
The Pennsylvania State University

The Graduate School

Department of Computer Science

OBJECT PROGRAMMING,

LINEAR LOGIC

AND

JAVA

A Thesis in

Computer Science

by

Alexandre A. Betis

c 1999 Alexandre A. Betis

Submitted in Partial Ful�llment
of the Requirements
for the Degree of

Master of Science

December 1999

I grant The Pennsylvania State University the non-exclusive right to use this work
for the University's own purposes and to make single copies of the work available on a
not-for-pro�t basis if copies are not otherwise available.

Alexandre A. Betis

We approve the thesis of Alexandre A. Betis.

Date of Signature

Dale A. Miller
Professor of Computer Science and Engineering
Thesis Adviser
Head of the Department of Computer Science and Engineering

Catuscia Palamidessi
Professor of Computer Science and Engineering

John J. Hannan
Associate Professor of Computer Science and Engineering

iii

Abstract

In this thesis I study the relationship between Linear Logic and Object-Oriented

programming languages. I �rst start by building a small language named Popeye that

allow the writing of simple object-oriented programs. Next, I prove that any Popeye

program is equivalent to a collection of Linear Logic formulas. As a consequence, I

provide an interpreter for Popeye written in �Prolog. I then show that certain Popeye

programs can be automatically translated to Java. I study the issues involved in such

a translation and give the rules needed to guarantee meaningful Java code. In this

formalism, I then build an object architecture that depicts logical gates and prove its

correctness. The Java code generated is then guaranted to be correct. Some additional

examples are also studied.

iv

Table of Contents

List of Figures : vii

Acknowledgments : x

Chapter 1. Introduction : 1

Chapter 2. Popeye : 6

2.1 Context-free Grammar . 8

2.2 Reserved words . 8

2.3 Statements . 11

2.4 Expressions . 13

2.5 First object: a simple switch . 14

2.6 Typing . 15

Chapter 3. Popeye in Linear Logic : 20

3.1 Translation from Popeye to Linear Logic 23

3.1.1 Translation of variables . 26

3.1.2 Translation of declarations . 27

3.1.3 Translation of commands . 29

3.2 Interpreter . 30

3.3 Switch example . 32

Chapter 4. Types and ambiguities in Popeye : 36

v

4.1 Ambiguities in Popeye . 37

4.2 Type inference . 38

4.3 Rules generation . 42

4.3.1 otype . 45

4.3.2 ctype . 45

4.3.3 ptype . 47

4.3.4 mtype . 47

4.4 Typing rule for the conditional operator 51

4.5 Typing the switch example . 52

4.6 Typing-Unambiguity correspondence 55

Chapter 5. Java code generation : 58

5.1 Notations . 58

5.2 Base rules . 61

5.3 Bindings to generate . 63

5.3.1 otype . 63

5.3.2 ctype . 63

5.3.3 ptype . 65

5.3.4 mtype . 65

5.3.5 A note on abstract classes . 65

5.4 Java code for the switch . 68

Chapter 6. Examples : 70

6.1 FIFO queue . 72

vi

6.2 Logical gates . 78

6.3 The hacker's corner: using elegant �Prolog programs in Popeye . . . 87

Chapter 7. Conclusion and insights : 96

7.1 Language issues . 96

7.2 Logical issues . 98

7.3 Implementation issues . 100

7.4 Insights . 102

7.5 Final words . 103

Chapter 8. Appendix : 105

8.1 Appendix A - Popeye Interpreter . 106

8.2 Appendix B - Type-inferer . 106

8.3 Appendix C - Java code generator 106

8.4 Appendix D - Examples . 106

8.4.1 Switch example . 106

8.4.2 FIFO example . 106

8.4.3 Logical gates example . 106

8.4.4 List example . 107

8.5 Appendix E - Additional references 108

References : 109

vii

List of Figures

1.1 An overview of Popeye and its neighbors 2

2.1 A grammar for Popeye . 7

2.2 Switch object in Popeye . 15

2.3 Base types in Popeye . 17

2.4 Constants in Popeye . 18

2.5 Typing header for the switch object . 18

3.1 Grammar for Linear Logic formulas . 20

3.2 The proof system for a fragment of linear logic (from [8]) 22

3.3 The cut rule for a fragment of linear logic (from [8]) 22

3.4 Syntactic categories for Popeye . 25

3.5 Syntactic typing for the switch example 25

3.6 De�nition for D : decl ! ll . 27

3.7 De�nition for L : (cmd� ll)! ll . 30

3.8 Interpreter for Popeye . 32

3.9 Linear Logic formula for the switch object 35

4.1 Types for inference . 36

4.2 Typing rules for Popeye . 43

4.3 Typing for typing directives . 44

4.4 De�nition for T : ty ! pt . 44

viii

4.5 Generation rules for otype . 46

4.6 Generation rules for ctype . 46

4.7 Generation rules for ptype . 47

4.8 Types and meanings for rw . 48

4.9 Generation rules for mtype with in-methods 49

4.10 Generation rules for mtype with out-methods 50

4.11 Typing rule for the conditional . 51

4.12 Typing of the declarations in the switch example 52

4.13 Typing of the constructor in the switch example 53

4.14 Typing of the get method in the switch example 54

4.15 Typing of the set method in the switch example 54

5.1 Rules for Java code generation . 62

5.2 Generation rules for method declaration 63

5.3 Generation rules for otype . 64

5.4 Generation rules for ctype . 65

5.5 Generation rules for mtype in the case of in-methods 66

5.6 Generation rules for mtype in the case of out-methods 67

5.7 Java code generated for the switch . 69

6.1 Example of session . 71

6.2 Popeye code for the cell object . 73

6.3 Popeye code for the queue object . 74

6.4 Java code generated for the Cell object 76

ix

6.5 Java code generated for the Queue object 77

6.6 Class diagram for Logical Gates . 79

6.7 Code for the wire object . 80

6.8 Code for the gate abstract class . 82

6.9 Code for the unigate abstract class . 83

6.10 Code for the bigate abstract class . 84

6.11 Code for the not-gate object . 85

6.12 Code for the and-gate object . 85

6.13 Java code for the wire object . 88

6.14 Java code for the gate abstract class . 89

6.15 Java code for the unigate abstract class 90

6.16 Java code for the bigate abstract class 91

6.17 Java code for the not-gate object . 92

6.18 Java code for the and-gate object . 93

x

Acknowledgments

I �rst would like to thank Celine, for letting me embark on this adventure and

for her constant support even though an ocean separated us. I could not have made it

without her.

I thank my family for having, once more, helped in the realization of a bold project

through every possible means.

I would like to express my most enthusiast recognition to the support provided by

Dale Miller, my advisor, and his wife, Catuscia. The highest standards they set forth,

their patience and their tolerance to my impossible character made this work possible.

Finally, I'd like to extend my greetings to the various people I met in State College

during my American life. They are too numerous to list here, but I consider every single

one of them as a vital foundation for this work.

\Utopia, by Sir Thomas Moore...

(Flips pages temptatively)

I never could �nish that book... "

Hugo Pratt

Corto Maltese in Siberia

1

Chapter 1

Introduction

Any kind of work reects its creators' beliefs and thought system. Like any

monument or writing left by our ancestors, a program reects many aspects of one's

personality. Field archaeology also taught us that the tools used by our ancestors were

very symptomatic of the people using them. If our initial analogy still holds, then

it implies that our programming frameworks should also reect this plurality. It is

surprising, then, to notice how this is de�nitely not the case. The vast majority of modern

APIs are de�ned in a context where a given program strictly enforces the succession of

instructions to execute: an imperative context. Other approaches, using functional or

logic paradigms are vastly underused.

In this thesis, I show how logic-based programming languages can be successfully

used in writing object-based programs. To do so, I designed a small macro language

named Popeye whose every construct can be tied to a formula expressed in Linear Logic

as introduced by Girard in [7]. The initial point is then made stronger by proving that

every object written in this environment can also be safely and automatically translated

into Java. Popeye can thus be seen as a touchstone between two very di�erent worlds.

When standing on this stone, one can proceed in either direction (namely, Linear Logic

or Java).

2

When moving to Linear Logic, the program becomes a set of strict mathematical

formulas that model the behavior of the program. It is then possible to build rigorous

proofs about the correctness of the initial program. In [4], Chiramar built such proofs

when specifying DLX, a RISC-like architecture, though the logic used, FORUM [14],

is a presentation of Linear Logic. One might also be interested into using this logical

representation into a Prolog-like interpreter. This is why I provide one. In many ways,

it can be closely linked to Lolli [8], a programming language that deals with Linear Logic

in a direct way.

On the other hand, when moving to Java, and given that the initial program

passes some checkpoints, we get a compilable code. Fig 1.1 presents a global overview

of the system.

Interpreter

Popeye

JavaL. L.

Fig. 1.1. An overview of Popeye and its neighbors

3

There are very good reasons for not having built such a tool before. In fact,

a �rst attempt at building objects using logic was outlined in [9]. The authors used

�Prolog in order to build representations of simple objects. At the time, the authors

were stuck because their logic could not express the idea of state, that is, some element

with a value changing over time. Prolog-like interpreters are based on a logic very close

to that of classical mathematical proofs, where once a fact has been proved true, it can

be reused in any other subsequent proof. As a consequence, a switch could be both on

and o�. Linear Logic solved the problem. In Linear Logic, a linear fact can only be used

in one subsequent proof. This allows us to re-write states in the middle of a proof. A

valid switch object can then be expressed in Linear Logic. I will show how Popeye can

express such a thing, and how it can be tied to Logic and Java. I also provide a bigger

example where an object architecture of logical gates is built (among other things). The

coming of Java is also an important issue. Its all-object approach brought a nice clean

framework for our translation. The other reason we chose Java is related to its built-in

support for threads and concurrency. As outlined in our �nal section, it is our hope that

Popeye will prove very useful in that matter.

On a bigger scale, the Popeye approach could generate a new way of programming.

In [18], Schach explains how modules can be split into two groups.

� Functional modules

� Logical modules

Functional modules are related to the realization of one precise action. For example

disk IO() is a typical functional module. They are usually easily implemented and

4

debugged. On the other hand, logical modules are in control of the execution of the

program. CPU playchess() is a good example for this category. These modules use

logical conditions in order to decide where the program should proceed next. There

are two main issues about these modules. First, they are very expensive to test. The

process usually involves the drawing of careful scenarios of execution. Each of them

validate some point in the speci�cation and check for errors. Second, such modules are

usually located in the upper section of the program hierarchy. As a consequence, any

error that slips through the previous examination can be assumed to be a design fault,

hence a very costly one. Consider now a Popeye framework. Here, I can write down my

logical modules and then feed them into the interpreter. Thanks to backtracking, I can

explore very quickly a vast amount of scenarios, and thanks to Linear Logic, I might be

able to build a mathematical proof that my speci�cation is actually met. If so, then I

can generate the Java code and be con�dent in its value. This is a surprising approach,

yet its consequences could be enormous.

The major issue about building such a system is that one needs to think about two

di�erent things when introducing any new construct. Just like two intersecting circles

generally de�ne a rather small area when compared to the total area of the original

circles, it has the consequence of making Popeye a very restrictive frame to work in.

Especially now, since the code I have written has no debugging features whatsoever.

On the other hand, the payo� and the elegant approach are, in my opinion, suÆcient

reasons for pushing in that direction. After all, everybody scorned objects for being too

heavy a burden when the concept was �rst introduced. In fact, I would like to redirect

5

all such individuals to a Theorem 1.1 my �rst real teacher in mathematics once claimed

I demonstrated:

Theorem 1.1 (Shadok). Why make things simple when they can be made complicat-

ed? 1

This thesis consists of six parts. In the �rst one, I describe the Popeye language

by itself, as well as the intended meaning of the keywords introduced. In the second

part, I give the logical background necessary to the translation of Popeye and prove

that any program in Popeye can be translated into Linear Logic. In the third part, I

express the main \cultural" problem that arises when translating Popeye into Java. I

identify it with a semantic conict between tests and actual instructions on the logical

side. A typechecker-inferer is then built to enforce a property that will prevent this

confusion. The fourth chapter show how easy the translation to Java is after that by

actually giving the necessary rules. The �fth chapter rebuilds the example brought forth

in [9] in Popeye. In the �nal section, I expose my views on how this research could be

extended and where, in the end, it might lead us.

1The Shadoks were �rst introduced in a French comic book during the seventies. It depicted
the laborious life of strange animals whose goal in life was to evade an impossible planet whose
shape kept changing at random. The twisted fate of their world had a serious impact on the mind
of the Shadoks, who soon developed an absurd theory of the universe. In their idea, for example,
a one in a thousand chance of success implied success... as long as you were careful enough to
methodically fail the nine hundred and ninety-nine �rst attempts. Very popular among French
scholars, they incarnate what the universe would look like if some of its fundamental laws were
ignored.

6

Chapter 2

Popeye

In this chapter, I introduce Popeye, a small programming language which I can

use to write simple objects. Among the various things such a language could implement,

I have selected a rather limited subset of things. This set includes:

� Class hierarchy and inheritance

� Overloading

Features like operator overloading or exceptions are not supported. Exceptions, in par-

ticular, require a logic with more expressive power, as shown in [4]. We will talk about

this again in the �nal chapter. More imperative features are also limited to a reasonable

size, namely:

� Built-in support for integers and booleans

� If-then-else statements

� Recursion

Overall, I introduced what I felt was a minimum for writing decently interesting code.

The absence of loops is, in itself, not limiting and will be discussed in the �nal chapter.

