⇓ ∀x .B ` R

Ξ1 : Γ ` [t/x ]B ⇓ ∃e (Ξ0,Ξ1, t )

Ξ0 : Γ ` ∃x .B ⇓

9.4 Figure The augmented LJF a focused proof system for intuitionistic logic
(Chihani et al., 2016b). Presentation conventions are shared with Figure 9.2.
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identity rules

initLe (Ξ0)

Ξ0 : Γ ⇓ Na ` Na

(l , Pa ) ∈ Γ initRe (Ξ0, l )

Ξ0 : Γ ` Pa ⇓

Ξ1 : Γ ⇑ ` F ⇑ Ξ2 : Γ ⇑ F ` ⇑ R cute (Ξ0,Ξ1,Ξ2, F )

Ξ0 : Γ ⇑ ` ⇑ R

structural rules

〈l , N 〉 ∈ Γ Ξ1 : Γ ⇓ N ` R decideLe (Ξ0,Ξ1, l )

Ξ0 : Γ ⇑ ` ⇑ R

Ξ1 : Γ ` P ⇓ decideRe (Ξ0,Ξ1)

Ξ0 : Γ ⇑ ` ⇑ P

Ξ1 : Γ ⇑ P ` ⇑ R releaseLe (Ξ0,Ξ1)

Ξ0 : Γ ⇓ P ` R

Ξ1 : Γ ⇑ ` N ⇑ releaseRe (Ξ0,Ξ1)

Ξ0 : Γ ` N ⇓

Ξ1 : 〈l , C 〉 , Γ ⇑ Θ ` R storeLc (Ξ0,Ξ1, l )

Ξ0 : Γ ⇑C ,Θ ` R

Ξ1 : Γ ⇑ ` ⇑ D storeRc (Ξ0,Ξ1)

Ξ0 : Γ ⇑ ` D ⇑

9.5 Figure The augmented LJF a focused proof system for intuitionistic logic
(continued). Presentation conventions are shared with Figure 9.2. The identity of
each inference rule is immediate from its corresponding clerk or expert; names
are therefore omitted.
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asynchronous introduction rules

Ξ1 : Φ; Γ ⇑ S t̄,Θ ` R (Ξ2 ȳ) : Φ; Γ ⇑ B S ȳ ` S ȳ ⇑ inductLc (Ξ0,Ξ1,Ξ2, S )

Ξ0 : Φ; Γ ⇑ µB t̄,Θ ` R
†

Ξ1 : Φ; Γ ⇑ B (µB) t̄,Θ ` R unfoldLc (Ξ0,Ξ1)

Ξ0 : Φ; Γ ⇑ µB t̄,Θ ` R

Ξ1 : 〈l , µB t̄ 〉 ,Φ; Γ ⇑ Θ ` R freezeLc (Ξ0,Ξ1, l )

Ξ0 : Φ; Γ ⇑ µB t̄,Θ ` R

Ξ1 : Φ; Γ ⇑ ` S t̄ ⇑ (Ξ2 ȳ) : Φ; ⇑S ȳ ` BSȳ ⇑ inductRc (Ξ0,Ξ1,Ξ2, S )

Ξ0 : Φ; Γ ⇑ ` νBt̄ ⇑
†

Ξ1 : Φ; Γ ⇑ ` B (νB) t̄ ⇑ unfoldRc (Ξ0,Ξ1)

Ξ0 : Φ; Γ ⇑ ` νB t̄ ⇑

Ξ1 : Φ; Γ ⇑ ` ⇑Φ νB t̄ freezeRc (Ξ0,Ξ1)

Ξ0 : Φ; Γ ⇑ ` νB t̄ ⇑

{ Ξ1 : Φ; Γ ⇑ Θ ` R}σ σ ∈ CSU (s = t ) =c (Ξ0,Ξ1)

Ξ0 : Φ; Γ ⇑ s = t,Θ ` R

9.6 Figure The augmented µLJF a focused proof system for intuitionistic logic
with fixed points (Blanco and Miller, 2015). Presentation conventions are shared
with Figure 9.3.
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synchronous introduction rules

Ξ1 : Φ; Γ ` B (µB) t̄ ⇓ unfoldRe (Ξ0,Ξ1)

Ξ0 : Φ; Γ ` µB t̄ ⇓

Ξ1 : Φ; Γ ⇓ B (νB) t̄ ` R unfoldLe (Ξ0,Ξ1)

Ξ0 : Φ; Γ ⇓ νB t̄ ` R

=e (Ξ0)

Ξ0 : Φ; Γ ⇓ t = t ` R

identity rules

〈l , µB t̄ 〉 ∈ Φ initRe (Ξ0, l )

Ξ0 : Φ; Γ ` µB t̄ ⇓

initLe (Ξ0)

Ξ0 : Φ; Γ ⇓ νB t̄ ` ⇑ΦνB t̄

9.7 Figure The augmented µLJF a focused proof system for intuitionistic logic with
fixed points (continued). Presentation conventions are shared with Figure 9.3.
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extended with clerks and experts by the usual method, are added to the augmented
LJF a to form the full augmented system µLJF a : intuitionistic logic with fixed
points (and equality) augmented with clerks and experts. The standard intuition-
istic logic is augmented in Figure 9.4, and the new rules in the system for the
fragment comprising fixed points and equality are shown in Figure 9.6.

The extension follows along the lines of Section 3.2. Notice that the new
frozen storage, Φ, is indexed like Γ, but each is independent from the other.
In particular, frozen fixed points are only selected from storage by the new
initial-right rule—which, like decide-left on stored, non-frozen formulas, uses a
non-deterministic index in the FPC framework. The single formula that may be
frozen on the right requires no index because there is at most one choice.

Implementing the FPC framework for intuitionistic logics as kernels also
proceeds as a natural extesion of the treatment of LKF a in Section 4.4, although
new technical considerations will come into play. They will be discussed in
Section 10.3. A point of interest in using these kernels is the profusion of sources
of nonterminating behavior—notably, by the inductive rules (including unfolding
on both sides) of least and greatest fixed points. Relatedly, many more inference
rules are in conflict with respect to LKF a—where only decide and cut could be
applied under the same conditions—; again, fixed points are the new source of
conflict with the set of three rules which can be applied asynchronously on each
kind of fixed point. An FPC definition will need to carefully orchestrate the
operation on fixed points and their operations or risk copious backtracking and
even nontermination.

As in the case of LKF a by Theorem 3.2.2, usage of the augmented system is
justified by a simple soundness guarantee formulated in terms of erasure of the
augmentations of the FPC framework. This protects the system from anomalous
behavior in client-supplied FPC definitions, as in the example of nonterminating
unfolding above.

9.3.1 Theorem The system µLJF a is sound w.r.t. intuitionistic logic with fixed
points ( µLJ).

Proof. The µLJF system can be recovered from µLJF a by removing all the aug-
mentations (marked in Figures 9.4 and 9.6), and therefore every proof of µLJF a

is also a proof of µLJF: this is the soundness guarantee. The result follows from
Theorem 9.2.1.
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9.4 Nominal abstraction
The final extension to the logic, complementary to the addition of fixed points and
equality, is nominal abstraction. In specifying and reasoning about structures, it is
common to rely on a recursive traversal on inductive types; in many interesting
cases, these constructs involve a notion of binding—pervasive, for example, in the
naming effects of quantifiers in logic, and in foundational aspects programming
language syntax such as variables and their scope. When inspecting terms of such
types, we recurse inside the binders of a (globally) closed terms and consequently
need to consider (locally) open terms. A standard technique to model the dynamic
behavior of binders (as opposed to their static structure, reflected in the terms
proper), involves the addition of an evaluation context recording open binders as
the structure is recursed.

At the level of the meta-logic used to write the aforementioned specifications,
quantifiers are the primitives that model binding. Indeed, universal quantification
displays some desirable traits to perform this kind of reasoning. In the intensional
interpretation adopted in the sequent calculus since Gentzen’s original designs
(e.g., Figure 2.3), the corresponding introduction rule quantifier—read bottom-up—
states that to prove the universal quantifier it suffices to prove the formula where
the bound variable has been substituted with a new eigenvariable: a fresh, unused
variable at the appropriate type, unused elsewhere in the proof, which represents
a generic instance of the type. For Gentzen, eigenvariables are immutable and
unaffected by variable substitutions. However, the introduction of fixed points
and equality—and the style of direct reasoning on logic specifications—turns
eigenvariables into sites for substitution (in particular, equality on the left-hand
side involves unification of eigenvariables).

9.4.1 Example Suppose there is a property P that takes two arguments. Under
the reading of eigenvariables as fresh names, a proof of ∀x .∀y .P xy involves
two different names, x and y. Furthermore, a proof of ∀z .P z involves just
one name in the proof of P . However, consider the following implication:
∀x .∀y .P xy ⊃ ∀z .P z . Although this is logically valid, it can be interpreted under
the conception of eigenvariables as fresh names as stating that if there is a proof
of P using two different names there is a proof of P with a single name—which
strays from the intended meaning of the specification.

Hence, the treatment of logic until this point conflates the concepts of uni-
versal quantification and generic judgment—by having the universal quantifier
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assume these two sets of incompatible competencies. The distinction between the
two can be addressed directly within the logic by various means. Among these,
we use the concept of nominal abstraction embodied by a new nabla quantifier
(signified ∇) developed by Miller and Tiu (2002, 2005) to represent generic judg-
ments, i.e., statements relying on the declaration of fresh local variables. The
nabla quantifier extends sequents with an explicit representation of local context.
Consider the standard sequent notation from Section 2.4 (with the intuitionistic
restriction integrated):

Σ : A1, . . . ,An ` A0

Here we have made explicit the eigenvariable signature Σ containing the set
of eigenvariables introduced, say, by the asynchronous rules on quantifiers in
Figure 9.2 (routinely signaled by the proviso † used to represent the eigenvariable
restriction)—Section 11.4 discusses an explicit encoding of this signature and
its limitations. Each formula in the sequent must now be decorated with a
local context σ, similar to the global context Σ but with scope limited to its
corresponding formula and containing the set of locally fresh variables (in effect,
turning sequents into binding structures):

Σ : σ1 . A1, . . . , σn . An ` σ0 . A0

The introduction rules for nabla are shown, for intuitionistic sequent calculus,
in Figure 9.8. Note that there is one introduction rule on the left and one on the
right, both identical in their treatment of the affected formula and its context—and
leaving the rest of the sequent intact. When focusing is applied, nabla exhibits
a self-duality which is reflected in the duplication of both introduction rules
in both asynchronous and synchronous phases. That is, nabla is unaffected by
focusing, a fundamentally neutral connective. The additions are compatible with
the extension to µLJF made in Figure 9.3.

The same Figure 9.8 represents the additions made in LJF a (and µLJF a ). In its
dedicated purpose of reasoning about generic judgments, the nominal quantifier
is treated eagerly by the kernel. No clerks and experts are used, and its treatment
always succeeds. In an implementation of the FPC framework, this process is
carried out by the kernel, unbeknownst to the client side. Implementation issues
are studied in Section 10.3.
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asynchronous introduction rules

Γ ⇑ ` σ, (y : τ) . [y/x ]B ⇑
Γ ⇑ ` σ . ∇(x : τ).B ⇑ †

Γ ⇑ σ, (y : τ) . [y/x ]B,Θ ` R
Γ ⇑ σ . ∇(x : τ).B,Θ ` R †

synchronous introduction rules

Γ ⇓ σ, (y : τ) . [y/x ]B ` R
Γ ⇓ σ . ∇(x : τ).B ` R †

Γ ` σ, (y : τ) . [y/x ]B ⇓
Γ ` σ . ∇(x : τ).B ⇓ †

9.8 Figure The LJF focused proof system for intuitionistic logic augmented with
nominal quantification. In this presentation, the global context Σ is explicitly
maintained, and local contexts are extended to all formulas. These changes are
threaded throughout all other inference rules, although local contexts are only
manipulated by the rules in this figure. All zones previously involving formulas
are likewise augmented so that their members are pairs of formulas and their
contexts. The freshness restriction † applies to all inference rules with respect
to the freshly introduced and locally scoped nominal constant, y. Presentation
conventions are shared with Figure 9.2.

9.5 Notes

The development of the proof theory of fixed points springs from a line of research
that studies the use of definitions and induction (McDowell and Miller, 2000,
2002; Momigliano and Tiu, 2003; Miller and Tiu, 2005; Tiu and Momigliano,
2012). The use of fixed points was originally studied in the context of linear
logic, where it constitutes an alternative to the exponentials for the modeling of
unbounded behavior (Baelde and Miller, 2007; Baelde, 2008b, 2009, 2012). These
results—extended to intuitionistic logic— provide the justification for designing
proof systems in this way, and form the proof theoretical core of the development
of reasoning systems like Bedwyr and Abella, to which the next chapter is devoted.
An interesting question is whether results such as Theorem 9.3.1 extend to classical
logic as well. This point is unknown: it is certainly possible to obtain a classical
system with added fixed points, say, µLK, but the extension of focusing to a
tentative µLKF remains an open problem.

The addition of least and greatest fixed points brings a pair of new initial
rules: such formulas can function as “defined” atoms and eliminate the need
for a separate category of proper (“undefined”) atoms, such as has been used
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assumed throughout Part II. Nevertheless, undefined atoms can be associated a
more natural notion of genericity. Both defined and undefined atoms with their
corresponding sets of inference rules can coexist in the same proof system instead
of discarding one for the other.

The common kinds of sequents encountered in proofs involving undefined
and defined atoms differ: in the former case, sequents with large numbers of
small formulas abound; in the latter, sequents have fewer, substantially larger
formulas. At the root is the definitional nature of fixed points: for example,
suppose we define multiplication in terms of iterated addition. Figure 9.1 presents
a least fixed point expression for addition; the corresponding least fixed point for
multiplication follows a similar structure, but it moreover inlines the fixed point
for addition. This growth in the size of individual expressions continues as more
complex definitions are composed from existing ones.

Purely positive fixed points, where every connective is positive, occur com-
monly in logic specifications—such as that in Figure 9.1. In this context, focusing
on a purely positive (least) fixed point on the right typically corresponds to the
concept of performing a computation as part of a proof. When this is the case,
the focus is never released and the proof succeeds or fails based on the ability of
the specification to perform the required computation. For example, according
to the aforementioned specification, Γ ` plus 2 2 4⇓ will succeed—and in logic
programming, since the third argument is functionally determined by the other
two, the result of the addition operation can be computed via proof search—;
conversely, Γ ` plus 2 2 5⇓ will fail. This relationship has been studied in closer
detail by Gérard and Miller (2017).

The nominal abstraction presented in this chapter is the full development
of the nabla quantifier, which culminates in the work of Miller and Tiu (2005);
Gacek et al. (2008b, 2011): this is the theory used in systems like Abella. A
minimal presentation, which removes some of the standard properties of the
connective, is developed in Baelde (2008a); we shall not consider it further here.
Binding can be modeled by other, alternative means, but nominal abstraction is
both powerful and convenient; Baelde et al. (2014, Section 6) provides a practical
overview. We revisit the problem in Section 12.3.

Section 12.5 also returns to the question of negation-as-failure first observed
in the rules for equality as a logical connective. The effects of equality in proof
search (Viel and Miller, 2010) are closely related to unification, which itself will
be a subject of further discussion in Section 13.2.
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10.1 Automating logic

Traditionally, model checking has been seen as separate from theorem proving.
Where theorem proving revolves around the concept of provability, model check-
ing (Clarke et al., 1999; Baier and Katoen, 2008; Grumberg and Veith, 2008)
considers satisfiability under a certain model. However, the extension of standard
logics with fixed points unifies both views and allows model checking to be inter-
preted in terms of deduction, i.e., as a specific kind of theorem proving activity.
It does so by observing that the exploration of fixed points captures both finite
success and finite failure. In Part II, predicates were formally undefined (i.e., they
did not have an associated introduction rule); instead, atoms were defined by a
theory which specified how to derive conclusions from them. The introduction
of fixed points enables the definition of recursive definitions directly within the
logic. The definitions thus embedded are constant throughout proof search; this
fact marks the move from the open-world to the closed-world assumption.

The Bedwyr system generalizes standard logic programming through the
implementation of a fragment of the logics described in Chapter 9 that is nonethe-
less amenable to automation (Tiu et al., 2005; Baelde et al., 2007). The logic is
organized in two levels, in such a way that all rules on the left are invertible and,
in consequence, proof search alternates between the left and the right sides while
giving preference to the left side, whose nondeterminism is by construction of
the don’t-care variety. The resulting language can be expressed compactly by the
following grammar:

L0 ::= t | A | L0 ∧ L0 | L0 ∨ L0 | ∃x .L0 | ∇x .L0

L1 ::= t | A | L1 ∧ L1 | L1 ∨ L1 | ∃x .L1 | ∇x .L1 | ∀x .L1 | L0 ⊃ L1

167
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Here, each predicate A (taking the place of atomic formulas in Chapter 4)
is classified as belonging to either L0 or L1. Moreover, predicates—encoded as
fixed points—are stratified so that a definition may refer only to predicates at
lower levels (of stratification, not to be confused with the two levels of the
logic). Goals can be drawn from both L0 and L1. The restriction that forbids
nested implications splits proof reconstruction in two levels and consequently two
specialized provers, one for each class of formulas. The L0 prover corresponds
corresponds to a simplified version of λProlog extended to allow nabla in the
body of clauses. In addition to adopting the observations about the organization
of proof search in phases made above, the L1 prover must treat the case of the
implication G0 ⊃ D1. It does so in two steps:

1. First, attempt to prove the L0 goal—where L1 eigenvariables are treated
as sites for substitution, i.e., L0 logic variables, and L1 logic variables are
disallowed.

2. For every solution toG0, apply its set of substitutions to D1 and proceed to
find a proof under those. As with similar rules, and empty set of solutions
vacuously results in success.

Thus, in this logic, failure to prove a goal corresponds to a proof of the nega-
tion of the goal. Formulated in terms of standard, depth-first proof search, the
state exploration associated to model checking properties can derive inefficient
search and redundant treatment of goals. These particularities can be accommo-
dated by the addition of tabling of proved goals reflecting the provability relation
between entries in the tables (Miller and Nigam, 2007; Miller and Tiu, 2013).
Both finite success and finite failure can be tabled.

Other, more expressive logics may not lend themselves well to full automation,
but their automation is regardless of great interest. In front of programs such
as automated theorem provers and model checkers is the group of tools called
proof assistants (also, interactive theorem provers). Ultimately, the objective of
both families of tools is the same—proving theorems by building formal proofs
in a given logic—, but proof assistants rely on their users for instructions on
how to build proofs (and may attempt to discharge simple goals by automated
proving techniques). Their uses range from the formal verification of software—
as undertaken in Section 6.3—to the rigorous proof of mathematical results so
complex that they resist manual analysis, among these famously the four color
theorem (Gonthier, 2005) and the Kepler conjecture (Hales et al., 2015).
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A more powerful logic than the one implemented by Bedwyr is G (Gacek
et al., 2011), which is the core of the Abella proof assistant (Gacek, 2008; Baelde
et al., 2014). It shares with Bedwyr the two-level approach, which distinguishes
a reasoning level (presented in the next section) and a specification level, which is
implemented as a subset of λProlog. The rich logic with support for the λ-tree
syntax approach makes it well suited to model and study the metatheory of
programming languages (Gacek et al., 2008a, 2012; Wang et al., 2013). In fact,
the G logic is very close to µLJF and its aggregated extensions from Chapter 9.
Kernels and typical programs we will write in the reasoning level are compatible
with the common subset of Abella and Bedwyr, which we call Bedwyr0, and
can be written in such a way that they are valid specifications in both systems
simultaneously.

The rest of the chapter is organized as follows. Section 10.2 provides a tutorial
introduction to Abella and Bedwyr and outlines a common dialect that can be
used to write compatible specifications for both systems. Section 10.3 expounds
the kernels that implement the FPC framework for the logics used in this part
(namely, µLJF a ). Section 10.4 provides some additional examples. Section 10.5
concludes the chapter.

10.2 Abella

For the most part, the reasoning level of Abella coincides syntactically with
Bedwyr—and semantically in the common fragment shared by both. Atomic
types are defined by the keyword Kind and type constructors by the keyword
Type; note that kind expressions make use of a lowercase type; currently, more
complex kind expressions are not supported. For example:

Kind nat type.
Type z nat.
Type s nat -> nat.

The type of formulas at the reasoning level is called prop (as opposed to o at
the specification level). The following logical constants are given:

1. true of type prop, for t.

2. false of type prop, for f .

3. /\ of type prop -> prop -> prop, for ∧.
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4. \/ of type prop -> prop -> prop, for ∨.

5. -> of type prop -> prop -> prop, for ⊃.

6. forall of type (A -> prop) -> prop, for ∀.

7. exists of type (A -> prop) -> prop, for ∃.

8. nabla of type (A -> prop) -> prop, for ∇.

9. = of type A -> A -> prop, for =.

Note that Abella’s implication is the implication at L1 in the previous section
and not the hypothetical implication of Section 4.3. A key difference with respect
to λProlog is that predicates in Abella are defined as definitions with target
type prop, all of whose clauses must be given at definition time, with clauses
being separated with ; and terminated with ., and the head and the body of a
clause being separated with :=. Inductive definitions are given by Define and
coinductive definitions are given by CoDefine declarations. Other syntactic
conventions resemble those of λProlog. For example, for the inductive definition
of natural numbers:

Define nat : nat -> prop by
nat z ;
nat (s N) := nat N.

In λProlog, a predicate always fails if the theory defines no clauses for it. In
Abella, this behavior must be made explicit through a clause in the definition:

Define undefined : nat -> nat -> prop by
undefined X Y := false.

Inductive and coinductive definitions correspond to fixed points, respectively
least and greatest (indeed, we will make use of an explicit correspondence in
Section 13.4). Theorems and proofs are introduced by the Theorem environment,
which gives name to a formula and follows by the description of a proof by a
script written in the language of tactics of Abella. These are not too relevant to
the present discussion; refer to the tutorial (Baelde et al., 2014) for details.

Modular support in Abella is very limited. At the beginning of a development,
a specification written in a slightly modified λProlog can be loaded by the key-
word Specification and specification-level predicates referenced by enclosing
them in curly brackets. Although the specification is written in λProlog, the
closed-world assumption is enforced on this level once Abella finishes loading
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it. However, composition of λProlog modules is supported by the standard
mechanism of accumulation. For example, if the code in Figure 4.2 is contained
in a module named test, it could be used as follows:

Specification "test".

Theorem zero_is_natural : { is_nat z }.
search.

The equivalent specification at the reasoning level is given in Figure 11.1.
The programming languages defined by Abella and Bedwyr are very closely
related. In order to write code that is valid under both systems, a few important
differences—mostly additional restrictions in Abella—must be noted:

1. Existential variables that do not appear in the head of a clause must be
explicitly declared in Abella by exists. Such variables can be left implicit
in Bedwyr, as they commonly are in λProlog, by resorting to the syntactic
convention of uppercase identifiers.

2. Anonymous variables are not supported in Abella, and instead explicit
named identifiers must be given. In Bedwyr, they can be written _.

3. Polymorphic types are not supported in Abella beyond those predefined by
the logical constants (quantifers and equality). Hence, for example, separate
list types and constructors must be defined for each type of list—as defined
by the type of its elements. In Bedwyr they are written as in full λProlog.

4. Type constructors in Abella are always prefix. Bedwyr has conventions to
define infix operators out of sequences of special characters, such as |= and
++, which also determine associativity.

5. The predefined signature in Abella is essentially empty: everything needs
to be built from scratch. Bedwyr defines string and natural literals with
equality only.

6. Some meta-commands available in Bedwyr only support operations like file
inclusion and assertions about finite success and finite failure—which have
no direct correspondence in the stronger logic of Abella. These features
need to be mimicked by external preprocessors and other Abella constructs.

Of this list, only the lack of polymorphic types is profound, although an
experimental extension by Yuting Wang is currently in development. These



172 chapter 10. proof search with fixed points

restrictions also extend to the λProlog interpreter in predictable ways, which
does not at the moment implement the language in full—extended to the standard
library of predefined types and their predicates, which is absent from the inter-
preter: everything in a development must be explicitly defined. We should also
note that Bedwyr provides an incomplete implementation of higher-order pattern
unification, which can lead to unexpected failures in correct code. Throughout
Part III we shall sometimes, for the sake of conciseness in presentation, resort to
the Bedwyr flavor of syntax, which more closely resembles the logic programs
presented in λProlog.

10.3 FPC kernels

As an original development, adding to the existing kernels in λProlog, we imple-
mented a family of kernels based on µLJF a and its extensions, on which to base
further experimentation. As in Section 4.4, it also serves to present an interesting
use case for Abella as a logic programming language. Here we present the basic
version of the kernel.

Figure 10.1 shows the encoding of the logic in Abella. There is no separation
between the signature and the definition of the module, nor built-in mechanisms
for module composition. Unlike in λProlog, composing a logic program from its
constituent “modules” must carefully track the order of the dependencies between
them—a more primitive endeavor. Based on the logic thus defined, Figure 10.2
shows how the fixed point definitions in Figure 9.1 can be encoded in Abella.
These fixed points are here named as Definitions of Abella, which allows us to
refer to them symbolically, say, when defining multiplication in terms of addition
without having to write all definition strata every time. Thus, we could write:

Define times : (i -> bool) -> prop by times
(mu Pred\Args\ or

(some N\
(eq Args (zero ++ N ++ zero ++ argv)))

(some K\ some M\ some N\ and
(eq Args ((succ K) ++ M ++ N ++ argv))
(some N’\ and

(Pred (K ++ M ++ N’ ++ argv))
(Plus (N’ ++ M ++ N ++ argv)))))

:=
plus Plus.
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% Base types
Kind bool, i type.

% List types
Kind list_bool type.
Type nil_bool list_bool.
Type cons_bool bool -> list_bool -> list_bool.

Kind list_i type.
Type nil_i list_i.
Type cons_i i -> list_i -> list_i.

% Fixed point argument lists
Type argv i.
Type arg@ i -> i -> i.

% Logical constants
Type tt, ff bool.
Type and, or, imp bool -> bool -> bool.
Type all, some (i -> bool) -> bool.
Type eq i -> i -> bool.
Type mu, nu ((i -> bool) -> i -> bool) -> i -> bool.

% Polarities
Define negative : bool -> prop by

negative (imp P Q) ;
negative (all P) ;
negative (nu B T).

Define positive : bool -> prop by
positive tt ; positive ff ;
positive (and P Q) ; positive (or P Q) ;
positive (some P) ;
positive (eq P Q) ;
positive (mu B T).