7

MODULE ::= TYPEDECL
CLASSDECL
SELFDECL
STATICDECL*
PRIVATEDECL*
PROGDECL

CLASSDECL ::= class NAME .
STATICDECL ::= static NAME NAME CONST .
PRIVATEDECL ::= private NAME NAME .
SELFDECL ::= self NAME .
PROGDECL ::= CONSDECL METHDECL*
CONSDECL ::= cons NAME (NAME VAR*) >� ICMD .
METHDECL ::= ATOM >� CMD .
ICMD ::= CMD

j ICMD >> ATOM
j init NAME VAR
j super NAME (NAME VAR*)

CMD ::= ATOM
j CMD >> ATOM
j ATOM +> CMD j> CMD
j new (NAME VAR*) NAME n CMD

ATOM ::= NAME VAR VAR*
j rw NAME VAR VAR
j ATOM == ATOM
j empty
j cast NAME TYPE

VAR ::= NAME
j pbool BOOL
j pint INT
j pcst NAME NAME

CONST ::= BOOL
j INT

TYPEDECL ::= NAME extends NAME.

j otype NAME f TYPE ! g+ (class / aclass) .
j ctype NAME NAME TYPE .
j ptype NAME NAME TYPE .

j mtype NAME (in/out) f TYPE ! g+ (cmd / acmd) .

Fig. 2.1. A grammar for Popeye

8

2.1 Context-free Grammar

Fig 2.1 shows a possible grammar for Popeye. NAME is a token representing

character strings. VAR represents either NAMEs or numerical constants handled by

Popeye (like, say, integers). I now move on to describing the operational semantics of

the reserved words introduced. At some point, I will depict a construct as a \possible

command", which could seem rather strange. The vagueness of this sentence will become

clear in Chapter 4.

2.2 Reserved words

class

Syntax: class [name]

Role: At the beginning of a module, speci�es the name of the object.

static

Syntax: static [objname] [name] [value]

Role: Declares a constant related to the object.

private

Syntax: private [objname] [name]

Role: Declares a private element of the object.

9

self

Syntax: self [name]

Role: Assigns a name to use as a reference to the object when

de�ning its methods.

cons

Syntax: cons [objname] >� [commands]

Role: De�nes the commands [commands] to execute when

constructing the object referenced by [objname].

There must be one and only one declaration of this

type in every program.

>�

Syntax: [meth name] [objname] [a1]:::[an]>� [commands]

Role: De�nes the [commands] to execute when calling method

[meth name] of the object referenced by [objname],

with parameters [Ai] (i 2 N)

>>

Syntax: [command] >> [more commands]

Role: Speci�es a succession of commands. First [command] is to

be executed, then [more commands] is considered

10

+> etc: j>

Syntax: [condition] +> [commands1] j> [commands2]

Role: Speci�es a typical branching instruction.

If [condition] is true, then [commands1] are executed,

otherwise, [commands2] are executed.

rw

Syntax: rw [private variable] [old value] [new value]

Role: A possible command, accesses a private variable named

[private variable], reads its old value in a variable

named [old value], then replaces the value of the private

variable with the content of [new value]

init

Syntax: init [private variable] [value]

Role: This command is compulsory for all private variables in the

object constructor. It assigns an initial value to them.

cast

Syntax: cast [variable] [type]

Role: Casts a variable to a given type. Used at type-checking

time.

11

new

Syntax: new [name] [obj name]n

Role: Creates a new object of type [name] with

the reference name [obj name] to be used afterwards.

super

Syntax: super [name] [obj name]

Role: This command is found only in constructors. It speci�es that

the current object is an extension of [obj name].

==

Syntax: [ref or val1] == [ref or val2]

Role: A possible command. In a test, will test for the equality of the two

parameters. As a command, it will assign the value of [ref or val2]

to [ref or val1].

2.3 Statements

In Popeye the classical object notation is rewritten without pre�xing the object

name: the object name is placed after the method name. Also, everything is written in

a curried form. This gives the following equivalence:

8n 2 N : o:method(a1;a2 ::: an) �method o a1 a2 ::: an

12

Here are a few examples:

switch:toggle() � toggle switch

lemonade:mix(sug; ice; lem) � mix lemonade sug ice lem

The other key aspect of the language is how it speci�es methods returning values. It is

pretty clear that the examples given above are non-returning functions. In Java, they

would be respectively declared as follows:

public void toggle()f ::: g

public void mix(int sug; int ice; int lem)f ::: g

That is, with a void return type. Non-void methods are basically written the same way,

except that the programmer should always assume that the last parameter of the Popeye

expression is the returned variable. In that case, the equivalence expressed above does

not hold anymore. It is the replaced by the following:

8n 2 N : an = o:method(a1;a2 ::: an�1) �method o a1 a2 ::: an�1 an

Here are additional examples:

s = switch:get() � toggle switch s

c = lemonade:calories(sug) � calories lemonade sug c

13

All methods fall into either one of these categories. I will now formalize this characteri-

zation.

De�nition 1 (Categories of methods). A method is considered an...

... in-method when it does not return any value.

... out-method when it returns a value.

From now on, I will characterize a method as either in or out.

2.4 Expressions

These statements constitute commands that can be sequenced by using the >>

operator. For example, if ping b is a command and pong b another one, then

ping b >> pong b

is a valid command. Some of the reserved words expressed above are also commands.

rw is the only allowed way for the Popeye programmer to access private data. The

new is used to create new objects when needed. The == is used to assign a value to a

variable. Finally, empty is an empty instruction that can be seen as an idle command

in assembly languages. Here are a few examples:

rw state old false � Read the current state in old.

write the boolean false as its new value

new switch sn toggle s � Create a new switch with name s,

then toggle s

14

In an object declaration, methods are de�ned by using the >� operator. To be

more explicit, meth>� code is tantamount to saying that code is what should be

done when meth is called. For example, in a switch object, one might want to specify a

get method that returns the current state of the switch. If we assume that the chosen

reference name is sw, then here is how its declaration should look like:

get sw s>� rw state s s

Notice how the rw statement is used to access the state and give a return value. This

very common technique will be widely used through the remaining chapters.

All other keywords introduced are then more or less declaration elements that

must be placed before everything, in the following order: class, self and private. I am

now ready to completely write down a switch object. Some typing instructions should

be added, but it is better for clarity to do so later.

2.5 First object: a simple switch

The switch can be loosely speci�ed as an object with one private boolean variable

representing its internal state. It has three methods. get is used to access the current

state of the object. set rewrites this state with a new value. toggle, �nally, performs

the switching operation. That is, if the state was true then the new state is false

and vice-versa. Fig 2.5 gives the corresponding program. There are various interesting

things to see in this program. First, the self keyword can seem somewhat useless since

it is quite obvious that all methods here are de�ned with regards to the switch object.

15

class switch.

self sw.

private switch state.

cons switch sw >- init state (pbool false).

get sw s >- rw state s s.

set state sw s >- rw state o s.

toggle sw >- rw state (pbool true) (pbool true) +> set sw (pbool false)
|> set sw (pbool true).

Fig. 2.2. Switch object in Popeye

The goal of such an addition is to make the use of the upcoming interpreter easier. By

enforcing the fact that the self name should appear in the code, I make sure that the

programmer is aware of the meaning and peculiar syntax of my language. The other

striking thing about this code is the repetitive use of rw for accessing the private variable.

An important point is that I use rw both as a command (in get and set) and as a test

(in toggle). This, of course, is not possible in Java. We now move on to describing the

typing commands.

2.6 Typing

Popeye is a loosely typed language, which means that it does not require the

typing of all the identi�ers introduced. The only elements that need to be typed are the

methods, the private variables and the constants. As far as the objects are concerned, a

special declaration is used to specify their necessary construction parameters. I thus need

16

four instructions. I picked otype, ctype, ptype and mtype, respectively for objects,

constants, private data and methods. Popeye uses �Prolog-style typing declarations,

which are themselves inspired by Church's Simple Theory of Types ([5]). The mtype

directive has a special additional parameter that is used to specify whether the method

returns a parameter or not. An additional directive is added to specify extension in an

object architecture.

Typing keywords

Syntax: extends [objname]

Role: Declares that the current object extends [objname]

Syntax: otype [name] [type]

Role: Declares an object and the type of the parameters needed

to create it.

[type] must be concluded by a ! class (or ! aclass if abstract)

Syntax: ctype [objname] [name] [unary type]

Role: Declares a constant with its type.

Syntax: ptype [objname] [name] [unary type]

Role: Declares a private data variable with its type.

17

Syntax: mtype (in=out)[name] [type]

Role: Declares a method and the type of the parameters needed

to call it.

[type] must be concluded by a ! cmd (or ! acmd if abstract).

If in is chosen, then the method will not return a value.

If out is picked instead, then the method will return a value

whose type will be the one speci�ed right before the ! cmd.

Constants and base types

Popeye can deal with a very small set of base types, namely integers, booleans and

references to some other object. Fig 2.3 lists them. Numerical constants are speci�ed

through the use of special keywords pbool and pint respectively. Constants de�ned in

ref [object] : References to objects.
boolean : Booleans.

int : Integers.

Fig. 2.3. Base types in Popeye

objects can be called upon through the pcst keyword. Fig 2.4 gives an exact syntax.

To illustrate all this, Fig 2.5 shows the completed switch object.

18

pint [integer] e:g: : pint 5
pbool (true = false) e:g: : pbool true

pcst [obj name] [cst name] e:g: : pcst switch on

Fig. 2.4. Constants in Popeye

otype switch class

ptype switch state boolean

mtype get out ref switch -> boolean -> cmd
mtype set in ref switch -> boolean -> cmd
mtype toggle in ref switch -> cmd.

(.../...)

Fig. 2.5. Typing header for the switch object

19

At this point, I have described the Popeye programming language. Additional

examples are deferred to Appendix 8.1. I will now proceed to outline the ties between

this language and Linear Logic.

20

Chapter 3

Popeye in Linear Logic

In this chapter, I will build functions that will take a Popeye program and trans-

late it into a Linear Logic formula. Linear Logic, �rst introduced by Girard in [7], is

a superset of classical logic that introduces a new kind of implication, referred to as

linear implication. It is noted �Æ. In this thesis, I will focus on a smaller and complete

set of this logic, also known as the Lolli presentation. Fig 3.1 gives a grammar for this

presentation, as expressed in [8]. It is important to understand that we might not need

all these connectives. A good way of introducing these symbols is probably to start with

R := > A R1 &R2 G�ÆR G) R 8x:R
G := > A G1 &G2 R�ÆG R) G 8x:G G1 �G2 1 G1
G2 !G 9x:G

A are atoms.

Fig. 3.1. Grammar for Linear Logic formulas

the &. A & B means that in regards to the resources available, A can be proved and B

can be proved. From this, I can partially de�ne the two other connectives I use through

the two following equivalences:

B
C �Æ A � C �Æ (B �Æ A)

21

A�B �Æ C � (A�Æ C) & (B �Æ C)

The key idea behind Linear Logic is the possibility of context management. In short,

a fact can be true or false depending on where we are located in the proof for a given

formula. In more classical logics, proving A � B from a given context � is done by

�rst augmenting � with A and attempt the proof for B using the new context. In

terms of sequent calculus, to prove � �! A � B, attempt instead to prove �; A �!

B. Intuitionistic contexts are very useful in many domains, but they have the major

limitation of being ever-growing. It is never possible for such contexts to be smaller at

the top of the proof tree than at the root. In [10] Hodas details how this limitation can

be a major obstacle in many aspects. One of them happens to be the key characteristic

of object programming, that is, the encapsulation of states. To address this problem,

it is necessary to have a �ner management of the context. Linear Logic makes this

management clear and natural. The context is split between unbound formulas (�) and

bound formulas (�). Bound formulas can only be used for one proof, after which they

are lost for following proofs. Fig 3.2 gives the associated proof system. These rules are

used to build proof trees for formulas. I also give a cut-rule in Fig 3.3, which can be

thought of as the ability to use lemmas in proofs. It is not part of the Fig 3.2 because

Linear Logic was proved to be cut-free: any cut-rule can be replaced by a tree built from

the base connectives. 1

1In fact, the cut was part of the proof system introduced for Linear Logic. Then, the cut-free
property was proved. As a result, cut can be removed without losing completeness.

22

�;A �! A
identity

�; B;�; B �! C

�; B;� �! C
absorb

�;� �! >
>R

�;�; Bi �! C

�;�; B1 &B2 �! C
& L

�;� �! B �;� �! C

�;� �! B & C
&R

�;�1 �! B �;�2; C �! E

�;�1;�2; B �Æ C �! E
�Æ L

�;�; B �! C

�;� �! B �Æ C
�Æ R

�; ; �! B �;�; C �! E

�;�; B) C �! E
) L

�; B;� �! C

�;� �! B) C
) R

�;�; B[t=x] �! C

�;�;8x:B �! C
8L

�;� �! B[y=x]

�;� �! 8x:B
8R

provided that y is not free in the lower sequent.

Fig. 3.2. The proof system for a fragment of linear logic (from [8])

�0;�1 �! B �;�2; B �! C

�0;�1;�2 �! C
cut

�0; ; �! B �; B;� �! C

�0;� �! C
cut!

Both rules have the proviso that � � �0.

Fig. 3.3. The cut rule for a fragment of linear logic (from [8])

23

My goal is thus to rewrite Popeye programs into a formula that, once added to the

linear context managed by this logic, can be used to model the behavior of the expressed

objects. I consider my Linear Logic proof system as a logic programming language, that

is, a language where left-introduction rules are only used when we attempt to prove an

atomic goal (see [8] for more accurate de�nitions). For clarity, I will stop referring to the

left or the right of an implication. Instead, I will use the terms head and body. If H is the

head and B represents the body, H Æ�B and B�ÆH show where each element is placed in

regards to the implication. Execution of a program is then considered as the building of

a proof for some initial sequent. This, of course, is a priori non-deterministic. Finally, at

some point in my translation, I will introduce �-terms. Consequently, I assume here that

my logic is capable of dealing with higher-order terms, like for example, �Prolog (which

itself is inspired by results presented in [5]). I will consider a very simple typing of Linear

Logic formulas, basically making the di�erence between terms (typed tm) and formulas

(typed ll). All the binary connectives exposed above are then typed ll! ll! ll. I need

one last type for objects, which I will note cl.

3.1 Translation from Popeye to Linear Logic

I start by de�ning some basic syntactic categories for terms in Popeye. It is useful

to have these so that our translation functionals can be de�ned as applications from one

category to another. A Popeye program, when looked from a distant point of view, is

composed of declarations, commands and references (variables). This leads me to the

introduction of the decl, cmd and ref types. An additional type is needed to represent

full objects. I introduce the type class for this purpose. Finally, I need a type for just

24

a simple object name (without its constructing parameters). I thus introduce classn.

The need for these two di�erent types for objects arises from the fact that these entities

will appear in two di�erent forms. When instantiating an object, the operation will be

possible if and only if I provide the name of the object and all the needed parameters.

For example, the category for (object a1 a2 ::: an) in the following expression:

new (object a1 a2 ::: an) nn

is class. On the other hand, at some points in my language, I will only pass object as

a parameter. The type for object alone is more complicated. It is obviously something

like ref ! ref ! :::! class. This is embarrassing, because it implies that the methods

receiving object names alone as parameters must accept in�nitely many possible types,

depending on the number of arguments necessary to the creation of a given object. This

is why I introduce a generic classn category.

A Popeye program can then be categorized through the rules given in Fig 3.4. As

an example, consider the switch example in Chapter 2. Its various particular elements

can be typed as in Fig 3.5. Notice that a second-order type is used in the typing of the

new command. This is directly linked to the upcoming translation for this construct.

I then introduce some de�nitions used in the translation. First, I will call variables all

elements typed ref . This seemingly strange choice of name is directly linked to the

fact that in pure OO programming, there are no such things as values: everything is a

reference to an object. Second, I de�ne the notion of local variable.

25

: : decl ! decl ! decl
self : ref ! decl

private : classn! ref ! decl
static : classn! ref ! ref ! decl

>� : cmd! cmd! decl
cons : ref ! class! cmd
>> : cmd! cmd! cmd

+>:::j> : cmd! cmd! cmd! cmd
rw : ref ! ref ! ref ! cmd
init : ref ! ref ! cmd
new : class! (ref ! cmd)! cmd

super : ref ! class! cmd
empty : cmd

pcst : classn! ref
pint : int! ref

pbool : boolean! ref

:, >> and (+>:::j>) are right-associative

Fig. 3.4. Syntactic categories for Popeye

switch : class
sw; state; o; s : ref
get : ref ! ref ! cmd
set : ref ! ref ! cmd
toggle : ref ! cmd

Fig. 3.5. Syntactic typing for the switch example

26

De�nition 2 (Local variables). Local variables are those variables in a declaration

that are limited to the scope of this declaration. Given a clause A>� B, I will informally

write Local(A >� B) to refer to this set.

In the case of the switch example:

Local (get sw s >� rw state s s) = fsg

Finally, I de�ne atomic commands in Popeye.

De�nition 3 (Atomic commands). Atomic commands are those commands that nei-

ther contain any of the Popeye connectives (>> , +>, j>) nor are a rw, a init, a new

nor a empty command.

Through this de�nition, I isolate those elements that are not built-in the language, but

those introduced by the user. This includes the methods and constructors introduced.

I am now ready to give the formal speci�cation of the translation functions. These

basically crop down to the de�nition of three functions: R, L and D.

3.1.1 Translation of variables

De�nition 4 (R). The function R : ref �! tm is de�ned as: 8refA : R(A) = A

This straightforward de�nition simply shows that variables are untouched in the transla-

tion. In the remaining sections, I will systematically omit calling uponR, simply writing

the variables in Linear Logic as they appear in Popeye.

27

3.1.2 Translation of declarations

Declarations are translated through D. The de�nition of this function is given

in Fig 3.6. Its purpose is to guard adequately the variables introduced in the program.

D(self N : Prog) = �N:(D(Prog))
D(private C P : Prog) = 9P:(D(Prog))
D(static C P V : Prog) = !(pv (pcst C P) V)
D(Prog)

D(A >� B : Prog) = !(8cmdK:8refLocal(A >� B):
L(A; K) Æ� L(B; K))
D(Prog)

Fig. 3.6. De�nition for D : decl ! ll

The chosen self name becomes a �-term, thus permitting to generate many instances

of the same object by simple �-substitution. The private variables are guarded through

the use of the existential quanti�er. To �nd it at this place might seem problematic in

the �rst place because of the grammar exposed in Fig 3.1. We implicitly intend to use

this formula in a proof of the form

(9c:E)) G

which, in our logic, is not an allowed clause. But in this case (and only in this case), the

meaning of the above implication can be easily seen as

8c:(E) G)

28

which, on the other hand, is a perfectly legal clause. This is by no mean a generality,

and if I started to mix universal and existential quanti�er on the body side of the above

implication, it would soon become meaningless. Further discussion of the matter can be

found in [12] and [13].

As for the local variables, they are guarded through the careful addition of uni-

versal quanti�ers. In the end, this allows the formula to be adapted to a given use in

the computation.

Another key aspect of Popeye arise in the translation of >� terms: the use of

continuation passing style (CPS). One of the main concern when moving over to logic

is to make sure that the order of execution is still respected. In terms of proof, we

must make sure that what happens �rst is proved �rst. Consider for example a typical

sequence of operations in Popeye:

A1 >> A2 >> ::: >> An

We must insure that the logical expressions equivalent to A1; A2 :::An are proved in

the same order. CPS is a common technique to achieve this goal. Accurate description

of this technique can be found in [17] and [19]. The bottom line is to consider A1 as a

function that takes as a �nal argument A2. A2 itself takes as a �nal argument A3 and

so on. In our framework, this equates to writing the formula above as:

�K:A1(A2(::: (An K) :::))

29

Milner's �-calculus, for instance, can be seen to use this style of control. As a conse-

quence, a command A of type cmd is translated in Linear Logic to a term typed ll! ll.

The additional ll term needed is a continuation, i.e. a logical expression to be evaluat-

ed next. This explains why my declaration clause for >� introduces a variable K that

basically �lls this hole in the de�nition of the method. When executing a program, we

will be able to replace this K by the current continuation, that is, the current remaining

instructions in the execution.

3.1.3 Translation of commands

Formulas are generated for commands through L. Fig 3.7 gives the de�nition.

One key element of this translation is the logical function

pv : tm! tm! ll

which is basically used for the sole purpose of storing values in the Linear Context, each

of these values being attached to a private variable of the object being de�ned. The

�rst argument is the private variable, the second is the value to be stored \in" it. By

putting this fact into the linear context, we can allow its value to change over the proof

(or execution) of a given program in logic. L takes two parameters, namely a command

in Popeye and a goal in Linear Logic. The intended meaning is to generate the formula

corresponding to the �rst parameter and put the second parameter as its continuation.

The use of CPS is particularly visible in the de�nition related to >> . Notice that

30

L((A >> B); G) = L(A; L(B; G)))
L((A+>B j>C); G) = (L(A; >)
L(B; G)) �

(not(L(A; >))
L(C; G))
L((rw A O N); G) = (pv A O)
 ((pv A N)�ÆG)
L((init A N); G) = (pv A N)�ÆG

L(new C An K); G) = new C �A: L (K; G)
L(super A C); G) = super A C G

L(empty ; G) = G
L(A; G) = (A G) A is atomic

Fig. 3.7. De�nition for L : (cmd� ll)! ll

new and super are untouched by L. For clarity, I prefer to write their meaning in

logic, as part of the interpreter.

3.2 Interpreter

It is now very easy to build an interpreter for Popeye in Logic. If we consider that

we already have an interpreter for Linear Logic (like, say Lolli), then all is needed is a

few additional Æ� clauses. The real challenge is to respect how objects are built. This

implies being able to enforce inheritance and run the constructors each time an object

is created. This is done by carefully writing the rule for

new : cl ! (tm! ll)! ll! ll

31

in Linear Logic. I �rst introduce a binding element that relates the name for an object

to its actual logic formula: lmod : cl! ll! ll. For example, the solution to

?� interp (lmod switch P)

in a given Prolog-like interpreter would yield as a solution for P the actual formula

de�ned in Fig 3.9. The clause for new can then be easily built and is shown in Fig 3.8.

The idea is to enforce the execution of constructors whenever a new object is created.

Given an object C, with all its constructing parameters, I generate a new name A which

will be the object's self name during the rest of the program execution. I then call the

code for a generic object of the type of C. I instanciate it with the fresh name A, then

add it to the linear context. Next, I call the constructor. K is, in fact, a lambda term

that puts an abstraction on the object's self name. I thus instanciate it with, once again,

A. The issue of inheritance is treated by putting super statements in the constructors.

This time, C is a mother class for the object being constructed. When such a statement

is reached, the name A to use for the object is already known, hence the clause does

not have a universal quanti�er. I call the code for the required mother class, instanciate

it with A and call upon the constructor in the mother class. As a consequence, I add

further code bound to the same object name, which is exactly what I want. The careful

reader might have notice two interesting consequences to this approach. First, objects

are built bottom-up. That is, the �rst clauses added in the contexts are those of the

lowest object in the inheritance hierarchy. Second, and mainly as a consequence, our

system does not enforce overloading. To do so, it is necessary to add additional control

32

new C K Æ� 8A: lmod C Prog
 ((Prog A)�Æ cons A C (KA))
super A C K Æ� lmod C Prog
 ((Prog A)�Æ cons A C (KA))

Fig. 3.8. Interpreter for Popeye

when we build the objects. Before adding a clause to the context, we check if some clause

with the same head has not been added yet. It is not a very diÆcult feature to add, but

it has the result of making the interpreter rules far less readable.

There is one last element that needs to be speci�ed in logic. The cons traversed

all my translations untouched. I simply de�ne it as a fact in linear logic, without any

intended operational semantic. A type is needed, though. cons can be easily typed as

cons : ref ! cl! ll! ll

in Linear Logic.

3.3 Switch example

I now give an example of how the formula for a given object is generated by

building it for the switch object. For clarity, I will start with methods. First, let's

33

generate the formula for the constructor.

D(cons sw switch >� init state (boolean false)) =

!8K:8old:

L((cons sw switch); K) Æ�

L((init state (boolean false)); K))
D(Prog) =

!8K:8old:

(cons sw switch K) Æ�

((pv state (boolean true))�ÆK)

Notice how the cons keyword, treated as an atom, traverses the translation to end up

untouched in the logic formula. On the other hand, the rw clause is pure linear logic.

Also, it is interesting to see how the goal K propagates itself in the continuations. I will

now give the formulas for the other methods.

D(get sw s >� rw state s s) =

! 8K:8s:

get sw s K Æ�

(pv state s)
 ((pv state s)�ÆK)

D(set sw s >� rw state old s) =

! 8K:8old; s:

set sw s K Æ�

(pv state old)
 ((pv state s)�ÆK)

34

D(toggle sw >� rw state (pbool true) (pbool true)+>

set sw old (pbool false) j> set sw old (pbool true)) =

!8K:8old:

toggle sw K Æ�

((pv state (pbool true))
 ((pv state (pbool true))�Æ >)

(pv state old)
 ((pv state (pbool false))�ÆK))

�

(not((pv state (pbool true))
 ((pv state (pbool true))�Æ >))

(pv state old)
 ((pv state (pbool true))�ÆK))

I can bring some simpli�cations to the last declaration by using the fact that

A
 (A�Æ >) � A
>

is provable in Linear Logic. It is then possible to rewrite the branch instruction in

a shorter fashion. Once this is done, all that remains is to treat the self and the

private declarations, and also connect all the above formulas with a
. Fig 3.9 gives

the completed formula for the switch object.

Appendix 8.1 provides a complete interpreter for Popeye written in �Prolog. The

code for the switch object can be found in Appendix 8.4.1. Inheritance will be demon-

strated in Chapter 6.2, where we construct a complete architecture of logical gates.

35

�sw:
9state:(
(
!8K:8old:
(cons sw switch K) Æ�
((pv state (pbool true))�ÆK)
)

(
!8K:8s:
get sw s K Æ�
(pv state s)
 ((pv state s)�ÆK)
)

(
!8K:8old; s:
set sw s K Æ�
(pv state old)
 ((pv state s)�ÆK)
)

(
!8K:8old:
toggle sw K Æ�
((pv state (pbool true))
>) &
(pv state old)
 ((pv state (pbool false))�ÆK))
�
(not((pv state (pbool true))
)>) &
(pv state old)
 ((pv state (pbool true))�ÆK))

)
)

Fig. 3.9. Linear Logic formula for the switch object

36

Chapter 4

Types and ambiguities in Popeye

I will now study the \philosophical" issues that arise when we think of a Popeye

program as an imperative program. Java is a strongly typed language, which means that

all variables in the body of a function must be carefully de�ned. Popeye is de�nitely

not so strong. I will need to infer the type of most variables in the body of my clauses.

When I talk about types, I no longer deal with syntactic categories. I am now looking

at the data-types of the objects being manipulated.

tmod : Object de�nition(module)
tprog : Set of clauses

tclause : Clause
tcmd : Command
ttest : Test

theadin : Head of a clause
before having typed the body

theadout : Head of a clause
after having typed the body

tref [objname] : Reference to an object
tint : Integer
tbool : Boolean

Fig. 4.1. Types for inference

37

4.1 Ambiguities in Popeye

Consider the following command in Popeye. Suppose, for instance, that it is part

of the body of a method.

rw private1 S S >> rw private2 S S

In logic, this instruction makes perfect sense.

\First, unify S with the content of private1, then attempt the uni�cation of

S with the content of private2."

This is, at the bottom line, some kind of test between the two private variables. If I now

take the point of view of a Java programmer, this sentence means something completely

di�erent.

\First, get the value of private1 in S, then rewrite S with the value of

private2."

The two readings of the same instruction demonstrate the major conict between these

two paradigms. In Logic, a variable that as been uni�ed cannot see its value change

in a proof. Hence if it is re-used in the continuation, it can only be so in a test. If I

want to translate logic to Java, I need to make sure that not only such ambiguities are

eliminated but also that the two above point of views can be expressed somehow. I �rst

identify my enemies. In an imperative context, a command can be seen as part of one

of the following three categories: T est, Read or Write.