10.1 Figure The logic µLJF encoded in Abella. The types of formulas and terms,
bool and i, are given; term constructors must be given by the signature of the
full proof checker. When list types are needed, dedicated constructors need to
be declared as well, possibly together with a member predicate. The fixed point
connectives are declared as taking a single argument, by convention representing
a list of arguments encoded as a term of the logic by the reserved constructors
arg@ and argv.
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Define is_nat : (i -> bool) -> prop by is_nat
(mu Pred\Args\

(some N\ and
(eq Args (N ++ argv))
(or

(eq N zero)
(some N’\ and

(eq N (succ N’))
(Pred (N’ ++ argv)))))).

Define plus : (i -> bool) -> prop by plus
(mu Pred\Args\

(some K\ some M\ some N\ and
(eq Args (K ++ M ++ N ++ argv))
(or

(and
(eq K zero)
(eq M N))

(some K’\ some N’\ and (and
(eq K (succ K’))
(eq N (succ N’)))
(Pred (K’ ++ M ++ N’ ++ argv)))))).

Define is_nat’ : (i -> bool) -> prop by is_nat’
(mu Pred\Args\ or

(eq Args (zero ++ argv))
(some N\ and

(eq Args ((succ N) ++ argv))
(Pred (N ++ argv)))).

Define plus’ : (i -> bool) -> prop by plus’
(mu Pred\Args\ or

(some N\
(eq Args (zero ++ N ++ N ++ argv)))

(some K\ some M\ some N\ and
(eq Args ((succ K) ++ M ++ (succ N) ++ argv))
(Pred (K ++ M ++ N ++ argv)))).

10.2 Figure Logic specification of natural numbers and addition on them as a least
fixed points in µLJF encoded in Abella. For clarity, arg@ is written as infix
++, i.e., (M ++ N ++ argv) instead of (arg@ M (arg@ N argv)). Two
versions of each fixed point are given: first (unprimed), with a global pattern
match of the argument list and specializations in each clause; second (primed),
with pattern matching entirely contained within each clause.
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Needless to say, this style is unwieldy and we would ideally like to avoid
it altogether, relying instead on writting something like Abella definitions and
having the fixed points generated automatically. Section 13.4 discusses how to use
Abella to program µLJF.

Figure 10.3 shows the centerpiece of the development: the µLJF a kernel in
its basic, declarative version; it relies on standard declarations and logic program-
mings while presenting some features of interest. First, note that—unlike in
λProlog—storage zones must be explicitly represented as part of the sequents,
since hypothetical judgments do not allow us to grow the model at runtime under
the open-world assumption. Second, there is a single instance of implication in the
kernel (as there is in the LKF a kernel); its role is not to file formulas in storage,
but to treat equality on the left. In kernels with and without fixed points alike,
these are the only instances of implication we have observed: practical clerks and
experts are operationally simple programs which make no use of such advanced
features—in fact, clerks and experts in Abella can be equivalently programmed in
λProlog at the specification level with minimal changes, none profound. Unlike
in λProlog, because of the closed-world assumption, a signature for clerks and
experts independent from their definitions cannot be given, though it is implied
by the kernel. If it were, or if clerks and experts were written in λProlog, it
would be a variation on Figure 10.6.

A small number of secondary decisions are more dependent on the design
of the particular implementation. For example, the development version of
the kernel extends sequents with bookkeeping structures and spy harnesses to
facilitate debugging. The ordering of the inference rules, in particular those that
are in conflict, has a potentially large performance impact on proof search—in
the kernel of Figure 10.3 fixed points operations have the following priorities:
initial, unfold, induction, and freezing (subject to concrete FPC restrictions);
when lemmas are added in Section 11.4, they will be placed after the standard
decide rule. An interesting detail is that the implication on the left is treated by
two distinct experts, each recursing on the premises in a different order; we used
these to assess their impact in proof search, commonly finding advantageous to
treat the antecedent first—under Bedwyr’s incomplete handling of unification,
this was often the only feasible option.

To conclude the section, we explore two extensions to the declarative kernel.
In first place, in our encoding of the µLJF logic in Figure 10.1, we were able to
devise a clever encoding that allowed us to express fixed points with arbitrary
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Kind cert, idx type.
Kind choice type.
Type left, right choice.

Kind goal type.
Type unk, sto, frz bool -> goal.

Kind ctx type.
Type kvp idx -> bool -> ctx.

% Xi Phi Gamma
% Delta Goal
Define async : cert -> list_ctx -> list_ctx ->

list_bool -> goal -> prop,
syncL : cert -> list_ctx -> list_ctx ->

bool -> goal -> prop,
syncR : cert -> list_ctx -> list_ctx

-> bool -> prop by

async Xi Phi Gamma (cons_bool (and P Q) Delta) G :=
exists Xi’, andClerk Xi Xi’ /\
async Xi’ Phi Gamma (cons_bool P (cons_bool Q Delta)) G ;

async Xi Phi Gamma (cons_bool (or P Q) Delta) G :=
exists Xi’ Xi’’, orClerk Xi Xi’ Xi’’ /\
async Xi’ Phi Gamma (cons_bool P Delta) G /\
async Xi’’ Phi Gamma (cons_bool Q Delta) G ;

async Xi Phi Gamma nil_bool (unk (imp P Q)) :=
exists Xi’, impClerk Xi Xi’ /\
async Xi’ Phi Gamma (cons_bool P nil_bool) (unk Q) ;

async Xi Phi Gamma (cons_bool ff Delta) G :=
ffClerk Xi ;

async Xi Phi Gamma (cons_bool tt Delta) G :=
exists Xi’, ttClerk Xi Xi’ /\
async Xi’ Phi Gamma Delta G ;

async Xi Phi Gamma nil_bool (unk (all P)) :=
exists Xi’, allClerk Xi Xi’ /\
forall x, async (Xi’ x) Phi Gamma nil_bool (unk (P x)) ;

async Xi Phi Gamma (cons_bool (some P) Delta) G :=
exists Xi’, someClerk Xi Xi’ /\ forall x,
async (Xi’ x) Phi Gamma (cons_bool (P x) Delta) G ;

async Xi Phi Gamma (cons_bool (eq P Q) Delta) G :=
exists Xi’, eqClerk Xi Xi’ /\
((P = Q) -> async Xi’ Phi Gamma Delta G) ;

10.3 Figure The µLJF a kernel in Abella.
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async Xi Phi Gamma (cons_bool (mu B T) Delta) G :=
exists Xi’, unfoldLClerk Xi Xi’ /\
async Xi’ Phi Gamma (cons_bool (B (mu B) T) Delta) G ;

async Xi Phi Gamma (cons_bool (mu B T) Delta) G :=
exists Xi’ Xi’’ S, indClerk Xi Xi’ Xi’’ S /\
async Xi’ Phi Gamma (cons_bool (S T) Delta ) G /\
forall x,
async (Xi’’ x) Phi Gamma (cons_bool (B S x) nil_bool)

(unk (S x)) ;
async Xi Phi Gamma (cons_bool (mu B T) Delta) G :=

exists Xi’ Idx, freezeLClerk Xi Xi’ Idx /\
async

Xi’ (cons_ctx (kvp Idx (mu B T)) Phi) Gamma Delta G ;
async Xi Phi Gamma nil_bool (unk (nu B T)) :=

exists Xi’, unfoldRClerk Xi Xi’ /\
async Xi’ Phi Gamma nil_bool (unk (B (nu B) T)) ;

async Xi Phi Gamma nil_bool (unk (nu B T)) :=
exists Xi’ Xi’’ S, coindClerk Xi Xi’ Xi’’ S /\
async Xi’ Phi Gamma nil_bool

(unk (S T)) /\
forall x,
async (Xi’’ x) Phi nil_ctx (cons_bool (S x) nil_bool)

(unk (B S x)) ;
async Xi Phi Gamma nil_bool (unk (nu B T)) :=

exists Xi’, freezeRClerk Xi Xi’ /\
async Xi’ Phi Gamma nil_bool (frz (nu B T)) ;

syncR Xi Phi Gamma (and P Q) :=
exists Xi’ Xi’’, andExpert Xi Xi’ Xi’’ /\
syncR Xi’ Phi Gamma P /\
syncR Xi’’ Phi Gamma Q ;

syncR Xi Phi Gamma (or P Q) :=
exists Xi’ C, orExpert Xi Xi’ C /\ (
(C = left /\ syncR Xi’ Phi Gamma P) \/
(C = right /\ syncR Xi’ Phi Gamma Q) ) ;

syncL Xi Phi Gamma (imp P Q) G :=
exists Xi’ Xi’’, impExpert Xi Xi’ Xi’’ /\
syncL Xi’ Phi Gamma Q G /\
syncR Xi’’ Phi Gamma P ;

syncL Xi Phi Gamma (imp P Q) G :=
exists Xi’ Xi’’, impExpert’ Xi Xi’ Xi’’ /\
syncR Xi’’ Phi Gamma P /\
syncL Xi’ Phi Gamma Q G ;

syncR Xi Phi Gamma tt :=
ttExpert Xi ;

10.4 Figure The µLJF a kernel in Abella (continued).
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syncL Xi Phi Gamma (all P) G :=
exists Xi’ T, allExpert Xi Xi’ T /\
syncL Xi’ Phi Gamma (P T) G ;

syncR Xi Phi Gamma (some P) :=
exists Xi’ T, someExpert Xi Xi’ T /\
syncR Xi’ Phi Gamma (P T) ;

syncR Xi Phi Gamma (eq T T) :=
eqExpert Xi ;

syncL Xi Phi Gamma (nu B T) (frz (nu B T)) :=
initLExpert Xi ;

syncL Xi Phi Gamma (nu B T) G :=
exists Xi’, unfoldLExpert Xi Xi’ /\
syncL Xi’ Phi Gamma (B (nu B) T) G ;

syncR Xi Phi Gamma (mu B T) :=
exists Idx, initRExpert Xi Idx /\
member_ctx (kvp Idx (mu B T)) Phi ;

syncR Xi Phi Gamma (mu B T) :=
exists Xi’, unfoldRExpert Xi Xi’ /\
syncR Xi’ Phi Gamma (B (mu B) T) ;

async Xi Phi Gamma (cons_bool C Delta) G :=
exists Xi’ Idx, negative C /\
storeLClerk Xi Xi’ Idx /\
async Xi’ Phi (cons_ctx (kvp Idx C) Gamma) Delta G ;

async Xi Phi Gamma nil_bool (unk G) :=
exists Xi’, positive G /\
storeRClerk Xi Xi’ /\
async Xi’ Phi Gamma nil_bool (sto G) ;

async Xi Phi Gamma nil_bool G :=
exists Xi’ Idx C ?1, (G = (sto ?1) \/ G = (frz ?1)) /\
decideLClerk Xi Xi’ Idx /\
member_ctx (kvp Idx C) Gamma /\
syncL Xi’ Phi Gamma C G ;

async Xi Phi Gamma nil_bool (sto G) :=
exists Xi’, decideRClerk Xi Xi’ /\
syncR Xi’ Phi Gamma G ;

syncL Xi Phi Gamma C G :=
exists Xi’, positive C /\
releaseLExpert Xi Xi’ /\
async Xi’ Phi Gamma (cons_bool C nil_bool) G ;

syncR Xi Phi Gamma G :=
exists Xi’, negative G /\
releaseRExpert Xi Xi’ /\
async Xi’ Phi Gamma nil_bool (unk G).

10.5 Figure The µLJF a kernel in Abella (finished).
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Type andClerk cert -> cert -> prop.
Type impClerk cert -> cert -> prop.
Type ffClerk cert -> prop.
Type ttClerk cert -> cert -> prop.
Type allClerk cert -> (i -> cert) -> prop.
Type someClerk cert -> (i -> cert) -> prop.
Type eqClerk cert -> cert -> prop.
Type unfoldLClerk cert -> cert -> prop.
Type unfoldRClerk cert -> cert -> prop.
Type freezeRClerk cert -> cert -> prop.
Type orClerk cert -> cert -> cert -> prop.
Type freezeLClerk cert -> cert -> idx -> prop.
Type indClerk cert -> cert -> (i -> cert)

-> (i -> bool) -> prop.
Type coindClerk cert -> cert -> (i -> cert)

-> (i -> bool) -> prop.

Type andExpert cert -> cert -> cert -> prop.
Type orExpert cert -> cert -> choice -> prop.
Type impExpert cert -> cert -> cert -> prop.
Type impExpert’ cert -> cert -> cert -> prop.
Type ttExpert cert -> prop.
Type allExpert cert -> cert -> i -> prop.
Type someExpert cert -> cert -> i -> prop.
Type eqExpert cert -> prop.
Type initLExpert cert -> prop.
Type unfoldLExpert cert -> cert -> prop.
Type initRExpert cert -> idx -> prop.
Type unfoldRExpert cert -> cert -> prop.

Type decideLClerk cert -> cert -> idx -> prop.
Type decideRClerk cert -> cert -> prop.
Type releaseLExpert cert -> cert -> prop.
Type releaseRExpert cert -> cert -> prop.
Type storeLClerk cert -> cert -> idx -> prop.
Type storeRClerk cert -> cert -> prop.

10.6 Figure The FPC signature of µLJF a in Abella. Clerk and expert predicates
must adhere to this hypothetical specification. If these predicates are given in
λProlog, it suffices to change the type constructors to type and the target types
to o; in this case, the separate signature can be given.
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numbers of arguments, therefore obtaining a universal encoding of the connec-
tives. When it comes to quantification, we are not so lucky. In the kernel for
the µLJF a logic—as with LKF a before it—the object logic features quantification
over the type of terms only. Even if all primitive kinds are reflected on the
type i, arrow types cannot be modeled by this device alone—in fact, simple
types are required to study the metatheory of interesting languages, as well as
formalisms like the π-calculus. In the absence of polymorphism in Abella, a
succinct encoding is not possible. A workable if unsatisfying solution involves
the definition of separate sets of quantifiers at different types (using exclusively i
and the arrow), encoding the inference rules for quantifiers in the kernel once
for each type at which quantification is supported, and likewise cloning clerk and
expert definitions. A summary of changes is given in Figure 10.7.

In second and last place, the addition of nominal abstraction to the logic,
discussed in Section 9.4, must also be reflected in the kernel. For this we use a
technique through which nominal variables are explicitly represented as local
context with scope at the level of formulas. The encoding we used is based on
based on the explicit representation of sequents developed by Miller and Tiu
(2002); McDowell and Miller (2002)—we retain the terminology even though in
our context it is no longer used to record eigenvariables. The resulting kernel is
shown in Figure 10.8.

Under this regime, formulas are abstracted over a type which represents nom-
inal variables as projections over the term of types of a counter stack: fst rst,
fst rst rst, etc. When pattern matching a formula at the head (i.e., conclu-
sion) of an inference rule, its components are themselves formula abstractions
to which the abstraction variable is propagated. This extends to every inference
rule in the system, with some representative examples detailed in Figure 10.9. All
four inference rules for nabla, presented in Figure 9.8, are treated identically and
transparently—in the sense that their are invisible to the FPC framework. In each
case, a new nominal variable is generated by projecting the stack of rst to the
type of terms through i, and a new rst is added to the stack for the continuation.
However, pattern matching in this encoding generates unification problems that
fall outside the fragment of pattern unification supported by Abella and Bedwyr—
which, failing to find a solution, will be unable to perform any checking with
this kernel. Despite this difficulty, the problems have simple solutions, which an
extension of the unification framework (presented in Section 13.2) restores.
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%% Logic

% Argument coercions for argument lists
Type arg_ii (i -> i) -> i.

% Logical constants
Type all_ii, some_ii ((i -> i) -> bool) -> bool.

% Polarity snippets
negative (all_ii P) ;
positive (some_ii P) ;

%% Mocked FPC signature

Type allExpert_ii cert -> cert -> (i -> i) -> prop.
Type someExpert_ii cert -> cert -> (i -> i) -> prop.
Type allClerk_ii cert -> ((i -> i) -> cert) -> prop.
Type someClerk_ii cert -> ((i -> i) -> cert) -> prop.

%% Kernel

syncL Xi Phi Gamma (all_ii P) G := exists Xi’ T,
allExpert_ii Xi Xi’ T /\
syncL Xi’ Phi Gamma (P T) G ;

syncR Xi Phi Gamma (some_ii P) := exists Xi’ T,
someExpert_ii Xi Xi’ T /\
syncR Xi’ Phi Gamma (P T) ;

syncL Xi Phi Gamma (all_ii P) G := exists Xi’ T,
allExpert_ii Xi Xi’ T /\
syncL Xi’ Phi Gamma (P T) G ;

syncR Xi Phi Gamma (some_ii P) := exists Xi’ T,
someExpert_ii Xi Xi’ T /\
syncR Xi’ Phi Gamma (P T) ;

10.7 Figure Extensions to the encoding of the µLJF a logic to support polymor-
phic quantification in Abella. For each supported type, new connectives with
their polarities, argument list contents, clerks and experts, and type-specific in-
stances of the general inference rules are cloned. Here we show the additions for
quantification over the arrow type i → i.
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% Explicit eigenvariable encoding
Kind evs type.
Type fst evs -> i.
Type rst evs -> evs.

% List types, with built-in abstraction over evs
Kind list_bool type.
Type nil_bool list_bool.
Type cons_bool (evs -> bool) -> list_bool -> list_bool.

% Object-level encoding of nabla, without polarity
Type nabl (i -> bool) -> bool.

% Kernel with treatment of nabla
Define async : cert -> list_ctx -> list_ctx ->

list_bool -> goal -> prop,
syncL : cert -> list_ctx -> list_ctx ->

(evs -> bool) -> goal -> prop,
syncR : cert -> list_ctx -> list_ctx

-> (evs -> bool) -> prop by

async Xi Phi Gamma (cons_bool (l\ nabl (P l)) Delta) G :=
async Xi Phi Gamma

(cons_bool (l\ P (rst l) (fst l)) Delta) G ;

async Xi Phi Gamma nil_bool (unk (l\ nabl (P l))) :=
async Xi Phi Gamma nil_bool (unk (l\ P (rst l) (fst l))) ;

syncL Xi Phi Gamma (l\ nabl (P l)) G :=
syncL Xi Phi Gamma (l\ P (rst l) (fst l)) G ;

syncR Xi Phi Gamma (l\ nabl (P l)) :=
syncR Xi Phi Gamma (l\ P (rst l) (fst l)) ;

% Kernel interface
Define prove : cert -> bool -> prop by

prove Cert Form := exists Cert’,
unmarshal Cert Cert’ /\
async Cert’ nil_ctx nil_ctx nil_bool (unk (l\ Form)).

10.8 Figure Extensions to the µLJF a kernel written in Abella to support nabla.
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% Some standard and interesting cases
syncR Xi Phi Gamma (l\ and (P l) (Q l)) := exists Xi’ Xi’’,

andExpert Xi Xi’ Xi’’ /\
syncR Xi’ Phi Gamma P /\
syncR Xi’’ Phi Gamma Q ;

async Xi Phi Gamma nil_bool (unk (l\ all (P l))) :=
exists Xi’, allClerk Xi Xi’ /\ forall x,
async (Xi’ x) Phi Gamma nil_bool (unk (l\ P l x)) ;

syncR Xi Phi Gamma (l\ some (P l)) := exists Xi’ T,
someExpert Xi Xi’ T /\
syncR Xi’ Phi Gamma (l\ P l T) ;

async Xi Phi Gamma (cons_bool (l\ mu (B l) (T l)) Delta) G
:= exists Xi’,
unfoldLClerk Xi Xi’ /\
async Xi’ Phi Gamma

(cons_bool (l\ (B l) (mu (B l)) (T l)) Delta) G ;

async Xi Phi Gamma (cons_bool (l\ mu (B l) (T l)) Delta) G
:= exists Xi’ Xi’’ S,
indClerk Xi Xi’ Xi’’ S /\

async Xi’ Phi Gamma
(cons_bool (l\ S (T l)) Delta ) G /\

forall x, async (Xi’’ x) Phi Gamma
(cons_bool (l\ (B l) S x) nil_bool) (unk (l\ S x)) ;

10.9 Figure Extensions to the µLJF a kernel written in Abella to support nabla
(continued).
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10.4 Examples

An interesting example adapts the pairing combinator introduced in Section 5.2
for the LKF a system, to the present µLJF a in Figure 10.10. The port is completely
straightforward and presents no difficulties. It is important to note that a defini-
tion of the pairing clerks and experts in Abella is, by itself, useless—it requires
other certificate definitions upon which to operate. In this closed world, then, it is
not possible to write a self-contained definition of the FPC that is at the same time
capable of interacting with the FPCs that use it. Consequently FPC definitions
in Abella appear more (syntactically) complex than they (semantically) are. The
solution to this problem is to use the specification level and write and compose
definitions as λProlog modules by one of two means:

1. Modifying the kernel to accept FPC definitions at the specification level
instead of at the reasoning level.

2. Generating FPC definitions at the reasoning level from definitions at the
specification level by a preprocessor.

Either way, the specification in λProlog is not only much shorter, but also
more legible and modular. Because µLJF a is a two-sided calculus, the size of an
FPC definition roughly doubles that of a similar one-sided calculus; this point is
taken up again in Section 12.4.

10.5 Notes

Some of our developments on FPC kernels originate in work on Bedwyr and then
ported to Abella, which is the one system that remains in active development.
Bedwyr supports automation of proof search to a greater degree; aspects of this
behavior could be built into Abella, to which end Chapter 13 offers an advanced
preliminary study. The µLJF a kernel was originally developed for the work
presented in Blanco and Miller (2015) and subsequently refined. Support for
nabla was added with a view towards the work presented in Blanco et al. (2017b).

In our discussion of quantifier polymorphism and the applicable workarounds,
the battery of changes is limited to the µLJF a system. When we exercise the proof
system indirectly by writing Abella programs and reifying them into µLJF a ,
this last step—for which refer to Section 13.4—will also need to be extended.
Some versions of LKF a and LJF a kernels written in λProlog (Chihani et al.,
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2016b) make use of this language’s polymorphic features, though all the versions
contemplated in this work are monomorphic.

A point by which we have set little store is the definition of a certificate
transformer at the entry point of the kernel which is charged with performing
marshaling. This functionality is supplied to streamline the definition of compact,
initial forms of certificates, which are expanded to their full form before the start
of checking proper. This is little more than a convenience, but removes from the
user the burden of initializing bookkeeping structures in which they as clients
have no direct interest. Marshaling will be used to define compact outline formats
in Chapter 11. By default, the marshaling predicate can simply be taken to be the
identity relation.

Proof scripts in Abella apply tactics to indirectly invoke the inference rules
of the underlying logic G. Upon success, a proof script generates a witness
that records a trace of information that morally resembles the elaborations of
Chapter 5—specifically Section 5.4—and could serve as the bedrock of thorough
certification of Abella proofs. Abella lacks a language of tacticals to compose
tactics from other tactics. All these aspects can be handled inside the FPC
framework and are treated in further detail in Chapter 13.

If model checking can be seen as deduction, its proof evidence may also be
expressed as proof certificates, as Heath and Miller (2015, 2017) have shown.
Previous applications of model checking include the work of Mundhenk and
Weiß (2010). Tabling has been studied, among others, by Ramakrishna et al.
(1997); Yang et al. (2004); Tiu (2005).

At the beginning we compared model checking and theorem proving in terms
of the relation between satisfiability and provability. It is worth observing that
a similar connection has been observed in Chapter 7 between satisfiability and
unsatisfiability—and, more generally, the notion of refutation.
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% Signature
type idx2 idx -> idx -> idx.
type pair# cert -> cert -> cert.

% Module.
ffClerk (pair# L0 R0) :-

ffClerk L0, ffClerk R0.
ttClerk (pair# L0 R0) (pair# L1 R1) :-

ttClerk L0 L1, ttClerk R0 R1.
andClerk (pair# L0 R0) (pair# L1 R1) :-

andClerk L0 L1, andClerk R0 R1.
orClerk (pair# L0 R0) (pair# L1 R1) (pair# L2 R2) :-
orClerk L0 L1 L2, orClerk R0 R1 R2.

impClerk (pair# L0 R0) (pair# L1 R1) :-
impClerk L0 L1, impClerk R0 R1.

eqClerk (pair# L0 R0) (pair# L1 R1) :-
eqClerk L0 L1, eqClerk R0 R1.

ttExpert (pair# L0 R0) :-
ttExpert L0, ttExpert R0.

andExpert (pair# L0 R0) (pair# L1 R1) (pair# L2 R2) :-
andExpert L0 L1 L2, andExpert R0 R1 R2.

orExpert (pair# L0 R0) (pair# L1 R1) C :-
orExpert L0 L1 C, orExpert R0 R1 C.

impExpert (pair# L0 R0) (pair# L1 R1) (pair# L2 R2) :-
impExpert L0 L1 L2, impExpert R0 R1 R2.

impExpert’ (pair# L0 R0) (pair# L1 R1) (pair# L2 R2) :-
impExpert’ L0 L1 L2, impExpert’ R0 R1 R2.

eqExpert (pair# L0 R0) :-
eqExpert L0, eqExpert R0.

allClerk (pair# L0 R0) (x\ pair# (L1 x) (R1 x)) :-
allClerk L0 L1, allClerk R0 R1.

someClerk (pair# L0 R0) (x\ pair# (L1 x) (R1 x)) :-
someClerk L0 L1, someClerk R0 R1.

allExpert (pair# L0 R0) (pair# L1 R1) T :-
allExpert L0 L1 T, allExpert R0 R1 T.

someExpert (pair# L0 R0) (pair# L1 R1) T :-
someExpert L0 L1 T, someExpert R0 R1 T.