38

De�nition 5 (Categories of commands). A command is...

... a T est command if it performs a test on the current program state.

... a Read command if it extracts a data from the current program state.

... a Write command if it modi�es a data in the current program state.

It is important to see that depending on the context, a command can be at some point

in any of the three categories. Consider for example a single rw command. Depending

on the context, it will either read a private variable, write it or test it against some other

data.

De�nition 6 (Ambiguities in Popeye). A command is ambiguous if it can belong

to two categories of commands in two di�erent contexts.

From this point on, my goal will be to detect and forbid these ambiguities by enforcing

additional restriction on the writing of Popeye programs.

4.2 Type inference

Consider a clause A >� B. The body B has been carefully typed by one of the

typing commands given in Chapter 2. My goal is to infer a type for all the variables

introduced in B. Initially, I can mark these variables as of type \.", that is, unde�ned.

After having swept through B, I want to have all these local variables typed. For this,

I will de�ne a set of typing rules that will infer this (a classical approach that can be

found in ML, for instance). I have, though, an additional claim. If I can infer the types

of all local variables in A >� B, then I can guarantee that all ambiguities have been

avoided.

39

The classical � ` x : � typing sequent has been modi�ed in order to perform a

clean typing of continuations. The sequent

� ` x; cont : �; �cont

must be read as follows:

\With initial type context �, prove (infer) that expression x is of type � , then

with this information added to �, proceed to prove that the next element in

cont can be typed (inferred) as the �rst type in �cont"

where cont and �cont are lists of commands and types respectively. These two lists

represent a stack of things that need to be typed next. This strange structure is needed

to account for the fact that the typing environment � changes as we follow a continuation.

It actually expands with new bindings that gives a type to previously untyped elements.

By adding (A : �) on top of �, I hide the initial (A : :) binding. Hence, if I try to type

A afterwards against �, it will be typed � . The use of the stack becomes particularly

understandable by looking at the cont rule.

� ` A; (B;Cont) : tcmd; (tcmd; TC)

� ` (A >> B); Cont : tcmd; TC
cont

Notice how the continuation is broken among the various parameters of the typing se-

quent. The way my context grows in the typing of a continuation is di�erent from what

happens in a classical proof tree. In such a picture, the result of typing (solving) a

branch of the proof tree cannot have any impact on the typing of some other branch. In

40

my case, though, I want the information gathered in the typing of A in A >> B to be

used in the typing of B. This is closely linked to the other goal I am seeking.

I use this peculiar notation in another way. At many points in my type system, I

will need to write sequents indicating that we should now proceed to type what is next

in cont. For this purpose, I simply write:

� ` none;Cont : :; TC

I then provide my system with a transfer rule:

� ` B;Cont : TB; TC

� ` none; (B;Cont) : :; (TB; TC)
transfer

And the next element B in cont gets typed afterward.

It is also very important to understand that the rules given here are not enough

to provide a complete typing of a Popeye program. The type declaration given in 2.6

will be used to generate additional typing rules that will complete the system. Before

giving these rules, I will �rst lay out how a module is to be typed from a global point

of view. First, I start by looking at the initial declarations. The self declarations result

into typing the name used for the object as a reference to that object. The private

variables are also bound to their respective types, depending on how they are typed in

the declarations. Finally, I reach the clauses that depict the methods of the object. As

a whole, they are typed tprog, with each clause to be typed tclause.

41

Before entering the clause, I need to insure that all local variables in it get assigned

an unde�ned type. In this idea, let me informally de�ne TLocal as follows:

De�nition 7 (TLocal function). The function TLocal is de�ned as the function that,

given a declaration (A >� B), returns the set � such that:

8refx : x 2 Local(A >� B)) (x : :) 2 �

The typing process is very di�erent depending on whether we have a in-method or a

out-method (c.f. De�nition 1). In the case of a in-method, I know how to type every

parameters of the method, hence I can use that information to check on the body of the

function. In the case of a out-method, the last parameter should have the type speci�ed

in the mtype declaration, but that is something we will be able to check only after

having examined the body. As a conclusion, it can be seen that the head of a method

needs to be examined twice, before and after having typed the body. This is why I have

two types, theadin and theadout against which to check a clause head. This also justi�es

the clause typing rule:

TLocal(A >� B); � ` A; (B;A;Cont) : theadin; (tcmd; theadout; TC)

� ` A >� B;Cont : tclause; TC
clause

Typically, the mtype command will generate the two head rules for the method.

The last important thing I need to de�ne to make my system coherent is how to

type-check objects that inherits from others. Consider for example a lemonade object

inheriting the beverage abstract class. If A is a reference to lemonade, A should be able

42

to access all methods of the beverage class without any diÆculties. This compatibility

can be expressed as follows: if A must be of type T1 but is of type T2, and that T2

inherits T1, then the type-checking must succeed. This gives rise to the extension rule:

� ` A : (tref TB) inherits TB TA � ` none;Cont : :; TC

� ` A;Cont : (tref TA); TC
extension

The inherits predicate is better understood by looking at its potential de�nition in a

Prolog-like language:

inherits A B :- extends A C, inherits C B.

inherits A B :- extends A B.

The extends predicates are generated by the Popeye extends keyword.

Fig 4.2 give the type-checking rules for Popeye reserved words, with the exception

of the conditional construct that will be discussed in its own section.

4.3 Rules generation

I now explain how to generate the typing rules for objects, private variables, con-

stants and methods. To do so, I examine each typing directive. First, some conventions

must be outlined about the translation of types as de�ned in Chapter 2 and those used

here. I �rst introduce the syntactic category ty of the types in Popeye. I call tty the

category of types obtained by chaining multiple ty types with ! (like in �Prolog, for

instance). Finally, let io be the syntactic category that can contain either the word in

or out. This allows me to type the typing directives accurately in Fig 4.3. I then de�ne

43

(A : �) 2 �

� ` A : �
fetch

� ` none; ; : :; ;
axiom

� ` dump; ; : :; tdump �
dump

� ` B;Cont : TB; TC

� ` none; (B;Cont) : :; (TB; TC)
transfer

� ` A : TA � ` none;Cont : :; TC

� ` A;Cont : TA; TC
lookup

� ` A : (tref TB) inherits TB TA � ` none;Cont : :; TC

� ` A;Cont : (tref TA); TC
extension

� ` A : � � ` N : � � ` none : Cont:TC
� ` (init A N); Cont : tcmd; TC

init

� ` A : � � ` O : : � ` N : � (tp O �); � ` none;Cont : :; TC

� ` (rw A O N); Cont : tcmd; TC
rw � write

� ` A : � � ` O : : � ` N : : (tp O �); (tp N �); � ` none;Cont : :; TC

� ` (rw A O N); Cont : tcmd; TC
rw � read

� ` A : � � ` O : � � ` N : � � ` none;Cont : :; TC

� ` (rw A O N); Cont : ttest; TC
rw � test

� ` A; (B;Cont) : tcmd; (tcmd; TC)

� ` (A >> B); Cont : tcmd; TC
cont

TLocal(A >� B); � ` A; (B;A;Cont) : theadin; (tcmd; theadout; TC)

� ` A >� B;Cont : tclause; TC
clause

� ` A; ; : tclause; ; � ` B;Cont : tprog; TC

� ` A : B;Cont : tprog; TC
prog

� ` A : � (tp A �); � ` Prog; Cont : tprog; TC

� ` private A Prog;Cont : tprog; TC
private

Fig. 4.2. Typing rules for Popeye

44

otype : ref ! tty! decl
ctype : ref ! tty! decl
ptype : ref ! tty! decl
mtype : ref ! io! tty! decl

Fig. 4.3. Typing for typing directives

a binding between Popeye base types and those types I de�ned in Fig 4.1. This function

T is de�ned in Fig 4.4. I am now ready to give the rules for each directive.

T (ref N) = tref N
T (int) = tint

T (boolean) = tbool

Fig. 4.4. De�nition for T : ty ! pt

The �gures whose titles start with \Generation rules..." must be understood

as templates. These templates are to be instanciated with the types and names used

in the Popeye type declarations. For example, consider the rules to generate for the

otypedeclaration. This declaration creates �ve rules in the type system. otypetakes

various types (t1. t2 ... tn) and a name as parameters. The type used as t1 should

replace every occurence of t1 in the rules. The same goes for t2, ... tn and name.

Everything else is to be written as it appears in the given rules. To check the parameters

45

passed to the typing directive, check the expression given after \Initial directive is:" in

each �gure.

4.3.1 otype

For each object, there are four things that I need to be able to type correctly.

Fig 4.5 gives the complete set of rules to generate. First, the object module itself. This

is done through the name rule. I basically invoke the corresponding program and then

give the correct type for all the parameters simply by looking at the otype directive.

After that, I continue with the typing of the rest of the program. Second, I need rules

to take care of the constructor. This is done by the cons� headin and cons� headout

rules, the second rule being basically inactive. The headin veri�es the validity of the

parameters passed. Finally, we need to take care of the new command. This is done

through the new rule which basically checks the parameters, then types the name to be

used in the remaining program for the reference to the new object. Once this is done,

the remaining program is typed in the light of this new environment. The super types

the super command. The technique is similar to that of new , except that there is no

slash nor program to look at afterwards.

4.3.2 ctype

Constants have easier rules. It is just a matter of verifying that the actual value

passed to the constant is coherent with the type assigned to it in the declarations. Fig 4.6

gives the single rule to generate.

46

Initial directive is:
otype name t1 ! t2 ! :::! tn ! class.

(A1 : T (t1))::: (An : T (tn)); (S : (tref name)); � `M;Cont : tprog; TC
lmod (name A1 ::: An) (self S : M)

� ` name;Cont : tmod; TC
name

� ` none;Cont : :; TC
� ` S : tref name � ` A1 : T (t1) � ` An : T (tn)

� ` cons S (name A1 ::: An); Cont : theadin; TC
cons� headin

� ` none;Cont : :; TC

� ` cons S (name A1 ::: An); Cont : theadout; TC
cons� headout

(S : (tref name)); � ` P;Cont : tcmd; TC
� ` A1 : T (t1) ::: � ` An : T (tn)

� ` new (name A1 ::: An) S P;Cont : tcmd; TC
new

� ` none;Cont : :; TC
� ` A1 : T (t1) ::: � ` An : T (tn)

� ` super S (name A1 ::: An); Cont : tcmd; TC
super

Fig. 4.5. Generation rules for otype

Initial directive is:
ctype objname name t1:

� ` none;Cont : :; TC

� ` pcst objname name;Cont : T (t1); TC
name� const

Fig. 4.6. Generation rules for ctype

47

4.3.3 ptype

Private variables need additionnal work. I introduce a ppriv keyword that I use

to link the name of the private variable to the actual object. This is necessary in case

we use the same name in two di�erent objects. Fig 4.7 gives the corresponding rule.

Initial directive is:
ptype objname name t1:

ppriv : classn! ref ! ref

� ` none;Cont : :; TC

� ` ppriv objname name;Cont : T (t1); TC
name� priv

Fig. 4.7. Generation rules for ptype

4.3.4 mtype

This is the heart of my type system, as it is the place where ambiguities will not

be tolerated. To understand how this happens, it is better to consider what should be

done in the case of a simple rw command. In a way, this can be seen as the simplest

methods available to the programmer. The same goes for all other Popeye commands.

In the typing of the body of a clause, we might reach the rw command with many

di�erent typing environment. Fig 4.8 summarizes these di�erent environment on the left

48

hand-side. The key idea is to notice that some of these environments make no sense at

Type before Type after
priv O N Semantic priv O N

� . . Read � � �
Only if
N = O

� � . Forbidden � � �
� . � Write � � �
� � � Test. � � �

Only in
front of +>

Fig. 4.8. Types and meanings for rw

all in regards to the actual role rw plays. As for those that do make sense, they are all

linked to a very precise semantics.

The same goes for more general methods. For an in-method, the only sensible

typing environment is to have all the parameters typed correctly before actually calling

onto it. All other con�gurations are simply not allowed. An out-method can basically

take two kinds of typing environments. One of them is when we simply use the method

to get a value. In that case, everything but the returned parameter needs to be typed.

On the other hand, all parameters might also be typed. In that case, it means we are

attempting a test.

As one can see, by doing so, I have separated the diverse categories of commands.

In fact, I can write the following property:

49

Property 4.1 (Typing rules for methods). For a given method, for each category

of command it belongs to, one typing rule (and only one) is generated.

Proof: By construction of the generation rules. That's the way we built these rules: each

of them reect one possible meaning of the method being considered.

Fig 4.9 gives the rules to generate in-methods. Fig 4.10 lists those necessary for out-

methods.

Initial directive is:
mtype name in (ref objname)! t2 ! :::! tn ! cmd:

� ` none;Cont : :; TC
� ` A1 : (tref objname) ::: � ` An : T (tn)

� ` name A1 ::: An; Cont : tcmd; TC
name� write

(A2 : T (t2)); :::; (An : T (tn)); � ` none;Cont : :; TC
� ` A1 : (tref objname)

� ` name A1 ::: An; Cont : theadin; TC
name� headin

� ` none;Cont : :; TC

� ` name A1 ::: An; Cont : theadout; TC
name� headout

Fig. 4.9. Generation rules for mtype with in-methods

50

Initial directive is:
mtype name out (ref objname)! t2 ! :::! tn ! cmd:

(An : T (tn)); � ` none;Cont : :; TC
� ` A1 : (tref objname) ::: � ` An�1 : T (tn�1) � ` An : :

� ` name A1 ::: An; Cont : tcmd; TC
name� read

� ` none;Cont : :; TC
� ` A1 : (tref objname) ::: � ` An : T (tn)

� ` name A1 ::: An; Cont : ttest; TC
name� test

� ` none;Cont : :; TC
� ` A1 : (tref objname) ::: � ` An�1 : T (tn�1)

� ` name A1 ::: An; Cont : theadin; TC
name� headin

� ` none;Cont : :; TC
� ` An : T (tn)

� ` name A1 ::: An; Cont : theadout; TC
name� headout

Fig. 4.10. Generation rules for mtype with out-methods

51

4.4 Typing rule for the conditional operator

The conditional operator is not as easily typed as it could appear. Consider a

classical conditional statement:

Before >> (A+>B j>C) >> After

It is perfectly possible that some variable will be used in B but not in C. But regardless

of that, it is capital that the inferred type for this variable propagate in After. Hence, I

must stick together the result of typing B and that of typing C as the new typing context

to use for the typing of After. This requires some work. First, I type-check the condition

A, then, type-check B and C, each time noting the environment obtained at the end. I

then strip these environments of unde�ned bindings. This is done so that when I stick

the two of them together, some residual unde�ned bindings do not hide other valid ones.

A function nodots is introduced for this purpose, that given an environment �, returns

this environment without the unde�ned bindings. I glue the environments together and

then proceed with this new type environment. Fig 4.11 gives the precise typing rule. My

� ` A : ttest

nodots(LeafB); nodots(LeafC); � ` none;Cont : :; TC

� ` C; dump : tcmd; (tdump LeafC)

� ` B; dump : tcmd; (tdump LeafB)

� ` (A+>B j>C); Cont : tcmd; TC
branch

Fig. 4.11. Typing rule for the conditional

52

choice for this operator is far from being completely satisfactory. Following our system,

it is possible to use a variable in After that has only be de�ned in B, for example. This

is awkward since it is by de�nition not guaranteed that we will traverse B, and thus

the variable can very well be a null pointer, for example. I thus have the possibility

of runtime errors. In my opinion, though, this is not a real problem since this kind of

behavior will undoubtedly fail to satisfy a correctness proof in Linear Logic. It will also

crash in the interpreter, which is why it was designed, after all.

4.5 Typing the switch example

It is now high time to put these things into action. First, I will show how I go

through the declaration part. Fig 4.12 shows the initial steps. Let � = (sw : tbool); (S :

:::
(sw : tbool); (S : (tref switch)) `M; ; : tprog; ;

` (ppriv switch sw) : tbool

(S : (tref switch)) ` private sw : M; ; : tprog; ;
private

lmod (switch) (self S : private sw : M)

` switch; ; : tmod; ;
switch

Fig. 4.12. Typing of the declarations in the switch example

(tref switch)). I can then proceed and show how to type, say, the constructor. I only

draw the �rst steps, up to the point when the method has been split in the three passes

(theadin, tmcd and theadout) (see Fig 4.13). From this point on, it is just a matter of

calling the typing rules for the switch constructor and the init method. I will also type

53

:::
TLocal(:::); � ` cons:::; ((init:::); (cons:::)) : theadin; (tcmd; theadout)

� ` cons switch sw >� :::; ; : tclause; ;
� ` P : tprog

� ` cons switch sw >� init state (pbool false):P; ; : tprog; ;
prog

Fig. 4.13. Typing of the constructor in the switch example

the get and set methods. Understanding the di�erences between these two methods is

capital. The proof tree for get is given in Fig 4.14 and the one for set is in Fig 4.15.

I have skipped the intermediary transfer steps in order to enhance readability. The

main di�erence is the fact that in the �rst case, s remains unknown before we enter the

body of the clause whereas it is given a type in the other case. As a consequence, the

clause used to infer the rw statement is di�erent in each situation. In the �rst case,

we call upon the rw � read rule whereas in the second, we have to use the rw � write.

Accidently, we have also inferred what the operational meaning of the rw command is

in each case.

In my opinion, a lot of parallels could be drawn between this approach and the

Curry-Howard isomorphism. In the case of Curry-Howard, types correspond to formulas

in intuitionistic propositionnal logic. Hence the isomorphism exposes the close relation-

ships between types and proofs in logic. What I am doing here is basically saying that

types correspond to a meaning in an imperative context, which, in a way, start from the

same idea.

54

(s : tbool); � ` get::: : theadout
get� headout

(s : :); � ` s : :

(s : :); � ` state : tbool

(s : :); � ` rw state s s; (get:::) : tcmd; theadout
rw � read

(s : :); � ` get sw s; ((rw :::); (get:::)) : theadin; (tcmd; theadout)
get� headin

� ` get sw s >� rw state s s : tclause
clause

Fig. 4.14. Typing of the get method in the switch example

(s : tbool); (o : tbool); � ` get::: : theadout
set� headout

(s : tbool); (o : :); � ` s : tbool

(s : tbool); (o : :); � ` o : :

(s : tbool); (o : :); � ` state : tbool

(s : tbool); (o : :); � ` rw state s s; (get:::) : tcmd; theadout
rw � write

(s : :); (o : :); � ` get sw s; ((rw :::); (get:::)) : theadin; (tcmd; theadout)
set� headin

� ` set sw s >� rw state o s : tclause
clause

Fig. 4.15. Typing of the set method in the switch example

55

4.6 Typing-Unambiguity correspondence

I now give the formal results that justify this type construction. The �rst impor-

tant result is to realize the following property.

Property 4.2 (Mutual exclusion of typing rules). All the typing rules given are

mutually exclusive w.r.t. a given typing environment. That is: if one rule can be used

in a given context, it is the only one that can.

Proof: Let us consider the various possibilities:

� It is immediate when there is only one rule �tted for a given pattern.

� The situation where more than one rule could match a pattern arises only when

we deal with possible commands or methods. By Prop 4.1, though, the result is

immediate, since a given typing environment is unique.

As a consequence, I can claim the following theorem.

Theorem 4.1 (Uniqueness of the solution). If an object declaration is typeable,

then there is only one possible typing proof tree for it.

Proof: If a rule can be used at some point in the proof tree, then no other can by

Prop 4.1.

This theorem has two important corollaries. The �rst one basically states that I have

reached my goal:

56

Corollary 4.1 (Ambiguity elimination). If a given object successfully type-checks,

then none of the commands used in its de�nition is ambiguous.

Proof: If the object has been successfully type-checked, then the proof-tree is unique

by Theorem 4.1. For each command, the corresponding typing rule used belongs to one

category of command, since each rule is generated to match only one of them (Prop 4.1).

Since this rule is the only possible one, no ambiguity remains on the semantic of each

command.

The second corollary is useful for our next chapter. It requires some additional formalism

though. Consider the typing of individual >� clauses. Each typing is done individually,

namely, the typing of each clause is done separately starting with the types of the self

name, privates and constants. I de�ne the concept of �leaf as:

De�nition 8 (�leaf). The function �leaf : decl �! pt is de�ned as the function that

given a >� clause returns the typing environment obtained by type inference on this

clause, including its local variables.

The second corollary can then be expressed accurately:

Corollary 4.2 (Typing of variables). If the object is typeable, then for each >�

clause, all local variable was inferred a type.

Proof: I will use a proof by contradiction. Suppose that there exists a variable x such

that the only binding in �leaf for x is (x : :). This basically means that x was never used

in the body of the method nor passed as an argument. Hence it is not a local variable,

which is contradictory. I have thus proved my initial claim.

57

I have now achieved all the preliminary work needed to generate Java code au-

tomatically. On a practical point of view, the Popeye programmer is required to feed

its programs into the type-checker, and succeed, before proceeding to the next step.

Appendix 8.2 gives the code for the type-checker written in �Prolog.

58

Chapter 5

Java code generation

In this chapter, I lay down the recursive analysis that will generate the Java code

equivalent for a given Popeye program.

5.1 Notations

The �rst thing I need to introduce is an additional environment � for storing the

Java string corresponding to a variable. This environment is designed to work in exactly

the same way as the typing environment. For all variable x, I will associate the string

\x" that is to be used in the Java code. This relationship will be represented as (x : x).

Notice that I will often omit the quotes around the x. In a similar fashion as to what

was done in the case of �, I then introduce a MLocal function as follows:

De�nition 9 (MLocal). The function MLocal is de�ned as this function that, given a

declaration (A >� B), returns the set � such that:

8refx : x 2 Local(A >� B)) (x : x) 2 �

Everything in Popeye will be tied to a piece of Java code (a string). For example,

consider the simple boolean constant true. The fact that it is written true in Java is

written

�;� : (pbool true) �! true

59

In most cases, though, the Java code generated will be obtained by stitching together

other pieces of codes obtained somewhere else. For example, consider A >> B. I �rst

get the code for A in, say, JA. Then I get B's code in JB. Hence the code to generate is

string JA;JB. I note this as follows:

�;� : A >> B

�;� : A �! JA

�;� : B �! JB

�! JA; JB

This notation can also be seen as a di�erent presentation for a classical deduction rule

in any logic. In this picture, the above expression would be re-written as follows:

�;� : A �! JA �;� : B �! JB

�;� : A >> �! JA; JB

I introduced this new notation for typographical readability.

There is one source of concern, though. As we have outlined in the previous

chapter, there are many occasions where a given Popeye statement can be used for

various purposes. Hence I need to introduce a few other mappings. I �rst need to be

able to specify the simplest mapping.

De�nition 10 (
typo
�!).

typo
�! is de�ned as the relation that associates a Popeye expression

to the exact same string in Java.

E.g.: Lemonade
typo
�! Lemonade

Then, I need to de�ne the mapping for test expressions.

60

De�nition 11 (
test
�!).

test
�! is de�ned as the relation that associates a T est method to

the corresponding Java code.

E.g.: �; � : rw A O O
test
�! A == O

De�nition 12 (
head
�!).

head
�! is de�ned as the relation that associates the head of a

>� clause to a triple. The �rst element in the triple is the set of variables that are

passed as an argument to the method. The second element is the Java code for the

declaration header needed for this method in the Java program. The third element is

the code needed for an eventual return statement.

E.g.: �; � : get S V
head
�! ;; public boolean get()f; return V;

De�nition 13 (
decl
�!).

decl
�! needs three input parameters. The �rst one is a type envi-

ronment as de�ned in Chapter 4. The second one is a naming environment as de�ned

at the beginning of this chapter. The third one is a set of variables to exclude from

the translation. The result is a declaration header for all the variables in the given

environment, except those in the given set.

E.g.: ((A : pbool); (B : pbool)); ((A : A); (B : B)); B
decl
�! boolean A;

De�nition 14 (
params
�!).

params
�! is de�ned as the relation that associates a type envi-

ronment to the set of variables that are typed into it.

E.g.: (A : :); (B : pbool)
params
�! B

Typically, for each method introduced, we will have to generate one
head
�! rule,

and one basic �! rule. If it is an out-method, we will need to add a
test
�!. The last two

61

relations introduced are easy to implement. In the case of
decl
�!, what I actually do is look

at a stack of variables, look at their type, and generate the corresponding declaration in

Java if needed. The \if needed" is decided upon whether the considered variable belongs

to a given list. In the case of the
params
�! , the easiest way to represent it is as a simple

�lter that throws out untyped variables.

At this point, I am ready to give the rules in general.

5.2 Base rules

Fig 5.1 and 5.2 give the rules for Java code generation. The only really intricate

one is the rule for methods declaration. The core idea can be outlined as follows: �rst,

I extract the code for the Java declaration of the method. Along with it, I can extract

other method-speci�c information. On one side, I get a list of the variables that are

passed as parameters. On the other, I get the code for an eventual return statement.

My next move is then to get a list of those variables already declared in the environment.

By sticking together the two lists of variables, I have the list of the those variables that

will not need to be declared in the scope of my method. As for the remaining variables,

I then generate the appropriate declaration header. After this is done, I get the code for

the body of the method. The �nal step is to stick everything together.

The other rules are straightforward.

62

�;� : tbool �! boolean

�;� : (pbool true) �! true �;� : (pbool false) �! false

�;� : (tint) �! int �;� : (pint I) �! I

�;� : (tref object) �! Object

�;� : A
(A : A) 2 �

�! A

�;� : init A N

�;� : A �! JA

�;� : N �! JN

�! JA = JN;

�;� : rw A O N

�;� : A �! JA

�;� : O �! JO

�;� : N �! JN

�! JO = JA;

JA = JN;

�;� : rw A O O

�;� : A �! JA

�;� : O �! JO
test
�! JO == JA;

�;� : A== B

�;� : A �! JA

�;� : B �! JB

�! JA = JB;

�;� : A== B

�;� : A �! JA

�;� : B �! JB
test
�! JA == JB;

�;� : A >> B

�;� : A �! JA

�;� : B �! JB

�! JA JB;

�;� : A+>B j>C

�;� : A
test
�! JA

�;� : B �! JB

�;� : C �! JC

�! if (JA)f
JB

g else f
JC

g

�;� : C:P
�;� : C �! JC

�;� : P �! JP

�! JC

JP

�;� : private C N : P

� ` ppriv C N : �
;; ; : � �! JT

(N : �); �; (N : N); � : P �! JP

�! JT N;

JP

�;� : static C N V : P

N
typo
�! N

� ` V : �
;; ; : � �! JT

;; ; : V �! JV

�;� : P �! JP

�! public static JT N = JV;

JP

Fig. 5.1. Rules for Java code generation

63

�; � : A>� B

TLocal(A>� B); �;Mlocal(A>� B); � : A
head
�! HeadParams; Jhead; Jreturn

�
params
�! AddParams

�leaf (A>� B);Mlocal(A>� B); (HeadParams;AddParams)
decl
�! Jdecl

TLocal(A>� B); �;Mlocal(A>� B); � : B �! Jbody

�! Jhead Jdecl Jbody Jreturn g

Fig. 5.2. Generation rules for method declaration

5.3 Bindings to generate

As I have done for typing, I will generate rules for each declaration of a structure

in Popeye.

5.3.1 otype

For each object created, I need to generate �ve rules. The �rst one takes care

of the actual type in Java. It is basically rewriting the Popeye type with a �rst capital

letter. The second rule generates the main object header. The third rule generate the

constructor declaration. The fourth gives the code to use when a new is issued. Finally,

I give the code for the super keyword, even though it is not technically necessary.