10.10 Figure The pairing meta-FPC in Abella implemented at the specification level.
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indClerk (pair# L0 R0)
(pair# L1 R1) (x\ pair# (L2 x) (R2 x)) S :-

indClerk L0 L1 L2 S, indClerk R0 R1 R2 S.
coindClerk (pair# L0 R0)

(pair# L1 R1) (x\ pair# (L2 x) (R2 x)) S :-
coindClerk L0 L1 L2 S, coindClerk R0 R1 R2 S.

unfoldLClerk (pair# L0 R0) (pair# L1 R1) :-
unfoldLClerk L0 L1, unfoldLClerk R0 R1.

unfoldRExpert (pair# L0 R0) (pair# L1 R1) :-
unfoldRExpert L0 L1, unfoldRExpert R0 R1.

unfoldLExpert (pair# L0 R0) (pair# L1 R1) :-
unfoldLExpert L0 L1, unfoldLExpert R0 R1.

unfoldRClerk (pair# L0 R0) (pair# L1 R1) :-
unfoldRClerk L0 L1, unfoldRClerk R0 R1.

freezeLClerk (pair# L0 R0) (pair# L1 R1) (idx2 IL IR) :-
freezeLClerk L0 L1 IL, freezeLClerk R0 R1 IR.

initRExpert (pair# L0 R0) (idx2 IL IR) :-
initRExpert L0 IL, initRExpert R0 IR.

freezeRClerk (pair# L0 R0) (pair# L1 R1) :-
freezeRClerk L0 L1, freezeRClerk R0 R1.

initLExpert (pair# L0 R0) :-
initLExpert L0, initLExpert R0.

storeLClerk (pair# L0 R0) (pair# L1 R1) (idx2 IL IR) :-
storeLClerk L0 L1 IL, storeLClerk R0 R1 IR.

decideLClerk (pair# L0 R0) (pair# L1 R1) (idx2 IL IR) :-
decideLClerk L0 L1 IL, decideLClerk R0 R1 IR.

storeRClerk (pair# L0 R0) (pair# L1 R1) :-
storeRClerk L0 L1, storeRClerk R0 R1.

decideRClerk (pair# L0 R0) (pair# L1 R1) :-
decideRClerk L0 L1, decideRClerk R0 R1.

releaseLExpert (pair# L0 R0) (pair# L1 R1) :-
releaseLExpert L0 L1, releaseLExpert R0 R1.

releaseRExpert (pair# L0 R0) (pair# L1 R1) :-
releaseRExpert L0 L1, releaseRExpert R0 R1.

10.11 Figure The pairing meta-FPC in Abella implemented at the specification level
(continued).
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11 Proof outlines

11.1 Frege proofs
Consider the familiar notion of Frege proofs—also known as Hilbert proofs—: lists
of formulas such that every formula in that list is either an axiom or follows from
previously listed formulas using an inference rule. This notion of inference rule, as
used in this and other styles of proof, is, usually, greatly restricted by limitations of
human psychology, and by what skeptics are willing to trust. Typically, checking
the application of inference rules involves simple syntactic checks.

11.1.1 Example Take the following rule for set inclusion, which states that, given a
set A and a strict subset B , we may conclude B :

A A ⊃ B
B

The applicability of this rule requires deciding on whether or not two premises
have the structure A and A ⊃ B , and the conclusion has the structure B .

The introduction of automation into theorem proving has allowed us to
engineer inference steps that are significantly more substantial, and can comprise
both computation and deduction. As we note extensively, recent proof theoretic
results allow us to extend the literature of theorem proving from being a study
of minuscule inference rules—such as modus ponens in Hilbert-style systems, or
Gentzen-style introduction rules—to a study of large-scale, formally defined,
synthetic inference rules. In this chapter, we describe a particular way to specify
and check such synthetic inference rules as a way to inductively prove lemmas
from previous lemmas, in a style close to that in which proofs are written inside
proof assistants like Coq, Isabelle or Abella.

Let us return to the world of Frege proofs. In what follows, we will not speak
of axioms, as the concept is redundant and can be subsumed by inference rules:

189
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an axiom can be generally described as an inference rule that depends on zero
previous lemmas. Moreover, when we speak of a formula that is a member of
a list of formulas comprising a Frege proof, we shall usually refer to it simply
as a lemma. Presently, we will consider the relationship between this linearized
style and more structured, arborescent schemes—closer to the proof trees of the
sequent calculus—and its effects on proof checking.

The rest of the chapter is structured as follows. Section 11.2 presents a
motivating example of the kind of proof development used throughout the
chapter to guide out designs. Section 11.3 introduces the concept of proof outlines
as high-level descriptions of proofs and discusses their logical interpretation.
Section 11.4 translates that interpretation into the logic, augmenting the µLJF a

proof system and the checkers that implement it. Section 11.5 describes the first
of two families of proof outlines, a lightweight yet flexible collection of proof
descriptors. Section 11.6 elaborates on the previous section in a second family
of outlines that offers finer control akin to that found in the proof scripts of
proof assistants. Section 11.7 revisits the cases study of Section 11.2 and reviews a
number of interesting applications of proof outlines. Section 11.8 concludes the
chapter.

11.2 Case study

In this section, we will present a fundamental motivating example from which
many other use cases follow. Consider defining the addition of natural num-
bers using the standard inductive relational specification in Abella, shown in
Figure 11.1. Here, the expected inductive definitions are given together with
a predicate for typing judgments about naturals, whose utility will immediately
become apparent.

Once these definitions are introduced, routinely we will find that we need to
establish several properties of the addition relation immediately before progressing
to more interesting work, e.g., that addition is determinate and total. Anyone
familiar with proving such theorems knows that their proofs are simple: basically,
the obvious induction leads quickly to a final proof. Figure 11.2 shows how this
is done in Abella. The necessity for typing judgments now becomes clear: unlike
systems like Coq, Abella can only induct on hypotheses, even if typed variables
avail in the context. The direct Abella equivalent involves applying induction on
a predicate that follows the full inductive structure of the kind in question, i.e., a
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Kind nat type.
Type z nat.
Type s nat -> nat.

Define nat : nat -> prop by
nat z ;
nat (s N) := nat N.

Define plus : nat -> nat -> nat -> prop by
plus z N N ;
plus (s N) M (s P) := plus N M P.

11.1 Figure Relational specification of natural numbers and addition on them in
standard Abella at the reasoning level. Compare this with the specification level
of λProlog in Figure 4.2.

typing judgment that takes an arbitrary member of its typed, validates its structure
by exhaustive recursion through its inductively defined constructors, and succeeds.
(Clearly, it is possible to derive these predicates mechanically, though Abella does
not provide this facility.)

Of course, if we wish to prove more facts about addition, we may need to
come up with and prove some lemma before simple inductions will work. For
example, proving the commutativity of addition makes use of two additional
lemmas, as shown in Figure 11.3. These three theorems, as well as those in
Figure 11.2, all have the same high-level proof outline: apply induction with
the obvious invariant, apply some previously proved lemmas and the inductive
hypothesis, and deal with any remaining branches by case analysis.

The fact that many theorems can be proved by resorting to this pattern of
induction-lemmas-cases—and, indeed, whole developments are routinely organized
around it—is well known and built into existing theorem provers. For example,
the waterfall model of the Boyer-Moore theorem prover (Boyer and Moore, 1979)
proves such theorems in a similar fashion, but operating on inductive definitions
of functions. In a similar relational style as that of Abella, the Twelf system
(Pfenning and Schürmann, 1999) can often prove automatically certain properties,
such as the statements that some relations are total and functional, using a series
of similar steps to those described here (Schürmann and Pfenning, 2003). The
tactics and tacticals of LCF have also been used to implement procedures that
attempt to find proofs using this kind of process (Wilson et al., 2010). Finally, and
closer to the present approach, the TAC procedure of Baelde et al. (2010) attempts
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Theorem plustotal :
forall N, nat N -> forall M, nat M ->
exists S, plus N M S.

induction on 1. intros. case H1.
% Base case
search.
% Inductive case
apply IH to H3. apply H4 to H2. search.

Theorem plusdeterm :
forall N, nat N -> forall M, nat M ->
forall S, plus N M S -> forall T, plus N M T -> S = T.

induction on 1. intros. case H1.
% Base case
case H3. case H4. search.
% Inductive case
case H3. case H4. apply IH to H5.
apply H8 to H2. apply H9 to H6. apply H10 to H7. search.

11.2 Figure Simple properties of addition in Abella. Each of totality and determin-
ism follow directly from an induction on the first argument of the plus relation
and routine case analysis and applications on hypotheses in the context.

to apply precisely such a scheme, although in a rather fixed and inflexible fashion,
which has not continued beyond its original development.

Here, we endeavor to show how to describe the simple rules that can be used
to prove a given lemma based on previously proved lemmas. Specifically, we will
define proof certificates that describe the structure of the intended proof outlines
that we expect and then run a proof checker on those certificates to see whether
the certificate can be elaborated into a full proof of the candidate theorem, or
not. Since the design of the certificate language is based on the proof theory of
synthetic connectives and since the proof checker we use employs both unification
and backtracking search, this approach to describing high-level inference rules is
both highly flexible and natural.

11.3 Certificate design

Imagine telling a colleague: “The proof of this theorem follows by a simple
induction and the three lemmas we just proved.” You may or may not be correct
in such an assertion since: (a) the proposed theorem may not be provable; and
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Theorem plus0com :
forall N, nat N -> plus N z N.

induction on 1. intros. case H1.
% Base case
search.
% Inductive case
apply IH to H2. search.

Theorem plusscom :
forall M, nat M -> forall N, nat N ->
forall P, plus M N P -> plus M (s N) (s P).

induction on 1. intros. case H1.
% Base case
case H3. search.
% Inductive case
case H3. apply IH to H4. apply H6 to H2. apply H7 to H5.
search.

Theorem pluscom :
forall N, nat N -> forall M, nat M ->
forall S, plus N M S -> plus M N S.

induction on 1. intros. case H1.
% Base case
case H3. apply plus0com to H2. search.
% Inductive case
case H3. apply IH to H4. apply H6 to H2. apply H7 to H5.
apply plusscom to H2. apply H9 to H4. apply H10 to H8.
search.

11.3 Figure Commutativity of addition in Abella. A proof by simple induction
relies on two auxiliary lemmas, one for each case of the induction on natural
numbers (zero and successor). Each of the two lemmas is proved by simple
induction, as is the main theorem—with the proviso that now not only hypotheses
in the context, but also the auxiliary lemmas may be applied.
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(b) the simple proof you describe may not exist. In any case, it is clear that there
is a rather simple, high-level algorithm to follow that will search for such a proof.

Moreover, this corresponds with standard mathematical practice, in which
“simple proofs” may be described schematically and with minimum clutter, concen-
trating on interesting cases and application of useful lemmas. In this respect, proof
outlines are not only of utility to machine checkers, but also to mathematicians.
The pedantry inherent to formal developments spawns a large number of shal-
low, mostly unremarkable proof obligations, most of which can be mechanically
dispatched by a small number of common proof patterns.

In this section, we show how the FPC framework can formally specify such an
algorithm. Following the paradigm of focused proof systems for first-order logic,
there is a clear, high-level outline to follow for doing proof search for cut-free
proofs: first do all invertible inference rules and then select a formula on which to
do a series of non-invertible choices. This latter phase ends when one encounters
invertible inference rules again or the proof ends. In the setting we describe here,
there are two significant complicating features with which to be concerned.

1. Treating the induction rule. The invertible phase is generally treated as a
place where no important choices in the search for a proof appear. When
dealing with a formula that is a fixed point, however, this is no longer
true. As described in Section 9.2, we treat a fixed point expression either by
freezing—for which see also Baelde (2012)—, unfolding, or using an invariant
to perform an induction—here, this will be extended with the possibility
of deriving the “obvious” inductive invariant. These options are directly
connected to the rules introduced in Figure 9.3. In particular:

(a) We can choose to “freeze” the fixed point, meaning that we choose
not to induct on it.

(b) We can set up an inductive step. This second choice is in turn divided
into three sub-choices:

i. We can choose to simply unfold a fixed point definition. In
fact, the concept of unfolding follows as a direct consequence of
applying induction.

ii. We can take an explicit induction offered by the author in the
certificate. In the context of this discussion, a human actor will
seldom need to make use of this option—very often, the obvious
invariant (for which see below) is all one needs. However, the
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author of a certificate can also be a theorem prover or a proof
checker. In this latter case of machine-generated proofs, an explicit
invariant may be routinely inserted into a certificate. These
questions are treated in Section 11.4.

iii. We can select the surrounding sequent context to be the actual
inductive invariant. This corresponds to the notion of obvious or
immediate invariant.

2. Lemmas must be invoked. The application of lemmas into a proof out-
line is critical to the kind of linear proof development we have in mind.
Although the focusing framework does not restrict the shape of lemmas, we
consider here the effect of focused proof construction with a lemma that is a
Horn clause. For example, the three lemmas addressing the commutativity
of addition in Figure 11.2 are Horn clauses.

11.3.1 Example Consider applying a Horn lemma of the form ∀x̄ .[A1 ⊃ A2 ⊃ A3]
in proving the sequent Γ ` E . Since the formulas A1, A2, and A3 are polarized
positively, we can design the proof outline (simply by only allowing fixed points
to be frozen during this part of the proof) so that Γ ⇓ ∀x̄ .[A1 ⊃ A2 ⊃ A3] ` E
is provable if and only if there is a substitution θ for the variables in the list of
variables x̄ such that θA1 and θA2 are in Γ and the sequent Γ, θA3 ` E is provable.
The application of such a lemma is then seen as forward chaining: if the context
Γ contains two atoms (i.e., frozen fixed points), then add a third.

The main issue that a certificate-as-proof-outline therefore needs to provide
is some indication of what lemmas should be used during the construction of a
proof. The following natural specifications of collections of supporting lemmas—
starting from the least explicit to the most explicit—are easily written within our
framework:

1. A bound on the number of lemmas that can be used to finish the proof,
chosen freely from the collection of previously proven and known lemmas.

2. A list of possible lemmas to use in finishing the proof. These can be assumed
as hypotheses during the proof; a separate proof for each lemma is required
as well.

3. A tree of lemmas, indicating which lemmas are applied following the
conjunctive structure of the remaining proof.
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Each of these three categories refine the previous one with additional in-
formation on which lemmas to use and where, thereby reducing the amount
of nondeterminism and enabling faster proofs—or disproofs of the proof out-
line. Additional refinements are possible and can bring outlines even closer to
the proof scripts that are commonly written as avatars for proofs in interactive
theorem provers. Before we study the encoding of these procedures as proof
certificates, we need to consider the extensions imposed on the proof system—and
its implementation—by the two distinguishing features of this proposal: lemmas
and obvious inductions. Augmenting contexts as illustrated in Example 11.3.1
is critical for eventually enabling obvious inductions to succeed in completing a
proof. In this way, the focused proof system can easily be used to apply lemmas.
All this will be the subject of the next section.

11.4 Logic support

In general, it appears that (co)inductive invariants are often complex, large, and
tedious structures to build and use. Thus, it is most likely that we need to
develop a number of techniques by which invariants are not built directly but are
rather implied by alternative reasoning principles. For example, Abella allows
the user to do induction not by explicitly entering an invariant but rather by
performing a certain kind of guarded, circular reasoning. Closer to our approach,
Coq automatically derives induction principles from inductive definitions, but
also allows users to define their own custom inductions.

In the present context, we consider a single approach to specifying invariants.
Let us consider the case of induction on a least fixed point, i.e., on the right-hand
side of the sequent during the asynchronous phase. Recall the associated inference
rules in Figures 9.3 and 9.6, namely the µLJF rule for induction (i.e., on least
fixed points; we omit the frozen zones for succinctness):

Γ ⇑ S t̄,Θ ` R Γ ⇑ B S ȳ ` S ȳ ⇑
Γ ⇑ µB t̄,Θ ` R inductL

The principle we now introduce involves taking the conclusion of that rule
Γ ⇑ µB t̄,Θ ` R and abstracting out the fixed point expression to yield the obvious
invariant, which we write Ŝ . This invariant is extracted from the conclusion in
such a way that one of the premises, Γ ⇑ S t̄,Θ ` R, has an easy proof—in fact, it
is made trivial by definition of Ŝ . As a result, only the second premise related to
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the induction rule needs to be properly proved. The following augmented rule
is used to generate and check whether or not the obvious induction invariant
can be used. The resulting extensions are presented in Figure 11.4. Sequents are
strenghtened with a “zone” Σ which represents the list of eigenvariables in the
sequent, required to compute obvious invariants.

The development of obvious coinduction is completely symmetric. In both
cases, there is the choice of whether to omit or maintain the branch that becomes
redundant upon application of the obvious invariant. Pruning said branch from
the sequent calculus requires (a) enriching the calculus with the computation of
said obvious invariants (thereby becoming part of any kernel implementing this
logic); and (b) furnishing evidence of the provability of the obvious branch in the
general case (given in Figure 11.5). Figure 11.4 shows both possible formulations
of the resulting calculus, and their augmentations with the corresponding clerks
are given in Figure 11.6. From the point of view of the writer of proof certificates,
the fact that the left premises of the full rules follow directly from the obvious
invariants allows us to confuse both presentations. That is, without pruning
the trivial branch, the kernel can perform proof search to check this premise—
which is guaranteed to succeed—while clerks need only produce a continuation
certificate for the non-trivial branch, effectively as if the obvious premise was
discharged as a proof obligation.

After developing the necessary logic support, all that remains is to integrate
them in the proof checker developed in Section 9.3. The extensions are neatly
divided in two groups of changes paralleling the discussion in Section 11.3:

1. The obvious (co)induction rules are added as variants of, respectively,
standard (co)induction. The kernel must be extended with the Σ zone for
eigenvariables, and the new rules come with specialized code to compute
obvious (co)invariants. There are two technical disadvantages to this last
addition. First, we inject relatively complex, non-declarative code into the
trusted kernel—although we are under no obligation to trust it if we verify
both premises for each involved rule, i.e., if we rule out the single-premise
rules in Figure 11.6. Second, and more serious, there is no clean, declarative
way to maintain a list of eigenvariables in the presence of eigenvariable
unification: under this discipline, the obvious rules are only meaningful
in the initial stage of a proof, before any such operations (triggered by
the equality rules) pollute the Σ zone. In particular, the scheme does not
support nested obvious inductions.
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asynchronous introduction rules

{y} ∪ Σ; Γ ⇑ ` [y/x ]B ⇑
Σ; Γ ⇑ ` ∀x .B ⇑

{y} ∪ Σ; Γ ⇑ [y/x ]B,Θ ` R
Σ; Γ ⇑ ∃x .B,Θ ` R

Σ; Γ ⇑ S t̄,Θ ` R {ȳ}; Γ ⇑ B S ȳ ` S ȳ ⇑

Σ; Γ ⇑ µB t̄,Θ ` R
inductL

Σ; Γ ⇑ Ŝ t̄,Θ ` R {ȳ}; Γ ⇑ B Ŝ ȳ ` Ŝ ȳ ⇑ †

Σ; Γ ⇑ µB t̄,Θ ` R
obviousL

{ȳ}; Γ ⇑ B Ŝ ȳ ` Ŝ ȳ ⇑ †

Σ; Γ ⇑ µB t̄,Θ ` R
obviousL′

† Ŝ := λx .∀Σ.x̄ = t̄ ⊃
(∧
Θ
)
⊃ R

Σ; Γ ⇑ ` S t̄ ⇑ {ȳ}; ⇑ S ȳ ` BSȳ ⇑
Σ; Γ ⇑ ` νBt̄ ⇑

inductR

Σ; Γ ⇑ ` Ŝ t̄ ⇑ {ȳ}; ⇑ Ŝ ȳ ` BŜ ȳ ⇑ ‡

Σ; Γ ⇑ ` νBt̄ ⇑
obviousR

{ȳ}; ⇑ Ŝ ȳ ` BŜ ȳ ⇑ ‡

Σ; Γ ⇑ ` νBt̄ ⇑
obviousR′

‡ Ŝ := λx .∃Σ.x̄ = t̄ ∧
(∧
Γ
)

11.4 Figure Extensions to the µLJF focused proof system needed to support obvious
inductions in proof outlines, introduced informally in Baelde et al. (2010). A
sequent is now prefixed by Σ, its set of eigenvariables. Asynchronous quantifiers
add new eigenvariables and (not shown here) asynchronous equality (possibly)
unifies them. Fixed points are endowed with a new obvious (co)induction rule,
each with two variants: with or without checking of the obvious premise. The
provisos define the obvious invariant that trivially satisfies the obvious branch.
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11.5 Figure Proof schema of the obvious induction showing how the obvious
branch follows directly from the obvious invariant, i.e., the goal follows from the
obvious invariant and the remaining hypotheses. Because all the components of
the obvious invariant are present in the sequent in complementary positions, all
the branches in the subproof suggest immediate applications of the initial rules. A
proof obligation for the non-trivial branch remains to be satisfied by a proof Π.
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11.6 Figure Extensions to the augmented µLJF a focused proof system needed to
support obvious inductions in proof outlines (Blanco and Miller, 2015). The
new inference rules introduced in Figure 11.4 are augmented with clerks in the
usual way. Note that the premises that involve the body B of the fixed point
take a continuation certificate abstracted over the fresh variable(s) ȳ. The side
conditions † and ‡ that define the obvious (co)invariants are unchanged from
Figure 11.4.



11.5. certificate families: simple outlines 201

2. The treatment of lemmas presents us with two orthogonal choices. First,
do we treat them as assumptions within a proof? Second, do we consider
them separate from the standard storage zones on which the decide rules
operate? Here, the answer to these two questions will be “yes.” A separate
zone Λ, i.e., a map from lemma names to formulas, is threaded throughout
the kernel, and the checker’s interface is enriched with an additional list of
lemmas to populate Λ. The consequence of the first question is that lemma
application will be modeled as a decide rule, and not as a cut rule (which
must come with an inlined proof of the lemma). The consequence of the
second section is the definition of lemma decide rules which operate like
local decide rules, limited to the zone Λ, leaving the old rules unchanged.

It is straightforward to see that all these additions preserve the soundness of the
enriched µLJF a system—by the same elementary reasoning used, say, to prove the
soundness of LKF a with respect to LKF in Theorem 3.2.2. The extensions to the
Abella kernel are summarized in Figure 11.7. The new zones are threaded through
existing code, new inference rules are added and an interface function composes
the initial sequence and populates the zone of lemmas; all other rules remain
otherwise unaltered. The new zones are populated only when new eigenvariables
are generated (Σ) and when the kernel is called with a set of lemmas (Λ). Obvious
inductions rely for the generation of invariants in a significant amount of non-
declarative code to implement the computation of Ŝ in Figure 11.4, which is not
shown here. The rules depicted here are the brief, one-premise rules, which do
not separately check the branch made trivial by the obvious invariants, given that
these are proven to be built correctly, otherwise soundness is endangered. Of
course, in the context of a development, say, in an interactive theorem prover, we
will wish to enforce that a proof be supplied for every lemma used as a hypothesis
at any point in the development. This work of integration will be discussed in
Chapter 13.

11.5 Certificate families: simple outlines

With the client-side requirements for proof outlines established and reflected in the
logic, we turn our attention the actual FPC definitions in two related families of
outline certificates. The first of these families defines what we call simple outlines.
This format aims to be simple to read and write without limiting the proofs that
it can find compared to other, denser representations. Simple outlines do not
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Kind lemma type.
Type lemma idx -> bool -> lemma.

Kind list_lemma type.
Type nil_lemma list_lemma.
Type cons_lemma lemma -> list_lemma -> list_lemma.

Define member_lemma : lemma -> list_lemma -> prop by
member_lemma Lemma (cons_lemma Lemma Rest) ;
member_lemma Lemma (cons_lemma Lemma’ Rest) :=

member_lemma Lemma Rest.

Define async : list_lemma -> cert -> list_i -> list_ctx ->
list_ctx -> list_bool -> goal -> prop,

syncL : list_lemma -> cert -> list_i -> list_ctx ->
list_ctx -> bool -> goal -> prop,

syncR : list_lemma -> cert -> list_i -> list_ctx ->
list_ctx -> bool -> prop by

async Lambda Xi Sigma Phi Gamma
(cons_bool (mu B T) Delta) G := exists Xi’ S,

indClerk’ Xi Xi’ /\
indInvariant’ Sigma Delta G T S /\ forall x,
async Lambda (Xi’ x) (cons_i x nil_i) Phi Gamma

(cons_bool (B S x) nil_bool) (unk (S x)) ;

async Lambda Xi Sigma Phi Gamma
nil_bool (unk (nu B T)) := exists Xi’ S,

coindClerk’ Xi Xi’ /\
coindInvariant’ Sigma Gamma T S /\ forall x,
async Lambda (Xi’ x) (cons_i x nil_i) Phi nil_ctx

(cons_bool (S x) nil_bool) (unk (B S x)) ;

async Lambda Xi Sigma Phi Gamma nil_bool G :=
exists Xi’ Idx C ?1, (G = (sto ?1) \/ G = (frz ?1)) /\
decideLClerk’ Xi Xi’ Idx /\
member_lemma (lemma Idx C) Lambda /\
syncL Lambda Xi’ Sigma Phi Gamma C G ;

Define prove_with_lemmas :
cert -> bool -> list_lemma -> prop by

prove_with_lemmas Cert Form Lemmas := exists Cert’,
unmarshal Cert Cert’ /\
async Lemmas Cert’ nil_i nil_ctx

nil_ctx nil_bool (unk Form).

11.7 Figure Extensions to the µLJF a kernel written in Abella to support both
non-local decides on lemmas and obvious induction and coinduction.
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restrict polarities and use a simple indexing scheme for referring to formulas by
simple, unstructured names, i.e., individual indexes for lemmas can be defined as
nullary constructors of kind idx as needed. Here we are especially interested in
the naming and selection of lemmas, as managed by the client side. The kernel
handles its internal indexing of formulas generated during proof reconstruction
by two related mechanisms:

1. Atoms, i.e., frozen fixed points, are stored on the left—upon freezing—
under a special index idxatom. The initial rule on the left always selects
from this bucket. (Recall that freezing on the right-hand side is a singleton,
and so freezing it does not require an index.)

2. All other formulas are stored on the left under a second dedicated index
idxlocal. The decide rule on the left can either select a “local formula”
or a lemma by any of the mechanisms described below. (Again, storing and
deciding on the right do not require any indexing.)

If greater granularity is required, it is a simple matter to implement it modu-
larly and add it to simple outlines via certificate pairing. For this, see Chapter 5 as
well as its adaptation in Section 10.4. The latter which would need to be extended
with the decide rule on lemmas from Section 11.4; this external piece of informa-
tion requires agreement between the two halves of a certificate pair—unlike local
decides, made independent by paired indexes.

The bulk of the complexity of the FPC definition rests on certificate con-
structors and their limited manipulations by clerks and experts. A first group of
certificate constructors is meant to represent whole proof subtrees, from the root of
the branch down to every leaf of the subtree. In this sense, they are self-contained
and fully manage their own (limited) bookkeeping needs. The following four
constructors are provided:

1. (induction B AU SU AC SC): asynchronously look for the closest
fixed point, apply obvious (co)induction to it and perform bounded search
through apply (as explained next).

2. (inductionS B AU SU AC SC S): asynchronously look for the clos-
est fixed point, apply (co)induction with the supplied invariant and perform
bounded search through apply.

3. (apply B AU SU AC SC): perform bounded search and try to finish
the proof by search.
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4. search: attempt to finish the proof by simple exploration of the tree and
application of initial rules to all branches.