Fig 5.3 give the corresponding set of rules. In the
head
�! rule, the opening bracket in the

corresponding Java code �nds its match in the rule given in Fig 5.2.

5.3.2 ctype

Constants are a treat. The single rule to generate is given in Fig 5.4.

64

The code for the object name is (self S : P)
Object name extends object O

Initial directive is:
otype name t1 ! t2 ! :::! tn ! class.

�; � : name

�; � : tref O �! JO

�; � : tref name �! JN

(S : (tref gate)); �; (S : this);� : P �! JP

�! public class JN extends JO f
JP

g

�; � : cons S (name A1 ::: An)
�; � : tref name �! JS

�; � : t1 �! JT1

�; � : A1 �! JA1

:::

�; � : tn �! JTN

�; � : An �! JAN
head
�! (A1;...;An),

JS (JT1 JA1, ..., JTN JAN)f ,
;

�; � : new (name A1 ::: An) Nn P

N
typo
�! N

�; � : tref name �! JS

�; � : A1 �! JA1

:::

�; � : An �! JAN

(N : (tref name))�; (N : S)� : P �! JP

�! JS N = new JS (JA1, ..., JAN);

JP

�; � : super S(name A1 ::: An)
�; � : A1 �! JA1

...
�; � : An �! JAN

�! super(JA1, ... ,JAN);

Fig. 5.3. Generation rules for otype

65

Initial directive is:
ctype objname name t1:

�; � : pcst objname name

�; � : tref objname �! JN

�! JN.NAME

Fig. 5.4. Generation rules for ctype

5.3.3 ptype

There is no need to have any code-generation rule for private variables. The basic

idea is that in the scope of an object, this is just another variable, hence we just need

to name it once and for all in �. This is not the case of constants which can very well

be used across objects.

5.3.4 mtype

As I explained in Section 5.1, the rules to generate depends on the type of the

method considered. Fig 5.5 gives the rules for in-methods. Fig 5.6 gives those corre-

sponding to out-methods.

5.3.5 A note on abstract classes

When the types aclass and acmd are used instead of class and cmd, this means

that an abstract class is being de�ned. When this happens, the rules exposed above are

66

Initial directive is:
mtype name in (ref objname)! t2 ! :::! tn ! cmd:

�; � : name A1 ::: An
�; � : t2 �! JT2

�; � : A2 �! JA2

:::

�; � : tn �! JTN

�; � : An �! JAN
head
�! (A2;...AN),

public void name (JT2 JA2, ..., JTN JAN)f ,
;

�; � : name A1 ::: An
�; � : A1 �! JA1

:::

�; � : An �! JAN

�! JA1.name (JA2, ..., JAN);

Fig. 5.5. Generation rules for mtype in the case of in-methods

67

Initial directive is:
mtype name out (ref objname)! t2 ! :::! tn ! cmd:

�; � : name A1 ::: An
�; � : t2 �! JT2

�; � : A2 �! JA2

:::

�; � : tn �! JTN

�; � : An �! JAN
head
�! (A2;...AN),

public JTN name (JT2 JA2, ..., JT(N-1) JA(N-1))f ,
return AN;

�; � : name A1 ::: An
�; � : A1 �! JA1

:::

�; � : An �! JAN

�! JAN = JA1.name (JA2, ..., JA(N-1));

�; � : name A1 ::: An
�; � : A1 �! JA1

:::

�; � : An �! JAN
test
�! JAN == JA1.name (JA2, ..., JA(N-1));

Fig. 5.6. Generation rules for mtype in the case of out-methods

68

basically unchanged, except that the keyword abstract should be added in the Java dec-

laration of the abstract object and the abstract methods. This feature is demonstrated

in Section 6.2.

5.4 Java code for the switch

I can now generate the Java code corresponding to the switch example. Ap-

pendix 8.3 give the �Prolog module that performs the recursive analysis outlined above.

Fig 5.7 gives the code obtained (the indentations are not generated, that is, the code

is correct but crammed). The Popeye environment is now fully operational, and I can

move on to applying it to more challenging examples.

69

public class Switch extends Object{

boolean sw;

Switch(){
sw = true;

}

public boolean get(){
boolean val;
val = sw;
sw = val;
return val;

}

public void set(boolean val){
boolean old;
old = sw;
sw = val;

}

public void toggle(){
if (true == sw){
this.set(false);

}
else{
this.set(true);

}
}

}

Fig. 5.7. Java code generated for the switch

70

Chapter 6

Examples

In this section, I put Popeye into action by giving two programming examples.

Both are supposed to represent the two classical relationships between objects: inclusion

and inheritance. The �rst example de�nes a FIFO linked list. The second re-builds the

logical gates example given in [9]. Each time, I will give example sessions in �Prolog

and show the corresponding Java code. In this chapter, I will only give the pure Popeye

code. Code �tted for the �Prolog interpreter is pushed back to the appendix.

A word, though, on the current state of the Popeye package. I have implemented

everything in �Prolog for direct use with the Terzo implementation. There are a few

convenient elements still missing, though.

� There is no built in support for resolving imports. That is, I must manually specify

which packages should be imported to resolve a given program.

� There is no parser for the language. That is, I haven't had the time to set up a

program to generate the object-dependent typing and Java-generation rule. For

each object, I have written three modules. The �rst module, extension .sig gives

the signature of the object in �Prolog. The second module, extension .mod give

the actual code to be fed to the interpreter. The last module, extension .spi (as

in spinach), contains all the rules that should be generated automatically (which

I brutally typed myself). For some smaller program, though, I was sloppy and

71

wrote everything in the same module. The automation of this process should be

straightforward, since I have written all the rules needed in Chapter 4 and 5. I

wrote these .spi �les mechanically.

� The Java code generated is certainly not ideally presented. It is just a big string

that I copy/paste to any text editor. Having it sent to a �le is easily done, be we

de�nitely need pretty-printing work for that matter. [20] gave good ideas on what

could be done to enhance that aspect.

Needless to say, writing these three things would undoubtly be the next step into devel-

oping Popeye into a fully operational programming environment. The speci�cation for

the Popeye language is centralized in the �le named popeye.sig. The interpreter is in

interp.mod. The typechecker can be found in tchecker.mod. The Java code generator

is placed into spinach.mod. Fig 6.1 give examples of utilization.

Terzo> #query interpreter, switch.

?- interp nil nil (new switch s\ toggle s >> get s O) end.

O = pbool false;

no more solution

?-

Ctrl^C

Terzo> #query spinach, typechecker, switch.

?- spinach nil nil switch Java.

Java = ``public class Switch{ ...

Fig. 6.1. Example of session

72

6.1 FIFO queue

In this example, I will build a linked list. Very classically, I �rst program an object

named cell that will contain an object, and two pointers to two other cells, namely the

one before and after in the list. There is nothing special about this object. We provide a

get/set pair of methods to access these three elements. Fig 6.2 presents the corresponding

Popeye code.

More interesting is the queue object itself. I provide a method to put an object

in the queue, named enqueue, that basically adds an element to the queue by moving

the various pointers around. I also have to create a new cell to store the object, which

is done through a new statement. Finally, we take into account the fact that the queue

could be empty by using an appropriate conditionnal. The method to dequeue is a

little more demanding, in the sense that in a typical imperative language, I would need

a loop to solve the problem. Here, I simply explore the queue recursively through a

particularly brutal method that creates a queue one head shorter to explore the initial

queue down to its �nal element. I would also like to point out the necessity of putting all

new statements out of the scope of a conditionnal. A given program will not go through

the typechecker if it features such a con�guration. The reason is that the scope of the

new statement should always extend to the whole body of the clause, since creating a

new element in Java is not limited to the scope of a pair of brackets! There again, we

have a typical conict between the �-calculus and Java this time. Fig 6.3 give the code

for the queue.

73

otype cell class.

ptype data ref object.

ptype next ref cell.

ptype pred ref cell.

mtype get_data out ref cell -> ref object -> cmd.

mtype set_data in ref cell -> ref object -> cmd.

mtype get_next out ref cell -> ref cell -> cmd.

mtype set_next in ref cell -> ref cell -> cmd.

mtype get_pred out ref cell -> ref cell -> cmd.

mtype set_pred in ref cell -> ref cell -> cmd.

class cell.

self c.

private data.

private next.

private pred.

cons c cell >- empty

get_data c d >- rw data d d.

set_data c d >- rw data o d.

get_next c n >- rw next n n.

set_next c n >- rw next o n.

get_pred c p >- rw pred p p.

set_pred c p >- rw pred o p.

Fig. 6.2. Popeye code for the cell object

74

otype queue class.

ptype head ref cell.

mtype set_head in ref queue -> ref cell -> cmd.

mtype enqueue in ref queue -> ref object -> cmd.

mtype dequeue out ref queue -> ref object -> cmd.

class queue.

self q.

private hd.

set_head q h >- rw hd oldh h.

enqueue q obj >- new cell c\

rw hd h h >>

set_next c h >>

set_data c obj >>

((h == null) +> empty

|> set_pred h c) >>

rw hd old c.

dequeue q obj >- rw hd c c >>

new queue newq\

((c == null) +> (obj == null)

|> (get_next c t >>

((t == null) +> (get_data c obj >>

get_pred c p >>

(n == null) >>

((p == null) +>

rw hd old n |>

(cast n (tref cell) >>

set_next p n)

)

)

|> (set_head newq t >>

dequeue newq obj)))).

Fig. 6.3. Popeye code for the queue object

75

I can then put my program to the test in the interpreter. The following example

session shows how:

Terzo> #query interpreter, cell, queue.

?- interp nil nil (new queue q\ enqueue q (pint 1) >>

enqueue q (pint 2) >> enqueue q (pint 3) >>

dequeue q What >> dequeue q When) end.

What = pint 1

When = pint 2;

No more solutions.

Great! It works! And it appears that I don't have any nasty surprises like two

possible outcomes of my program! My next move is to generate the corresponding Java

object. First, I check that my object passes the typechecker. Then I generate the code.

Remember that the typechecking rules are automatically generated. In the end, I should

just have to feed my Popeye program to a transformation program that will merge these

two steps and eliminate the need to write the .spi �le!

Terzo> #query spinach, typechecker, cell, queue, cellspi, queuespi.

?- tcheck nil queue nil tmod nil.

(.../...)

Solved.

?- spinach nil nil queue Java.

Java =

Of course, I do the same thing for my cell object. Fig 6.4 and 6.5 give the

corresponding Java programs. Hoping to have made a good impression with this �rst

example, I then move on to applying this method to the example presented in [9].

76

public class Cell extends Object{

Object data;

Cell next;

Cell pred;

Cell(){

}

public Object get_data(){

Object d;

d = data;

data = d;

return d;

}

public void set_data(Object d){

Object old;

old = data;

data = d;

}

public Cell get_next(){

Cell p;

p = next;

next = p;

return p;

}

public void set_next(Cell p){

Cell old;

old = next;

next = p;

}

public Cell get_pred(){

Cell p;

p = pred;

pred = p;

return p;

}

public void set_pred(Cell p){

Cell old;

old = pred;

pred = p;

}

}

Fig. 6.4. Java code generated for the Cell object

77

public class Queue extends Object{

Cell head;

Queue(){ }

public void set_head(Cell h){

Cell oldH;

oldH = head; head = h;

}

public void enqueue(Object obj){

Cell oldH; Cell h;

Cell c = new Cell();

h = head; head = h;

c.set_next(h);

c.set_data(obj);

if (h == null){ }

else{ h.set_pred(c); }

oldH = head; head = c;

}

public Object dequeue(){

Cell n; Object old; Cell p; Cell c; Cell t; Object obj;

c = head; head = c;

Queue newQ = new Queue();

if (c == null){ obj = null; }

else{

t=c.get_next();

if (t == null){ obj=c.get_data();

p=c.get_pred();

if (p == null){ old = head;

head = null; }

else{ n = null;

p.set_next(n); }

}

else{ newQ.set_head(t);

obj=newQ.dequeue(); }

}

return obj;

}

}

Fig. 6.5. Java code generated for the Queue object

78

6.2 Logical gates

As simple as it may seem, building an object architecture to represent logical gates

interacting with each others basically implies using all the features o�ered by an object

programming environmment. In particular, we will express abstract methods. The �rst

step is of course to lay down a class hierarchy. Fig 6.6 represents this organisation. Before

I start writing down the diverse objects in Popeye, I would like to point out the fact

that it is necessary to think about the interfaces of these objects �rst. IDLs (Interface

De�nition Languages) could be used for this purpose. Also, although it is not visible

in the class hierarchy, my implementation makes an intensive use of yet another object

named Poplist. The implementation for this object is examined in the next section. It

is suÆcient to understand its use to represent it as Prolog-style list, with a head and a

queue which can be extracted separately.

First, I write down the object for the wire. Fig 6.7 give the corresponding program.

The real diÆculty was to implement the notify function. This function is in charge of

triggering the recomputing of states for gates that are tied to the output of the considered

wire. Since there might be more than one of these gates, I typically would have inserted

a loop in Java to take care of this. The restrictions for Popeye force me into using

recursion, in very much the same way as what I did for the �rst example. Then, I

need to write down the base class for my gates. Fig 6.8 gives the corresponding code.