These certificate constructors form a hierarchy that represents the evolution
of the state of the proof: from induction to a number of bipoles—which comprise
the application of lemmas—up to the posited end of the proof. All parameters are
natural numbers representing decreasing counters. Those counters are used to
bound the possible sources of non-terminating behavior in proof search: (a) decide
rules, and (b) fixed point operations. Among the latter, freezing is bounded by
definition and induction is controlled singly by induction and inductionS,
leaving unfolding as the sole related source of unbounded behavior. Bounded
proof search depends on the following set of parameters:

1. Bipole bound: after the current bipole, proof search may proceed up to B ad-
ditional bipoles deeper. The release rule marks the end of a bipole; the rule
is only enabled when the natural number of bipoles can be decremented.

2. Asynchronous unfolding: each bipole after the current one is allowed to
perform up to AU unfolding operations along each branch during the
asynchronous phase.

3. Synchronous unfolding: each bipole after the current one is allowed to
perform up to SU unfolding operations along each branch during the
synchronous phase.

4. Asynchronous unfolding, current bipole: until the end of the current bipole,
up to AC asynchronous unfolding operations may be performed along each
branch during the asynchronous phase.

5. Synchronous unfolding, current bipole: until the end of the current bipole,
up to SC synchronous unfolding operations may be performed along each
branch during the synchronous phase.

The “current bipole” counters AC and SC are technical bookkeeping devices,
initialized respectively to AU and SU at the beginning of each bipole (i.e., on the
release rules). The only reason to write a certificate where the initial current
bipole counters are unequal to the per-bipole bounds would be as a very limited
form of optimization. This unnecessary verbosity is averted by defining mar-
shalled forms of the certificate constructors where only per-bipole counters are
given.
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1. (induction! B AU SU) is expanded to the unmarshalled certificate
(induction B AU SU AU SU), and similarly for inductionS.

2. (apply! B AU SU) is expanded to (apply B AU SU AU SU).

These shorthand forms are closer to the minimal outlines the user may want
to write, but may involve substantial backtracking search. In the first place, these
certificates representing full subtrees leave the choice of which formula to focus
on at each decide rule—lemma or local formula—to the kernel, which in turn
must explore all possibly combinations allowed by its local context and the list
of lemmas given to it. A second source of inefficiency comes from the unfolding
bounds: these must be as large or greater than the needs of the costliest phases,
even if in most cases much smaller bounds suffice.

To address the inefficiencies that arise from the extreme conciseness of the
certificates above—and the laxity they impose on costly backtracking search
throughout the entire proof tree—, a second family of certificate constructors
is presented. The new constructors are written in a continuation-passing style,
or CPS, which can be used to describe the interesting features of a section of a
proof : asynchronous branching, order and choice of lemmas, and local unfolding
bounds. A local description of a region of a proof tree is followed by continuation
certificates. The following constructors are defined:

1. (induction? C): in the asynchronous phase, look for the first available
fixed point and do the obvious (co)induction, then continue the proof using
the continuation certificate C.

2. (inductionS? CL CR S): do induction on the first asynchronously
available fixed point using S as invariant, and continue the two resulting
branches of the proof using continuation certificates CL and CR.

3. (case? A CL CR): in the current asynchronous phase, look for the
first (branching) left disjunction. Apply the asynchronous unfolding rule
at most A times to get to one such connective. To continue proof search,
use continuation certificates CL and CR for the left and right branches.

4. (apply? A S I C): finish the current bipole, performing at most A
asynchronous unfoldings and S synchronous unfoldings until the end of
the bipole. To decide on a formula at the boundary of the asynchronous
and synchronous phases, use index I. When the bipole ends at the release
rule, use certificate C to continue proof search.
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ffClerk (induction? _).
ffClerk (inductionS? _ _ _).
ffClerk (case? _ _ _).
ffClerk (apply? _ _ _ _).

ttClerk (induction? C) (induction? C).
ttClerk (inductionS? L R I) (inductionS? L R I).
ttClerk (case? A L R) (case? A L R).
ttClerk (apply? A S I C) (apply? A S I C).

andClerk (induction? C) (induction? C).
andClerk (inductionS? L R I) (inductionS? L R I).
andClerk (case? A L R) (case? A L R).
andClerk (apply? A S I C) (apply? A S I C).

orClerk (induction? C) (induction? C) (induction? C).
orClerk (inductionS? L R I)

(inductionS? L R I) (inductionS? L R I).
orClerk (case? _ L R) L R.
orClerk (apply? A S I C) (apply? A S I C) (apply? A S I C).

impClerk (induction? C) (induction? C).
impClerk (inductionS? L R I) (inductionS? L R I).
impClerk (case? A L R) (case? A L R).
impClerk (apply? A S I C) (apply? A S I C).

eqClerk (induction? C) (induction? C).
eqClerk (inductionS? L R I) (inductionS? L R I).
eqClerk (case? A L R) (case? A L R).
eqClerk (apply? A S I C) (apply? A S I C).

ttExpert (induction? _).
ttExpert (inductionS? _ _ _).
ttExpert (case? _ _ _).
ttExpert (apply? _ _ _ _).

andExpert (induction? C) (induction? C) (induction? C).
andExpert (inductionS? L R I)

(inductionS? L R I) (inductionS? L R I).
andExpert (case? A L R) (case? A L R) (case? A L R).
andExpert (apply? A S I C)

(apply? A S I C) (apply? A S I C).

orExpert (induction? C) (induction? C) left.
orExpert (induction? C) (induction? C) right.
orExpert (inductionS? L R I) (inductionS? L R I) left.
orExpert (inductionS? L R I) (inductionS? L R I) right.

11.8 Figure The CPS fragment of the simple outline FPC at the specification level.
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orExpert (case? A L R) (case? A L R) left.
orExpert (case? A L R) (case? A L R) right.
orExpert (apply? A S I C) (apply? A S I C) left.
orExpert (apply? A S I C) (apply? A S I C) right.

impExpert’ (induction? C) (induction? C) (induction? C).
impExpert’ (inductionS? L R I)

(inductionS? L R I) (inductionS? L R I).
impExpert’ (case? A L R) (case? A L R) (case? A L R).
impExpert’ (apply? A S I C)

(apply? A S I C) (apply? A S I C).

eqExpert (induction? _).
eqExpert (inductionS? _ _ _).
eqExpert (case? _ _ _).
eqExpert (apply? _ _ _ _).

allClerk (induction? C) (x\ induction? C).
allClerk (inductionS? L R I) (x\ inductionS? L R I).
allClerk (case? A L R) (x\ case? A L R).
allClerk (apply? A S I C) (x\ apply? A S I C).

someClerk (induction? C) (x\ induction? C).
someClerk (inductionS? L R I) (x\ inductionS? L R I).
someClerk (case? A L R) (x\ case? A L R).
someClerk (apply? A S I C) (x\ apply? A S I C).

allExpert (induction? C) (induction? C) _.
allExpert (inductionS? L R I) (inductionS? L R I) _.
allExpert (case? A L R) (case? A L R) _.
allExpert (apply? A S I C) (apply? A S I C) _.

someExpert (induction? C) (induction? C) _.
someExpert (inductionS? L R I) (inductionS? L R I) _.
someExpert (case? A L R) (case? A L R) _.
someExpert (apply? A S I C) (apply? A S I C) _.

indClerk (inductionS? L R I) L R I.

indClerk’ (induction? C) (x\ C).

coindClerk (inductionS? L R I) L R I.

coindClerk’ (induction? C) (x\ C).

unfoldLClerk (case? (s A) L R) (case? A L R).
unfoldLClerk (apply? (s A) S I C) (apply? A S I C).

11.9 Figure The CPS fragment of the simple outline FPC at the specification level
(continued).
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unfoldRExpert (apply? A (s S) I C) (apply? A S I C).

unfoldLExpert (apply? A (s S) I C) (apply? A S I C).

unfoldRClerk (case? (s A) L R) (case? A L R).
unfoldRClerk (apply? (s A) S I C) (apply? A S I C).

freezeLClerk (induction? C) (induction? C) idxatom.
freezeLClerk (inductionS? L R I)

(inductionS? L R I) idxatom.
freezeLClerk (case? A L R) (case? A L R) idxatom.
freezeLClerk (apply? A S I C) (apply? A S I C) idxatom.

initRExpert (induction? _) idxatom.
initRExpert (inductionS? _ _ _) idxatom.
initRExpert (case? _ _ _) idxatom.
initRExpert (apply? _ _ _ _) idxatom.

freezeRClerk (induction? C) (induction? C).
freezeRClerk (inductionS? L R I) (inductionS? L R I).
freezeRClerk (case? A L R) (case? A L R).
freezeRClerk (apply? A S I C) (apply? A S I C).

initLExpert (induction? _).
initLExpert (inductionS? _ _ _).
initLExpert (case? _ _ _).
initLExpert (apply? _ _ _ _).

storeLClerk (induction? C) (induction? C) idxlocal.
storeLClerk (inductionS? L R I)

(inductionS? L R I) idxlocal.
storeLClerk (case? A L R) (case? A L R) idxlocal.
storeLClerk (apply? A S I C) (apply? A S I C) idxlocal.

decideLClerk (apply? A S I C) (apply? A S I C) I.

decideLClerk’ (apply? A S I C) (apply? A S I C) I.

storeRClerk (induction? C) (induction? C).
storeRClerk (inductionS? L R I) (inductionS? L R I).
storeRClerk (case? A L R) (case? A L R).
storeRClerk (apply? A S I C) (apply? A S I C).

decideRClerk (apply? A S I C) (apply? A S I C).

releaseLExpert (apply? A S I C) C.

releaseRExpert (apply? A S I C) C.

11.10 Figure The CPS fragment of the simple outline FPC at the specification level
(finished).
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This set of constructors represents the structure of a proof more faithfully.
Their definition is completely local and their bookkeeping is self-contained in
their own counters, which have on effect on continuation certificates. To finish a
branch of the proof in this format, a certificate constructor of the first group is
used. If a certificate reproduces the bipole structure of a proof closely enough,
it will generally suffice to use the shallow search to complete each branch of
the proof scaffold, or a limited form of apply in a slightly more general setting,
after the general high-level structure of the proof has been established.

Figure 11.8 presents the continuation-passing style parts of the FPC definition
in the more compact notation of λProlog—i.e., at the specification level of Abella—
where some of the more verbose idioms of Abella are elided for compactness. The
code is presented in pure pattern matching style. This level of presentation affords
a modular organization of the development; thus, the counterpart definitions
for whole proof subtrees (similar to those shown here for the CPS fragment)
can be contained in a separate file and are combined only when a specification
is loaded—instead of accumulating as definitions at the reasoning level, more
massive and less organized.

11.6 Certificate families: administrative outlines

The second family of high-level FPC definitions is what we call administrative
outlines—in reference to the greater amount of bookkeeping information they
contain, geared towards more precise descriptions of proofs of large families of
commonplace theorems. Specifically, simple outlines offer means of describing
the high-level structure of a proof and specifying what lemmas it may employ;
they do not offer a comparable level of control over the structure of formulas
and local hypotheses, and how to refer to them—for example, all local decisions
are treated through a singleton index idxlocal, even though knowing how to
make use of which hypotheses, and when, is at the heart of the proof scripts of
assistants like Abella. Administrative outlines will provide mechanisms to express
this information in the FPC framework.

The certificate constructors of administrative outlines allow for a signifi-
cant amount of guidance to steer proof search more accurately, especially with
respect to disambiguating choice points instead of relying on backtracking search—
potentially very costly, especially as proofs grow. In describing the general
structure of a proof, the kind of structures found in simple outlines reoccur, with
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some important differences. These advanced features will be chiefly involved with
refined forms of indexing. More specifically, we define a general-purpose index
type for the storage of formulas, consisting of two parts which correspond to the
two kinds of formulas we need to store—lemmas and local formulas:

1. A numeric index used as a unique identifier for formulas stored through the
decide rule, and unused in the case of externally supplied lemmas.

2. A boolean index used to label and describe a formula. It holds a name
through which to refer to lemmas, and maintains bookkeeping information
in the case of locally stored formulas.

Certificate constructors in this FPC definition form a single family of tactics
in continuation-passing style, with a single terminal constructor. While they look
similar to the simple outlines of the previous section, their control flow differs
significantly. A common control structure, Ctrl, constrains the operation of all
of them. The defined constructors are the following:

1. (induction Ctrl NamesB Cert): apply obvious (co)induction on
the first (asynchronously) available fixed point, and continue the proof
using Cert. Use NamesB to give names to the components of the fixed
point, as explained below.

2. (inductionS Ctrl S NamesB NamesS Cert): a variant of the
previous constructor, apply (co)induction on the first available fixed point
using S as invariant, then continue the proof using bounded search
constrained by Ctrl on the base case and Cert on the inductive case. Use
NamesB to give names to the components of the fixed point and NamesS
to give names to the components of S.

3. (case Ctrl CertL CertR): apply asynchronous case analysis, locat-
ing the first disjunction on the left. Continue the proof using CertL and
CertR for the left and right branches, respectively.

4. (apply Ctrl Idx Names Cert): perform bounded search, using
Idx to decide on the next lemma and use Names to give names to the
components of the selected lemma.Continue the proof using Cert.

5. (search Ctrl): perform bounded search without applying induction
or deciding on externally provided lemmas.
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All certificates share a common control structure that maintains bounds and
bookkeeping parameters to constrain proof search. There is some variability in
the way these parameters are used by the FPC, as will be seen. The structure
has the form (ctrl Limits Names), where Names is the current naming
structure and Limits contains the following bounds and bookkeeping informa-
tion. The five parameters given (less uniformly) for the various constructors of
simple outlines are always present through the control structure. The design is
reminiscent of TAC (Baelde et al., 2010) and some of the terminology is biased
towards least fixed points, so that asynchronous and synchronous unfolding are
associated with the left-hand and the right-hand side rules, respectively. The
additional control fields are the following:

1. Release right: a boolean flag that enables the release rule when active. In
common proofs of “administrative lemmas” involving least fixed points,
once we reach a focus on the right, it is often meant to represent a purely
positive computation which either terminates or fails. In these situations, a
release is considered a dead end, and thus ruled out.

2. Next local index: an incrementing counter that contains the next available
unique index to store formulas along the current branch of the proof,
starting from zero.

3. Current local index: a bookkeeping parameter that maintains information
about the progress of local indexes for the decide rule as the range of possible
choices cycles through the range of indexes in local storage (given by the
previous parameter).

We now turn our attention to the second component of the control structure.
Consider the proof scripts written in a proof assistant like Abella. It is remarkable
that a script consists of a sequence of decisions, and these can conceivably be
turned into certificate constructors. In addition to selecting formulas and lemmas,
an important part of the instructions in a proof script is the set of hypotheses
that are used to instantiate each formula that the proof operates upon. This infor-
mation has been absent from our certificates so far, which means backtracking
search must be applied to find a right combination of values, if one indeed exists.
In some cases this will be easy, but in others much time will be wasted applying,
say, sequences of lemmas that make no sense, or using the wrong parameters,
leading in the end to complex proof attempts that must be discarded.
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Syntactically, a formula can be seen as a tree whose leaves are drawn from the
nullary logical constants, the fixed point operators and the equality operator; and
its nodes from the remaining, recursive logical constants. (Interestingly, unfolding
operations grow a fixed point leaf into a subtree.) Under this view, a naming
structure associated to a formula is another tree that replicates the branching
structure of the formula down to the fixed points contained in the formula, and
attaches names to them.

11.6.1 Example Consider the fixed point definition of the addition relation on natural
numbers given in Figure 10.2. Suppose we want to refer to the recursive call to
plus in its body as “H1.” Mimicking the branching structure of the formula by
split constructors and labeling nodes by name constructors, we may get:

(split _ (split _ (split _ (name "H1"))))

Note that linear branching (i.e., quantifiers) is omitted from the syntax. Nodes
representing subtrees that do not contain any fixed points are in effect don’t-care
identifiers (because they will never be used to constrain the inference rules that
need to name fixed points-as-atoms), here represented by anonymous variables _
(but see the discussion after Example 11.6.2).

The object of naming structures is labeling the “atoms” in a formula so
that they can be matched with the contents of the context, especially frozen
fixed points acting as hypotheses. Formulas as commonly defined in the FPC
framework are terms of a simple inductive type; they are not annotated and are
mostly or completely opaque to clerks and experts—see Section 4.4 for a general
discussion, and Section 7.4 for a use case that benefits from reflective inspection.
In consequence, name annotations have to be provided separately and in parallel
to formulas and sequents. At the cost of some redundancy, it is possible to furnish
this information in the certificate without any changes to the kernel being needed.

To this end, we use the second member of the control structure. This piece
of information must shadow the structure of the sequent with a level of detail
that allows us to give names to the components of interest. Boolean indexes,
defined earlier, will hold this information, of which a simple name (such as is used
to tag lemmas) is a particular case. Since formulas in storage already hold this
information, the certificate must maintain name maps for the workbench zones
on each side of the sequent turnstile, respectively: (names Delta Goal).

The data mirroring just described creates a new requirement for code mir-
roring in the FPC definition: clerks and experts must be aware of the changes
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made in the workbench by the kernel on each inference rule and reflect those
operations exactly in the naming structures for them to remain accurate. This
lockstep requirement is a fairly strong dependency which, while incapable of com-
promising soundness, might lead to mangled information that impedes progress
of the proofs. The issue is mitigated by the fact that the kernel’s operation is
stable and well documented, although this lockstep pattern reoccurs in other
scenarios, including applications to test data generation described in Section 12.6.
Example 11.6.2 illustrates the mimicry of the kernel by the clerks and experts.

11.6.2 Example Observe the implementation of the inference rules of the system
µLJF a in Figure 9.6 and companion figures as the Abella kernel in Figure 10.3.
Figure 11.11 presents the implementation of the lockstep pattern for two represen-
tative rules: the introduction rule for negative conjunction and the full induction
rule on least fixed points.

The clerks and experts are essentially implemented by auxiliary predicates
which generate the continuations from the designated input certificates. They
achieve this by manipulating the control structure through other, modular auxil-
iary predicates. For example, the conjunctive clerk looks for a split in the naming
structure at the head of the list of names that replicate the LHS of the sequent and
replaces it with its two sub-components—exactly as the kernel decomposes the
connective. If a split naming structure is not found at that position, the default is
copied on both positions.

The inductive clerk is somewhat more complicated—reflecting the manipula-
tions that turn the conclusion of the inference rule into its premises. In particular,
it must extract and combine naming structures for the fixed point and the invari-
ant. The guiding principle is the same: the naming structure mirrors at all times
the sequent to which the certificate is associated.

However, the burden of naming must not be an obligation, and restoring
the lost flexibility is indeed simple. A name leaf will give name to all relevant
sub-formulas covered by it. In this way we can define “buckets” of homonymous
formulas which can be stored and decided upon indifferently. If we do not wish to
make any use of this functionality, it suffices to write a naming structure for the
initial sequent where a single name is used—like idxatom is in simple outlines:
(names nil (name "Dummy")). (Note that definite identifiers, and not
anonymous variables as in Example 11.6.1, must be used if there are fixed points
to be stored and decided upon.)
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Define andClerkNames : cert -> cert -> prop by
andClerkNames Cert Cert’ :=

getControl Cert
(ctrl Limits

(names ((split NameL NameR) :: Delta) Goal)) /\
setControl Cert

(ctrl Limits
(names ( NameL :: NameR :: Delta) Goal))

Cert’ ;
andClerkNames Cert Cert’ :=

getControl Cert (ctrl _ (names ((name Name) :: _) _)) /\
pushDelta Cert (name Name) Cert’.

Define andClerk : cert -> cert -> prop by
andClerk Cert Cert’ :=

andClerkNames Cert Cert’.

Define indClerkNames : cert -> cert -> (i -> cert) -> prop
by

indClerkNames Cert CertSt CertBSx := forall x,
% Pop current and decompose base certificate
popDelta Cert _ Cert’ /\
Cert’ = (inductionS Ctrl S NamesB NamesS SubCert) /\
% Compose first sub-certificate
pushDelta (search Ctrl) NamesS CertSt /\
% Compose second sub-certificate
replaceName NamesB NamesS NamesBSx /\
SubCert’ = (SubCert x) /\
pushDelta SubCert’ NamesBSx SubCert’’ /\ % Empty Delta
setGoal SubCert’’ NamesS SubCert’’’ /\
CertBSx = (_\ SubCert’’’).

Define indClerk :
cert -> cert -> (i -> cert) -> (i -> bool) -> prop by

indClerk Cert Cert’ Cert’’ S :=
Cert = (inductionS _ S _ _ _) /\
indClerkNames Cert Cert’ Cert’’.

11.11 Figure Lockstep operation in the administrative FPC. Two example clerks are
shown with references to supporting relations used to manipulate certificates and
their components. This general organization is extended to the remaining clerks
and experts.
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11.6.3 Example Consider a theorem statement of the form A ⊃ B ⊃ C . Suppose we
want to write a proof outline where we refer to the formula A as a hypothesis
named “H1,” to the formula B as hypothesis “H2,” and to the goal C as “G.” In
the top-level certificate constructor of the administrative outline, we will provide
the following naming structure:

(names
nil
(split (name "H1") (split (name "H2") (name "G")))

)

Similarly, suppose there is in our collection of lemmas one of the form D ⊃ E ,
such that, if we can equate A with D , we may infer E from it. We can guide the
kernel towards this selection selection by a certificate that supplies the name of
this lemma and establishes the correspondence between the hypothesis D and its
match in the context, A, based the symbolic names given them above. Thus, we
would pick “H1” and generate a new name for the conclusion E , say, “H3.” We
would write:

(split (name "H1") (name "H3"))

The last distinct role of naming structures concerns their role in inductive
schemes (i.e., involving certificate constructors induction and inductionS).
Two dedicated structures are needed for this:

1. Both induction and inductionS require a naming structure that as-
signs labels to the unfolding of the fixed point being induced upon. Because
induction is a carefully guided “tactic,” it is reasonable to assume that we
know what our desired induction is—as well as the names of its parts.

2. In the general induction scheme of inductionS, the certificate must
supply (along with the invariant) a matching structure naming the parts of
said invariant. The FPC definition will then construct the naming structure
that results from applying the induction rule. Therefore, the first naming
structure (i.e., that of the unfolding, above) must confer a special annotation
to the leaf corresponding to the place where the invariant will be injected.

On a final note, continuation certificates inherit the state of the naming
structures of their predecessors at the continuation point. Ultimately, all this
scaffolding replicates at the FPC level what proof assistants do to generate and
manage names. Much of it could be automated, although the problem of choosing
and using good names is difficult and best left to the client.
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Theorem plus0com :
forall N, nat N -> plus N z N.

certify (induction! 1 0 1).

Theorem plusscom :
forall M, nat M -> forall N, nat N ->
forall P, plus M N P -> plus M (s N) (s P).

certify (induction! 1 0 1).

Theorem pluscom :
forall N, nat N -> forall M, nat M ->
forall S, plus N M S -> plus M N S.

certify (induction! 2 1 0).

11.12 Figure (Simple) proof outlines for the commutativity of addition in Abella.
For each lemma, a self-contained induction with adequate allowances for decide
depth and unfolding will arrive at the same proof as the scripts in Figure 11.3.
Here, the most compact, single-constructor forms are given with tight bounds
and in marshaled form.

11.7 Experiments
Let us return to the case study in Section 11.2. Suppose for the moment that
Abella has been extended with a tactic, certify, which takes a proof outline
and uses it to attempt to prove the current theorem. It is patently clear from,
say, Figure 11.3 that the proofs expressed therein can be written as outlines.
Inspection of the proofs or experimentation quickly lead to the simple outlines of
Figure 11.12—or to the essentially identical administrative outlines. (The interface
between Abella and the checker is detailed in Chapter 13.)

11.7.1 Example We shall now revisit the case study in Section 11.2 and detail how
such proofs can be expressed in terms of proof outlines, leading the way to the
expression of proof scripts as proof certificates.

Let us analyze in detail the proof script of plustotal in Figure 11.2. It
begin by the common induction pattern:

induction on #. intros. case H#.

This corresponds to an application of the obvious induction, which implicitly
includes a case analysis—which derives as many goals as the predicate has clauses:
two in the case of addition, the emphzero case and the successor case. (Here, we
assume a model in which the obvious induction does not require a certificate for
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the trivial branch.) Note that the induction certificate greedily inducts on the
first available fixed point; inducing on others requires an easy generalization in
the FPC definition, or reordering the hypotheses—so that H# becomes H1—in
the theorem statement to account for that constraint. In certificate terms, this
translates into the following certificate pattern:

(induction?
(case? 0

...

...
)

)

In it, there are two holes for the continuation certificates in each case. We
now turn to consider each subgoal in turn. In the zero case, we have a simple goal,
exists S, plus z M S, solved by a simple use of the search tactic. It is
easy to see this involves focusing on the right for the positive phase, unfolding
once on the right and applying initial. In certificate terms:

(apply? 0 1 (idx "local") search)

In the successor case, the process is a bit more complex. The goal starts from
the following sequent:

Variables: M N1
IH : forall N, nat N * ->

(forall M, nat M -> (exists S, plus N M S))
H2 : nat M
H3 : nat N1 *
============================
exists S, plus (s N1) M S

Whereas in Abella we need to appeal to the induction hypothesis explicitly,
in the certificate outline it becomes a natural consequence of the asynchronous
phase, and it need not be handled explicitly here. In Abella, a new hypothesis
results from apply IH to H3:

H4 : forall M, nat M -> (exists S, plus N1 M S)

The rest of the sequent remains unchanged. At this point we have a collection
of “atoms” and negative formulas on the left, and a positive goal on the right:
if nothing is done to the atoms, they will be frozen, and we will have reached
the end of asynchrony. The proof script instructs to operate on H4 using other
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hypotheses for assumptions. Therefore, fixed are indeed frozen and we move to
the synchronous phase, and a bipole must be signaled through a local decide:

(apply? 0 0 (idxlocal) ...)

This local decide will reproduce the choice of H2. In Abella, at the end of the
synchronous phase, a new hypothesis has been generated:

H5 : plus N1 M S

Finally, the search tactic finishes the goal, and with it the proof. This
corresponds, as in the zero case, to a focus on the right hand side, with unfolding
and initial. The final certificate is thus:

(induction?
(case? 0

(apply? 0 1 (idxlocal) search)
(apply? 0 0 (idxlocal) (apply? 0 1 (idxlocal) search))

)
)

By a similar process, we—or an automated analyzer integrated in Abella—can
reformulate the main result of Section 11.2 as a detailed proof outline.

11.7.2 Example The proofs in Figure 11.3 establish the commutativity of the addition
relation between natural numbers as the theorem pluscom. A proof by simple
induction relies on two auxiliary lemmas, one for each case of the induction on
natural numbers (zero and successor), themselves proved separately by simple
inductions.

We shall look at the certificate for the main theorem, which involves the
application of lemmas (the proofs of those two lemmas are simpler inductions in
the manner of Example 11.7.1). The complete certificate is given by the term:

(induction?
(case? 0

(apply? 1 0 (idx "plus0com") search)
(apply? 2 0 (idx "local") (apply? 0 0 (idx "plusscom")

(apply? 0 0 (idx "local") search)))
)

)

Compare this with the proof script in Figure 11.3. In the certificate, decides
on lemmas refer to those by their given names earlier in the Abella session. Again,
the structure is simple: after starting with the obvious induction on the first
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argument of the addition, a case? branches out the proof certificate into the two
cases for zero and successor. Both follow the same pattern of applying a lemma
by focusing on it, from which the proof of the branch follows; the application of
the corresponding lemma is preceded by a small amount of preprocessing.

The focused discipline of the outline FPCs imposes additional structure to the
proofs, which in turn results in some amount of automated processing. In Abella,
the proof of the successor branch of the induction opens with the following
sequent:

Variables: M S N1
IH : forall N, nat N * ->

(forall M, nat M ->
(forall S, plus N M S -> plus M N S))

H2 : nat M
H3 : plus (s N1) M S
H4 : nat N1 *
============================
plus M (s N1) S

Note that the first two steps in the proof script—i.e., the case analysis on
“H3” and the application of the inductive hypothesis—are directly handled by the
semantics of the FPC and not reflected in the outline: in a sense, there is nothing
interesting in these two obvious steps. This is related to the concept of progressing
unfolding as described by Baelde et al. (2010). After these, it is easy to identify
which proof steps correspond to unfoldings and record these in the allowances
made in the certificate terms.

The translation from proof scripts to outline certificates is mechanic but
cumbersome for the user of a proof assistant. In practice, it is simpler to fall
back to the more implicit but slower outlines: compare the original proof scripts
in Figure 11.3 with the much more readable outlines given in Figure 11.12—the
latter compact the outlines studied in Example 11.7.2. Clearly, more generous
bounds will also arrive at the same proofs—provided that the necessary lemmas
are available—, but it would be desirable to refine said bounds to be as tight
as possible, and to add additional details to make proofs more efficient. . . all
this without imposing the burden on the user. Certificate pairing (for which
see Chapter 5) can be easily applied to enable these kinds of manipulations, in
particular in combination with the simple outlines of Section 11.5 for purposes
of certificate elaboration.
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The essential component (alongside unfolding bounds) that separates the more
implicit and more explicit forms of outlines is the specification of a skeleton for
the proof tree decorated with the required decisions, in particular the necessary
lemmas as they occur. An alternative representation that can be written succinctly
(like implicit outlines) and paired easily may encapsulate the tree of decisions in a
separate data structure, parallel to the unfolding bounds. The modus operandi
will be to enrich the self-contained certificate constructors of simple outlines
with such an abstract tree of decisions. This is achieved by extending the FPC
definition of simple outlines with the following doubles of the self-contained
constructors:

1. (induction# B AU SU AC SC D): decorated version of the self-
contained certificate (induction B AU SU AC SC) with an extra
parameter, D, representing the tree of decisions made throughout the proof.

2. (apply# B AU SU AC SC D): decorated version of the self-contained
certificate (apply B AU SU AC SC), extended with a decision tree D
as for the above case.

The third kind of self-contained certificate, search, involves no such deci-
sions and therefore remains unaltered. For brevity, the inductionS variant is
not considered here; it experiments identical changes. Clerk and expert analogs for
the new copies are declared with identical behavior except for the new checks that
decision trees must match the structure of the proof, as illustrated in Figure 11.13.
The reason for declaring a new family of constructors instead of performing
elaboration, say, from self-contained to continuation-style simple outlines is that
non-disjoint constructors make certificate elaboration ambiguous—as discussed in
Section 5.6—noting that continuation-style certificates can at any point finish a
branch by a self-contained certificate. The type of decision trees is defined by the
following constructors:

1. A branching constructor, btbranch, used to represent a branching point
in the proof with the decision trees for each branch.

2. Two decision constructors, btlocal and btlemma for local and lemma
decides, respectively, each taking an index describing the decision and a
continuation certificate.

3. A terminal constructor, btinit, representing a subtree where no decisions
take place.
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orClerk (apply# N AU SU AC SC (btbranch IdxL IdxR))
(apply# N AU SU AC SC IdxL)
(apply# N AU SU AC SC IdxR)

decideLClerk (apply# N AU SU AC SC (btlocal idxlocal Idx))
(apply# N AU SU AC SC Idx)
idxlocal

decideLClerk’ (apply# N AU SU AC SC (btlemma Idx Idx’))
(apply# N AU SU AC SC Idx’)
Idx

decideRClerk (apply# N AU SU AC SC (btlocal idxlocal Idx))
(apply# N AU SU AC SC Idx)

11.13 Figure Decision trees are implemented in the FPC family for simple outlines by
a small set of additions implemented as clerk and expert clauses, whose interesting
cases are summarized here. In the closed world of Abella, these new clauses are
added to the existing definitions and cannot be accumulated separately.

If the usual pairing combinator used to check two certificates in tandem is
represented by (pair# C1 C2): the usual pairing combinator, a simple but
useful elaboration is achieved by combining a self-contained outline (in the style
of Section 11.5) with an extended outline (as given in this section), identical in
every detail except that the decision tree is left unspecified as a logic variable.
The standard outline drives proof reconstruction, while the extended outline—
containing the same amount of information—is necessarily in agreement, but
also records the branching points and decisions in its vacant structure. Upon a
successful check, the decision tree will contain information about the number
of decisions made, what lemmas were used, and the general structure of the
proof. This data can be exploited to speed up subsequent checking, or even
to further elaborate the new information in the form of a nested certificate in
continuation-passing style.

11.7.3 Example Suppose we find a valid compact certificate for pluscom—in the
context of a session, where previously proved theorems are available as theorems—
which takes the following form:

(induction 3 2 0 2 0)

(We know from our analysis and Figure 11.12 that these bounds are indeed
sufficient in the presence of the auxiliary lemmas for the zero and successor cases.)



222 chapter 11. proof outlines

While this is easy to use, we may want to extract some more information from
the proof, be it to learn something from it (i.e., the list of used lemmas) or to
elaborate it into a derived certificate that is easier to check. To retrieve the tree of
decisions, it suffices to pair it with its double as described above:

(pair# (induction 3 2 0 2 0) (induction# 3 2 0 2 0 D))

The joint checking of these two certificates in lockstep leads to the recording
of the decision points in D, as desired.

Proof outlines can be applied with identical ease and flexibility to many
problem domains and to degrees of complexity beyond the simple case study
used in this chapter: arithmetic, data structures such as lists, metaprogramming
concepts like program contexts and calculi like CCS and the π -calculus, alongside
mathematical concepts like simulation and bisimulation, etc.

11.8 Notes
The certificates for outline families presented in this chapter were first published
in Blanco and Miller (2015).

The final technical step is to enable certificates such as these to be developed
and executed directly within Abella. An end-to-end solution is described in
Section 13.3. Our first system made use of the Bedwyr model checking system,
itself closely related to Abella. The changes to Abella in this delegated approach
were minimum, as the proof assistant sat at the top of an architecture designed to
produce and check proof outlines by a simple linear workflow in three steps:

1. A theorem prover (Abella in this case) is the source of the concrete syntax
of definitions, theorems and proofs. Its direct involvement in the workflow
can be quite limited. We extended the tactics language with ship tactic
which marked proof obligations that were to be discharged by an external
checker by means of a provided proof outline.

2. A translator specific to each theorem prover converts the concrete syntax of
the theorem prover into that of the proof checker. It may simply use proof
certificates declared by a ship tactic or derive certificates automatically
starting from proof scripts and other similar evidence. Such a translator may
be built into the theorem prover, thus encapsulating this and the previous
step. The translator generates input usable directly by a general-purpose
checker.
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3. A proof checker implements a proof system according to the precepts of
the FPC framework. We used Bedwyr to implement and execute a µLJF a

kernel—instanciated with the FPC definitions of outlines and the transla-
tions generated from previous steps.

A similar process of certification by outlines can be adopted by other theorem
provers. It suffices to provide a connection between those provers and the proof
checker by means of a custom translator. These components are free to implement
sophisticated refinement mechanisms to produce more efficient certificates from
the information contained in proof scripts—or provide limited guidance and rely
on the checker to reconstruct the missing details.

The proof certificates described in this chapter differ from their use as an
independent representation of proof evidence—rather, they represent decision pro-
cedures which reconstruct a proof from a collection of high-level descriptions of
proofs. The abstract inference steps defined by those certificate constructors have
been in generally decidable; commonly, discussions about Frege proofs involve
polynomially checkable inference rules. This restriction is superfluous, and proof
reconstruction may involve large numbers of choices and undecidable procedures.
None of these generalizations are a concern of the FPC framework, which only
forbids—by construction—menaces to the soundness of whatever proofs result
from reconstruction. How long this reconstruction takes, or whether it termi-
nates, has no bearing on the soundness property. The minimalistic proof outlines
explored in the chapter are, indeed, fairly expensive to check (and are executed in
a programming environment which is not itself optimized for performance), but
their elaboration to more detailed forms of proof evidence mitigates these costs
in subsequent runs.

As we have seen, obvious induction rules constitute an important exception
to the dictum that it is easy to take the step of trusting the direct encoding of a
sequent calculus in a proof checking kernel—provided that we are willing to trust
the logic engine used to that end. Although the code involve in the computation
of the obvious invariants may be more involved, even external to the kernel,
said code does not need to be trusted, since we can always arrange to check the
generated invariants.
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12 Property-based testing

12.1 A model theory vision of proof theory

Property-based testing, or PBT (Fink and Bishop, 1997), is a methodology devel-
oped to assist in the testing of computer programs by automatically generating
and executing test data. In its basic form, it PBT pairs a function to be tested with
two additional categories of information: (a) a collection of properties constitut-
ing an executable specification of the function that relates inputs and outputs; and
(b) a set of data generators for the types of the inputs of the function. Given all
these elements, it is possible to automate the use of generators to create a certain
number of inputs, pass them to the function, and verify whether the outputs
satisfy the required properties. While generation of test data comes in manifold
methods (Utting et al., 2012), the two principal strategies are random and (subject
to certain constraints) exhaustive testing.

Used well, the technique enables quick exploration of the state space of
a problem and rapid discovery of errors—either in the specification or in the
implementation—in the form of concrete and actionable inputs that falsify the
posited properties of the function. A third component is commonly added to the
framework: (c) a set of data shrinkers which, given an input that contradicts the
specification, attempt to find smaller, derived inputs that continue to exhibit the
error. Hence, we obtain small counterexamples that are easier to understand and
quicker to lead to the root causes of the error.

The concept of PBT was originally applied to programming languages and
was notably pioneered by Haskell’s QuickCheck (Claessen and Hughes, 2011),
from where it spread to many other languages. Soon it made the jump from the
world of programming languages to most major proof assistants, where simple
ports of QuickCheck gave way to more specialized counterexample generators,
such as Nitpick (Blanchette and Nipkow, 2010) for Isabelle. In this latter milieu,
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it is used to complement theorem proving activities with a preliminary phase
of conjecture testing—whose goal is to zero in on incorrect theorem statements
before substantial effort is put into them until a dead end in the proof is found.
(Although, as the Curry-Howard correspondence states, the difference between
proofs and programs is not profound.)

In this chapter, we will adapt the FPC framework to develop a proof theo-
retical reconstruction of this style of testing for relational specifications—such as
those commonly used to describe the semantics of programming languages—and
explore its benefits in this environment. We do this by revisiting the concept of
proof outlines introduced in Chapter 11, noting that the operation PBT strongly
resembles the complement of a very succinct outline which, instead of attempting
to prove a theorem, seeks to disprove it. Under the relational lens, (co)inductive
definitions correspond to functions, theorem statements correspond to properties,
and FPCs implement property-based testing proper. The certificates we write will
be used to describe the shape and size constraints of possible counterexamples to
a property. If such an outline can be completed in the µLJF calculus, we will have
obtained a certified counterexample to the property in question.

The rest of the chapter is organized as follows. Section 12.2 presents and
illustrates the techniques on standard, first-order (algebraic) data structures. Sec-
tion 12.3 lifts those techniques to more interesting structures containing bindings,
represented using λ-tree syntax. Section 12.4 defines disproof outlines as FPCs.
Section 12.5 applies those outlines to various problems and benchmarks about
the metatheory of programming languages—extracted from related tools such
as PLT Redex (Felleisen et al., 2009; Klein and Findler, 2009)—encoding those
problems in λProlog, i.e., the specification level of Abella. Section 12.6 looks
at the same problem within pure Abella, i.e., at the meta level of the prover.
Section 12.7 concludes the chapter.

12.2 Standard property-based testing

To commence, we introduce and advocate a relational view of property-based
testing starting from a general scenario. Suppose we wish to prove instances of a
class of formulas which obeys the following general pattern:

∀ (x : τ) .P (x ) ⊃ Q (x )
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Here, both P and Q are given relational specifications (for clarity, applica-
tion is denoted in functional notation). In this setting, it can be important to
sometimes—as discussed in Section 11.2—move the type judgment for x into the
logic of a formula by turning the type τ into a predicate τ(·) and adding it to the
premise of the theorem statement thus:

∀x .(τ(x ) ∧ P (x )) ⊃ Q (x )

In general, proving such theorems can involve significant work since their
proofs may be complex and involve the clever invention of prior lemmas and
induction invariants. Indeed, it will often be the case in practice that a conjecture
of this form will be stated, yet its formal statement will not, in fact, be a theorem
of the logic because of specification errors in the relational definition of either P
or Q , regardless of whether the intuition of the conjecture is correct. Therefore,
it can be valuable to first attempt to find counterexamples to such formulas before
any proof attempts, in the hope of finding many typical but shallow errors, and
possibly some deeper ones. We would instead attempt to prove the negation of a
conjecture, i.e., a formula of the form:

∃x .(τ(x ) ∧ P (x )) ∧ ¬Q (x )

That is, if a term t of type τ can be discovered such that P (t ) holds while
Q (t ) does not, then one can return to the specifications of P and Q and revise
them using the concrete evidence in t to determine how the specifications are
wrong. Let us call these formulas counterexample lemmas. The process of writing
and revising relational specifications could be aided if proofs of such lemmas and
their associated counterexamples were discovered quickly.

12.2.1 Example Suppose that we wish to write a relational specification for reversal of
lists (say, of natural numbers). There are many ways to write such a specification,
but in every case the statement of the idempotency of reverse should be a theorem.
If the specification is named rev, the statement can be written as:

∀(L : list nat).∀(R : list nat). ∀(L′ : list nat). rev L R ⊃ rev R L′ ⊃ L = L′

More compactly, L′ could be dropped and the condition on rev written as
rev L R ⊃ rev R L. Here, we assume the standard definition for a polymorphic
type of lists instantiated with natural numbers as the type of elements. (While
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λProlog supports such polymorphic types, this feature is not yet part of Abella’s
mainline; this limitation extends to the embedded λProlog interpreter of the
specification logic.)

The literature describes two interpretations of relational specifications written
in the style of Horn-like clauses in proof theoretical terms.

1. In specifications written directly in a relational style, say, in a language like
Prolog or λProlog, we can interpret some of those specifications directly
as, say, Horn clauses—provided that they are in that fragment of the logic.
For example, each purely positive clause for the specification of addition of
natural numbers in Figure 4.2 corresponds to one of the Horn clauses in
Figure 4.1. In this encoding, proof search is structured as a series of alterna-
tions between a goal reduction phase and a backchaining phase (Miller et al.,
1991). Focused proof systems generalize this style of proof reconstruction,
where goal reduction and backchaining correspond to the asynchronous
and synchronous phases, respectively, and proof search is thus organized in
bipoles. LKF is a representative of such a system.

2. A complementary approach to the proof theory of Horn clauses involves
encoding those clauses as fixed points, hence effecting the closed-world
assumption. (For example, the same Prolog-style specification of Figure 4.1
can be transcribed as the fixed point definitions of Figure 9.1.) In a proof
system enriched with fixed points—such as µLJF—proofs of counterexample
lemmas span a single bipole: first, a synchronous generation phase followed
on all its premises by a single, asynchronous testing phase that completes
the proof. Consequently, implementing the testing phase is an easy job; the
difficulties lie in efficiently steering the generation phase through potentially
large amounts of nondeterminism. Complexity is thus concentrated in the
design and combination of generators.

12.2.2 Example The counterexample lemma for the specification in Example 12.2.1
is the following, where list_nat is a generator of lists of natural numbers:

∃L.∃R. (list_nat L ∧ list_nat R) ∧ (rev L R ∧ (rev R L ⊃ ⊥))

Here, we associate conjunctions in two groups. On the left is the test data
generation phase, charged with the selection of inputs. On the right is the
purely computational checking phase, which includes validates the combination



12.3. treating metatheoretical properties 229

of inputs (i.e., the reverse of L must be R) and attempts to prove the negation
of the conclusion. Note a naive generation phase like the one shown here
assigns independent values to variables which are functionally related, resulting in
backtracking and wasted work. If we take the view that rev “computes” R from
L, we can simply drop the superfluous generator list_nat R.

In the above example, the property theorem is correct, and in consequence,
failure to prove it (i.e., success in proving a counterexample lemma) must arise
from an error in the specification of rev. Properties (and generators) can also be
defective: if we claim that a list is always equal to its reverse (rev L L), we can test
it by looking for instances of its counterexample lemma:

∃L.∃R. list_nat L ∧ (rev L R ∧ (L = R ⊃ ⊥))

Here, any non-symmetrical list of two or more elements, such as [0; 1], will
falsify the pseudo-property. PBT should help us find both types of errors quickly.

12.3 Treating metatheoretical properties

Describing computational tasks using proof theory often allows us to lift de-
scriptions based on first-order (i.e., algebraic) terms to descriptions based on
higher-order abstract syntax, specifically the λ-tree syntax representation (Miller
and Palamidessi, 1999; Miller, 2000), which gives clean, declarative readings of
variable binders. These possibilities extend to the two logical frameworks used
throughout this thesis and represented by the two interpretations of relational
specifications studied in this chapter.

1. Once logic programming is described in terms of proof search, it is natural
to extend the treatment of first-order terms and Horn clauses (in Prolog)
to the general manipulation of λ-terms (in λProlog).

2. Similarly, a sequent calculus presentation of model checking and inductive
theorem proving in a first-order logic with fixed points (Baelde, 2012; Heath
and Miller, 2017) leads to generalizations based on λ-terms like Bedwyr
and Abella, respectively.

The full treatment of λ-tree syntax in a logic with fixed points is usually
accommodated by the addition of nominal quantification with the nabla quantifier,
as treated in Section 9.4. An important result about nabla is the following:
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Types A, B ::= int | ilist | A→ B
Terms M ::= x | λx :A. M | M1 M2 | c | err
Constants c ::= n | plus | nil | cons | hd | tl
Values V ::= c | λx :A. M | plus V | cons V | cons V1 V2

12.1 Figure Syntax of the Stlc language.

hd (cons M1 M2) −→ M1
E-HD tl (cons M1 M2) −→ M2

E-TL

(λx : A. M ) V −→ [x 7→ V ]M E-ABS

M1 −→ M ′1
M1 M2 −→ M ′1 M2

E-APP1 M −→ M ′
V M −→ V M ′ E-APP2

`Σ err : A
T-ER

Σ(c ) = A
`Σ c : A

T-K x : A ∈ Γ
Γ `Σ x : A T-VAR

Γ, x : A `Σ M : B
Γ `Σ λx : A. M : A→ B T-ABS

Γ `Σ M1 : A→ B Γ `Σ M2 : A
Γ `Σ M1 M2 : B

T-APP

12.2 Figure Static semantics (evaluation and typing relations) of the Stlc language.
Variable types are implicitly based on the typographic conventions for the various
syntactic categories defined in Figure 12.1.

12.3.1 Theorem If fixed point definitions do not contain implications and negations
(i.e., they are essentially positive), then moving between the universal quantifier
∀ and the nabla quantifier ∇ does not affect the provability of atomic formulas.

Proof. Follows from the properties of nabla in Miller and Tiu (2005, Section 7.2).

Because the present study is limited to Horn style recursive definitions, there
will be no observable differences between both quantifiers. In consequence, in
the first setting, we will be able to use, say, the λProlog implementation of the
universal quantifier, pi, to implement nabla.

Among other applications, nabla has been used to formalize the metatheory
of systems like the λ-calculus and the π-calculus. We illustrate its applications
to property-based testing on a variation of the first: the simply-typed λ-calculus
extended with primitives for natural numbers and lists of natural numbers, fol-
lowing the PLT Redex benchmark. We call this language Stlc, and its syntax
is given in Figure 12.1; its static semantics—which shall become the basis of
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our implementation—is in Figure 12.2. The direct treatment of λ-terms within
the PBT setting will allow us to apply the same generate-and-test proofs to find
bugs in implementations of programming languages—such as failure of expected
properties like type preservation—seamlessly lifted here to terms with binders.

12.3.2 Example Let step a specification of the small-step evaluation relation and wt
a specification of the typing relation—reflecting the language semantics in Fig-
ure 12.2, while the signature (with binders) obeys the syntax laid out in Fig-
ure 12.1. The type preservation property can be given form as a candidate
theorem:

∀E .∀E ′.∀T . step E E ′ ⊃ wt E T ⊃ wt E ′ T

If is_exp is a generator of expressions, i.e., λ-terms, and is_ty is a generator
of simple types, the following counterexample lemma can be used to attempt to
uncover faults in the specification:

∃E .∃E ′.∃T . (is_exp E∧is_exp E ′∧is_ty T )∧(step E E ′∧wt E T ∧(wt E ′ T ⊃ ⊥))

As in previous examples, we note that both E ′ and T should be functionally
dependent on E and, if this fact has been established beforehand, the independent
generation of dependent data can be substantially simplified.

Before we show how to implement this framework in each of the two logical
settings under consideration (in λProlog and Abella, respectively), we need to
encode the framework inside these two systems together with the FPC definitions
which implement PBT around generate-and-test disproof outlines. This last
element, common to both frameworks, is presented in the next section.

12.4 Disproof outlines

Chapter 11 presented FPC definitions to describe classes of problems via high-level
outlines, in particular describing the general shape of proofs and the application
of lemmas—as is customary in, say, proof assistants. Likewise, previous sections
in this chapter have described and given proof theoretical justification to another
broad class of problems of practical interest: that of counterexample search whose
mechanization has been popularized by PBT frameworks. We will now proceed
to the description of these disproof outlines, which will support both exhaustive
and random generation of inputs. By convention, the FPCs we define will operate
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on counterexample lemmas of the form:

∃X1. · · · ∃Xn .Generate(X1, . . . ,Xn) ∧ Test(X1, . . . ,Xn)

Here, the “top-level” conjunction separates the two phases of the process. The
generation phase will be a conjunction of generators of ground terms assigning
values to all or some of the existential variables. The testing phase will perform
conjunctive computations that assign values to the remaining variables, verify
conditions, and ultimately attempt to prove the negation of the conclusion of
the original candidate theorem. A simple and complete class of generators for
inductive types are the typing judgments discussed in Section 11.2, although many
other schemes are possible.

Let us first present the design for exhaustive testing, following the model of
SmallCheck (Claessen and Hughes, 2009). The FPC definition provides a single
top-level certificate constructor, qstart, which takes two certificates, one for
the generation phase and one for the checking phase. As the proof starts, the
formula immediately obtains focus on the right-hand side. The initial certificate
and is tasked with the traversal of the formula, generating logic variables for
existential quantifiers until it reaches the top-level conjunction, and there the two
continuation certificates are distributed, each to its respective branch. Each phase
then draws from its own set of certificate constructors:

1. The generation phase is controlled by a certificate constructor, qgen, which
takes a descriptor that places concrete bounds on the size of the terms to
generate. These bounds, together with the generator predicates, precisely
define the search space for the run. All the action takes place under focus
on the right, as positive conjunctions branch out. Generator predicates are
expected to embody purely positive, terminating computations—carried out
by the unfold expert, ever on the right-hand side. Two standard definitions
are contemplated:

(a) A height bound, or qheight, which constraints the depth of the
derivation trees for the generated terms. This bound is decremented as
the generators perform right unfoldings and propagated unaltered on
branching points. Notably, this implies that the initial bound applies
to every term in the generation phase.

(b) A size bound, or qsize, which limits the size of terms in number of
constructors. As in the previous case, allowances are decremented on
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right unfoldings. However, the size bound is defined so as to span the
sum of constructors of all generated terms. Therefore, sizes must be
communicated across both sides of a branching point (i.e., a positive
conjunction); an intermediate variable is used to this end.

2. The testing phase uses a simple constructor, qsearch. It follows the gener-
ation phase and is designed to be much simpler. As in the generation phase,
a number of conjunctive subgoals are computed in separate branches; these
subgoals, too, are purely positive, terminating computations. Commonly,
the final goal is the negation of the original conclusion and must therefore
also allow enough asynchrony to release the focus, move the original con-
clusion to the left-hand side and search until an application of equality on a
unification problem without solutions finishes the proof.

Figure 12.3 shows the FPC definition for this exhaustive search procedure.
Note how, in conformance with the single-bipole proof outline, indexing is
unusually absent from the picture. Vis-à-vis FPC definitions for LKF in λProlog,
where the open-world assumption reigns, all the “clauses” of a given clerk or expert
must be grouped together in an inductive definition, which limits modularity. In
addition, it demands that all clerks and experts be part of the definition—though
unused clerks and experts are absent from the figure. This results in somewhat
less readable definitions, but does not detract from the simplicity of the design, as
seen here. Of course, other generation schemes beyond the two expounded in
this section, many other strategies are possible by making available more guidance
information through the certificates.

12.4.1 Example A standard certificate with a height bound of 5 can be written:

(qstart (qheight 5) qsearch)

And a certificate with a size bound of 5 can be written:

(qstart (qsize 5 X) qsearch)

Note that here 5 is given as the upper bound, whereas the lower bound is left
open as a logic variable: it is indifferent how many constructors we use, as long as
the bound is not surpassed. Bound propagation is carried out by andExpert
and eqExpert in Figure 12.3. (In both examples, natural bounds are written in
algebraic notation for clarity.)