The common feature of all gates is an output wire and a current state. Apart from the

corresponding get/set methods, I de�ne the alert method that triggers the computation

of the state of the gate. Notice that one of the method declared in the header is an

79

Unigate Bigate

Gate

Notgate Andgate Orgate

Wire

Fig. 6.6. Class diagram for Logical Gates

80

otype wire class.

ptype state boolean.

ptype queue poplist.

ctype on boolean.

ctype off boolean.

mtype get_signal out ref wire -> boolean -> cmd.

mtype set_signal in ref wire -> boolean -> cmd.

mtype add_gate in ref wire -> ref gate -> cmd.

mtype del_gate in ref wire -> ref gate -> cmd.

mtype notify in ref wire -> ref poplist -> cmd.

class wire.

self w.

private wire state. private wire queue.

static wire on (pbool true). static wire off (pbool false).

cons w (wire) >- new poplist l\

rw queue oldq l >>

rw state olds (pcst wire off).

get_signal w s >- rw state s s.

set_signal w s >- rw state olds s >>

rw queue outs outs >>

notify w outs.

add_gate w g >- rw queue outs outs >>

popbuild outs gate.

del_gate w g >- rw queue outs outs >>

popdelete outs gate.

notify w outs >- new poplist outsleft\

popisnil outs (pbool true) +>

empty |>

pophead outs g >>

cast g (tref gate) >>

alert g >>

poptail outs outsleft >>

notify wire outsleft.

Fig. 6.7. Code for the wire object

81

abstract method (which can be seen at the acmd). As a consequence, I de�ne the whole

object as abstract (notice the aclass). The next step in my architecture is to write

the code for each type of gate. These two abstract classes de�ne the unigate and bigate

objects whose respective code is given in Fig 6.9 and 6.10. Notice that these are abstract

classes again since they lack the evaluation function. Once we are through with these,

we can write the code for each speci�c gates. Namely, the not-gate, the and-gate and the

or-gate. Fig 6.11, 6.12 and give the code for a not-gate and a and-gate. As one might

expect, they implement the abstract method thus giving the rules to evaluate the state

of each gate in regards to its inputs.

This looks rather easy when stated in such a casual way, but each time we write

a method, special care must be taken in order to satisfy the type-checker. Consider, for

example, the notify function in the wire object. As far as the interpreter is concerned,

the following command could be used without any further problem:

notify w outs >- new poplist outsleft\

popisnil outs (pbool true) >>

pophead outs g >>

alert g >>

poptail outs outsleft >>

notify wire outsleft.

Of course, as far as the typechecker is concerned, this is unacceptable for two

reason. First, the popisnil function is used as a test, hence the typechecker will not

allow it out of a conditionnal. Next, the g variable is not typed correctly when we extract

it out of the list. It is considered a generic object. Hence, a cast is needed (a common

problem in OO languages that, of course, re-appears here). This justi�es the �nal look

82

gate extends object.

otype gate ref wire -> aclass.

ptype outw ref wire.

ptype state boolean.

mtype get_output out ref gate -> ref wire -> cmd.

mtype set_output in ref gate -> ref wire -> cmd.

mtype get_state out ref gate -> boolean -> cmd.

mtype set_state in ref gate -> boolean -> cmd.

mtype alert in ref gate -> cmd.

mtype computestate out ref gate -> boolean -> acmd.

class gate.

self gt.

private gate outw.

private gate state.

cons gt (gate Outwire) >- empty.

get_output gt w >- rw outw oldw w.

set_output gt w >- rw outw oldw w >>

rw state currs currs >>

set_signal oldw (pcst wire off) >>

set_signal w currs.

get_state gt currs >- rw state currs currs.

alert gt >- computestate gt news >>

rw outw w w >>

rw state olds news >>

set_signal w news.

Fig. 6.8. Code for the gate abstract class

83

unigate extends gate.

otype unigate ref wire -> ref wire -> aclass.

ptype inw ref wire.

mtype get_input out ref unigate -> ref wire -> cmd.

mtype set_input in ref unigate -> ref wire -> cmd.

class unigate.

self gt.

private unigate inw.

cons gt (unigate inwire outwire) >-

super (gate outwire) >>

init inw inwire >>

add_gate inwire gt >>

alert gt.

get_input gt w >- rw inw w w.

set_input gt w >- rw inw old w >>

add_gate w gt >>

del_gate old gt >>

alert gt.

Fig. 6.9. Code for the unigate abstract class

84

bigate extends gate.

otype bigate ref wire -> ref wire -> ref wire -> aclass.

ptype inwa ref wire.

ptype inwb ref wire.

mtype get_inputa out ref bigate -> ref wire -> cmd.

mtype get_inputb out ref bigate -> ref wire -> cmd.

mtype set_inputa in ref bigate -> ref wire -> cmd.

mtype set_inputb in ref bigate -> ref wire -> cmd.

class bigate.

self gt.

private bigate inw.

cons gt (bigate inwirea inwireb outwire) >-

super (gate outwire) >>

init inwa inwirea >>

init inwb inwireb >>

add_gate inwirea gt >>

add_gate inwireb gt >>

alert gt.

get_inputa gt w >- rw inwa w w.

set_inputa gt w >- rw inwa old w >>

add_gate w gt >>

del_gate old gt >>

alert gt.

get_inputb gt w >- rw inwb w w.

set_inputb gt w >- rw inwb old w >>

add_gate w gt >>

del_gate old gt >>

alert gt.

Fig. 6.10. Code for the bigate abstract class

85

notgate extends unigate.

otype notgate ref wire -> ref wire -> notgate.

class notgate.

self gt.

cons gt (notgate inwa inwb outwire) >-

super gt (unigate inwa inwb outwire).

computestate gt s >-

get_input gt w >>

get_signal w curr >>

(Curr == (pcst wire on)) +> (s == (pcst wire off))

|> (s == (pcst wire on)).

Fig. 6.11. Code for the not-gate object

andgate extends bigate.

otype andgate ref wire -> ref wire -> ref wire -> class.

class andgate.

self gt.

cons gt (andgate inwa inwb outwire) >-

super gt (bigate inwa inwb outwire).

computestate gt s >-

get_inputa gt wa >>

get_inputb gt wb >>

get_signal wa curra >>

get_signal wb currb >>

((curra == (pcst wire on)) +> ((currb == (pcst wire on)) +>

(s == (pcst wire on)) |>

(s == (pcst wire off)))

|> (s == (pcst wire off))).

Fig. 6.12. Code for the and-gate object

86

of the function. The nice thing with our system is that the typechecker will reveal such

bizarre feature to a potential programmer used to deal with logic.

Before I reach this point though, I can do some very interesting work in the

interpreter. Basic simulation can be done. For example, I can build a notgate and play

with its inputs:

?- new wire a\ new wire b\ new (notgate a b) g\

set_signal a (pcst wire on) >>

get_state g (pcst wire S)

S = off;

No more solutions.

But, of course, I can do far more interesting things such as checking the truth

table for this gate!

?- new wire a\ new wire b\ new (notgate a b) g\

set_signal a (pcst wire S) >>

get_state g (pcst wire U)

S = on

U = off;

S = off

U = on;

No more solutions.

Which is kind of nice, since I thus don't have to generate all the possible scenarios!

The system is exploring them for me. A word of notice, though: the current system is

slow. A great deal of optimization is needed. For example, the above computation takes

about �ve minute (!) on a 333Mhz Celeron running Linux. Also, I often get twice the

87

same (correct) result, which comes from some hidden equivalent clauses. Notice, though,

that the above system is really nice to write and test scenarios. Something that, frankly,

is hellish to do in a classical imperative setting.

The same kind of simulation can be run on bigates and whole gates architectures.

Simple simulations are for now pretty well done, but the kind of backtracking exposed

above are for now way too costly. They have a tendency to consume all the ressources

available to the system. I don't take this last fact too seriously. I am pretty sure that a

special dedicated compiler for Popeye would make the delays acceptable and the demand

for resources sustainable for most systems. After all, the system used, Terzo, is itself

built on top of SML, which is already implemented in C. We have added costly features

on top of that, so it is no surprise to get something so slow.

The cherry on the cake is now to generate the corresponding Java code for all

these things. I give the obtained code in Fig 6.13, 6.14, 6.15, 6.16, 6.17 and 6.16.

I will now move on to demonstrate an interesting exibility in the Popeye approach to

programming. I will look at the implementation of the Poplist object that was used

throughout this code.

6.3 The hacker's corner: using elegant �Prolog programs in Popeye

In this section, I will show how to write a �Prolog program that is a correct Popeye

module, but makes all its computations using �Prolog clauses. The best example where

the programmer would give anything to be able to write his program in Prolog and not

in a C-style language is the handling of lists. It is a classical exercise for a beginner

88

public class Wire extends Object{

boolean state;

PopList queue;

public static boolean ON = true; public static boolean OFF = false;

Wire(){

PopList l = new PopList();

queue = l; state = OFF;

}

public boolean get_signal(){

boolean signal;

signal = state; state = signal;

return signal;

}

public void set_signal(boolean signal){

PopList outS;

boolean oldS;

oldS = state; state = signal;

outS = queue; queue = outS;

this.notify(outS);

}

public void add_gate(Gate gate){

PopList outS;

outS = queue; queue = outS;

outS.popbuild(gate);

}

public void del_gate(Gate gate){

PopList outS;

outS = queue; queue = outS;

outS.popdelete(gate);

}

public void notify(PopList outS){

Gate gate;

PopList outSLeft = new PopList();

if (outS.popisnil() == true){}

else{ gate = outS.pophead();

gate.alert();

outS.poptail(outSLeft);

this.notify(outSLeft); }

}

}

Fig. 6.13. Java code for the wire object

89

public abstract class Gate extends Object{

Wire outW;

boolean state;

Gate(Wire outWire){

outW = outWire;

}

public Wire get_output(){

Wire wire;

wire = outW; outW = wire;

return wire;

}

public void set_output(Wire wire){

boolean currS;

Wire oldWire;

oldWire = outW; outW = wire;

currS = state; state = currS;

oldWire.set_signal(Wire.OFF);

wire.set_signal(currS);

}

public boolean get_state(){

boolean currS;

currS = state; state = currS;

return currS;

}

public void alert(){

boolean oldS;

Wire wire;

boolean newS;

newS=this.computestate();

wire = outW; outW = wire;

oldS = state; state = newS;

wire.set_signal(newS);

}

public abstract boolean computestate();

}

Fig. 6.14. Java code for the gate abstract class

90

public abstract class Unigate extends Gate{

Wire inW;

Unigate(Wire inWire, Wire outWire){
super(outWire);
inW = inWire;
inWire.add_gate(this);
this.alert();

}

public Unigate get_input(){
Wire wire;

wire = inW;
inW = wire;
return wire;

}

public void set_input(Wire wire){
Wire old;

old = inW;
inW = wire;
wire.add_gate(this);
old.del_gate(this);
this.alert();

}
}

Fig. 6.15. Java code for the unigate abstract class

91

public abstract class Bigate extends Gate{

Wire inWA;
Wire inWB;

Bigate(Wire inWireA, Wire inWireB, Wire outWire){
super(outWire);
inWA = inWireA;
inWB = inWireB;
inWireA.add_gate(this);
inWireB.add_gate(this);
this.alert();

}

public Bigate get_inputa(){
Wire wire;

wire = inWA; inWA = wire;
return wire;

}

public void set_inputa(Wire wire){
Wire old;

old = inWA; inWA = wire;
wire.add_gate(this);
old.del_gate(this);
this.alert();

}

public Bigate get_inputb(){
Wire wire;

wire = inWB; inWB = wire;
return wire;

}

public void set_inputb(Wire wire){
Wire old;

old = inWB; inWB = wire;
wire.add_gate(this);
old.del_gate(this);
this.alert();

}
}

Fig. 6.16. Java code for the bigate abstract class

92

public class Notgate extends Unigate{

Notgate(Wire inWire, Wire outWire){
super(inWire, outWire);

}

public boolean computestate(){
boolean curr;
boolean state;
Wire wire;
wire=this.get_input();
curr=wire.get_signal();
if (curr == Wire.ON){

state = Wire.OFF;
}
else{

state = Wire.ON;
}
return state;

}
}

Fig. 6.17. Java code for the not-gate object

93

public class Andgate extends Bigate{

Andgate(Wire inWireA, Wire inWireB, Wire outWire){
super(inWireA, inWireB, outWire);

}

public abstract boolean computestate(){
boolean currB;
boolean currA;
boolean state;

Wire wireB;
Wire wireA;

wireA=this.get_inputa();
wireB=this.get_inputb();

currA=wireA.get_signal();
currB=wireB.get_signal();

if (currA == Wire.ON){
if (currB == Wire.ON){ state = Wire.ON; }
else{ state = Wire.OFF; }

}
else{ state = Wire.OFF; }

return state;
}

}

Fig. 6.18. Java code for the and-gate object

94

in programming language to have to implement a list. When the reverse method is

reached, the headache usually begins. Such classical structure have been fully studied in

both paradigms. A great gain of time could then be achieved if Popeye could be able to

bridge these two implementations. Suppose a Prolog programmer wants to use its code

for manipulating lists. I will make this possible by introducing an intermediary Popeye

program that will play an interface role between the Popeye code and the Prolog code.

Of course, since the implementation is not in Popeye, it is not possible to generate the

corresponding Java code. But, on the other hand, it is reasonnable to think that some

Java code achieving similar result has already been created. By writing (or importing) a

Java object that matches the interface of my Popeye program, I can thus write programs

in Popeye that use my list and that will be directly useable in Java.

Let me take for example the infamous reverse function. In �Prolog, it can be

written as the following very elegant clause:

reverse L K :- pi rv\

(

rv nil K,

pi X\ pi N\ pi M\ rv (X::N) M :- rv N (X::M)

)

=> rv L nil.

The �rst step into making this compatible is to write this clause in a CPS form.

reverse_CPS L K G :- pi rv\

(

rv nil K G :- G,

pi X\ pi N\ pi M\ rv (X::N) M G :- rv N (X::M) G

)

=> rv L nil G.

95

Then, de�ne a poplist Popeye object in �Prolog that contains as a private vari-

able the manipulated �Prolog list.

type poplist class.

type lplist ref.

type val list A -> ref % A useful maping

type popreverse ref -> cmd.

% Code to initialize the object ...

popreverse L >- rw lplist (val LPL) (val LPL) >>

lamb(reverse_CPS LPL LPT) >>

rw lplist (val LPO) (val LPT)

% Additionnal code ...