The second variant is random testing as implemented by QuickCheck-style
tools (Claessen and Hughes, 2011). The structure of proofs is not affected by the



234 chapter 12. property-based testing

Kind numidx type.
Type z numidx.
Type s numidx -> numidx.

% Generation
Kind qbound type.
Type qheight numidx -> qbound.
Type qsize numidx -> numidx -> qbound.

Type qgen qbound -> cert.

% Checking
Type qsearch cert.

% Staging
Type qstart cert -> cert -> cert.

% Clerks and experts
Define releaseRExpert : cert -> cert -> prop by
releaseRExpert qsearch qsearch.

Define decideRClerk : cert -> cert -> prop by
decideRClerk (qgen Bound) (qgen Bound) ;
decideRClerk (qstart Gen Check) (qstart Gen Check).

Define storeRClerk : cert -> cert -> prop by
storeRClerk (qgen Bound) (qgen Bound) ;
storeRClerk (qstart Gen Check) (qstart Gen Check).

Define unfoldRExpert : cert -> cert -> prop by
unfoldRExpert (qgen (qheight (s Height)))

(qgen (qheight Height)) ;
unfoldRExpert (qgen (qsize (s In) Out) )

(qgen (qsize In Out) ) ;
unfoldRExpert qsearch qsearch.

12.3 Figure The SimpleCheck-style FPC for (bounded) exhaustive property-based
testing in Abella. For brevity, “undefined” clerks and experts (which must
be given a false definition under the closed-world assumption) are not shown.
Also for clarity, the more concise Bedwyr flavor of syntax is used here (see
Section 10.2).
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Define unfoldLClerk : cert -> cert -> prop by
unfoldLClerk qsearch qsearch.

Define someExpert : cert -> cert -> i -> prop by
someExpert (qgen Bound) (qgen Bound) _ ;
someExpert (qstart Gen Check) (qstart Gen Check) _ ;
someExpert qsearch qsearch _.

Define someClerk : cert -> ( i -> cert ) -> prop by
someClerk qsearch (_\ qsearch).

Define eqExpert : cert -> prop by
eqExpert (qgen (qheight _) ) ;
eqExpert (qgen (qsize In In)) ;
eqExpert qsearch.

Define orExpert : cert -> cert -> choice -> prop by
orExpert (qgen Bound) (qgen Bound) _ ;
orExpert qsearch qsearch _.

Define andExpert : cert -> cert -> cert -> prop by
andExpert (qgen (qheight Height))

(qgen (qheight Height) )
(qgen (qheight Height) ) ;

andExpert (qgen (qsize In Out) )
(qgen (qsize In Middle))
(qgen (qsize Middle Out)) ;

andExpert qsearch qsearch qsearch ;
andExpert (qstart Gen Check) Gen Check.

Define eqClerk : cert -> cert -> prop by
eqClerk qsearch qsearch.

Define impClerk : cert -> cert -> prop by
impClerk qsearch qsearch.

Define orClerk : cert -> cert -> cert -> prop by
orClerk qsearch qsearch qsearch.

Define andClerk : cert -> cert -> prop by
andClerk qsearch qsearch.

12.4 Figure The SimpleCheck-style FPC for (bounded) exhaustive property-based
testing (continued). Presentation conventions are shared with Figure 12.3.
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change in strategy, and indeed the checking phase remains unaltered: changes are
limited to the dynamic behavior of the generation phase, that is, how test data
are generated to attempt to progress through the checking phase and arrive at a
proof. These modifications are reflected in the certificate terms and the clerks and
experts which consume those certificates; the generators themselves are unaltered,
but play an indirect and fundamental role in the design work that follows.

Critically, recall that relational specifications of generators of inductive data
types can be encoded as fixed points. The bodies of those fixed point expressions
are built out of a series of disjuncts, one for each constructor—for instance, recall
the transcription of the typing judgment on natural numbers in Figure 9.1. For
each branching point (i.e., a disjunction, one of a series of choices that leads to
the encoding of a constructor clause), we will assign a fixed weight to each branch,
and select one of the branches proportionally and at random. This regime induces
the following changes in the FPC design:

1. First, we need to fix the number of times the generation phase will be
executed. Generation needs to satisfy a further requirement: if a set of
generated values fails to complete the proof—thus falsifying the original
property—the complete set of values must be discarded en bloc. That is,
backtracking must roll the proof back to the start of the generation phase
and randomly assemble a completely new, independent set of inputs. In
consequence, qstart must be augmented with such a number of tries pa-
rameter, which can be decremented each time we split the initial certificate
at the top-level conjunction. Block backtracking will be the responsibility
of the generation phase, next.

2. Implementing random branching for generators, we encounter another
instance of a lockstep requirement pattern (as observed in Section 11.6 for
administrative outlines) whereby information about formulas which can-
not be attached to formulas without annotations must become part of the
certificate and mimic some of the behaviors of the kernel. Consequently,
the generation certificate, qcert, is structured around an abstract descrip-
tion of generators, qform, which mimics their branching structure (i.e.,
conjunctions, qand, and weighted disjunctions, qor) down to named re-
cursive generator calls, qname, and don’t-care branches without generators,
qnone. The generation certificate thus contains:
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(a) A map that assigns names of generators with their qform structure.
All generators used in such descriptors must have corresponding en-
tries in the map.

(b) Two fields that mirror the workbench zones of the sequent with their
qform descriptors and progress in lockstep with the kernel.

The lockstep requirement is visible in particular in the synchronous rules
for conjunction, disjunction, and unfolding. Moreover, the disjunctive
expert must procure some source of randomness from which to determine
which branch to take; it must also fail upon backtracking, so that the gener-
ation phase runs from beginning to end each time, without intermediate
states.

The certificate definition for random PBT is given in Figure 12.5. The
presentation relies not only on Bedwyr syntax for readability, like Figure 12.3,
but also on some handy features: shallow, like the predefined string type; and deep,
like I/O predicates. In fact, both λProlog and Bedwyr offer system interfaces
which, though rudimentary, allow the passing of information to a system call or
coprocess to, say, generate a random number between a certain range, or directly
pick left or right based on the weight of each branch—and the semantics of I/O
predicates correspond to the desired block backtracking behavior.

In the purely relational model of Abella, no such interactive facilities avail.
For example, suppose a size bound carries over to the maximum number of
random choices involved in data generation. In such a situation, a list of random
numbers could be passed in the certificate and consumed by: (a) the various
iterations of the generation phase; and (b) each instance of the generation phase.
Treatment of these external sources of randomness would parallel the propagation
of bounds seen in the qsize certificates of Figure 12.3, although the solution is
not as satisfactory as extending Abella with some form of I/O predicate, following
the example of Bedwyr—which was extended precisely for purposes such as this.

12.4.2 Example Consider the final formulation of the counterexample lemma for the
obviously false property of list reversal in Example 12.2.2. In it, the generation
phase consists of a single list of naturals, for which we may use the standard
typing judgments. For natural numbers, this corresponds to the nat fixed point of
Figure 9.1; list_nat is in turned defined in terms of nat and the usual constructors:
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% Generation
Kind qform type.
Type qor nat -> nat -> qform -> qform -> qform.
Type qand qform -> qform -> qform.
Type qname string -> qform.
Type qnone qform.

Kind qmap type.
Type qmap string -> qform -> qmap.

Type qcert list qmap -> list qform -> qform -> cert.

% Staging
Type qstart numidx -> cert -> cert -> cert.

% Number of attempts
Define iterate : numidx -> prop by
iterate (s _) ;
iterate (s N) := iterate N.

% Clerks and experts
Define releaseRExpert : cert -> cert -> prop by
releaseRExpert qsearch qsearch.

Define decideRClerk : cert -> cert -> prop by
decideRClerk (qcert Map Delta Goal) (qcert Map Delta Goal) ;
decideRClerk (qstart Tries Gen Chk) (qstart Tries Gen Chk).

Define storeRClerk : cert -> cert -> prop by
storeRClerk (qcert Map Delta Goal) (qcert Map Delta Goal) ;
storeRClerk (qstart Tries Gen Chk) (qstart Tries Gen Chk).

Define unfoldRExpert : cert -> cert -> prop by
unfoldRExpert (qcert Map Delta qnone)

(qcert Map Delta qnone) ;
unfoldRExpert (qcert Map Delta (qname Name))

(qcert Map Delta Form) :=
member (qmap Name Form) Map ;

unfoldRExpert qsearch qsearch.

Define unfoldLClerk : cert -> cert -> prop by
unfoldLClerk qsearch qsearch.

12.5 Figure The QuickCheck-style FPC for random property-based testing in
Bedwyr. Presentation conventions are shared with Figure 12.3; unchanged blocks
are omitted as well.
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Define someExpert : cert -> cert -> i -> prop by
someExpert (qcert Map Delta Goal) (qcert Map Delta Goal) _ ;
someExpert (qstart Tries Gen Chk) (qstart Tries Gen Chk) _ ;
someExpert qsearch qsearch _.

Define someClerk : cert -> ( i -> cert ) -> prop by
someClerk qsearch (_\ qsearch).

Define eqExpert : cert -> prop by
eqExpert (qcert _ _ _) ;
eqExpert qsearch.

Define orExpert : cert -> cert -> choice -> prop by
orExpert (qcert Map Delta qnone)

(qcert Map Delta qnone) _ ;
orExpert (qcert Map Delta (qor Pr1 Pr2 Form1 Form2))

(qcert Map Delta Form) Choice :=
read Random /\
(

Random <= Pr1 /\
Form = Form1 /\
Choice = left

\/
Random > Pr1 /\
Form = Form2 /\
Choice = right

) ;
orExpert qsearch qsearch _.

Define andExpert : cert -> cert -> cert -> prop by
andExpert (qcert Map Delta qnone)

(qcert Map Delta qnone) (qcert Map Delta qnone) ;
andExpert (qcert Map Delta (qand Form1 Form2))

(qcert Map Delta Form1) (qcert Map Delta Form2) ;
andExpert qsearch qsearch qsearch ;
andExpert (qstart Tries Gen Chk) Gen Chk :=

iterate Tries.

Define eqClerk : cert -> cert -> prop by
eqClerk qsearch qsearch.

Define impClerk : cert -> cert -> prop by
impClerk qsearch qsearch.

Define orClerk : cert -> cert -> cert -> prop by
orClerk qsearch qsearch qsearch.

Define andClerk : cert -> cert -> prop by
andClerk qsearch qsearch.

12.6 Figure The QuickCheck-style FPC for random property-based testing in
Bedwyr (continued). Presentation conventions are shared with Figure 12.5.
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list_nat ≡µ(λListNat.λl . l = nil∨

∃n.∃l ′.l = cons n l ′ ∧+ nat n ∧+ ListNat l ′)

The following certificate will guide the proof by generating 10 lists of naturals.
An empty list is chosen with 50% probability, otherwise a natural and a continua-
tion list are generated. In generating natural numbers, zero is chosen 90% of the
time, otherwise we return the successor of the recursively generated number.

(qstart
10
(qcert

((qmap "is_natlist"
(qand qnone

(qor 50 50 qnone
(qand qnone

(qand
(qname "is_nat") (qname "is_natlist"))))))

:: (qmap "is_nat"
(qand qnone

(qor 90 10 qnone (qand qnone (qname "is_nat")))))
:: nil)
nil
(qname "is_natlist")

)
qsearch

)

Note that, for example, the formula structure of list_nat is reproduced as a
qmap entry labeled with the name "is_natlist", and the positions of fixed
point generators are likewise marked with the names of the entries in the map. In
this fashion, the certificate knows what it is generating and how to take random
choices.

As with other appearances of this lockstep pattern, the burdensome part of
the certificates is an easy target for automation, and extends gracefully to other,
possibly more sophisticated random generation strategies. For the remainder of
the chapter, illustrations will be based on the cleaner exhaustive FPC, which runs
in current versions of Abella without changes.
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12.5 Hosted PBT in λProlog

The first of the two extension methods discussed in Section 12.2 makes use
of some higher-order features of λProlog to work on signatures with binders
using λ-tree syntax. Following McDowell and Miller (2002), we introduce a
simple specification logic, which in this case is basically a basic Prolog-like meta-
interpreter whose sole peculiarity is its interpretation of nabla as λProlog’s
universal quantifier. The definition of the interpreter drives the derivation of our
object logic, which represents Horn-style clauses through the two-place predicate
prog which relates heads and bodies of the object clauses. These clauses are
built out of object-level logical constants (tt, or, and, nabla) and user-defined
predicate constructors.

Figure 12.7 presents the kernel; in this purely positive presentation, each
logical constant, as well as the unfolding of prog clauses, is controlled by a
client-defined expert predicate—nabla remains transparent to the kernel, as usual.
Two predicates are in charge of the computation, interp and check, differing
only on the use in the latter of the expert predicates to steer search. Both interpret
object-level connectives as λProlog code, and look up and unfold client-side
constructors in program database of prog.

Porting the FPC definition of Figure 12.3 to this embedded kernel is straight-
forward and much more succinct, only partly due to the slightly simplified model
of the checker; Figure 12.8 presents this version of the FPC. Note that there is no
need to handle the disjunctive expert: because prog-based specifications allow
alternatives in the form of variant clauses, disjunctions can be dispensed with at
this level. However, it is important to note that—at the specification level—there
is no alternative to disjunction in recursive definitions, and therefore the proof
theory must give the connective full consideration.

12.5.1 Example We now revisit, in full, the disproof of the property in Exam-
ple 12.2.2. Again, we want to generate lists of natural numbers and compute
their reverse, and find out something about the combination of specification
and property. Again, we want to falsify the assertion that the reverse of a list is
equal to itself. Figure 12.9 gives the encoding of the problem as prog clauses in
the hosted kernel. (Note how the specification makes full use of λProlog’s type
system.) To prove the counterexample lemma, it suffices to pose a goal like the
following:

cexrev XS YS :- check (qgen (qheight 3)) (is_natlist XS),
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% Formulas and their terms
kind prolog type.
type tt prolog.
type and, or prolog -> prolog -> prolog.
type some, nabla (A -> prolog) -> prolog.

% Program and interpreter
type prog prolog -> prolog -> o.
type interp prolog -> o.

% Certificates
kind choice type.
type left, right choice.

kind idx type.

kind cert type.
type tt_expert cert -> o.
type or_expert cert -> cert -> choice -> o.
type and_expert cert -> cert -> cert -> o.
type unfold_expert cert -> cert -> o.

% Checker
type check cert -> prolog -> o.

% Interpreter implementation
interp tt.
interp (and G1 G2) :- interp G1, interp G2.
interp (or G1 G2) :- interp G1; interp G2.
interp (nabla G) :- pi x\ interp (G x).
interp A :- prog A G, interp G.

% Checker implementation
check Cert tt :- tt_expert Cert.
check Cert (and G1 G2) :- and_expert Cert Cert1 Cert2,

check Cert1 G1, check Cert2 G2.
check Cert (or G1 G2) :- or_expert Cert Cert’ Choice,

((Choice = left, check Cert’ G1);
(Choice = right, check Cert’ G2)).

check Cert (nabla G) :- pi x\ check Cert (G x).
check Cert A :- unfold_expert Cert Cert’,

prog A G, check Cert’ G.

12.7 Figure The hosted kernel in λProlog. Signature and module names and
accumulations of kernel signatures are omitted.
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% Signature
kind qbound type.
type qheight int -> qbound.
type qsize int -> int -> qbound.
type qgen qbound -> cert.

% Implementation of clerks and experts
tt_expert (qgen (qheight _)).
tt_expert (qgen (qsize In In)).

and_expert (qgen (qheight H))
(qgen (qheight H)) (qgen (qheight H)).

and_expert (qgen (qsize In Out))
(qgen (qsize In Mid)) (qgen (qsize Mid Out)).

unfold_expert (qgen (qheight H)) (qgen (qheight H’)) :-
H > 0, H’ is H - 1.

unfold_expert (qgen (qsize In Out)) (qgen (qsize In’ Out))
:- In > 0, In’ is In - 1.

12.8 Figure The SimpleCheck-style FPC for (bounded) exhaustive property-based
testing in embedded λProlog. Signature and module names and accumulations of
kernel signatures are omitted.

interp (rev XS YS), not (XS = YS).

Here, we determine that, since the generation phase alone require guidance,
we generate candidate lists in accordance with the limits of a generation certificate,
here up to a certain depth by means of qheight, pairing it to the goal via check.
The testing phase performs deterministic computation, each of which components
can be delegated to the meta-interpreter interp. Finally, the negated conclusion
employs negation-as-failure (NAF). Given that this NAF involves ground terms
exclusively, the call is logically sound.

We are now ready to lift the full implementation—programming environ-
ment, kernel, FPC definition—to λ-tree syntax. Figure 12.10 translates the static
semantics of Figure 12.2 to prog clauses in the hosted λProlog kernel, making
use of a signature with the obvious type declarations for constants.

The encoding in λProlog is standard: we declare constructors for terms,
constants, and types, while carving out values via an appropriate predicate,
is_value. Similarly to values, another predicate, is_err, characterizes the
threading in the operational semantics of the special error expression—used to
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% Signature
kind nat type.
type zero nat.
type succ nat -> nat.
type is_nat nat -> prolog.

kind lst type -> type.
type null lst A.
type cons A -> lst A -> lst A.
type is_natlist lst nat -> prolog.
type append lst A -> lst A -> lst A -> prolog.
type rev lst A -> lst A -> prolog.

% Module
prog (is_nat zero) (tt).
prog (is_nat (succ N)) (is_nat N).

prog (is_natlist null) (tt).
prog (is_natlist (cons Hd Tl))

(and (is_nat Hd) (is_natlist Tl)).

prog (append null K K) (tt).
prog (append (cons X L) K (cons X M)) (append L K M).

prog (rev null null) tt.
prog (rev (cons X XS) RS)

(and (rev XS SX) (append SX (cons X null) RS)).

12.9 Figure Reversal of lists of natural numbers in hosted λProlog. Presentation
conventions are shared with Figure 12.7.

model runtime errors such as taking the head of an empty list. Third in line is the
small-step evaluation relation, step. Progress is defined in terms of these three
predicates in the homonymous predicate that embodies the dynamic semantics.
The static semantics is contained by the typing predicate wt (for “with type”);
this assigns an arbitrary type to error and types constants via a table encoded by
tcc. Note that the encoding we have chosen uses explicit contexts as opposed to
the hypothetical judgments of McDowell and Miller (2002) (see also Section 4.3).
This choice avoids implications in the body of the typing predicate and, as a
result, allows us to use λProlog universal quantification to implement nabla at
the reasoning level.

This version of the λ-calculus enjoys some usual properties, of which we will
focus on two. First, it satisfies subject reduction and progress—where progress
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prog (is_value (c _)) (tt).
prog (is_value (lam _ _)) (tt).
prog (is_value (app (c cns) V)) (is_value V).
prog (is_value (app (app (c cns) V1) V2))

(and (is_value V1) (is_value V2)).

prog (is_error error) (tt).
prog (is_error (app (c hd) (c nl))) (tt).
prog (is_error (app (c tl) (c nl))) (tt).
prog (is_error (app E1 _)) (is_error E1).
prog (is_error (app E1 E2))

(and (is_value E1) (is_error E2)).

prog (step (app (c hd) (app (app (c cns) X) XS)) X)
(and (is_value X) (is_value XS)).

prog (step (app (c tl) (app (app (c cns) X) XS)) XS)
(and (is_value X) (is_value XS)).

prog (step (app (lam M T) V) (M V)) (is_value V).
prog (step (app M1 M2) (app M1’ M2)) (step M1 M1’).
prog (step (app V M2) (app V M2’))

(and (is_value V) (step M2 M2’)).

prog (progress V) (is_value V).
prog (progress E) (is_error E).
prog (progress M) (step M N).

prog (memb X (cons X _)) (tt).
prog (memb X (cons Y Gamma)) (memb X Gamma).

prog (tcc (toInt _) intTy) (tt).
prog (tcc nl listTy) (tt).
prog (tcc hd (funTy listTy intTy)) (tt).
prog (tcc tl (funTy listTy listTy)) (tt).
prog (tcc cns (funTy intTy (funTy listTy listTy))) (tt).

prog (wt Ga M A) (memb (bind M A) Ga).
prog (wt _ error _) (tt).
prog (wt _ (c M) T) (tcc M T).
prog (wt Ga (app X Y) T)

(and (wt Ga X (funTy H T)) (wt Ga Y H)).
prog (wt Ga (lam F Tx) (funTy Tx T))

(nabla x\ wt (cons (bind x Tx) Ga) (F x) T).

12.10 Figure Dynamic semantics of the Stlc language, implemented in hosted
λProlog, corresponding to the rules presented in Figure 12.2 under an appropriate
type signature.
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% Simple generation
prog (is_exp (c Cnt)) (is_cnt Cnt).
prog (is_exp (app Exp1 Exp2))

(and (is_exp Exp1) (is_exp Exp2)).
prog (is_exp (lam ExpX Ty))

(and (nabla x\ is_exp (ExpX x)) (is_ty Ty)).
prog (is_exp error) (tt).

% Maintaining a context of lambda variables
prog (is_exp’ _ (c Cnt)) (is_cnt Cnt).
prog (is_exp’ Ctx (app Exp1 Exp2))

(and (is_exp’ Ctx Exp1) (is_exp’ Ctx Exp2)).
prog (is_exp’ Ctx (lam ExpX Ty))

(and (nabla x\ is_exp’ (cons x Ctx) (ExpX x))
(is_ty Ty)).

prog (is_exp’ _ error) (tt).
prog (is_exp’ Ctx X) (tt) :-

memb_ctx Ctx X.

12.11 Figure Top-level (λ-term) expression generators written in hosted λProlog.
For bound variables to appear in the generated expressions a dedicated context
needs to be maintained and its contents drawn as valid expressions. This latter
step is performed in raw λProlog outside the prog interpreter so that it does
not wrongly correlate prog steps taken inside a generator with size bounds of
generated terms.

means, from a direct reading of the progress predicate, “being either a value, an
error, or able to take an evaluation step.” In fact we can easily prove those results
in a theorem prover like Abella. Furthermore, by defining λ-term generators in
the usual manner PBT can be applied to this setting, as well. The only point of
interest concerns the role of nabla and the use of variables generated by it in the
resulting expressions, as illustrated in Figure 12.11.

12.5.2 Example Complementing a proof of subject reduction, we may wonder whether
the calculus enjoys the subject expansion property, as well. The sagacious reader
will promptly note this is highly unlikely, but will also observe that, rather than
waste time in a fruitless proof attempt, we can define a counterexample lemma
and let the machine disprove the property for us:

cexsexp M M’ A :- check (qgen (qsize 8 _)) (step M M’),
interp (wt null M’ A),
not (interp (wt null M A)).

A = listTy



12.5. hosted pbt in λprolog 247

M’ = c nl
M = app (c hd) (app (app (c cns) (c nl)) (c _))

There are many other interesting queries we can explore in this fashion. Are
there terms that do not have a type? Are there terms for which evaluation does
not converge to a value? This, and many others, are useful applications of the
PBT approach.

As a more comprehensive validation we addressed the nine mutations pro-
posed by the PLT Redex benchmark, to be identified as violations the preservation
or progress properties.

12.5.3 Example The first mutation in the PLT Redex benchmark introduces a bug in
the typing rule for application, matching the range of the function type to the
type of the argument. The change occurs in the T-APP rule in Figure 12.2:

Γ `Σ M1 : A→ B Γ `Σ M2 : B
Γ `Σ M1 M2 : B

T-APP-B1

In the specification, the mistake translates into replacing the program clause
for typing applications with the following faulty code in Figure 12.10:

prog (wt Ga (app X Y) T)
(and (wt Ga X (funTy H T)) (wt Ga Y T)).

And, as we can verify, the mutation causes both properties to fail:

cexprog M A :- check (qgen (qsize 6 _)) (wt null M A),
not (interp (progress M)).

A = intTy
M = app (c hd) (c (toInt zero))

cexpres M M’ A :- check (qgen (qsize 8 _)) (wt null M A),
interp (step M M’),
not (interp (wt null M’ A)).

A = funTy listTy intTy
M’ = lam (x\ c hd) listTy
M = app (lam (x\ lam (y\ x) listTy) intTy) (c hd)

The table in Figure 12.12 summarizes the results. In this comparison, αCheck
is set to use negation-as-failure for fairness, although this is not always the optimal
choice (Cheney et al., 2016). In any case, the λProlog implementation completes
all the problems in the alloted time, consistently maintaining a time advantage
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12.12 Figure Results of PBT on the Stlc benchmark. In order, each column represents:
a bug number, the property that is the subject of the test (preservation or progress),
checking times in αCheck and λProlog (αC and λP, respectively, with a timeout
threshold of 300 seconds), one of the smallest counterexamples found, and a
description of each bug along with a rating of increasing difficulty (Shallow,
Medium, Unnatural).
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over αCheck which only grows larger as the challenges become more complex.
Bug #6 requires exploring the state space up to a depth of 11, the largest of the
problem suite. Under this discipline, it is trivial to adapt the pairing FPC of
Section 5.2 to the hosted kernel and seamlessly combine both families of bounds.
It is also interesting to note that, for this particular set of problems, Teyjus and
ELPI perform indistinguishably from one another—in contrast to their showing
in Section 8.5, where ELPI consistently beat Teyjus.

The developments in this section can be run directly in λProlog or inside
Abella by loading the λProlog kernel, FPC definition and programs by means of
the Specification command (see Section 10.2).

12.6 Native PBT in Abella

The second of the two extension methods discussed in Section 12.2 encodes
relational specifications directly as fixed points. These fixed point encodings can
be written directly in a logic like µLJF—as implemented in Section 10.3, directly
embedded in Abella. However, the deep connection between Abella and logic
(itself compatible to a large extent with µLJF; see also Section 10.2) does imply
that relational specifications can be programmed directly as Abella definitions
and transparently reflected into the logic (this aspect is studied in Section 13.4).

In order to accommodate rich specifications involving nominal quantification,
the rich kernel described in Section 10.3, in particular Figure 10.8, must be used.
From the point of view of the user, specifications are written in pure Abella and
transparently reflected into the kernel; working directly with Abella has the added
advantage of a richer type system for user terms than the kernel implements—and
the disadvantage of working with closed inductive definitions, less modular than
the λProlog code of the previous section (so an external element of composition
would be needed). For example, compare Figure 12.13 with its isomorph in
Figure 12.10, above. Other specification code obeys the same shallow syntactic
translation rules and therefore requires no particular attention. To make the code
in the figure embeddable, it suffices that contexts and bindings be implemented in
terms of user-defined types instead of the predefined types o and olist.

12.6.1 Example In the correct implementation of the semantics of Stlc of Figure 12.13,
there will be a (relatively involved) proof of the progress theorem:

Theorem prog : forall E T, wt nil E T -> progress M.
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Define is_value : exp -> prop by
is_value (c N) ;
is_value (lam M T) ;
is_value (app (c cons) V) := is_value(V) ;
is_value (app (app (c cons) V1) V2) :=
is_value(V1) /\ is_value(V2).

Define is_err : exp -> prop by
is_err error ;
is_err (app(c hd) (c nl)) ;
is_err (app(c tl) (c nl)) ;
is_err (app E1 E2) := is_err(E1) ;
is_err (app V1 E2) := is_value(V1) /\ is_err(E2).

Define step : exp -> exp -> prop by
step (app (c hd) (app (app (c cons) X) XS)) X :=

is_value X /\ is_value XS ;
step (app (c tl) (app (app (c cons) X) XS)) XS :=

is_value X /\ is_value XS ;
step (app (lam M T) V) (M V) := is_value V ;
step (app M1 M2) (app M1’ M2) := step M1 M1’ ;
step (app V M2) (app V M2’) := is_value V /\ step M2 M2’.

Define progress : exp -> prop by
progress V := is_value V ;
progress E := is_err E ;
progress M := exists N, step M N.

Define memb : o -> olist -> prop by
memb X (X :: Gamma) ; memb X (Y :: Gamma) := memb X Gamma.

Define tcc : cnt -> ty -> prop by
tcc (toInt N) intTy;
tcc nl listTy ;
tcc hd (funTy listTy intTy) ;
tcc tl (funTy listTy listTy) ;
tcc cons (funTy intTy (funTy listTy listTy)).

Define wt : olist -> exp -> ty -> prop by
wt Ga M A := memb (bind M A) Ga ;
wt Ga error T ;
wt Ga (c M) T := tcc M T ;
wt Ga (app X Y) T :=

exists H, wt Ga X (funTy H T) /\ wt Ga Y H ;
wt Ga (lam F Tx) (funTy Tx T) :=
nabla x, wt (bind x Tx :: Ga) (F x) T.

12.13 Figure Dynamic semantics of the Stlc language, implemented in Abella.
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Suppose now the typing relation wt is replaced with the version that contains
bug #1 of the PLT Redex benchmark, as shown in Figure 12.14. In this case, prog
is not a theorem, i.e., it can be falsified. One way to show this is to write the
corresponding counterexample lemma, cexprog, and prove it. This could be
done in Abella by coming up with witnesses manually, using them to instantiate
the existentials and completing the proof. More interestingly, we can use PBT
with a counterexample outline to certify the counterexample lemma—simply
by adding generators to the statement of the manually proved lemma. Even
more, by adding the typing judgments to the original prog non-theorem, we
can falsify it by proving the associated counterexample lemma with the same
certificate, i.e., a disproof outline.

As opposed to Example 12.2.1, which pairs a correct implementation with
an incorrect specification, this example combines a correct specification (i.e.,
property) with a buggy implementation. Noting that given a ground term E
its type T is determined by the typing relation wt, it is possible to balance the
generation phase by producing only an independent set of inputs from which
others (in this case the type) are derived by computation.

The resulting system is functionally equivalent to the hosted λProlog kernel
of the previous section. However, the architecture in its current form it is not
competitive with λProlog in terms of performance. This is principally due
to the runtime behavior of the pure embedded Abella kernel. Executing the
kernel as part of an Abella proof involves large numbers of redundant clause
lookups. What is worse, pattern matching the arguments of a call to the main
relations (async, etc.) with the various clauses representing inference rules
creates multiple, also redundant, unification problems; even though each of these
effectively matches formal parameters and actual arguments at the top, smaller,
trivial subproblems are generated and vacuously solved after this step. If we use the
kernel with nabla, the unification problems are slightly more complex, but even
a simpler implementation of the unification algorithm—such as is described in
Section 13.2—has a negligible effect (a small penalty factor) compared to the grind
imposed by Abella’s search—for a discussion on these issues, see also Section 13.1.
Nonetheless, as we note, this organization of the system yields equivalent results,
even as significant redesigns are needed to make it usable in practice.
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Define wt : olist -> exp -> ty -> prop by
wt Ga M A := memb (bind M A) Ga ;
wt Ga error T ;
wt Ga (c M) T := tcc M T ;

% wt Ga (app X Y) T :=
% exists H, wt Ga X (funTy H T) /\ wt Ga Y H ;

wt E (app M N) U :=
exists T, wt E M (funTy T U) /\ wt E N U ;

wt Ga (lam F Tx) (funTy Tx T) :=
nabla x, wt (bind x Tx :: Ga) (F x) T.

Theorem cexprog : exists E T,
wt nil E T /\ (progress E -> false).

skip.

Theorem cexprog : exists E T,
gen_exp E /\ gen_ty T /\ wt nil E T /\
(progress E -> false).

certify (qstart (qgen (qheight 5)) qsearch).

Theorem prog : forall E T,
gen_exp E -> gen_ty T -> wt nil E T -> progress M.

falsify (qstart (qgen (qheight 5)) qsearch).

12.14 Figure Buggy implementation of the wt typing relation, replacing that given
in Figure 12.13 according to bug #1 of the PLT Redex benchmark. In this version
of the semantics, counterexample lemmas are provable and their associated non-
theorems are falsifiable by the application of PBT techniques.
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12.7 Notes

The present proof theoretical treatment of property-based testing was first pre-
sented in Blanco et al. (2017b).

Property-based testing validates code against an executable specification by the
automatic generation test data, typically following random or exhaustive regimes,
or a combination of both. It was originally conceived for its use in testing applied
to programming languages (Claessen and Hughes, 2000) and has since to most
major proof assistants (Blanchette et al., 2011; Paraskevopoulou et al., 2015) to
complement theorem proving with a preliminary phase of conjecture testing.
For a comprehensive review, refer, e.g., to Cheney and Momigliano (2017). In
the more specific arena of model checking applied to metatheoretical pursuits,
one of the most representative initiatives is PLT Redex (Felleisen et al., 2009),
an executable domain-specific language for mechanizing semantic models built
on top of the Scheme dialect DrRacket. It supports QuickCheck-style random
testing and its usefulness has been demonstrated in several impressive case studies
(Klein et al., 2012).

However, PLT Redex offers limited support for relational specifications and
none whatsoever for binding signatures. αCheck’s role is to address those deficien-
cies (Cheney and Momigliano, 2017). On top of the logic programming language
αProlog, the tool adds a checker for relational in the same vein as has been done
in this chapter. One of several possible implementation techniques is based as well
on NAF—as far as testing of the conclusion is concerned. The generation phase
is instead “wired in” via iterative-deepening search based on the height of deriva-
tions; in this regard αCheck is less flexible than our FPC-based architecture (and
can be interpreted as offering a fixed choice of clerks and experts). Finally, more
distant cousins in the logic programming world are declarative debugging (Naish,
1997) and the Logic-Based Model Checking project at Stony Brook (LMP).

As we have noted, the implementation of random PBT is not directly sup-
ported by Abella due to a lack of I/O functionality while in proof mode. Clerks
and experts can be programmed and run in Bedwyr, as shown above, or equiva-
lently in λProlog—note, however, that the I/O capabilities of λProlog are not
available in the integrated interpreter that Abella implements, but ELPI inte-
gration is an appealing possibility. Neither λProlog nor Bedwyr offer a stable
system interface nor a random number generator, so that a source of randomness
must be obtained by a relatively rudimentary interface with the runtime system,
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e.g., via file descriptors or coprocesses. A possible “pure” workaround involves
parameterizing the random disproof outlines by a list of random choices which
would be obtained by some external means and passed as an argument. This
alternative can be executed in pure Abella and in its embedded λProlog, but must
be carefully threaded through clerks and experts so that different parts of the
sequence are passed to different branches of a proof.

Interesting examples of the metatheory of programming languages require the
addition of nabla to the logic, presented in Section 9.4, but our problem domain
also involves simplifications to the logic from features that are not required. In
particular, the initial rules are absent and only equality is used to close proof
branches; all atoms are defined as fixed points. If our model is limited to PBT,
only a subset of the connectives is used for this purpose, and structural rules are
severely restricted (i.e., no stores or decides). Furthermore, polarization is fixed.
All these facts can be combined used to provide a simplified kernel.

As observed in Example 12.6.1, the dependencies between the various genera-
tors and computational predicates paves the way to a certain amount of shifting
obligations between the generation and the testing phase. This is particularly
important for performance, because generating independent data and filtering
only those sets that satisfy certain judgments (e.g., generating terms and types
independently and accepting only pairs such that the term has the selected type)
is potentially very inefficient.

In the chapter, we have considered generators that are complete for given
inductive types, but this is not a strict requirement. It is possible and often
interesting to define generators for specific subtypes such as, say, “small” integers.
Independent notions such as exhaustive or random generation, combined with
custom generators, can be flexibly combined into composite certificate definitions
simply by the usual mechanism of module accumulation in logic programming.

More in general, we may want to use a certificate not simply to witness a
counterexample, but to point to the specific point where a proof fails, therefore
avoiding the inspection of all the paths that (unhelpfully for the counterexample)
succeed. The proof process can be seen as a dialogue between the doomed deriva-
tion of the impostor theorem and the proof of its negation—the counterexample
lemma. Potentially, this could assist in repairing the specification or the property,
and therefore the proof. The notion of productive use of failure Ireland and
Bundy (1996) may serve as inspiration. For example, in Example 12.6.1, we want
to skip directly to the case of a list with two or more distinct elements, avoiding
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empty and singleton lists, which offer no useful information. This would suggest
modifying the generator of lists to account for these minimum size requirements.

Another natural area of interest is in applications of model checking, for
instance applied to graphs and properties like reachability in degenerate cases.
This could be useful to find bad behaviors in program analysis. A proof theoretical
presentation of this area has been initiated by Heath and Miller (2015, 2017).



256 chapter 12. property-based testing



13 Certificate integration in a proof
assistant

13.1 Abella architecture

The Abella proof assistant is an OCaml program implemented as a collection of
modules. Some of those modules define a public interface and encapsulate critical
data structures, whereas others have a less obtuse structure. Nevertheless, the
overall architecture is clearly laid out and welcomes modular extensions of the
sort required to bring the developments of this part to executable form. The
issues and technical considerations involved in this process—on which the systems
described throughout Part III depend—are outlined in this chapter.

In a preliminary overview, we introduce the primary components where
development is concentrated. At the heart of Abella—and central also for our
purposes—is the Term module that represents higher-order λ-terms and models
the suspension calculus on which their manipulation is based (Nadathur, 2002).
The interface type of terms is reproduced in Figure 13.1. Interestingly, the
variables of Abella terms are simply memory cells, and their comparison is
given by pointer equality: their attributes do not factor into such operations as
substitution, and seemingly identical but separate variables can be created—that
is, a variable is created only once. A problematic point is that this representation
decision is neither hidden by the semantics of the module interface nor even by
its publicly declared definition. Over the course of our developments, we have
encountered and corrected several bugs and misbehaviors.

Also related to term manipulation, but less critical for our purposes, are the
modules Metaterm of meta-level terms, i.e., Abella’s propositions, and Typing,
where the still-untyped terms read in interactive use are defined. Other basic mod-
ules that we will manipulate include Prover, which acts as the main interface

257
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(* Terms. The use of references allow in-place normalization
* but is completely hidden by the interface. *)

type ptr
type tyctx = (id * ty) list

type term = private
| Var of var
| DB of int
| Lam of tyctx * term
| App of term * term list
| Susp of term * int * int * env
| Ptr of ptr

(* Sorry about this one, hiding it is costly.. *)
and envitem = Dum of int | Binding of term * int
and env = envitem list

13.1 Figure The Abella term structure interface exposes the standard constructors
for constants, bound variables, abstractions and applications, as well as suspended
terms and pointers used for side effects. The representation relies on helper
functions to inspect and manipulate terms, but these invariants are not strictly
enforced by the Term module.

to the core of the prover, and Tactics, where the language of tactics is defined.
Those two modules will be our gateway to building the FPC framework inside
the very nucleus of Abella. The last module of special interest is Unify, where a
heavily customized implementation of unification on Abella terms—with substi-
tutions as side effects on the imperative-style terms—is provided (Nadathur and
Linnell, 2005). This unification module, critical Abella’s execution of proofs, will
be less amenable to the kinds of direct manipulation we have in store. (However,
this impediment will not be as pervasive as the leaky representation of terms.)

We must note that Abella’s computational engine is not particularly efficient.
When used to execute an embedded checker, it generates large numbers of redun-
dant unification problems. At its core, a checker performs proof reconstruction
by means of an implementation of an augmented sequent calculus. From the entry
point, an inductively defined proof object is constructed by mutually recursive
calls from the bottom up. A successful recursive call represents the application
of an inference rule of the proof system on the conclusion and the generation of
the premises. The relations and their clauses correspond to the inference rules
organized by the kind of sequent of their conclusion: in µLJF a , these are async,
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syncL and syncR. Calling the checker, say, on an unfocused sequent collects
all clauses operating on unfocused sequents and pattern matches the arguments
via unification on all of them. Since the kernel has few functions with “many”
clauses, this leads to much repeated and wasted work. Furthermore, because
most pattern matching consists in copying inputs around or decomposing at the
top level of formulas only, the fairly costly unification algorithms spend their
substantial runtime mostly on trivial identities.

The rest of the chapter is organized as follows. Section 13.2 presents an
extended, hierarchical unification model for Abella which allows more flexible
use of higher-order unification and the effective embedding of kernels with nabla
for use with the FPC framework. Section 13.3 begins to develop the integration
of the FPC framework in Abella proper, introducing the FPC-based tactics used
in previous chapters as a complement, or replacement, of the standard tactics
of Abella—the sole limitation being that our tactics are limited to accepting cer-
tificate terms representing complete proofs in current versions of Abella instead
of being used to build a proof interactively. Section 13.4 completes the proof
theoretical integration of the framework by connecting the logic of Abella with
the logic implemented by the embedded kernel. Section 13.5 considers the uni-
form organization of FPC definitions in λProlog and their modular composition
extended, as well, to Abella. Section 13.6 concludes the chapter.

13.2 Extended unification

Abella, like Bedwyr (with some limitations) and all modern implementations
of λProlog, implements (higher-order) pattern unification, a decidable fragment
of full higher-order unification (Huet, 1975). In general, the extension of first-
order unification (Robinson, 1965; Martelli and Montanari, 1982) to higher-
order terms preserves none of the desirable qualities of the former: in particular,
higher-order unification is undecidable (more precisely, semidecidable, so there
are no guarantees of termination: we cannot know if a solution exists); it is
non-determinate (so, if there may be arbitrarily many incomparable solutions
which cannot be expressed as a single, most general unifier, or MGU); and it is
typed (in the sense that term-level typing information plays an important role in
the search for solutions). In contrast, unification problems on higher-order terms
satisfying the pattern restriction preserve the good traits of first-order unification
(decidability, determinacy and type-freeness), being the weakest extension from
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first-order to the higher-order setting in which the usual rules of αβη -conversion
hold (Miller, 1991a).

Typically, pattern unification is applied dynamically. That is, in solving a
higher-order unification problem, we assume that the problem is in the pattern
fragment; if at some point we find an equation which fails to satisfy the pattern
restriction, it is set aside until—by the effect of substitutions dictated by other
equations in the problem—it becomes a pattern equation. Although pattern
unification is considered “almost complete in practice” with problems outside
the fragment occurring very rarely, there are at least two reasons to look beyond
the status quo. First, a controlled, interactive application of full higher-order
unification inside a proof assistant can avoid its pitfalls while allowing a user to
guide the solution of complex problems. Second, there are significant use cases
which have simple, well-behaved solutions in spite of falling outside the pattern
fragment in non-fundamental ways—the enriched kernel needed to represent
nabla at the object level in Section 12.6 is one such case.

The second case will be addressed by implementing a recent technique pro-
posed by Libal and Miller (2016) called functions-as-constructors (FC) unification,
or FCU. In pattern unification, applications with existential variables at the head
require that all arguments be distinct variables, universally quantified within
the scope of the head. FCU extends patterns (as well as some prior proposed
generalizations) by observing that the requirement that bound variables be used
as arguments can be extended to term constructors, which very often are acting
as functions and do not alter the desirable properties of unification patterns—the
traditional head and cons operations on lists are examples of this. The conditions
of operation of the extended algorithm must be given first.

13.2.1 Definition In a formula, an occurrence of a bound variable is essentially univer-
sal if it is bound by a positive occurrence of the universal quantifier, a negative
occurrence of the existential quantifier or a term-level abstraction. All other
bound variables, bound by a positive existential quantifier or a negative universal
quantifier, are said to be essentially existential. Essentially universally quantified
variables can be instantiated only with eigenvariables, and essentially existentially
quantified variables can be instantiated with general terms (in logic programming,
this involves logic variables and unification).

In the context of a unification problem, an occurrence of term is rigid if its
head is a (term-level) bound variable or an eigenvariable; it is flexible if its head is
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a logic variable. A unification equation can be classified according to the rigidity
of its terms as rigid-rigid, rigid-flexible, flexible-rigid, or flexible-flexible.

Here we shallow follow Libal and Miller (2016) for general notation and
naming conventions. Given a signature of non-logical constants C and a signature
of essentially universally quantified variables Σ, a restricted term in an equation e
is defined as follows, where BV (e ) is the set of bound variables of e :

1. A variable in Σ or BV (e ) is a restricted term.

2. A (non-vacuous) application ( f t1 · · · tn) is a restricted term if f is either in
C, Σ, or BV (e ), and t1, . . . , tn are all restricted terms.

A system of equations satisfies the FCU property iff it satisfies the following
three restrictions:

1. Argument restriction: for all (non-vacuous) applications (Xt1 · · · tn) where
X is an essentially existentially quantified variable, t1, . . . , tn are all re-
stricted terms.

2. Local restriction: for all (non-vacuous) applications (Xt1 · · · tn) where X is
an essentially existentially quantified variable, no argument ti is a subterm
of a different argument t j .

3. Global restriction: for all pairs of (non-vacuous) applications (Xt1 · · · tn)
and (Y s1 . . . sm ) where both X andY are essentially existentially quantified
variables, no argument ti of the first application is a strict subterm of an
argument s j of the second application.

13.2.2 Example By inclusion, all unification problems in the pattern fragment are
also in FC. Given C = {cons,nil, fst, rst} and Σ = {l , z} at appropriate types:

1. cons (X (fst l )) (rst l ) = rst (Y (fst l ) (fst (rst l ))) is in FC.

2. X (cons z nil) = rst l breaks the argument restriction.

3. X (fst l ) l = cons z l breaks the local restriction.

4. X (fst l ) = rst (Y (cons (fst l ) (rst l ))) breaks the global restriction.

These examples were originally given by Libal and Miller (2016). The explicit
encoding of sequents explored by McDowell and Miller (2002, Section 4) and
applied to the construction of proof checking kernels with nominal quantification
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in Section 10.3 and Figure 10.8 naturally result in unification problems involving
the fst and rst constructors: these problems are conceptually simple, but strictly
fall outside the pattern fragment, but are covered by FC unification.

The restrictions of the FCU property are sufficient conditions to maintain
determinacy. A series of results in Libal and Miller (2016), together with the
algorithm given there, show that unification problems satisfying the FCU prop-
erty are decidable, determinate and (essentially) type-free—since, although the
algorithm works in a typed setting, it is the presence of a constructor or a bound
variable that guides application of the algorithm (as part of the restricted terms of
Definition 13.2.1), not the types of those constructors and variables. The original
presentation of the FCU algorithm follows closely that of pattern unification in
Miller (1991a), with minor changes in some of the rules. Like pattern unification,
it uses a pruning substitution (also slightly modified from its original form) that
assists in optimizing the term-traversal computations involved in the performance
of the occurs-check—an operation called variable elimination. The pruning oper-
ation is applied to exhaustion before the applicable steps of the main algorithm;
the paper makes no attempt at organizing the sequence of applications of pruning
to avoid inefficiencies.

In order to open up unification—both by allowing controlled use of full
higher-order unification and by treating additional classes of solvable problems
without user intervention—we integrate a hierarchy of unification algorithms in
the Abella proof assistant. The first addition is a purely functional implementation
of higher-order unification as presented by Huet (1975), assuming the η -rule—as
implied by the axiom of functional extensionality. The algorithm operates by
building a matching tree where nodes correspond to unification problems—with
the original problem at the root—and edges correspond to substitutions; leaves
can be failure nodes indicating a failed solution attempt or success nodes, each
indicating a solution to the original problem as the sequence of substitutions from
root to success node. Solutions are preunifiers since outstanding flexible-flexible
equations are underconstrained and left untreated by the algorithm.

To ensure tractability, some technical changes are needed. First, termination is
imposed by computing matching trees down to a certain, finite depth. Information
is preserved by introducing a third kind of pseudo-leaf, the suspend node, from
which tree construction can resume incrementally. Second, the pointer-based,
shared term representation (see Figure 13.1) is ill-suited to the construction of
matching trees, where several potential substitutions for the same variable need
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to be considered simultaneously. Instead of relying on Abella’s side-effecting
implementation (which cannot support multiple competing substitutions for
a given variable) a purely functional implementation of term operations like
normalization and substitution—in which new copy-terms are returned and
variable equality is based on attributes and not on pointer equality—is provided.

The development is encapsulated in a new module that follows the general
structure of the original Unify module—Abella’s implementation of pattern
unification and its interface with the rest of the system. Like that module, it
parameterizes essentially existential and universal variables by two sub-modules:
universal (resp. existential) quantification represents either: (a) essential universal
(resp. existential) quantification on the right; or (b) essential existential (resp. uni-
versal) quantification on the left. Nominal abstraction is easily added and treated
in both cases as constant-like. The module signature is shown in Figure 13.2.

13.2.3 Example In addition to serving as the basis for specialized unification algo-
rithms, the Huet module can be more directly utilized to expose unification
to the user of Abella through specialized tactics—as opposed to the common
view of it as a black box that either succeeds or fails. This exposure allows one
to judiciously apply the power of full higher-order unification when a problem
requires it, all the while maintaining automation of a well-behaved fragment like
patterns or FC.

As a particularly useful illustration, we have implemented a tactic, match,
which in its simplest mode of operation seeks to solve the unification problem
defined by the current goal. For example, given the signature C = {a, g}, a goal of
the form F a = g aa represents unification a problem with four distinct unifiers:
{〈F , λx .g xx〉}, {〈F , λx .g ax〉}, {〈F , λx .g xa〉}, and {〈F , λx .g aa〉}. If we apply
match to such a goal, we obtain a disjunction of goals generated by applying each
of the unifiers to the original goal, from which we need to be able to finish the
proof at hand. While the result in this example is simple, more complex behaviors
arise in richer unification problems.

To manage the possible nontermination of higher-order unification, external
depth bounds must be added to the tactic. At a given point, construction of the
matching tree may halt and the results associated to any success nodes returned.
The only risk is that proofs that rely on a solution that has not yet been found
cannot be finished without further, possibly incremental exploration—until the
right disjunct of the goal is found. Applying the match tactic to the premises is
trickier, as shown by the fact that for a unification problem with one solution
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(* Pairs of terms, esp. disagreement pairs *)
type pair = Term.term * Term.term
val pair_to_string : pair -> string

(* Information about failures *)
type huet_restriction =

| Type_restriction of Term.term * Term.term

exception Not_huet of huet_restriction

(* Bounded matching trees *)
type mtree =

| Success
| Failure
| Suspend
| Node of pair list * (pair * mtree) list

val mtree_to_string : mtree -> string

(* Disagreement set nodes for simplification *)
type node =

| NSuccess
| NFailure
| NPairs of pair list

(* Basic signature of unification modules *)
module type Unification = sig

val is_flexible : Term.term -> bool
val is_rigid : Term.term -> bool
val simpl : node -> node
val umatch : pair -> pair list
val from_pairs : int -> pair list -> mtree
val from_mtree : int -> mtree -> mtree
val unifiers : mtree -> (pair list * pair list) list

end

(* Higher-order unification on the left and on the right *)
module Left : Unification
module Right : Unification

13.2 Figure Huet unification module in Abella. The two sub-modules implement
a common unification interface for use on both sides of a two-sided sequent.
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at a certain depth, failing to go deep enough to find that solution and simply
reporting an empty (if partial) list of solutions may be confused with a success by
negation-as-failure. During case analysis, Abella performs a single step of Huet’s
algorithm covering the simple scenario of application of such a tactic.

To complement match, a simpl tactic that simplifies and updates sequents
operates as a complement to the former tactic and can be used to perform a
manually controlled application of higher-order unification.

The second addition to the unification framework is a functional implementa-
tion of the FCU algorithm. A line of attack that circumvents its still relatively
undeveloped algorithmic presentation harnesses the general higher-order unifica-
tion algorithm (just described) by the following observation: Huet’s algorithm
applied to a problem which satisfies the FCU condition must terminates by the
properties of the FCU fragment; moreover, if the problem has a solution, the
matching tree has a single success node which represents the preunifier of the
most general unifier that is the solution of the problem. The hosted version of
the FCU algorithm follows this high-level outline:

1. Check the FCU property for the problem. If it fails, notify that the problem
falls outside the supported fragment.

2. If the check is successful, iteratively grow the matching tree by the bounded
version of Huet’s algorithm until the success node is reached, and extract
the associated preunifier.

3. Turn the preunifier into the unifier by generating pruning substitutions
followed by the FCU substitutions for flexible-flexible pairs, repeating the
substitution to exhaustion.

4. Apply the substitutions of the most general unifier thus obtained to the
original problem.

Implementation is straightforward with two important technical notes. First,
whereas Huet’s algorithm uses η -expanded terms throughout its treatment, subse-
quent treatment (including by the FCU algorithm) relies on their η-contracted
form, so the interface code must adjust term representation accordingly. Second,
any extensions of unification based on a functional representation of terms (such
as in Huet’s matching trees) must translate the resulting unifier (i.e., a list of
substitutions) into the corresponding side-effecting substitutions implemented
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by Abella’s term library, taking care not to alter the original terms and their
pointers—on which the standard substitution operation of Abella relies. In the
case of FC unification, which strictly extends the functionality of pattern unifica-
tion, the most flexible solution is to encapsulate the single unification operation in
a module, Fcunify, which exactly reproduces Abella’s native Unify interface
(shown in Figure 13.3) with minimal changes.