The code I write as the body of the popreverse method just replaces the lplist

private variable with the inverted list. To call upon the �Prolog clause through the

interpreter, I pass through the special command lamb that basically indicates to the

interpreter that an outside procedure was used. And this is all I need to do in order to

use my reverse in Popeye! The next step, of course, is to write the corresponding Java

object, something that any hacker will gladly do, while higher order work can be done

in logic. The code for the complete poplist object is given in Appendix 8.4.4.

Using these simple three examples, I think I have given a good starting point for

any potential user of the Popeye system. In my idea, though, this is just a start. Bigger

things are yet to come.

96

Chapter 7

Conclusion and insights

I have now completed the presentation of my work. There are many paths that

could be followed from this point, leading to many important results. In this chapter,

I try to enumerate them and evaluate the scope of the potential results. This section

could also be useful for upcoming students that would be interested into pursuing this

project further.

7.1 Language issues

The �rst point that needs a lot of re�ning is the language itself. In its present

form, it has features that are closely related to its logical semantics. This had some

appreciable advantages, the most important one being the easy translation to logic and

the clear writing of an interpreter in �Prolog. The problem, though, is that if we want

to expand the pool of potential users of the system, it would be a better idea to make

Popeye programs closer to a classical imperative syntax. For example, consider the

new statement. This bizarre backslash is sure to confuse more than one programmer

unfamiliar with the �-calculus.

In the same idea, the next aspect that would require particular attention is the

implementation of loops in the language. The core reason for not implementing loops in

97

Popeye comes from the problem of loop variables. Consider the following possible body

for a loop, where i is a counter:

(inc i >> ...)

If I want to model the multiple invocation of such a sequence of instructions in

logic, then I cannot leave i unprotected. If this is not done, then i will unify itself

with its �rst value and stick to this unique value afterwards. Of course, I don't want

this to happen, just like I did not want my local variable to work only once! I used a

universal quanti�er to guard local variable. I need to guard these \loop" variables with

a similar technique. Of course, the next problem coming in line is the determination of

which variable is a loop variable and which is not: it seems rather pitiful to ask for the

programmer to manually specify these variables each time a loop is written. Thus, here,

I will require some kind of ow analysis, something that, in my opinion, is not central

to this dissertation.

Finally, there is one major element of OO programming that has not been treated

in this thesis. Most modern systems are now event-drive. That basically means that

objects communicate with one another through messages that are exchanged through a

common, yet hidden, asynchronous mechanism. This is deeper than it may looks, as I

need logic to address this problem completely.

98

7.2 Logical issues

The presentation of Linear Logic I worked upon, also referred to as the Lolli pre-

sentation, is a rather smallish subset of the global system presented by Girard. Also, one

can notice that I use connectives for a very speci�c purpose. For example, I intensively

used the universal quanti�er to express the idea of scope (as outlined in [12]). But,

among all the connectives Girard presented, I have overlooked the most intriguing of all:

the par (
...
............
..................................). Miller, in [14], gave a tangible meaning to this connective by showing how

it can be used to model asynchronous threads. He describes FORUM, a presentation of

Linear Logic into which one can describe what is supposed to happen when two entities

(or threads) are put in the presence of each other. So, when I write:

A
...
............
.................................. B

the intended meaning is that the environment I am considering contains these two entities

oating around. But, then, I can write clauses of the following form:

A
..
...........
.................................. B Æ� C

This describes that when A and B are found together, they both disappear to be replaced

by C. The hunch I have with Popeye is that this is the key to proving Java multi-threaded

programs correct.

Consider a button object. The most common message triggered is, of course, the

classical click event. Ideally, I could write in the interpreter something like this:

99

(new applet a\ new button b\ add a b >> start a)

|

(click b)

The | stands for the par symbol. This would basically specify that I create an

applet with a button, which I have clicked. But then come harder problems. Even the

simple session above is problematic: if we follow the way I speci�ed the new statement

in logic, the name b is out of the scope of the click.

The biggest problem, though, revolves more around how to write the speci�cations

themselves rigorously. In Java, for instance, the code to execute for a given event is to

be written in the scope of an event listener object. So, if I construct a button with a

given listener, then somewhere in the constructor, a listener must be launched.

class button. self b.

.../...

cons b button >- new bActionListener b al\

start al.

.../...

Now, I need to write the speci�cation for forwarding the control to the code writ-

ten in the listener whenever the button is clicked. Instinctively, I would write something

like this:

?(bActionListener b Al | (click b >> K) >-

actionPerformed Al | K.

100

The ? is the Linear Logic \why not?", which means that the action listener

traverses the clause untouched. The hard problem is then to be able to add more threads

to this clause. The way Linear Logic is written, there can only be exactly the actors

described in the clause to have the clause happening. In the immense majority of cases,

this is not what happens. There will be various threads around that have nothing to do

with this clause and thus need to be untouched by it. There is also the very diÆcult

problem of deciding what to do when more than one of these clauses could be ful�lled.

Which one do I satisfy �rst? Could I decide to satisfy both of them? So many questions

need an answer!

So, if I want to specify Java threads properly, I have to go as far as to tamper with

the structure of the logic itself. A stronger mathematician than I is needed here. The

result, though, are sure to be fascinating. It is then possible to simulate asynchronous

program in logic, tracking all possible scenarios and thus those that could go wrong. For

example, consider a set of elevators used in the same building. This classical example

must ensure maximum eÆciency while basic safety property must be ful�lled. Typically,

at all cost, no door must open without an elevator behind it. Using our system, we could

generate the possible scenarios very quickly in the interpreter.

7.3 Implementation issues

Another interesting question when one looks at the code for the interpreter code

is the issue of whether Linear Logic is 100% needed. It is quite clear that on a description

level, Linear Logic made the description of my system crystal clear. But it is also true

101

that I have implicitly shown that it is not necessary for writing Popeye in logic. A decent

manipulation of lists representing the various environment is enough to represent Popeye

computation in �Prolog.

On the other hand, I cannot separate Popeye from Linear Logic completely. The

interpreter for Popeye programs was written with the constant thought that it expressed

a rigorous theoretical background. In short, Popeye would only be yet another hack

without this solid ground to stand on. In this, Linear Logic is fundamental.

Was �Prolog a good choice? In my opinion, it is a great tool for designing and

manipulating a syntax. The de�nition of syntactic categories is a breeze, which conse-

quently speeds up the writing of an interpreter for the language. For this reason, and at

this early stage of design, I consider it the ideal tool. It is a blurred topic to try to de�ne

the kind of environment suitable for the next stages in the development of Popeye. For

example, one of the element absolutely needed is a parser for the language. The only

problem, though, is the absence of any parser generator in logic programming. In [11],

Liang proposed a parser generator named �Yacc that might solve this issue, but that is

still in early development. The temptation, then, would be to switch to other contexts

where such tools are widely available. I think this is premature. There are many obscure

points that remain in the logic that need to be solved before we are con�dent enough to

build a dedicated system.

Finally, let's not forget that there is also the need to write a program that gen-

erates the equivalent of the .spi �les. This is probably easier in logic, since all we have

to do is generate a module.

102

7.4 Insights

These implementations matters, though, are only the �rst steps to what this work

could lead us to. One of the real goal for Popeye is to be able to feed Popeye programs

in a theorem prover. Backtracking is nice, but the problem of induction is absolutely

not handled by this method.

This is a huge problem, because what we typically would like to do is examine

the behavior of a loop and infer whether it results in the output we expected out of it.

This implies the use of proofs that do not explore that totality of execution traces, since

the number of such traces is typically in�nite. Consider, for example, a program that

given a number n, generates the set of prime numbers smaller than n. Since n can be

any natural number, there is no other proof but by induction. If we come back to the

elevator example, then it is clear that such reasoning will de�nitely come handy.

In the end, it should be possible to build small lemmas on some representative

programs and loops. Once this is done, these lemmas could be used in larger proofs,

or re-used on similar programs. With a big enough set of such results, most programs

could be proved correct rapidly. At this point, Popeye becomes a very powerful tool for

writing programs with a high level of con�dence.

The next step would be to expand the expressiveness of the language until we

reach a point where bringing an existing program in, say, Java, can be done without too

much e�ort. At this point, amazing things could happen, where we would be able to

extract a program, analyze it in the context of Popeye, isolate errors and ineÆciencies,

103

and output a corrected version that would have been proven correct. This is still very far

away, and much work needs to be done before we can hope approaching such capabilities.

7.5 Final words

I am nearly �nished with this presentation of the relationships between Linear

Logic and OO programming languages. I would like, though, to �nish with a little

personal reexion.

As I developed this whole construction, many things intrigued me. But the most

bizarre feeling I had was to be convinced that the parallels noticed between these two the-

ories were too easily drawn to be pure strokes of luck. In fact, I have developed the most

intimate conviction that the initial developers of the approach of programming known

as object programming were indeed thinking in terms of logic. First, they fragmented

their program in entities bound together by a high data cohesion. These entities can

easily be understood as facts. A set of facts, or objects, de�nes a program. Writing the

interactions between these entities then became a matter of writing a set of interaction

rules triggered by a given con�guration of the system. Schach, in [18] represented this

fact as the classical implication:

Set of initial conditions) Operations

But let us not forget that implication is before and for all de�ned classicaly as follows:

A) B iff (not A) or B

104

That is, after all, a logical formula...

Here, maybe, lies the hidden relation that explains why the parallelism works so

well. This means that those people working in Java, C or any other imperative setting,

known to have a rather harsh opinion of other paradigms, are in fact using ideas deeply

rooted in Logic.

Could irony be the only real meaning of a Popeye program?

105

Chapter 8

Appendix

Instead of listing all the code, I made it available at the following URL:

http://www.cse.psu.edu/~dale/betis/

106

8.1 Appendix A - Popeye Interpreter

The following �les de�ne the interpreter:

� popeye.sig: Signature for the Popeye language.

� interp.mod: Interpreter module.

8.2 Appendix B - Type-inferer

� tchecker.mod: Type-checker

8.3 Appendix C - Java code generator

� spinach.mod: Java code generator

8.4 Appendix D - Examples

8.4.1 Switch example

� switch.pop.mod: Switch object

8.4.2 FIFO example

� cell.*: Cell object

� queue.*: Queue object

8.4.3 Logical gates example

� wire.*: Wire object

107

� gate.*: Gate object

� unigate.*: Unigate object

� bigate.*: Bigate object

� notgate.*: Notgate object

� andgate.*: Andgate object

� orgate.*: Orgate object

8.4.4 List example

� list.*: List object

108

8.5 Appendix E - Additional references

Many readings should have their place in this work. This is why I dedicate this

section to them. [15] was a starting point in this work, and raised many questions in my

mind since it was the �rst time I faced such things. I looked into [16] to understand logic

programming in its theory and [1] helped me focus on implementation issues. FORUM

expressive power was also demonstrated in the massive PhD thesis from Manuel M.T.

Chakravarty ([3]). Finally, in the course of this work, a very worrysome paper (for me)

came out. [2] had the following familiar title: \Translating Linear Logic Programming

Language into Java". As it turned out, the translation was more an implementation,

and I could push forward in my direction. Finally, the best starting point as far as logic

in computation is concerned is probably Gallier's book ([6]).

109

References

[1] Hassan Ait-Kaci. Warren's Abstract Machine. MIT Press, 1991.

[2] Mutsunori Banbara and Naoyuki Tamura. Translating linear logic programming lan-

guage into java. In Proceedigns of the 10th Exposition and Symposium on Industrial

Applications of Prolog, pages 56{63, October 1997.

[3] Manuel M.T. Chakravarty. On the Massively Parallel Execution of Declarative Pro-

grams. PhD thesis, Berlin University, February 1997.

[4] Jawahar Lal Chirimar. Proof theoretic approach to speci�cation languages. PhD

thesis, University of Pennsylvania, February 1995.

[5] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5:56{68, 1940.

[6] Jean H. Gallier. Logic for Computer Science. Harper and Row, 1986.

[7] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.

[8] Joshua S. Hodas. Lolli: An extension of �prolog with linear logic context manage-

ment. In Dale Miller, editor, Proceedings of the 1992 workshop on the lambdaProlog

programming language, Philadelphia PA, Summer 1992.

110

[9] Joshua S. Hodas and Dale Miller. Representing objects in a logic programming

language with scoping constructs. In David H.D. Warren and Peter Szeredi, editors,

Proceedings of the Seventh International Conference on Logic Programming, pages

511{526, Jerusalem, June 1990. M.I.T. Press.

[10] Joshua S. Hodas and Dale Miller. Logic programming in a fragment of intuitionistic

linear logic. Information and Computation, 110(2):327{365, May 1994.

[11] Chuck Liang. A formulation of deterministic bottom-up parsing and parser gener-

ation in logic programming. August 1999.

[12] Dale Miller. Lexical scoping as universal quanti�cation. In Sixth International Logic

Programming Conference, pages 268{283, Lisbon, Portugal, June 1989. MIT Press.

[13] Dale Miller. Abstractions in logic programming. In Piergiorgio Odifreddi, editor,

Logic and Computer Science, pages 329{359. Academic Press, 1990.

[14] Dale Miller. Forum: A multiple-conclusion speci�cation logic. Theoretical Computer

Science, 1996.

[15] Dale Miller. Logic of Computation, volume 165 of Nato ASI Series, chapter Sequent

Calculus and the Speci�cation of Computation, pages 399{444. Springer, 1999.

[16] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov. Uniform

proofs as a foundation for logic programming. Annals of Pure and Applied Logic,

51:125{157, 1991.

111

[17] G. Plotkin. Call-by-name, call-by-value and the �-calculus. Theoretical Computer

Science, 1(1):125{159, 1976.

[18] Stephen R. Schach. Software Engineering with Java. IRWIN Book Team, 1997.

[19] Paul Tarau. Program transformations and WAM-support for the compilation of

de�nite metaprograms. In Logic Programming: Proceedings of the First and Second

Russian Conferences on Logic Programming, number 592 in LNAI, pages 462{473.

Springer-Verlag, 1992.

[20] Philip Wadler. A prettier printer. March 1998.