An appealing possibility is to make FCU the default unification algorithm
in Abella—begin stronger than pattern unification while retaining its high-level
computational properties. This poses several technical challenges. First, the
figure makes clear that the interface to the unification algorithm depends on
a particular unification algorithm, namely pattern unification. In particular,
unification failures and errors are not generic enough. The negative impact
of this coupling is that a full replacement of pattern unification by the more
general FC unification cannot properly succeed without (fairly minor) changes
in the interface. Secondly, and independently from the interface’s reliance on a
particular algorithm, Abella depends (implicitly) on a particular implementation
of unification. Aspects like the generation of names of new existential variables or
the order in which possible solutions to a case analysis step are generated depend
implicitly on undocumented and unplanned behavior. Therefore, changes that
preserve the semantics of unification can break existing proof scripts and modify
Abella’s interaction with the user. However, only a complete redesign at the core
of the program can remove this limitation.

In spite of these considerations, both versions of the tactics—using either
pattern and FC unification—can coexist gracefully. Additionally, tactics which
use unification in the course of attempting to complete a full subgoal—notably,
search—can be completely replaced by the more powerful FCU algorithm, as
their succeed-or-fail behavior leaves no partial proof state that may differ from
Abella’s standard. This extended, FCU-based search is exactly what is needed to
run the enriched kernel natively in Abella, as required in Section 12.6. There
is a performance penalty arising from the added complexity and unoptimized
implementation, but the replacement does not significantly affect the trends
observed in that part. To our knowledge, this is the first implementation and
practical use of the FCU algorithm.
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type unify_failure =
| OccursCheck
| ConstClash of (term * term)
| Generic
| FailTrail of int * unify_failure

val explain_failure : unify_failure -> string

exception UnifyFailure of unify_failure

type unify_error =
| NotLLambda

val explain_error : unify_error -> string

exception UnifyError of unify_error

val right_unify :
?used:(id * term) list -> term -> term -> unit

val left_unify :
?used:(id * term) list -> term -> term -> unit

val try_with_state : fail:’a -> (unit -> ’a) -> ’a

val try_right_unify :
?used:(id * term) list -> term -> term -> bool

val try_left_unify :
?used:(id * term) list -> term -> term -> bool

val try_left_unify_cpairs :
used:(id * term) list ->
term -> term -> (term * term) list option

val try_right_unify_cpairs :
term -> term -> (term * term) list option

val left_flexible_heads :
used:(id * term) list ->
sr:Subordination.sr ->
((id*ty) list * term * term list) ->
((id*ty) list * term * term list) ->

term list

13.3 Figure Unify unification module in Abella. It implements left and right uni-
fication in several variations (standard, returning success or a list of conflict pairs).
This existing interface is adopted as a wrapper to expose our new developments
to Abella, noting that error reporting generalizes the contents of the standard
interface, which are specific to pattern unification.
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13.3 Certifying tactics in Abella

In Section 4.4, we saw how a proof system like LKF a admits a natural, direct
encoding as a logic program in a logic programming language like λProlog. As
fixed points and equality are added to the logic, resulting in proof systems like
µLJF a , the same techniques are applicable by selecting a logic programming
language with fixed points whose semantics corresponds closely to those of
the logic, such as the common core of both Bedwyr and Abella. In this latter
context, a kernel is an Abella program—more precisely, a definition—operating
on (polarized) formulas built on the kernel’s object logic, itself defined as regular
Abella data types; this approach was introduced in Section 10.3. In Chapter 11
and Chapter 12, we glossed over the applied aspects of applying certification in
this environment. In fact, Chapter 11 is formulated in pure Abella and assumes
that we can call a full checker by means of special tactics. Those tricks will be
revealed now.

Up to this point, we have a kernel and FPC definitions written as Abella
programs. Thus, the checker can exist as part of an Abella development. At
this level, we can define fixed points and natively—through the checker—prove
properties about formulas based on those fixed points. Nonetheless, and insofar
as Abella’s G logic (or a fragment thereof) is compatible with the intuitionistic
calculus µLJF, an intriguing possibility is to use Abella to certify properties
defined at the reasoning level of Abella itself. In order to have Abella’s hosted
µLJF a kernel, also at the reasoning level, discharge proof obligations inside
Theorem environments, we need to make Abella aware of the kernel and expose
its functionality through new tactics, e.g., the certify of Chapter 11. In
addition, Abella’s theorems need to be reified into formulas of the kernel’s object
logic in order to serve as valid inputs.

First, let us account for the additions to the tactics language. The certify
tactic is easily defined in terms of a call to search. We start considering the
scenario that maps directly to the kernel’s interface, in which a single formula
wrapped in the initial sequent is checked against a certificate. That is, a certificate
will be given to discharge the entire proof of a theorem, with the language of
FPCs as a full replacement of Abella’s language of proof scripts (for full proofs).
This is achieved by the following pseudo-algorithm:
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1. Reify the statement of the full theorem in Abella into a (polarized) formula
of the kernel’s object logic. (This process is covered after the present
discussion on tactics.)

2. Given a certificate term (of type cert), execute the kernel’s entry point
check on this certificate and the translated formula. This execution is
carried out by a call to the search tactic without depth search restrictions.

Under this scheme, we seek to use the sequent calculus embodied by the kernel
to find a full proof of (the projection of) the original theorem. Indeed, given a
certificate term and suitable FPC definitions, it suffices to allow the full checker to
run and either succeed, thus proclaiming the theoremhood of the reified theorem
statement—and, provided that the translation is adequate, of the original. The
computational character of proof checking means that all we need to do is behind
the scenes is search on the embedded kernel. However, to obtain efficient proof
checking we need to make the tactic aware that its execution is controlled not
by an explicit bound, but implicitly by the nature of the kernel. By default, the
tactic employs a stateless version of iterative deepening which attempts to find
proofs of growing depth 1, 2, . . ., while repeating all the work at lower bounds.
We enrich the tactic with the ability to perform depth-first search—the standard
choice for deep proofs whose backtracking points are completely determined by
the kernel. (This behavior is not always what interactive users want, and can have
a negative effect on the performance of Abella proof scripts where finding short
proofs with less control is more important. However, DFS can be toggled in the
call to the extended search inside the certify tactic wrapper.)

13.3.1 Example With this apparatus in place, sessions like the one in Figure 11.12
(prefixed by its corresponding declarations and definitions) can be executed na-
tively in Abella. Likewise, property-based testing as described in Section 12.6
becomes directly executable (for this, see Example 13.3.4).

A first generalization of certify consists in employing it as a first-class
tactic. Instead of being a full replacement of the legacy tactical language of Abella
and using it to prove full theorems, a certificate term can be provided at any
point in the proof in an attempt to find a subproof, thus discharging the current
goal. The reifier must now inspect an arbitrary Abella sequent—essentially, a
collection of a goal, a list of hypotheses and a list of eigenvariables—and fold back
the new components in the translation. Namely, given eigenvariables x1, . . . , xm ,
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hypotheses H1, . . . ,Hn and goal G, it must provide a translation of the formula:

∀x1. · · · ∀xm .H1 ⊃ · · · ⊃ Hn ⊃ G

The translation of this representation of the sequent can then be passed to the
checker. Suppose certify takes a certificate Ξ. It is a simple matter to define
a certificate constructor which reconstructs the original sequent (or rather, its
reified form) in the kernel by asynchronously introducing both eigenvariables
and hypotheses and then applying the supplied certificate to the exact sequent for
which it was written. Such a preprocessing wrapper can be written in exact form
as (preprocess m n Ξ). Its definition is completely straightforward.

13.3.2 Example Recall the proof by certificate of the commutativity of addition of
natural numbers developed in Example 11.7.2. A hybrid proof may perform the
induction in the standard Abella vernacular, reusing the first part of the script in
Figure 11.3:

induction on 1. intros. case H1.

This brings us to the first subgoal:

Variables: M S
IH : forall N, nat N * ->

(forall M, nat M ->
(forall S, plus N M S -> plus M N S))

H2 : nat M
H3 : plus z M S
============================
plus M z S

Subgoal 2 is:
plus M (s N1) S

Now, instead of resorting to standard Abella tactics, we may choose to prove
the goal with a certificate. For example, from the original example, we may use:

certify (apply? 1 0 (idx "plus0com") search).

Which will allow us to progress to the second subgoal. On the other hand,
a weak tactic like certify search. will fail to prove the goal, much like a
regular search would. In this way we can use certificates at any point in a proof.

A second orthogonal generalization of the basic certify tactic is the ad-
dition of interactivity. Instead of presuming a certificate—a description of an
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entire proof—is known in advance, it is possible to define certificates with holes
in them. If those holes are undecorated logic variables, they are not in themselves
useful, but adequate support from the FPC definition can be obtained. Suppose a
certificate constructor, ask, is provided. The role of such a certificate is simply
to as the client for a certificate, read it and use it to try to finish the current
goal. Embedded as a continuation inside a more complex certificate, this simple
extension implements the strategy to “use a certificate to continue the proof
until a certain point, and when this point is reached ask for more information
to proceed.” In effect, in this way we reproduce in the FPC framework the
interactive proving loop characteristic of proof assistants like Abella, and enables
a flexible and complete revamp of its tactical language. This proving style can
be implemented in Bedwyr—where I/O predicates were added precisely for this
purpose—, but not yet in Abella, which currently lacks the ability for tactics
to interact with the user—though, paralleling Bedwyr, they are a feasible design
extension which could be used in Abella.

13.3.3 Example Still illustrating these concepts from refinements of Example 11.7.2
and its associated Figure 11.3, suppose now that we wish to perform a proof
through the FPC framework that resembles the information flow of the Abella
proof script—in regular practice, we commonly lack a formal proof at the outset
and build one through the use of the proof assistant. The first step is clear:
perform an induction and case analysis to obtain the zero and successor cases.
What to do in each subgoal is not yet clear. Therefore, we may leave these
unspecified by writing a full certificate which is, nonetheless, missing crucial
information, though these point are explicitly annotated as follows:

(induction?
(case? 0

ask
ask

)
)

In fact, this is a more concrete representation of the incremental construction
of a certificate in Example 11.7.1. Applied to pluscom, this certificate in fact
succeeds and stops at the same sequent shown in Example 13.3.2. At this point,
we can continue writing suitable certificates for each branch, such as, as noted for
the zero case in the example:

(apply? 1 0 (idx "plus0com") ask)
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Here, note that as a continuation certificate we decide to simply apply the
lemma and then return for further instructions: this successive refinement closely
parallels the common language of standard tactics. However, note that once we
step into the world of FPCs we are committed to it: it is not considered at this
point that one could drop back into the world of uncertified tactics.

The complement of the certify family of tactics is the falsify tactic
that is necessary to directly implement the treatment of property-based testing
developed in Chapter 12—certainly, counterexample lemmas can themselves be
explicitly written as theorems and proved (as they were given in the examples
in that chapter), but this tedium can be averted by integrating the process in
the proof environment, i.e., as a dedicated tactic. Said tactic never succeeds in
proving the current goal; rather, it is of interest for its “side effects,” i.e., its
informative output: if a counterexample is found, instantiations for the variables
are shown—which is to prompt an interruption of the user’s proof efforts until
the problem is repaired. The most modular alternative is to define falsify as a
wrapper around certify in the following manner:

1. From the current goal (or sequent), attempt to derive a counterexample
lemma according to the patterns described in Section 12.2.

2. If a counterexample lemma avails, wrap it in a fresh sequent and apply to
it the certify tactic (reification and checking). The falsify tactic is
parameterized by a certificate term—a priori, typically a disproof outline,
but this is not a strict requirement—, which is propagated to certify.

3. Upon success, inspect Abella’s proof witness and extract the values of the
prefix of existential variables, and output them to the console. Note that
success in the counterexample lemma does not extend to the original goal.

13.3.4 Example The disproof outlines in both positive and negative form (i.e., through
the tactics certify and falsify) thus enabled permit the full range of experi-
ments presented in Example 12.6.1 and Figure 12.14.

Note that, in our discussion, tactics like certify take a full certificate term
as argument and use it to guide search for a complete proof by cleverly driving a
native search-like tactic. These certifying tactics can be embedded in standard
proof scripts. The addition of interactivity at the certificate level will eventually
make it possible to dispense with legacy tactics and build proofs in Abella fully
within the FPC framework.
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13.4 Connection between Abella and the kernel
Second, after describing the new tactics added to Abella, we turn to the reification
process by which Abella terms are reflected into terms of µLJF a as implemented
by the embedded kernel. The core of the logic G on which Abella is based
is an intuitionistic and predicative subset of Church’s Simple Theory of Types
extended with generic judgments via the nabla quantifier (Gacek et al., 2011). To
those core rules are also added rules for definitions, induction and coinduction
with the standard fixed point interpretation. The resulting logic can be given
a sequent calculus presentation which largely coincides with µLJ—described in
Section 9.1, and from which the proof systems that are the central subject of
Part III derive through focusing ( µLJF) and augmentation ( µLJF a ). Owing to
the relatedness of both systems, moving between them is, in this instance, quite
simple, as established by the next definition.

13.4.1 Definition The reification function from formulas of G to formulas of µLJ is
defined as a function J·K. Connectives of each logic are distinguished by subscripts.
For formulas in the core (first-order) fragment of G, map the top-level connective
to its corresponding version in µLJ, and recurse on its subformulas. For example:

JA ∧G BK = JAK ∧µLJ JBK

J∀GAK = Πx .∀µLJJAxK

Here, Π denotes the meta-level quantifier; other connectives receive analogous
treatment. Definitions in G are given by a finite set of clauses Π x̄ .p x̄ , B p x̄ .
Here, p is a predicate constant that takes a number of arguments given by the
length of x̄ . A predicate is defined by exactly one clause with body B—with stan-
dard restrictions to guarantee the existence of fixed points—, whose interpretation
is given by the unfolding rules (analogous to those in Section 9.1). Instead of the
generic ,, we write µ

= and ν
= for least and greatest fixed point definition clauses,

respectively. Thus, we have:

JΠ x̄ .p x̄ µ
= B p x̄K = Πp .Π x̄ .µJB p x̄K

JΠ x̄ .p x̄ ν
= B p x̄K = Πp .Π x̄ .νJB p x̄K

It is immediate that the operation of reification thus defined is an isomorphism
across the fragments of both logics—being essentially identical—and therefore
preserves provability between G and µLJ, as supported by Baelde and Miller (2007,
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Proposition 3). In fact, the kernel developed in Section 9.3 implements the focused
and augmented version of µLJ directly in terms of Abella’s implementation of
G. The connection between the unpolarized logic µLJ considered now and its
extension µLJF a is given in two steps: from µLJ to µLJF by Baelde et al. (2010,
Theorem 1), and from µLJF to µLJF a by Theorem 9.3.1.

In a similar vein, the translation operation as implemented in tactics like
certify proceeds in two steps, each requiring its own considerations. First, an
Abella (i.e., G) formula is reified into µLJ, following Definition 13.4.1. Ostensibly,
no attempts are made to reify Abella sequents in mid-(co)induction: inductive
reasoning in Abella is modeled by size restriction annotations which sustain the
cyclic reasoning used by induction and coinduction tactics (Baelde et al., 2014,
Section 5). Second, the reified µLJ formula moves into the world of polarized
formulas common to µLJF and µLJF a . To this end, a polarization function is
needed. In our experience, a purely positive polarization (for least fixed points) is
the most useful in practice and can be made the default, but we need to be able to
specify other polarization strategies. For this, the certify tactic—and therefore
falsify, which must supply adequate parameters to it—must accept a second
(optional) parameter to convert from an unpolarized µLJ formula to a formula
suitable for use by the kernel.

13.4.2 Example In the LKF setting, a simple scheme that has been used in previous
work, e.g., by Chihani et al. (2016b), parameterizes the relation that converts
unpolarized client-side formulas into polarized kernel-side formulas (in negation
normal form) by two logical connectives: a conjunction and a disjunction. In so
doing, it allows the user to select the polarities of both connectives.

type nnf (form -> form -> form -> o) ->
(form -> form -> form -> o) ->
bool -> form -> o.

Here, bool is the type of unpolarized formulas and form is the type of polar-
ized formulas. This simple approach works in most cases, but more sophisticated
conversions are possible—of course, in an intuitionistic logic like µLJF, the polar-
ity of disjunction is fixed. Such relations can be loaded as part of the specification,
written in λProlog, and referenced by name in the syntax of certifying tactics.

After covering both reification and additions to the tactics language (in the
previous section), all that remains is to connect the structure and evolution of
an Abella development session to our logical framework—hence establishing the
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basis for trust in the embedded certification framework. At its core, a session is a
sequence of three types of commands, each with a corresponding image in the
certified world of µLJF a :

1. Kind and Type declarations of types and constructors build up the sig-
nature. All constructors are modeled on top of the term monotype used
by the kernel, i, assisted as needed by typing judgments—as introduced in
Section 11.2, and by means of which ambiguities are resolved.

2. Define and CoDefine definitions give names to (respectively, least and
greatest) fixed point expressions. References to existing, stratified definitions
inline their corresponding fixed points at the point where they occur in
subsequent expressions. For the sake of efficiency, the certifying version
if Abella maintains a shadow table that stores the µLJ fixed point alongside
the native Abella definition, indexed by name. This mechanism is also used
to define formulas and refer to them by name inside certificates—especially
useful for complicated and possibly reoccurring formulas like induction
invariants and cut formulas.

3. Theorem statements accompanied by full, succeeding proof scripts. These
are trusted to be elaborated into full proofs by Abella—and now, alterna-
tively by a combination of Abella and the embedded kernel if they rely on
certify tactics. Previously defined theorems are admissible as lemmas
under the assumption that a full, formal proof for them is available, i.e.,
they are available for use in a “lemma context” and need not be re-proved
each time they are used. (The skip tactic admits an obligation without
proof, unsoundly assuming the existence of an arbitrary proof; it must be
disallowed in any serious development and will not be considered here.)

By composing this sequence of signature extensions, definitions, and proofs,
we can obtain a pure, proof theoretical view of an Abella development as a
single proof, say, expressed in µLJF, displayed in Figure 13.4. This is yet another
instance of the cut backbone proof pattern first observed in the resolution proofs
of Section 3.6. In this reading, the session can always be finished by inspecting
a trivial goal, or the proof can be continued by formulating a new result and
prolonging the session by a cut. On one side, the proof of the theorem is
given; on the other, the theorem is added to the lemma context and can be used
in subsequent “proof branches.” If every theorem is proved by tactics in the
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certify family, such a “session proof tree” is actually being built; otherwise,
Abella’s soundness needs to be trusted as well. A tactics language based on the
FPC framework solves this problem organically; the feasibility of this approach
has been explored in Section 11.7 and is hereby given technical substance and
logical legitimacy.

The final question concerns the threading of seemingly isolated calls to the
checker by certify within the larger context of the session proof tree: namely,
all previously proved lemmas must be made available as lemma decides—motivated
back in Section 11.4. The most faithful encoding extends the kernel interface
with a check_with_lemmas call which populates the lemma map, Λ, with
the available theorems. To offer finer control over lemma decides, the certify
tactics are extended with a third optional parameter: in its basic form, a list of
theorem names—a subset of the current context of proved theorems—whose use
as lemmas is allowed within the proof.

13.4.3 Example Once again in the context of Example 11.7.2, pluscom is preceded
by lemmas plus0com and plusscom. Therefore, calls to the certify tactic
correspond to calls to the kernel interface check_with_lemmas where the
context of lemmas is populated by the two previous results. In this way, the
backbone of theorems that compose an Abella session are connected to the formal
proof represented in Figure 13.4.

It should be noted that the proof of plusscom has plus0com (as well as
any previous results) available as lemma decides. In large sessions, a wealth of
uninformative decision points has potentially deleterious effects on performance,
which motivates the introduction of filters on the list of previous (restricted to
usable) lemmas.

13.5 Clerks and experts as specifications

Thus far, there has been a clear separation between kernels written in pure
λProlog (in Part II) and kernels written in Abella (in Part III). Noticeably, the
specification of an FPC definition in λProlog is not only more compact and
readable—partly, because the open-world assumptions enables us to declare only
what we need and elide the rest—, but also more modular—for the same reason,
we can seamlessly compose definitions, whereas in Abella all clerks and experts
need to be defined, and do so at once. (Compare, for example, the (abridged)
presentation of the SimpleCheck FPC in Abella in Figure 12.3 with the code
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13.4 Figure Representation of an Abella session as a focused proof. The session
starts with the default signature and a goal R that is trivially provable, e.g., by
finishing the session. In terms of proofs, a session is a sequence of theorem
statements represented by cuts: on one premise, a proof Πi for the theorem Ti

must be given; on the other premise, the proved lemma is stored (by freezing)
and ready to be used in subsequent proofs. This picture elides definitions which
augment the effective signature and does not contemplate the introduction of the
unsoundness by skipped proofs.
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written for λProlog in Figure 12.8; the simplified execution model in the latter
case hardly accounts for the diminished complexity.) However, for all practical
purposes, the code of an FPC definition—i.e., its clerks and experts—are simple
logic programs that inhabit the common fragment of λProlog and Abella, and
consequently, a unified treatment can be foreseen.

In Abella, the existence of a specification logic in the form of a slightly trimmed
down version of λProlog (for details, see Section 10.2) can be exploited to take
advantage of the terseness of λProlog specifications. This change involves minor
changes—or, alternatively, additions—to the kernel, where calls to clerks and
experts are delegated to the specification level by the curly bracket notation.
Specification-level predicates of type o thus replace reasoning-level predicates of
type Prop, and a specification including those predicates must be loaded before
the kernel, as usual. In particular:

1. Clerks and experts are defined as λProlog predicates in the style of Part II.

2. Clerks and experts are called from the kernel in curly brackets, thus repre-
senting their provenance at the specification level.

Otherwise, the implementation remains unchanged and as obviously correct—
and amenable to formalization—as its counterpart in pure Abella. (This extension
is not compatible with Bedwyr, however.)

By using specifications, λProlog-defined FPC definitions can be combined
in a flexible manner, but once imported into Abella by the Specification
command, the open world is closed and cannot be modified. Moreover, the FPC
declarations become part of whatever client-defined specifications are require by
the user. A further improvement from modularity comes from allowing multiple
names specifications to be imported and handled separately—this is achieved by
a simple technical modification. The default, nameless namespace in Abella can
be preserved for backwards compatibility. With this increased modularity, the
user can load several FPC specifications separately, whether they cooperate or
they conflict. All that is missing is to allow the certify family of tactics to
(optionally) specify a subset of FPC specification namespaces to select clauses
only from the designated names. This provides increased control to seamlessly
change the style of certification within a single development session and without
risk of conflicts. The modification is made at the level of the basic search tactic,
though it can be extended to others, as well.
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To summarize, we have explored various levels of modularity and indirec-
tion and various connections between λProlog, Bedwyr and Abella and their
connections to the Abella world, along with requisite background and extensions:

1. A kernel and FPC definitions can be defined in λProlog, loaded at the spec-
ification level and executed purely at that level, as was done in Section 12.5.

2. The kernel can be defined as Abella code, and FPC definitions can be given
indistinctly as Abella of λProlog clauses—as discussed in this section. To
prove properties written directly as Abella code, reification to the kernel
logic is employed. If no λProlog code is utilized, proof obligations can be
“shipped” to Bedwyr for execution as an alternative.

3. Given the contact surface between G and µLJF a , a third possibility involves
executing a kernel which manipulates Abella formulas almost directly, with
the sole addition of polarization. The lack of embedding then implies that
a simple search no longer succeeds, and the language of tactics must be
upgraded to feature a slightly more complete, Bedwyr-like search.

13.6 Notes
The FCU algorithm is one of several computationally simple restrictions of
higher-order unification (and extensions of higher-order pattern unification) than
can compute MGUs for the unification problems generated during the execution
of a kernel with support for nominal abstraction. Previously, Tiu (2002) pro-
posed a limited extension to the pattern unification algorithm of Miller (1991a,b)
modified to account exclusively for the constructors of the lists that compose the
local contexts in their explicit representation. FCU recently received another,
independent implementation by Hamana (2017).

In the event of success of the falsify tactic, it is desirable to obtain a print-
out of the witness terms that effectively falsify the target property (by proving
the counterexample lemma, which sees the universal quantifiers as existentials
which are instantiated by the generators). This information is easily extracted by
the trace of the proof contained in Abella’s witness terms, and is then trivially
added to falsify’s wrapper around certify, which produces said witness
from the counterexample lemma.
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Afterword

“A thesis is not finished: it is abandoned.” On the conduct and culmination of
doctoral studies a professor once offered me this curious maxim. By that jocular
koan he exorcized the powerful symbolism the artifact often holds in the eyes of
the student: that one should not attempt in vain to square the circle in a quest for
perfect completeness. There is—there should always be—more.

Indeed, a thesis is not a living document as much as it is a travel photograph,
laboriously developed at a milestone, just as we set for the next one. Ultimately,
it is not an end in and of itself; rather, it is the first leg in a journey of scientific
research—or is it really the first? Either way, it should not be the last.

To conclude, I reproduce a poem by Antonio Machado, Spanish exile in
France. It is very well known, likely because of its simple poignancy.

Caminante, son tus huellas
el camino, y nada más;
caminante, no hay camino:
se hace camino al andar.
Al andar se hace camino,
y al volver la vista atrás
se ve la senda que nunca
se ha de volver a pisar.
Caminante, no hay camino,
sino estelas en la mar.

The journey continues.
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Abstract: Formal trust in an abstract property, be it a mathematical result or the behavior of a
computer program or a piece of hardware, is founded on the existence of a proof of its correctness.
Many different kinds of proofs are written by mathematicians or generated by theorem provers, with
the common problem of ascertaining whether those claimed proofs are themselves correct. The
recently proposed Foundational Proof Certificate (FPC) framework harnesses advances in proof
theory to define the semantics of proof formats, which can be verified by an independent and trusted
proof checking kernel written in a logic programming language. This thesis extends initial results in
certification of first-order proofs in several directions. It covers various essential logical axes grouped
in meaningful combinations as they occur in practice: first, classical logic without fixed points and
proofs generated by automated theorem provers; later, intuitionistic logic with fixed points and equality
as logical connectives and proofs generated by proof assistants. The role of proof certificates is no
longer limited to representing complete proofs to enable independent checking, but is extended to
model proof transformations where details can be added to or subtracted from a certificate. These
transformations yield operationally simpler certificates, around which increasingly trustworthy and
performant proof checkers are constructed. Another new role of proof certificates is writing high-level
proof outlines, which can be used to represent standard proof patterns as written by mathematicians, as
well as automated techniques like property-based testing. We apply these developments to fully certify
results produced by two families of standard automated theorem provers. Another application is the
design of programmable proof description languages for a proof assistant.


